Maximum Matching in General Graphs
Without Explicit Consideration of Blossoms

Norbert Blum
Informatik IV, Universitat Bonn
Romerstr. 164, D-53117 Bonn, Germany
email: blum@cs.uni-bonn.de

October 26, 1999

Abstract

We reduce the problem of finding an augmenting path in a general
graph to a reachability problem in a directed, bipartite graph. Fur-
thermore, we show that a slight modification of depth-first search leads
to an algorithm for finding such paths. This new point of view enables
us to develop algorithms for the solution of matching problems with-
out explicit analysis of blossoms, nested blossoms, a.s.o. A variant
of Edmonds’ primal-dual method for the weighted matching prob-
lem which uses the modified depth-first search instead of Edmonds’
maximum matching algorithm as a subroutine is described. Further-
more, a straightforward O(nm log n)-implementation of this algorithm
is given.

1 Introduction and motivation

Since Berge’s theorem in 1957 [4] it has been well known that for construct-
ing a maximum matching, it suffices to search for augmenting paths. But
until 1965, only exponential algorithms for finding a maximum cardinality
matching in nonbipartite graphs were known. The reason was that one did
not know how to treat odd cycles, the socalled “blossoms” in alternating
paths. In his pioneering work, Edmonds [7] solved this problem by shrinking
these odd cycles. In [2, 10, 16, 19], it is shown how to avoid explicit shrinking
of odd cycles. All these algorithms need O(n?) or O(nm) time, where n is
the number of nodes, and m is the number of edges in the graph.

The first polynomial algorithm for the weighted matching problem also
depends on Edmonds [8]. Its run time is O(n?). Gabow [9] and Lawler [16]
have develloped O(rn?) implementations of Edmonds algorithm. Ball and
Derigs [3] gave an O(nmlogn) implementation. The best implementation
of Edmonds algorithm uses O(n(m + nlogn)) time and is also given by
Gabow [11]. For a more detailed description of the known weighted matching
algorithms see [14, 16, 17].

Our goal is to avoid sophisticated explicit analysis of (nested) blossoms.
For getting this, we reduce the problem of finding an augmenting path to a
reachability problem in a directed, bipartite graph. It is shown, how to solve
this reachability problem by a modified depth-first search. The algorithm
obtained is not fundamentally different from previous algorithms which use
Edmonds’ traditional terminology of blossoms. But we believe that this new
point of view, which avoids the explicit consideration of blossoms, simplifies
the situation considerably. We have described a simplified realization of the
Hopcroft-Karp approach [15] for the computation of a maximum cardinality
matching in general graphs in [6]. Furthermore, we show how to use the
modified depth-first search algorithm in the primal step of Edmonds’ maxi-
mum weighted matching algorithm. This approach allow to implement Ed-
monds’ algorithm without shrinking and expanding the socalled “blossoms”.
A straightforward O(nmlogn) implementation will be described, too.

In Section 2, definitions and the general method are given. We will de-
scribe the reduction to a reachability problem in a directed, bipartite graph
in Section 3. This reachability problem is solved in Section 4. We will prove
the correctness in Section 5. In Section 6, we will present an efficient imple-

mentation of the solution. In Section 7, we show how to use the modified
depth first search as subroutine in Edmonds’ maximum weighted matching
algorithm. The implementation of this approach will be given in Section 8.

2 Definitions and the general method

A graph G = (V, F) consists of a finite, nonempty set of nodes V and a set
of edges E. G is either directed or undirected. In the (un-)directed case,
each edge is an (un-)ordered pair of distinct nodes. A graph G = (V,) is
bipartite if V can be partitioned into disjoint nonempty sets A and B such
that for all (u,v) € E, u € A and v € B, or vice versa. Then we often
write G = (A, B,). A path P from v € V to w € V is a sequence of nodes
v = Vg, V1,...,0, = w, which satisfies (v;,v;41) € E, for 0 < i < k. The
length |P| of P is the number k of edges on P. P is simple if v; # v;, for
0 <1<y <k. For conveniences, P will denote the path vy, vy, ..., v, the set
of nodes {vg, v1,...,v;}, and the set of edges {(vo, v1), (v1,02), ..., (Vk—1, V%) }.
If there exists a path from v to w (of length 1) v is called a (direct) predecessor
of w, and w is called a (direct) successor of v.

