
Mathematical Programming 71 (1995) 153-177

An efficient cost scaling algorithm for the
assignment problem

Andrew V. Goldberg , ,1, Robert Kennedy 2
Computer Science Department, Stanford University, Stanford, CA 94305-2140, United States

Received 18 October 1993; revised manuscript received 19 January 1995

Abstract

The cost scaling push-relabel method has been shown to be efficient for solving minimum-cost
flow problems. In this paper we apply the method to the assignment problem and investigate
implementations of the method that take advantage of assignment's special structure. The results
show that the method is very promising for practical use.

Keywords: Network optimization; Assignment problem; Algorithms; Experimental evaluation; Cost scaling

1. Introduct ion

Significant progress has been made in the last decade on the theory of algorithms for

network flow problems. Some of the algorithms that came out of this research have been

shown to have practical impact as well. In particular, the push-relabel method [11, 16]

is the best currently known way for solving the maximum flow problem [2, 8, 23]. This

method extends to the minimum-cost flow problem using cost scaling [11, 17]. Earlier

implementations of this method [5, 14] performed well on some problems but relatively

poorly on others. A later implementation [12] has been shown very competit ive on a

wide class of problems. In this paper we study efficient implementations of the cost

scaling push-relabel method for the assignment problem.

* Con'esponding author. Present address: NEC Research Institute, 4 Independence Way, Princeton, NJ 08540,
United States, e-mail: avg@research.nj.nec.com.

1 This author's research was supported in part by ONR Young Investigator Award N00014-91-J-1855, NSF
Presidential Young Investigator Grant CCR-8858097 with matching funds from AT&T, DEC and 3M, and a
grant from the Powell Foundation.

2 This author's research was supported by the above-mentioned ONR and NSF grants.

0025-5610 (~) 1995--The Mathematical Programming Society, Inc. All rights reserved
SSD1 0025-5610(95)00008-9

154 A. V. Goldberg, R. Kennedy~Mathematical Programming 71 (1995) 153-177

The most relevant theoretical results on the assignment problem are as follows. The
best currently known strongly polynomial time bound of O (n (m + n log n)) is achieved
by the classical Hungarian method of Kuhn [21]. Here n denotes the number of nodes
in the input network and rn denotes the number of edges. (Implementations of the
Hungarian method and related algorithms are discussed in [7].) Under the assumption
that the input costs are integers in the range [- C C], Gabow and Tarjan [10]
use cost scaling and blocking flow techniques to obtain an O (v / n m l o g (n C)) time
algorithm. Algorithms with the same running time bound based on the push-relabel
method appeared in [15, 24].

In this paper we study implementations of the scaling push-relabel method in the
context of the assignment problem. We use the ideas behind the minimum-cost flow
codes [5, 12, 14], the assignment codes [3,4,6] , and the ideas of theoretical work on
the push-relabel method for the assignment problem [15], as well as new techniques
aimed at improving practical performance of the method. We develop several CSA
(Cost Scaling Assignment) codes based on different heuristics which improve the code
performance on many problem classes. The "basic" code CSA-B does not use any

heuristics, the CSA-Q code uses a "quick-minima" heuristic, and the CSA-S code
uses a "speculative arc fixing" heuristic. Another outcome of our research is a better
understanding of cost scaling algorithm implementations, which may lead in turn to
improved cost scaling codes for the minimum-cost flow problem.

We compare the performance of the CSA codes to four other codes: SFR10, an
implementation of the auction method for the assignment problem [6]; SJV and DJV,
implementations of Jonker and Volgenant's shortest augmenting path method [19] tuned
for sparse and dense graphs respectively; and ADP/A, an implementation of the interior-
point method specialized for the assignment problem [25]. We make the comparison
over classes of problems from generators developed for the First DIMACS Implemen-
tation Challenge [18] 3 and on problems obtained from digital images as suggested
by Knuth [20]. Of our codes, CSA-Q is best overall. This code outperforms ADP/A
on all problem instances in our tests, outperforms SFR10 on all except one class, and
outperforms SJV and DJV on large instances in every class. Although our second-best
code, CSA-S, is somewhat slower than CSA-Q on many problem classes, it is usually
not much slower and it outperforms CSA-Q on three problem classes, always outper-
forms ADP/A, is worse than SFR10 by only a slight margin on one problem class and

by a noticeable margin on only one problem class, and loses to the Jonker-Volgenant
codes only on one class and on small instances from two other classes. While we use
the CSA-B code primarily to gauge the effect of heuristics on performance, it is worth
noting that it outperforms ADP/A in all our tests, the Jonker-Volgenant codes on large
instances from all but one class, and SFR10 on all but one class of problems we tested.

This paper is organized as follows. Section 2 gives the relevant definitions. Sec-
tion 3 outlines the scaling push-relabel method for the assignment problem. Section 4

3 The DIMACS benchmark codes, problem generators, and other information we refer to are available by
anonymous ftp from diraacs, rutgers, odu.

A.V. Goldberg, R. Kennedy/Matheraatical Programming 71 (1995) 153-177 155

discusses our implementation, in particular the techniques used to improve our code 's

practical performance. Section 5 describes the experimental setup. Section 6 gives the

experimental results. In Section 7, we give concluding remarks.

2. Background

Let G = (V = X U Y,E) be an undirected bipartite graph and let n = I V] and m = IEI .

A matching in G is a subset of edges M C ~ that have no node in common. The

cardinality of the matching is IMI . Given a weight function ~ : E -+ R, we define the

weight of M to be the sum of weights of edges in M. The assignment problem is to

find a maximum cardinality matching of maximum weight. We assume that the weights

are integers in the range [- C C] . To simplify the presentation, we assume that

IXI =]YI, G has a perfect matching (i.e., a matching of cardinality IX1), and every node

degree in G is at least two. We can dispense with these last assumptions without any

significant decrease in performance by using a slightly more complicated reduction to

the transportation problem than the one described below.

Our implementation reduces the assignment problem to the transportation problem
defined as follows. Let G = (V,E) be a digraph with a real-valued capacity u(a) and

a real-valued cost c(a) associated with each arc 4 a and a real-valued supply d(v)
associated with each node v. We assume that ~ v d(v) = O. A pseudoflow is a function

f • E -+ R+ satisfying the capacity constraints: for each a G E, f (a) <~ u(a). For

a pseudoflow f and a node v, the excess flow into v, e f (v) , is defined by e l (v) =

d (u) + ~(~,,~,)cE f (u , v) - ~-~4,,,w)cE f (v , w). A node v with e / (v) > 0 is called active.
Note that ~vcv ef(v) = O.

A flow is a pseudoflow f such that, for each node v, ef(v) = 0. Observe that a

pseudoflow f is a flow if and only if there are no active nodes. The cost of a pseudoflow

f is given by c o s t (f) = ~a~E c (a) f (a) . The transportation problem is to find a flow

of minimum cost.