Let G = (V. FE) be an undirected graph. M C FE is a matching of G
if no two edges in M have a common node. A matching M is mazimal if
there exists no e € F\ M such that M U {e} is a matching. A matching
M is mazimum if there exists no matching M’ C F of larger size. Given an
undirected graph G' = (V, E), the maximum matching problem is finding a
maximum matching M C E. A path P = vg,vq,...,v; is M-alternating, if
it contains alternately edges in M and in £\ M. A node v € V is M-free
if v is not incident to an edge in M. Let P = wvg,v1,...,v; be a simple
M-alternating path. P is M-augmenting if vy and vy, are M-free. Let P be
an M-augmenting path in G. Then M & P denotes the symmetric difference
of M and P;i.e. M@ P =M\ PUP\ M. It is easy to see that M @& P is a
matching of G, and |M & P| = |M| + 1.

The key to most algorithms for finding a maximum matching in a graph
is the following theorem of Berge [4].

Theorem 1 Let GG = (V, E) be an undirected graph and M C F be a match-
ing. Then M is maximum if and only if there exists no M-augmenting path

in G

Berge’s theorem directly implies the following general method for finding a
maximum matching in a graph G.

Algorithm 1

Input: An undirected graph G = (V, E), and
a matching M C E (possibly M =)

Output: A maximum matching M,

Method:

while there exists an M-augmenting path
do
construct such a path P;
M=MaoP
od;

Moow := M.

The key problem is now this: How to find an M-augmenting path P, if such
a path exists? We solve this key problem in the following way.

1. We reduce the key problem to a reachability problem in a directed,
bipartite graph G = (V/, Ea).

2. We solve this reachability problem constructively.

3 Reduction to a reachability problem

In the bipartite case, we construct from G = (A, B, E) and a matching
M C FE adirected graph Gy = (V', Epr) by directing the edges in M from A
to B, and directing the edges in £\ M from B to A. Additionally, we add
two new nodes s and ¢ to AU B, add for each M-free node b € B the edge
(s,b) to Epr, and add for each M-free node a € A the edge (a,t) to Ey. It is
easy to prove that there is an M-augmenting path in G if and only if there
is a simple path from s to ¢ in GGjy. This reachability problem can be solved
by performing a depth-first search (DFS) of Gjy with start node s.

Now we will consider the general case. Let G = (V, F) be an undirected
graph, and M C E be a matching. Let Vay = {& € V' | 2 is M-free}. For the
definition of Gyr we have the following difficulty.

4

A priori, we cannot divide the set of nodes V' into two sets A and B
such that an M-augmenting path exists in G if and only if there exists an
M-augmenting path, using alternately nodes from A and from B. Hence, for
defining G'py we introduce for each node v € V' two nodes [v, A] and [v, B]
such that an analogous construction of a graph Gy is possible. Both edges
([v, A, [w, B]) and ([w, A], [v, B]) are in Gy if and only if (v,w) € M. Both
edges ([z, B], [y, A]) and ([y, B], [z, A]) are in G5y if and only if (2, y) € E\ M.
Additionally, we add for each M-free node v € V the edges (s,[v, B]) and
([v, A],t) to Gy, where s and ¢ are two new nodes. More formally, let

Gy = (V' Epr) where

Vi = {[v,A],[v,B] |veV}U{s ¢} s,t &V, s+t
Ex = {([v, Al [w, B]), ([w, A}, [v, B]) | (v,w) € M}

Uilz, Bl [y, A]), [y, Bl [e, A | (2,y) € E\ M}
U{(s,[o, B), ([0, AL £) | v € Var}

Analogously to the bipartite case, we have directed the edges in M “from A
to B” and the edges in £\ M “from B to A”. Since the distinct nodes [v, A]
and [v, B] in V' correspond to the same node v in V| it does not suffice to
construct a simple path from s to ¢ in G for finding an M-augmenting path
in (. Hence, we define strongly simple paths in Gy which cannot contain
both nodes [v, A] and [v, B], for all v € V. A path P in Gy, is strongly simple
if

a) P is simple, and

b) Vv, Al]e V': [v,A] € P=[v,B] & P.

Now we can formulate the reachability problem in Gy which is equivalent to
the problem of finding an M-augmenting path in G.

Theorem 2 Let G = (V, E) be an undirected graph, M C E be a matching,
and Gy = (V' Ey) be defined as above. Then there exists an M-augmenting
path in G if and only if there exists a strongly simple path from s tot in Gy.

Proof: “&”: Let P = s,[vy, B, [vg, A, [vs, B], ..., [vk—1, B], [vr, A], 1 be a
strongly simple path in Gjs. Then v; #v;, 1 <@ <7 <k, and vy,v, € Vi
Hence, P' = vy, vq,...,v; is an M-augmenting path in G.

“=7: Let () = wy,wy,...,wi_1,w; be an M-augmenting path in (. Then
w; # wj, 1 <1<y <[, and wy,w; € Viy. Hence, by the construction of
G, Q' = s, [wy, B, [ws, A], ..., [wi_1, B],[w;, A],t is a strongly simple path
in GM [|

4 The solution of the reachability problem

Depth-first search (DFS) finds simple paths in a directed graph. Hence,
we cannot use DFS directly for the solution of the reachability problem in

G . We will modify the usual DFS such that the modified depth-first search

(MDFS) finds precisely the strongly simple paths in Gyy. Let [v, A] = [v, B],
and [v, B] = [v, A]. Remember that a DFS partitions the edges of the graph
into four categories [1]. Similarly, the edges of G are partitioned into five

categories by a MDFEFS of G:

1. Tree edges, which are edges leading to new nodes [v, X], X € {A, B},

for which [v, X] is not a predecessor during the search.

2. Weak back edges, which are edges leading to new nodes [v, A], for which
[v, B] is a predecessor during the search.

3. Back edges, which go from descendants to ancestors during the search.

4. Forward edges, which go from ancestors to proper descendants but are
not tree edges.

5. Cross edges, which go between nodes that are neither ancestors nor
descendants of one another during the search.

Like DFS, MDFS uses a stack K for the organization of the search. Anal-
ogously to DFS, the MDFS-stack K defines a tree, the MDFS-tree T'. Be-
fore describing MDFS in detail, we will describe the algorithm informally.
TOP(K) denotes the last node added to the MDFS-stack K. In each step,
MDFS considers an edge (TOP(K), [w,Y]) which was not considered previ-

ously. Let e = ([v, X], [w, X]) be the edge under consideration. We distin-
guish two cases:

. X = A, ie (v,w) € M. tree edge

2. X =B, ie (v,u)e E\M

2.1 [w,A] e K back edge
2.2 [w, Al € K but [w,B] € K
i) [w, A] has been in K previously cross edge
ii) [w, A] has not been in K previously weak back edge
2.3 [w,A] ¢ K and [w,B] ¢ K
i) [w, A] has been in K previously forward or cross edge
ii) [w, A] has not been in K previously tree edge

MDF'S differs from DFS only in Cases 2.2.11 and 2.3.1. Next, we will discuss
both of these cases.

Case 2.2.ii: Since [w, A] has not been in K before, DFS would perform
the operation PUSH([w, A]). Since [w,B] € K, and MDFS should only
construct strongly simple paths in Gy, MDFS does not perform the operation
PUSH([w, A]).

Case 2.3.i: Since [w, A] has been in K before, DFS would perform no PUSH-
operation. But the different treatment of Case 2.2.ii can cause the following
situation. MDFS has found a path from [w, A] to a node [u, A]. But the
node [u, B] was in K, and hence by Case 2.2.ii, the operation PUSH([u, A])
has not been performed. But now, [u, B] ¢ K. As we will prove later, the
paths P from s to [v, B] and @ from [w, A] to [u, A] are strongly disjoint; i.e.
there is no [r, X] € P, X € {A, B} such that {[r, A],[r, B]} N Q # (). Hence,
the path P,Q) is strongly simple. Since MDFS has found a strongly simple
path from s to [u, A], MDFS now performs the operation PUSH([u, A]).

Note that with respect to depth-first search, the DFS-stack contains ex-
actly the current search path. With respect to the modified depth-first search,
the situation is different. In Case 2.3.i, the node [u, A] is pushed. But to
obtain a current search path, between the nodes [v, B] and [u, A], we have to
insert any path [w, A], @ such that a path

P=s,...[u B]v,B]w,A]Q,u, Al

with ([, B], [u, A]) € Eax where Q = @', [z, B] is constructed by the algo-

rithm. Since we do not want to forgot the information about the first node

7

on the path which we have to add between the nodes [v, B] and [u, A], we
create the artificial tree edge ([v, B], [u, A])w,4- Such an edge is called ea-
tensible edge. It is possible that there exists various such paths (). Hence,
after the performance of PUSH([u, A]), the number of corresponding current
search path can increase.