We use a slight variation of the standard reduction from the assignment problem to

the minimum-cost flow problem (see, e.g., [22]). Given an instance of the assignment

problem (G , ~) , we construct a transportation problem instance (G --- (V,E),c,u) as

follows. We define V = V = X U Y. For every edge {v, w} E E such that v C X and

w E Y, we add the arc (v,w) to E and define c(v,w) = --d(v,w) and u(v,w) = 1.
Finally we define d(v) = 1 for all v E X and d(w) = - 1 for all w E Y. Note that the

graph G is bipartite.

For a given pseudoflow f , the residual capacity of an arc a ~ E is u f (a) = u (a) --

f (a) . The set of residual arcs Ef contains the arcs a C E with f (a) < u(a) and the

reverse arcs a R, for every a E E with f (a) > 0. The residual graph Gf = (V, EI) is the

graph induced by the residual arcs. For a E E, we define c(a R) = -c (a) . Note that if

4 Sometimes we refer to an arc a by its end points, e.g., (v, w). This is ambiguous if there are multiple arcs
fiom v to w. An alternative is to refer to v as the tail of a and to w as the head of a, which is precise but
inconvenient.

156 A.V. Goldberg, R. Kennedy~Mathematical Programming 71 (1995) 153-177

procedure MIN-COST(V,E, u, c) ;
[initialization]
e ~-- C; Vv, p (v) *'- O;
[loop]
while e /> 1/n do

(e, f , p) *- REFINE(E,p);
re turn (f) ;

end.

Fig. 1. The cost scaling algorithm.

G is obtained by the above reduction, then for any integral pseudoflow f and for any

arc a ~ E, u (a) , f (a) E {0, 1}.
A price funetion is a function p : V ---+ R. For a given price function p, the reduced

cost of an arc (v, w) is C p (V , w) = c(v , w) + p (v) - p (w) and the partial reduced cost

is c~,(v,w) = c (v , w) - p (w) .

For a constant • ~> 0, a pseudoflow f is said to be •-optimal with respect to a price

function p if, for every residual arc a C Ef , we have

a E E ~ cp(a) >/ 0, aR E E ~ Cp(a) >/--• .

A pseudoflow f is •-optimal if f is •-optimal with respect to some price function p. If
the arc costs and capacities are integers and • < l /n , any •-optimal flow is optimal.

For a given f and p, an arc a E Ef is admissible iff

a E E a n d e p (a) < ½• or a R E E a n d c p (a) < - ½ e .

The admissible graph GA = (V, E A) is the graph induced by the admissible arcs.

3. The method

First we give a high-level description of the successive approximation algorithm (see
Fig. 1). For a detailed presentation of the successive approximation framework and the
associated proofs, see [17]. The algorithm starts with • = C and p (v) = 0 for all
v C V. At the beginning of every iteration, the algorithm divides • by a constant factor
o~ and sets f to the zero pseudoflow. The iteration modifies f and p so that f is an
(• / a) - o p t i m a l flow with respect to p. When • < I /n , f is optimal and the algorithm

terminates. The number of iterations of the algorithm is 1 + Llog,(nC)J .
Reducing • is the task of the subroutine refine. The input to refine is • and p such

that there exists a flow f that is e-optimal with respect to p. The output from refine is
• ~ = •/ce, a flow f , and a price function p such that f is •t-optimal with respect to p.

The generic refine subroutine (described in Fig. 2) begins by decreasing the value
of e, setting f to the zero pseudoflow (thus creating some excesses and making some
nodes active), and setting p (v) = -min(v,w)EE{Cp (v, w)} for every v C X. This converts
the f into an •-optimal pseudoflow (indeed, into a 0-optimal pseudoflow). Then the
subroutine converts f into an •-optimal flow by applying a sequence of push and relabel

A.V. Goldberg, R. Kennedy~Mathematical Programming 71 (1995) 153-177 157

procedure REFINE(6, p) ;
[initialization]
e 6--- e/OL';

Va E E, f(a) +-- 0;
Vv E X, p(v) ~-- - min(v,w)~E c~p(v, w);
[loop]
while f is not a flow

apply a push or a relabel operation;
return(e, f, p) ;

end.

Fig. 2. The generic refine subroutine.

operations, each of which preserves e-optimality. The generic algorithm does not specify

the order in which these operations are applied. Next, we describe the push and relabel

operations for the unit-capacity case (see Fig. 3).

A push operation applies to an admissible arc (v, w) whose tail node v is active. It

consists of pushing one unit of flow from v to w, thereby decreasing e f (u) by one,

increasing e f (w) , and either increasing f (v , w) by one if (v , w) E E or decreasing

f (w , u) by one if (w , v) E E. A relabel operation applies to a node v. The opera-

tion sets p (u) to the smallest value allowed by the e-optimality constraints, namely

maxf. ,w)EE:{p(w) - - c (v , w) } if v E X, or max(..w)EEs{P(W) - - c (v , w) - -e} otherwise.
The analysis of cost scaling push-relabel algorithms is based on the following facts

[15, 17]. During a scaling iteration,

• the node prices monotonically decrease;

• for any v E V, p (v) decreases by O (n e) .

4. I m p l e m e n t a t i o n a n d h e u r i s t i c s

In this section we discuss implementation issues and heuristics aimed at speeding up

the method.
The efficiency of a scaling implementation depends on the choice of scale factor ce.

Although an earlier study [6] suggests that the performance of scaling codes for the

assignment problem may be quite sensitive to the choice of scale factor, our observations
are to the contrary. Spot checks on instances from several problem classes indicated that

PUSH(U,W),
send a unit of flow from v to w.

end.

RELAI~EL(u).
if v E X

then replace p (v) by max(.,w) E E.: {P (w) -- c (v, w) }
else replace p(v) by max(u,v)EF~: {p(u) + C(U,V) -- e}

end.

Fig. 3. The push and relabel operations.

1 5 8 A.E Goldberg, R. Kennedy~Mathematical Ptvgramming 71 (1995) 153-177

the running times seem to vary by a factor of no more than 2 for values of a between
4 and 40. We chose o~ = 10 for our tests; different values of a would yield running

times that are somewhat worse on some problem classes and somewhat better on others,
but the difference is not drastic. We believe the lack of robustness alluded to in [6]
may be due to a characteristic of the implementation of SFR10 and related codes.
In particular, SFR10 contains an "optimization" that seems to terminate early scaling
phases prematurely. Our codes run every scaling phase to completion as suggested by

the theory.
The efficiency of an implementation of refine depends on the number of operations

performed by the method and on the implementation details. We discuss the operation

ordering first.
The implementation maintains the price function p and the flow f . For each node

w E Y with e f (w) = 0, we maintain a pointer to the unique node v = /x(w) such that

f (v , w) = 1.
Our implementation maintains the invariant that only the nodes in X are active, except

possibly in the middle of the double-push operation described below. The implementation

picks an active node and applies the double-push operation to it.
The performance of the implementation depends on the strategy for selecting the next

active node to process. We experimented with several operation orderings, including
those suggested in [13, 17]. Our implementation uses the LIFO ordering, i.e., the set of
active nodes is maintained as a stack. This ordering worked best in our tests; the FIFO
ordering usually worked somewhat worse, although the difference was never drastic.

4. I. The double-push operation

The double-push operation is similar to a sequential version of the match-and-push
procedure from [15]. This operation was independently discovered in [1]. The operation

applies to an active node v. Recall that at the beginning of a double-push, all active

nodes are in X, so v C X.
First the double-push operation processes v by relabeling v, pushing flow from v along

an admissible arc (v, w), and then relabeling v again. If ef (w) becomes positive, the
operation pushes flow from w to # (w) and sets # (w) = v. Finally, double-push relabels

W.

Lemma 4.1. The double-push operation is correct.

Proof. We only need to show that double-push applies the pushing operation correctly.
Since immediately before the flow is pushed out of v the node is relabeled, there is an
admissible arc out of v and the push is correct. If this push makes w active, then there
is a second push from w to /x(w) .

Consider the last double-push into w which set /x(w) to its current value. Because
the network is obtained via a reduction described in Section 2, (w,/x(w)) is the only
residual arc out of w. So when the double-push relabeled w, Cp(#(w) ,w) became

A.V. Goldbe~, R. Kennedy~Mathematical Programming 71 (1995) 153-177 159

e. From this double-push to the current one, w and /x(w) have not been relabeled;

(the latter holds because (W, lX(W)) was the only residual arc into /x(w) during that

time period). Thus during the current push from w, Cp(IZ(W), w) = e, so the push is
valid. []

L e m m a 4.2. A double-push operation decreases the price of a node w C Y by at
least e.

Proof. Just before the double-push, w is either unmatched or matched.

In the first case, the flow is pushed into w and at this point the only residual arc out

of w is the arc (w, v). Just before that the double-push relabeled v and Cp(V, w) = O.
Next, double-push relabels w and p (w) decreases by e.

In the second case, the flow is pushed to w and at this point w has two outgoing

residual arcs, (w, v) and (w , / z (w)) . As we have seen, Cp (v, w) = 0 and Cp(tX(w), w) =

e. After the second relabeling of v, double-push pushes flow from w to/x(w) and relabels
w, reducing p(w) by e. []

Corol lary 4.3. There are O(n 2) double-push operations per refine.

4.2. Efficient implementation

Suppose we apply double-push to a node v. Let (v, w) and (v, z) be the arcs out of

v with the smallest and the second-smallest reduced costs, respectively. These arcs can

by found by scanning the adjacency list of v once. The effects of double-push on v are

equivalent to pushing flow along (v, w) and setting p(v) = -Cp (v, z) . To relabel w, we

set p(w) = p (v) + c(v, w) - e. This implementation of double-push is summarized in
Fig. 4.

It is not necessary to maintain the prices of nodes in X explicitly; for v E X,

we can define p(v) implicitly by p(v) = --min(v,w)eE{Cp(V,w)} if e f (v) = 1 and

p(v) = c1(v,w) + e if e f (v) = 0 and (v ,w) is the unique arc with f (v , w) = 1. One

can easily verify that using implicit prices is equivalent to using explicit prices in the
above implementation. The only time we need to know the value of p(v) is when we

relabel w in double-push, and at that time p(v) = -dp(V, z) which we compute during

the previous relabel of v. Maintaining the prices implicitly saves memory and time. The

DOUBLE-PUSH (/9).
let (v, w) and (v, z) be the arcs with the smallest and the second-smallest reduced costs;
PUSH (v, w) ;
p(v) = -c~(v,z);
if el(w) > 0

PUSH(W,/~(W));
/z (w) = v;
p(w) = p(v) + c(v, w) - e;

end.

Fig. 4. Efficient implementation of double-push.

160 A. V. Goldberg, R. Kennedy~Mathematical Programming 71 (1995) 153-177

implementation of the double-push operation with implicit prices is similar to the basic

step of the auction algorithm of [3].
Our code CSA-B implements the scaling push-relabel algorithm using stack ordering

of active nodes and the implementation of double-push with implicit prices mentioned
above.

4.3. Heuristics

In this section we describe two heuristics that often improve the algorithm's perfor-

mance.
The kth-best heuristic [3] is aimed at reducing the number of scans of arc lists

of nodes in X. The idea of the kth-best heuristic is as follows. Recall that we scan
the list of v to find the arcs (v, w) and (v, z) with the smallest and second-smallest
values of the partial reduced cost. Let k ~> 3 be an integer. When we scan the list of
v C X, we compute the kth-smallest value K of the partial reduced costs of the outgoing

arcs and store the k - 1 arcs with the k - 1 smallest partial reduced costs. The node
prices monotonically decrease during refine, hence during the subsequent double-push
operations we can first look for the smallest and the second-smallest arcs among the
stored arcs whose current partial reduced cost is at most K. We need to scan the list of
v again only when all except possibly one of the saved arcs have partial reduced costs

greater than K.
Our code CSA-Q is a variation of CSA-B that uses the fourth-best heuristic.

The idea of the speculative arc fixing heuristic [9, 12] is to move arcs with reduced
costs of large magnitude to a special list. These arcs are not examined by the double-
push procedure but are examined as follows at a (relatively large) periodic interval.
When the arc (v, w) is examined, if the e-optimality condition is violated on (v, w),

f (v , w) is modified to restore e-optimality and (v, w) is moved back to the adjacency
list of v; if e-optimality holds for (v, w) but lct,(v, w)I is no longer large, (v, w) is
simply moved back to the adjacency list. This heuristic takes advantage of the fact that

the flow isfixed on arcs of high reduced cost [17].
Our code CSA-S is a variation of CSA-B that uses the speculative arc fixing heuristic.
We implemented a number of other heuristics that are known to improve performance

of cost scaling code for the minimum-cost flow problem [12]. Among these are: global
price updates which periodically ensure, via a specialized shortest-paths computation,
that the admissible graph contains a path from every node with flow excess to some node
with flow deficit; and price refinement which determines at each iteration whether the
current assignment is actually el-optimal for some e / < e, and hence avoids unnecessary

executions of refine. Our best implementation uses neither of these strategies, however,
since even taking advantage of the assignment problem's structure to simplify and speed
up these heuristics, a typical price refinement iteration used more time than simply
executing refine in our tests. The double-push operation seems to maintain a sufficiently
"aggressive" price function and global price updates cannot reduce the number of push
and relabel operations enough to improve the running time.