Always if we consider one current search path we mean that we can take
an arbitrary corresponding current search path. If we add to the constructed
MDFS-tree T all forward and all cross edges and replace every extensible
edge ([v, B], [u, A])jw,4] by all possible paths [w, A], @, then we obtain the
expanded MDFS-tree T,,,.

We say that MDFS has constructed a strongly simple path P if T,,, con-
tains P. We say that MDFS has found a strongly simple path P’, [v, B], [w, A]
if the path P’,[v, B] is constructed by MDFS and the edge ([v, B], [w, A]) is

a considered weak back edge.

Next we shall describe MDFS more in detail. We have to solve the fol-
lowing problem: How to find node [u, A] in Case 2.3.i7 For the solution of

this problem, we assume that MDFS is organized such that for all nodes
[w, A] € V', the following holds true:

After performing the operation POP([w, A]), MDFS has always computed
a set Ly, 4] of nodes such that L, 4) contains exactly those nodes [u, A] € V'
satisfying the requirements that

1. MDFS has found a path P = [w, A], @, [u, A] with [u, B] € Q,
2. PUSH([u, A]) has never been performed, and

3. POP([u, B]) has been performed.

Before the performance of POP([w, A]), we fix Ly, 4 = 0.

In the description of MDFS we assume for all [w, A] € V' that Ly, 4
is computed correctly. As we will prove later, always |Lp, 4] < 1. The
computation of Ly, 41, as well as an efficient implementation of MDFS, can
be found in Section 6. For v € V', N[v] denotes the adjacency list of v.

Algorithm 2 (MDFS)
Input: Gy = (V', En)

Output: A strongly simple path P from s to ¢, if such a path exists.
Method:

PUSH(s);

while K # () and no path from s to ¢ is found

do
SEARCH
od.
SEARCH is a call of the following procedure.
procedure SEARCH:;
if TOP(K) =t then
reconstruct a strongly simple path P from s to ¢
which has been constructed by the algorithm
else
mark TOP(K) “pushed”;
for all nodes [w,Y] € N[TOP(K)]
do
(Case 1) if Y = B then
PUSH([w, B]);
SEARCH
(Case 2) else
(Case 2.1) if [w, A] € K then
no PUSH-operation is performed
else
(Case 2.2) if [w, B] € K then
no PUSH-operation is performed
(Case 2.3) else
(Case 2.3.1) if [w, A] is marked “pushed” then
while L[w,A] 75 @
do
choose any [u, A] € Ly, a1;
PUSH([u, A]);
SEARCH
od
(Case 2.3.ii) else
PUSH([w, A)]);
SEARCH

5 The correctness proof of MDFS

The correctness proof of MDFS is inspired by the correctness proof of DFS.
First we will prove some lemmas. The first lemma implies that the first
PUSH-operation which destroys the property “strongly simple” must push a
node with second component A.

Lemma 1 Aslong as MDFES construct only strongly simple paths, the follow-
ing holds true: After the operation PUSH([v, A]) where v is not M-free, the

operation PUSH([w, B]) where ([v, A], [w, B]) € En always follows without
destroying the property “strongly simple”.

Proof: After the performance of the operation PUSH([v, A]), MDFS always
consider the unique edge ([v, A], [w, B]) € FEy and performs the operation
PUSH([w, B]). If this operation destroys the property “strongly simple”,
then [w, A] and hence, [v, B] would be on a current search path. But then the
operation PUSH([v, A]) would have destroyed the property “strongly simple”,
a contradiction. I

The next lemma shows that MDFS constructs a path from s to a node
[z, A] if in a specific situation a strongly simple path from s to this node
exists.

Lemma 2 Let [u, B] € V' be a node for which MDFS performs the operation
PUSH([u, B]). Furthermore, at the moment when POP([u, B]) is performed
by MDFS, only strongly simple paths have been constructed by MDFS. Let
[, A] € V' such that at the moment when PUSH([u, B]) is performed, there is
a strongly simple path P = [u, B], [v, A], Q, [z, A] with [z, X],[z,X]| € K, for
all [z, X] € P. Then PUSH([z, A]) has been performed before POP([u, B]).

10

Remark: Lemma 2 implies that either PUSH([z, A]) and POP([x, A]) have
been performed before the performance of PUSH([u, B]), or both operations
have been performed between the operations PUSH([u, B]) and POP([u, B]).