A.V Goldberg, R. Kennedy~Mathematical Programming 71 (1995) 153-177

Table 1
DIMACS benchmark times
C benchmarks FORTRAN benchmarks
Test 1 Test 2 Test 1 Test 2
2.7 sec 24.0 sec 1.2 sec 2.2 sec

161

5. Experimental setup

All the test runs were executed on a Sun SparcStation 2 with a clock rate of 40 MHz

and 96 Megabytes of main memory. We compiled the SFR10 code supplied by Castafion

with the Sun Fortran-77 compiler, release 2.0.1 using the -04 optimization switch. 5 We

compiled the DJV and SJV codes supplied by Hao with the Sun C compiler release

1.0, using the -02 optimization option. We compiled our CSA codes with the Sun C

compiler release 1.0, using the - f a s t optimization option; each choice seemed to yield

the fastest execution times for the code where we used it. Times reported here are

UNIX user CPU-times, and were measured using the t i m e s () library function. During

each run, the programs collect time usage information after reading the input problem

and initializing all data structures and again after computing the optimum assignment;

we take the difference between the two figures to indicate the CPU-time actually spent

solving the assignment problem.

To give a baseline for comparison of our machine's speed to others, we ran the DI-
MACS benchmarks wmatch (to benchmark C performance) and netflo (to benchmark

FORTRAN performance) on our machines, with the timing results given in Table 1. It

is interesting (though neither surprising nor critical to our conclusions) to note that the

DIMACS benchmarks do not precisely reflect the mix of operations in the codes we

developed. Of two C compilers available on our system, the one that consistently ran

our code faster by a few percent also ran the benchmarks more slowly by a few percent;
(the C benchmark times in Table 1 are for code generated by the same compiler we used

for our experiments). But even though they should not be taken as the basis for very

precise comparison, the benchmarks provide a useful way to estimate relative speeds

of different machines on the sort of operations typically performed by combinatorial

optimization codes.

We did not run the A D P / A code on our machine, but because the benchmark times

reported in [25] differ only slightly from the times we obtained on our machine, we

conclude that the running times reported for A D P / A in [25] form a reasonable basis for

comparison with our codes. Therefore, we report running times directly from [25] . As
the reader will see, even if this benchmark comparison introduces a significant amount

of error, our conclusions about the codes' relative performance are justified by the large

differences in performance between A D P / A and the other codes we tested.

5 Castafion 16] recommends setting the initial "bidding increment" in SFR10 to a special value for problems
of high density; we found this advice appropriate for the dense problem class, but discovered that it hurt
performance on the geometric class. We followed Castafion's recommendation only on the class where it
seemed to improve SFR10's performance.

162 A.V. Goldberg, R. Kennedy~Mathematical Programming 71 (1995) 153-177

The DJV code is designed for dense problems and uses an adjacency-matrix data
structure. The memory requirements for this code would be prohibitive on sparse prob-
lems with many nodes. For this reason, we included it only in experiments on problem
classes that are dense. On these problems, DJV is faster than SJV by a factor of about
1.5. It is likely that our codes and the SFR10 code would enjoy a similar improvement
in performance if they were modified to use the adjacency-matrix data structure.

We collected performance data on a variety of problem classes, many of which we
took from the First DIMACS Implementation Challenge. Following is a brief description
of each class; details of the generator inputs that produced each set of instances are
included in Appendix A.

5.1. The high-cost class

Each v C X is connected by an edge to 2 log 2 IV I randomly-selected nodes of Y, with
integer edge costs uniformly distributed in the interval [0, 10s].

5.2. The low-cost class

Each v ~ X is connected by an edge to 2 log 2 t VJ randomly-selected nodes of Y, with
integer edge costs uniformly distributed in the interval [0, 100].

5.3. The two-cost class

Each u C X is connected by an edge to 2 log 2 I VI randomly-selected nodes of Y, each
edge having cost 100 with probability ½, or cost 108 with probability ½.

5.4. The fixed-cost class

For problems in this class, we view X as a copy of the set { 1,2 ½iV I}, and Y as
a copy of {½1VI + 1,2!lVl + 2 , . . . , IVI}. Each v C X is connected by an edge to ~IVI
randomly-selected nodes of Y, with edge (x, y), if present, having cost 100xy.

5.5. The geometric class

Geometric problems are generated by placing a collection of integer-coordinate points
uniformly at random in the square [0, 106] X [0, 106], coloring half the points blue and
the other half red, and introducing an edge between every red point r and every blue
point b with cost equal to the floor of the distance between r and b.

5.6. The dense class

Like instances of the geometric class, dense problems are complete, but edge costs
are distributed uniformly at random in the range [0, 107].

A.V. Goldberg, R. Kennedy~Mathematical Programming 71 (1995) 153-177

5.7. Picture problems

163

Picture problems, suggested by Knuth [20], are generated from photographs scanned
at various resolutions, with 256 greyscale values. The set V is the set of pixels; the

pixel at row r, column c is a member of X if r ÷ c is odd, and is a member of Y

otherwise. Each pixel has edges to its vertical and horizontal neighbors in the image,

and the cost of each edge is the absolute value of the greyscale difference between its

two end points. Note that picture problems are extremely sparse, with an average degree

always below 4. Although picture problems are an abstract construct with no practical
motivation, the solution to a picture problem can be viewed as a tiling of the picture

with dominos, where we would like each domino to cover greyscale values that are as

different as possible.

For our problems, we used two scanned photographs, one of each author of this paper.

6. Experimental observations and discussion

In the following tables and graphs, we present performance data for the codes. Note

that problem instances are characterized by the number of nodes on a single side, i.e.,
half the number of nodes in the graph.

We report times on the test runs we conducted, along with performance data for the

ADP/A code taken from [25]. The instances on which ADP/A was timed in [25]

are identical to those we used in our tests. We give mean running times computed

over three instances for each problem size in each class; in the two-cost and geometric

classes we also give mean running times computed over fifteen instances and sample

deviations for each sample size. We computed sample deviations for each problem class
and size, and observed that in most cases they were less than ten percent of the mean

(often much less). The two exceptions were the two-cost and geometric classes, where

we observed larger sample deviations in the running times for some of the codes. For
these two classes we also collected data on fifteen instances for each problem size. The

sample statistics taken over fifteen instances seem to validate those we observed for

three instances. All statistics are reported in seconds.

6.1. The high-cost class

Fig. 5 and Table 2 summarize the timings on DIMACS high-cost instances. The kth-

best heuristic yields a clear advantage in running time on these instances. CSA-Q beats

CSA-B, its nearest competitor, by a factor of nearly 2 on large instances, and CSA-Q

seems to have an asymptotic advantage over the other codes, as well. The overhead of
speculative arc fixing is too great on high-cost instances; the running times of CSA-S for

large graphs are essentially the same as those of SFR10. SJV has the worst asymptotic

behavior.

164

v~

o

o

4J

R
R
R

i000

i00

i0

A. V. Goldberg, R. Kennedy~Mathematical Programming 71 (1995) 153-177

High-Cost Instances
I , i i i J

ADP/A o
SJV -~ / //

SFRI0 --s /.W //
CSA-S × / / /
CSA-B -~ / /"
C SA - Q -~ / ~ / ~ ///////,///

/ / /" ~/ / /
/ / i

1 x-'2 ..-" .."

I I 1 I I I

1024 2048 4096 8192 16384 32768
number of nodes (logscale)

Fig. 5. Running times for the high-cost class.

Table 2
Running times for the high-cost class

Nodes IX I ADP/A SFRI0 SJV CSA-B CSA-S CSA-Q

1024] 7 1.2 0.87 0.7 1.1 0.5
2048 36 2.9 4.40 1.9 2.7 1.3
4096 132 6.4 18.1 4.3 6.2 2.8
8192 202 15.7 65.6 10.8 15.3 6.5

16 384 545 37.3 266 25.5 38.3 14.3
32 768 1463 85.7 1197 58.7 84.0 32.4

6.2. The low-cost class

The s i tua t ion here is very s imi la r to the h igh-cos t case: C S A - Q en joys a s l igh t

a s y m p t o t i c advan t age as wel l as a c lear cons tan t - fac to r advan t age over the c o m p e t i n g

codes. SJV has worse a sympto t i c b e h a v i o r than the o ther codes on the low-cos t class,

j u s t as i t does on h i g h - c o s t ins tances . See Fig. 6 and Table 3.

A.V. Goldberg, R. Kennedy~Mathematical Programming 71 (1995) 153-177 165

H

o
59

o
r~

~3

D~

i000

I00

10

Low-Cost Instances
i i i i , ,

ADP/A
SJV -~ / ,,,"

SFRI 0 --B / / , , /
C SA- S .,..x ~ - / ,,,/"
C SA - B -A ~ / .,,/
CSA-Q -~ / //////,,,'/'////,

.+//, ..~

/ ..,w" ...<i . /

/ ' / ,.~/Y //'i-""

/',,//" //~6/

~:;.-

I I I I I I

5 0 2 4 2 0 4 8 4 0 9 6 8592 1 6 3 8 4 3 2 7 6 8
n u m b e r o f n o d e s (l o g s c a l e)

Fig. 6. Running times for the low-cost class.

Table 3
Running times for the low-cost class

Nodes IXI ADP/A SFR10 SJV CSA-B CSA-S CSA-Q

1024 15 0.75 0.82 0.48 0.64 0.44
2048 29 1.83 3.03 1.21 1.77 0.98
4096 178 4.31 12.6 2.99 4.13 2.43
8192 301 10.7 57.0 7.39 10.3 5.72

16 384 803 27.7 229 20.1 27.8 13.4
32 768 2464 68.5 1052 46.9 64.6 30.3

6.3. The two-cost class

The two-cost data appear in Fig. 7 and Tables 4 and 5. It is difficult for robust

scaling algori thms to exploit the special structure of two-cost instances; the ass ignment

problem for most of the graphs in this class amounts to f inding a perfect match ing on

the high-cost edges, and none of the scaling codes we tested is able to take special

advantage of this observation. Because SJV does not use scaling, it would seem a good

166 A.V. Goldberg, R. Kennedy~Mathematical Programming 71 (1995) 153-177

o

o

~0

4J

P
N

i000

i00

i0

Two-Cost Instances

/ /////

SJV o ///"
SFRI 0 +,,," ~ : < < , . - - "
o s A - Q ,""
C S A - B ,,," . . - " p > . ~ "

/ / .,"" x...i/ / /
,,'<D""....--<;>"

/;:.,, ×...' , .

,,;-" / < > /

I I f r i [I

1024 2 0 4 8 4096 8192 16384 32768 65536
number of nodes (logscale)

Fig. 7. Running times (three-instance samples) for the two-cost class.

Table 4
Running times (three-instance samples) for the two-cost class

Nodes IXI SFRI0 SJV CSA-B CSA-S CSA-Q
time s time s time s time s time s

1024 5.13 0.09 0.35 0.00 3.09 0.24 2.58 0.15 5.21 0.33
2048 14.0 1.! 1.16 0.01 7.72 0.28 6.19 0.18 l l.I l.O
4096 37.3 1.1 4.21 0.16 17.7 1.1 14.2 1.6 23.3 2.4
8192 107 12 18.2 0.43 43.4 35 36.7 2.1 58.6 3.3

16384 366 81 73.6 0.58 102 2.8 85.4 3.2 133 7.8
32 768 894 180 320 1.2 240 6.0 185 6.8 299 6.4
65536 1782 60 1370 5.8 531 15 417 11 628 25

cand ida t e to pe r fo r m espec ia l ly well on this class, and indeed it does well on smal l

two-cos t ins tances . For large ins tances , however , SJV uses a great deal o f t ime in i ts

shor tes t a u g m e n t i n g pa th phase , and pe r fo rms poor ly for this reason. Specula t ive arc

f ix ing improves s igni f icant ly upon the p e r f o r m a n c e o f the basic C S A i m p l e m e n t a t i o n ,

and the k th -bes t heur is t ic hur ts p e r f o r m a n c e on this class o f p rob lems . It seems that the

A.V. Goldberg, R. Kennedy~Mathematical Programming 71 (1995) 153-177

Table 5
Running times (fifteen-instance samples) for the two-cost class

167

Nodes IXI SFR10 SJV CSA-B CSA-S CSA-Q
time s time s time s time s time s

1024 5.05 0.32 0.35 0.02 3.07 0.21 2.56 0.10 4.93 0.40
2048 14.1 1.1 1.18 0.04 7.49 0.37 6.18 0.26 10.8 0.73
4096 37.4 2.7 4.22 0.14 17.7 1.0 14.7 0.84 24.1 1.6
8192 109 9.8 18.0 0.37 44.6 2.5 36.5 1.5 57.5 3.2

16384 314 50 73.7 0.57 105 4.2 84.1 2.9 130 8.4
32768 822 194 320 2.1 239 8.5 186 4.8 293 15
65 536 2021 342 1376 7.5 524 25 426 16 637 27

kth-best heuristic tends to speed up the last few iterations of refine, but it hurts in the

early iterations. Like kth-best, the speculative arc fixing heuristic is able to capitalize on

the fact that later iterations of refine can afford to ignore many of the arcs incident to

each node, but by keeping all arcs of similar cost under consideration in the beginning,

speculative arc fixing allows early iterations to run relatively fast. On this class, CSA-S

is the winner, although for applications limited to this sort of strongly bimodal cost

distribution, an unscaled push-relabel or blocking flow algorithm might perform better

than any of the codes we tested. No running times are given in [25] for A D P / A on

this problem class, but the authors suggest that their program performs very well on

two-cost problems. Relative to those of the other codes, the running times of SFR10 are

comparatively scattered at each problem size in this class; we believe this phenomenon

results from the premature termination of early scaling phases in SFR10 (see Section 4) .

The relatively large sample deviations shown in Fig. 7 and Table 4 motivated our ex-

periments with fifteen instances of each problem size. The sample means and deviations

of the fifteen-instance data are shown in Table 5, and they are consistent with and very

similar to the three-instance data shown in Fig. 7 and Table 4.

6.4. The fixed-cost class

Fig. 8 and Table 6 give the data for the fixed-cost problem class. On smaller instances

of this class, CSA-B and CSA-Q have nearly the same performance. On instances with

IXI = 1024 and IX I = 2048, CSA-Q is faster on fixed-cost problems than CSA-B, or

indeed any of the other codes. On smaller instances, speculative arc fixing does not pay

for itself; when IXI = 2048, the overhead is just paid for. Perhaps on larger instances,

speculative arc fixing would pay off. It is doubtful, though, that CSA-S would beat

CSA-Q on any instances of reasonable size. SJV exhibits the worst asymptotic behavior

among the codes we tested on this problem class.

6.5. The geometric class

On geometric problems, both heuristics improve performance over the basic CSA-B

code. The performance of CSA-S and CSA-Q is similar to and better than that of the

168 A.V. Goldberg, R. Kennedy~Mathematical Programming 71 (1995) 153-177

-$
r-~

o

t~
o r~
v

-H
+3

b

i000

Fixed-Cost Instances

i00

10

0 . 1

i i i i ~_
/

///
/"

/
, /

/" D
ADP/A -~--

SJV --+ / //'
SFRI0 --n // //
CSA- S -.-.x / " ." ,.,'~
CSA-B / ,W / /-";. ""
CSA-Q -~ /,..'" /-"/'"

.J. /
~," ;;~;~ -

/ .,.;;;Y
/

/' "i):>" / .~'" ...:S

,/ ,'" .x:~J"
.,<i

..... .;;;;V

I I I I I

128 256 512 1024 2048
n u m b e r o f n o d e s (l o g s c a l e)

Fig. 8. Running times for the fixed-cost class.

Table 6
Running times for the fixed-cost class

Nodes IxI ADP/A SFRI0 SJV CSA-B CSA-S CSA-Q

128 3 0.16 0.18 0.06 0.08 0.07
256 I I 0.63 2.14 0.30 0.37 0.32
512 46 3.59 19.4 1.6 1.8 1.7

1024 276 20.5 168 7.8 8.2 6.0
2048 n.a. 123 1367 37.8 37.6 27.9

other codes. The Jonker -Volgenan t codes seem to have asymptot ic behavior similar to

the o ther codes on this class. See Fig. 9 and Table 7.

Because the sample deviat ions shown in Fig. 9 and Table 7 are somewhat large

compared to those we observed on most other problem classes, we ran experiments on

fifteen instances as a check on the validity o f the data. Statistics calculated over fifteen-

instance samples are reported in Table 8, and they are very much like the three-instance

data.

A. V Goldberg, R. Kennedy~Mathematical Programming 71 (1995) 153-177 169

o
in

o

-H
.I-3

tn

i000

i00

I0

Geometric Instances
, , i i

SJV 0
DJV --+

SFRI0 --D
CSA-Bx ~

/ . + CSA-Q

/ , / f , / /
. / ,," ,x

/ / / ' / / / / ~

/ / 1~'" /" / / / /

/-" .,.x' t /
/ / v/" ~.¢'

<k:>s
~¢.." .¢;5"

:5."
I~ I I I

128 256 512 1024
number of nodes (logscale)

Fig. 9. Running times (three-instance samples) for the geometric class.

Table 7
Running times (three-instance samples) for the geometric class

Nodes IxI ADP/A SFR10 SJV DJV CSA-B CSA-S CSA-Q

time s time s time s time s time s time s time s

128 12 0.5 1.27 0.46 6.64 4.4 4.36 2,9 0.79 0.28 0.62 0.05 0.58 0.19
256 47 1 6.12 0.23 25.3 3.3 16.9 2.0 3.67 0.67 2.56 0.08 2.43 0,34
512 214 42 31.0 4.1 110 2.8 73.2 1.0 27.9 8.1 11 .9 0.89 16.7 3,7

1024 1316 288 193 19 424 51 297 32 114 24 54.9 1.42 62.5 2.6

Table 8
Running times (fifteen-instance samples) for the geometric class

Nodes IX I SFRI0 SJV DJV CSA-B CSA-S CSA-Q

time s time s time s time s time s time s

128 1.28 0.21 5.96 2.0 3.85 1.3 0.78 0.16 0.61 0.03 0.57 0.11
256 6.21 0.82 26.1 4.7 17.5 2.9 3.72 0.51 2.63 0.09 2.50 0.27
512 35.0 6.0 101 11 68.2 7.4 23.2 4.9 11.8 0.67 15.1 2.4

1024 214 54 416 38 291 25 127 27 54.4 2.2 66.7 9.7

170 A.V. Goldberg, R. Kennedy~Mathematical Programming 71 (1995) 153-177

i00
Dense Instances

H
i0

o

o
H

~J

0.i

CSA-S -o--- ,~: , ."-"'
SFR1 0 -~ ,~:Y /Y /:::'"
CSA-B '~ ,;"" x" ,'>

SJV x , : ~ , ; . -

DJV - ~ ' / ' " ' " ~

CSA-Q - ~

~- ./ //./
,.,'× " ///,"

/"//" ~/i/'

.,- / / , .

/9"
t ' /

× /

i I I I

128 256 512 1024
number of nodes (logscale)

Fig. 10. Running times for the dense class.

Table 9
Running times for the dense class

Nodes IXI SFR10 SJV DJV CSA-B CSA-S CSA-Q

128 0.51 0.14 0.12 0.36 0.52 0.16
256 2,22 1.57 1.07 1.83 2.17 0.84
512 8.50 6.22 4.47 8.12 9.36 4.13

1024 41.2 28.5 19.6 42.0 47.1 18.9

6.6. The dense class

The difference between Fig. l 0 and Tables 8 and 9 shows that the codes ' relative

performance is significantly affected by changes in cost distribution. Except on very

small instances, CSA-Q is the winner in this class; DJV is its closest competitor, with

SJV performing fairly well also. As in the case of geometric problems, SJV and DJV

seem to have asymptot ic performance similar to the scaling and interior-point codes on

this class.

A.V. Goldberg, R. Kennedy~Mathematical Programming 71 (1995) 153-177 171

o

o

~3

h

i00000

i0000

i000

i00

i0

Andrew Picture Problems

//
...-C:...--:.<:>-'.....×

. . ~ - ' " ' ~ . ~ s : ~ :
. : : . ' : : : ~

.o~s.,:.>-"
.--.~/ .. ~ S JV

.... :/.:~'>" ~' C SA - Q
~'"~-:':'~<~'>'>"" C SA - S --n
W':~' SFRI 0x

CSA-B ~

I I I I

65536 131072 262144 524288

number of nodes (logscale)

./y
./y

I

1.04858e+06

Fig. 11. Running times for problems from Andrew's picture.

Table 10
Running times for problems from Andrew's picture

Nodes IXI SFR10 SJV CSA-B CSA-Q CSA-S

65 158 79.20 2656 73.23 103.3 76.70
131 370 260.2 11 115 173.2 248.0 185.5
261324 705.2 49 137 665.1 907.8 844.8
526008 1073 n.a. 1375 2146 1432

1046 520 n.a. n.a. 5061 n.a. 5204

Table 11
Running times for problems from Robert's picture

Nodes IXI SFRI0 SJV CSA-B CSA-Q CSA-S

59 318 49.17 1580 50.13 68.10 51.82
119 132 153.1 6767 154.8 223.6 165.4
237 272 351.4 26 637 585.0 916.8 6l 1.2
515 088 827.8 n.a. 2019 3095 3057
950 152 1865 n.a. 5764 n.a. 8215

172 A. 1~ Goldberg, R. Kennedy~Mathematical Programming 71 (1995) 153-177

i00000
Robert Picture Problems

o

t~
O

&J

i0000

i000

I00

.-" ×

........... i ii

. . . . ~'"~'-~'~;~':;" CSA-Q

" " ~v'~ C S A - S --D
/ " . , 7 CSA-B

~ ' , J ' " SFRI 0 - "

1 0 I I I I I

65536 131072 262144 524288 1.04858e+06
number of nodes (logscale)

Fig. 12. Running times for problems from Robert's picture.

6. 7. Picture problems

Although the pictures used had very similar characteristics, the tentative conclusions
we draw here about the relative performance of the codes seem to apply to a broader
class of images. We performed trials on a variety of images generated and transformed
by various techniques, and found no substantial differences in relative performance,
although some pictures seem to yield more difficult assignment problems than others.
See Figs. 11 and 12 and Tables 10 and 11. On the picture problems we tried, SFR10
performs better than any of the CSA implementations; we believe that the "reverse-
auction" phases performed by SFR10 [6] are critical to this performance difference.
We were unable to obtain times for SJV and CSA-Q on the largest problem instance
from each picture, nor from SFRI0 on the largest problem instance from one of the
pictures because the codes required too much memory. On the second-largest instance
from each picture, our experiments suggested that SJV would require more than a day
of CPU-time, so we did not collect data for these cases. On picture problems CSA-Q

A.V. Goldberg, R. Kennedy~Mathematical Programming 71 (1995) 153-177 173

performs significantly worse than either of the other two CSA implementations. This
situation is no surprise because CSA-Q performs an additional pointer dereference each
time it examines an arc. In such a sparse graph, the four arcs stored at each node
exhaust the list of arcs incident to that node, so no benefit is to be had from the kth-best
heuristic.

7. Concluding remarks

Castafion [6] gives running times for an auction code called SF5 in addition to
performance data for SFR10; SF5 and SFR10 are the fastest among the robust codes
discussed. The data in [6] show that on several classes of problems, SF5 outperforms
SFR10 by a noticeable margin. Comparing Castafion's reported running times for SFR10
with the data we obtained for the same code allows us to estimate roughly how SF5

performs relative to our codes. The data indicate that CSA-S and CSA-Q should perform
at least as well as SF5 on all classes for which data are available, and that CSA-Q should

outperform SF5 by a wide margin on some classes. A possible source of error in this
technique of estimation is that Castafion reports times for test runs on cost-minimization

problems, whereas all the codes we test here (including SFR10) are configured to
maximize cost. The difference in every case is but a single line of code, but while on
some classes minimization and maximization problems are similar, on other classes we

observed that minimization problems were significantly easier for all the codes. This
difference is unlikely to be a large error source, however, since the relative performance
of the codes we tested was very similar for minimization problems and maximization

problems.
It is interesting that SJV is asymptotically worse than all its competitors on every

sparse class, and that SJV and DJV are asymptotically very similar to their competitors
on the dense classes. DJV performs very well on the uniform dense problem class, but
we feel SJV provides a more genuine reference point, since the other combinatorial
codes could be sped up on dense problems by replacing their central data structures
with an adjacency matrix representation similar to that in DJV.

From our tests and data from [25] and [6], we conclude that CSA-Q is a robust,
competitive implementation that should be considered for use by those who wish to
solve assignment problems in practice.

Acknowledgements

The authors would like to thank David Castafion for supplying and assisting with the
SFR10 code, Anil Kamath and K.G. Ramakrishnan for their assistance in interpreting
results reported in [25], Jianxiu Hao for supplying and assisting with the SJV and
DJV implementations, and Serge Plotkin for his help producing the digital pictures.

174 A.V. Goldberg, R. Kennedy~Mathematical Programming 71 (1995) 153-177

The second author would like to thank Scott Burson for providing computing facilities
during the development of the codes.

Appendix A. Generator inputs

The assignment instances on which we ran our tests were generated as follows.
Problems in the high-cost, low-cost, fixed-cost and dense classes were generated using
the DIMACS generator a s s i g n , e. Problems in the two-cost class were generated using
a s s i g n , c with output post-processed by the DIMACS awk script t w o c o s t , a. Problems

in the geometric class were generated using the DIMACS generator dcube, c with output
post-processed by the DIMACS awk script geomasn, a. Picture problems were generated
from images in the Portable Grey Map format using our program p5pgmtoasn. To obtain
the DIMACS generators, use anonymous f t p to d i r a a c s . r u t g e r s , edu, or obtain the
e sa package (which includes the generators) as described below.

In each class except the picture class, we generated instances of various numbers of
nodes N and used various seeds K for the random number generator. For each problem

type and each N, either three or fifteen values of K were used; the values were integers
270 001 through 270 003 or through 270 015. For picture problems, we tested the codes
on a single instance of each size.

A. 1. The high-cost class

We generated high-cost problems using a s s i g n , c from the DIMACS distribution.
The input parameters given to the generator are as follows, with the appropriate values

substituted for N and K:
nodes N
sources 1N

d e g r e e 2 log 2 N
maxcost 100 000 000
seed K

A.2. The low-cost class

Like high-cost problems, low-cost problems are generated using the DIMACS gen-
erator a s s i g n , c. The parameters to the generator are identical to those for high-cost

problems, except for the maximum edge cost:
nodes N

1 N sources 2
deg ree 2 log 2 N
maxcost lO0

seed K

A. V. Goldberg, R. Kennedy~Mathematical Programming 71 (1995) 153-177

A.3. The two-cost class

175

Two-cost instances are derived from low-cost instances using the UNIX awk program
and the DIMACS awk script t w o c o s t , a. The instance with N nodes and seed K was
generated using the following UNIX command line, with input parameters identical to
those Ibr the low-cost problem class:

assign l awk -f twocost.a

A.4. The fixed-cost class

We gener~ed fixed-costinstances using a s s i g n . c , withinputp~ameters as follows:
nodes N

1 sources ~N

degree A N
maxcos t 100
multiple

seed K

A.5. The geometric class

We generNed geometric problems using the DIMACS generator dcube, c and the
DIMACS awk script geomasn, a. We gave input parameters to dcube as shown below,
and used the following UNIX command line:

dcube l awk -f geomasn.a

nodes N

dimension 2

maxloc 1000000
seed K

A.6. The dense class

We gener~ed dense problems using a s s i g n . c , with input p~ameters as follows:
nodes N

1 sources ~N

complete

maxcost I000000

seed K

Appendix B. Obtaining the CSA codes

To obtain a copy of the CSA codes, DIMACS generators referred to in this paper, and
documentation files, send mail to ftp-request@theory, stanford, edu and use send

176 A. V. Goldberg, R. Kennedy~Mathematical Programming 71 (1995)153-177

c s a s . t a r as the sub jec t l ine; you wil l au tomat ica l ly be ma i l ed a u u e n c o d e d copy o f a

t a r file.

References

I1] R.K. Ahuja, J.B. Odin, C. Stein and R.E. Tarjan, "Improved algorithms for bipartite network flow,"
SlAM Journal on Computing 23 (1994) 906-933.

[2] R.J. Anderson and J.C. Setubal, "Goldberg's algorithm for the maximum flow in perspective: a
computational study," in: D.S. Johnson and C.C. McGeoch, eds., Network Flows and Matching: First
DIMACS Implementation Challenge (American Mathematical Society, Providence, RI, 1993) pp. 1-18.

13] D.P. Bertsekas, "The auction algorithm: a distributed relaxation method for the assignment problem,"
Anna& of Operations Research 14 (1988) 105-123.

[4] D.P. Bertsekas, Linear Network Optimization: Algorithms and Codes (MIT Press, Cambridge, MA,
1991).

[5] R.G. Bland, J. Cheriyan, D.L. Jensen and L. Ladariyi, "An empirical study of min cost flow algorithms,"
in: D.S. Johnson and C.C. McGeoch, eds., Network Flows and Matching: First DIMACS Implementation
Challenge (American Mathematical Society, Providence, RI, 1993) pp. 119-156.

[6] D.A. Castafion, "Reverse auction algorithms for the assignment problems" in: D.S. Johnson and C.C.
McGeoch, eds., Network Flows and Matching: First D1MACS hnplementation Challenge (American
Mathematical Society, Providence, RI, 1993) pp. 407-430.

[71 U. Derigs, "The shortest augmenting path method for solving assignment problems--motivation and
computational experience," Annals of Operations Research 4 (1985-1986) 57-102.

18] U. Derigs and W. Meier, "hnplementing Goldberg's max-flow algorithm--a computational
investigation," Zeitschriftfiir Operations Research 33 (1989) 383-403.

[9] S. Fujishige, K. lwano, J. Nakano and S. Tezuka, "A speculative contraction method for the minimum
cost flows: toward a practical algorithm," in: D.S. Johnson and C.C. McGeoch, eds., Network Flows and
Matching: First DIMACS Implementation Challenge (American Mathematical Society, Providence, RI,
1993) pp. 219-246.

110] H.N. Gabow and R.E. Tarjan, "Faster scaling algorithms for network problems," SlAM Journal on
Computing 18 (1989) 1013-1036.

[11] A.V. Goldberg, "Efficient graph algorithms for sequential and parallel computers," Ph.D. Thesis,
Massachusetts Institute of Technology, Cambridge, MA (1987); also: Technical Report TR-374,
Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA (1987).

[12] A.V. Goldberg, "An efficient implementation of a scaling minimum-cost flow algorithm," in: E. Balas
and J. Clausen, eds., Proceedings of the Third Integer Programming and Combinatorial Optimization
Conference (Springer, Berlin, 1993) pp. 251-266.

[13] A.V. Goldberg and R. Kennedy, "Global price updates help," Technical Report STAN-CS-94-1509,
Department of Computer Science, Stanford University, CA (1994).

[14] A.V. Goldberg and M. Kharitonov, "On implementing scaling push-relabel algorithms for the minimum-
cost flow problem," in: D.S. Johnson and C.C. McGeoch, eds., Network Flows and Matching: First
DIMACS Implementation Challenge (American Mathematical Society, Providence, RI, 1993) pp. 157-
198.

[15] A.V. Goldberg, S.A. Plotkin and P.M. Vaidya, "Sublinear-time parallel algorithms for matching and
related problems," Journal of Algorithms 14 (1993) 180-213.

116] A.V. Goldberg and R.E. Tarjan, "A new approach to the maximum flow problem," Journal of the
Association Jbr Computing Machinery 35 (1988) 921-940.

117] A.V. Goldberg and R.E. Tarjan, "Finding minimum-cost circulations by successive approximation,"
Mathematics of Operations Research 15 (1990) 430-466.

[18] D.S. Johnson and C.C. McGeoch, eds., Network Flows and Matching: First DIMACS Implementation
Challenge (American Mathematical Society, Providence, RI, 1993).

119] R. Jonker and A. Volgenant, "A shortest augmenting path algorithm for dense and sparse linear
assignment problems," Computing 38 (1987) 325-340.

120] D. Knuth, Personal communication (1993).

A.V. Goldberg, R. Kennedy~Mathematical Programming 71 (1995)153-177 177

121] H.W. Kuhn, "The Hungarian method for the assignment problem" Naval Research Logistics Quarterly
2 (1955) 83-97.

[22] E.L. Lawler, Combinatorial Optimization: Networks and Matroids (Holt, Rinehart & Winston, New
York, 1976).

[23] Q.C. Nguyen and V. Venkateswaran, "Implementations of Goldberg-Tarjan maximum flow algorithm,"
in: D.S. Johnson and C.C. McGeoch, eds., Network Flows and Matching: First DIMACS Implementation
Challenge (American Mathematical Society, Providence, RI, 1993) pp. 19-42.

[24] J.B. Orlin and R.K. Ahuja, "New scaling algorithms for the assignment and minimum cycle mean
problems," Sloan Working Paper 2019-88, Sloan School of Management, Massachusetts Institute of
Technology, Cambridge, MA (1988).

1251 K.G. Ramakrishnan, N.K. Karmarkar and A.P. Kamath, "An approximate dual projective algorithm for
solving assignment problems," in: D.S. Johnson and C.C. McGeoch, eds., Network Flows and Matching:
First DIMACS Implementation Challenge (American Mathematical Society, Providence, RI, 1993) pp.
431-452.