Proof: Let P = [u, B],[v, A],[v/, B],Q’, [z, A] be such a path of shortest
length for which PUSH([x, A]) has not been performed before POP([w, B]).
It is clear that edge e = ([u, B], [v, A]) has been considered before the perfor-
mance of POP([u, B]). If the operation PUSH([v, A]) is performed according
to this consideration of edge e, then by the assumption that P is a shortest
path such that the assertion is not fulfilled, PUSH([x, A]) has been performed
before POP([v’, B]), and hence, before POP([u, B]). Hence, MDFS is in Case
2.3.1 and performs the corresponding while-statement. Consider the moment
when MDF'S finishes this while-statement, i.e. Ly, 4) = 0.

Let [z, A] € P be the first node on P for which PUSH([z, A]) has not
been performed. Since [z, A] has this property, node [z, A] exists. Let P =
[u, B], [v, A], Q1, [z, A], @2, [z, A]. Then

1. MDFS has found the path [v, A], Q1, [z, A];
2. PUSH([z, A]) has never been performed; and

3. POP([z, B]) has been performed (since [z, B] ¢ K when PUSH([u, B])

is performed).

Hence, [z, A] € Ly, 41, and hence, Ly, 41 # 0. But this contradicts Ly, 4 = 0.
|

For w € V', we denote

{[v, | ifw = [v, X]
r(w) = t fw=s

s ifw=t
Let S = wy,wq,...,w; be a path in Gy, The backpath r(S) of S is defined
by
r(S) = r(wg), r(wg—1),...,r(wy).
Lemma 3 Let [u, B] € V' be a node for which MDFS performs the operation

PUSH([u, B]). Furthermore, at the moment when POP([u, B]) is performed
by MDFS, only strongly stimple paths have been constructed by MDFS. If there

11

exists a strongly simple path P = [v, A], Q, [w, B] such that at the moment
when PUSH([u, B)) is performed, [z, X],[z, X] &€ K, for all [z, X] € P, and
([u, B, [v, A]), ([w, B, [u, A]) € Em, then for all [z, X] € P, the operations

PUSH([z, X]) and PUSH([z, X]) have been performed before the operation
POP([u, B]).

Proof: For the nodes [z, X] € P consider the path [u, B], P and apply

Lemma 2. For the nodes [z, X| consider the path [u, B],r(P) and apply
Lemma 2. §

By the definition of Ly, 4 and Lemma 3, we obtain for all [u, A] € V"
| Lu,47| > 0 implies that PUSH([u, A]) and POP([u, A]) have been performed.

Lemma 4 MDFS maintains the following invariants:
Invariant 1: MDFS constructs only strongly simple paths.
Invariant 2: |Lp, 4| <1, for all [w, A] € V.

Invariant 3: Assume that the algorithm performs the assignment Ly, 41 = [u, A].
Then after the performance of PUSH([u, A]), always Ly, 41 = Liy 41

Remark: Invariant 2 and Invariant 3 are not needed for the correctness proof
of MDFS. But we will need these invariants for the efficient implementation
of the algorithm. Moreover, the proof of Invariant 1 is easier if we prove all
invariants simultaneously.

Proof: Consider the first situation in which one of the three invariants is
not maintained. Three cases are to be considered.

Case 1: Invariant 1 is not maintained.

Only a PUSH-operation can destroy the property “strongly simple”. Note
that a PUSH-operation cannot affect Invariant 2 or Invariant 3.

Lemma 1 implies that this PUSH-operation occurs during the consider-
ation of an edge e = ([v, B],[w, A]). Then e corresponds to edge (v,w) €

If [w, A] is not marked “pushed”, then Case 2.3.ii of MDFS applies, and
PUSH([w, A)]) is performed. The only possible situation in which this PUSH-
operation destroys the property “strongly simple” is the following:

12

On a current search path there is a subpath) which is caused by an
application of Case 2.3.i of MDFS such that [w, B] € Q.

Hence, there exists [u, A] € V’ such that the addition of () to this cur-
rent search path is caused by the operation PUSH([u, A]). By construction,
the assumptions of Lemma 3 are fulfilled with respect to [u, B], [w, B] € P.
Hence, by Lemma 3, PUSH([w, A]) has been performed before POP([u, B]),
and hence, before PUSH([u, A]), a contradiction.

Hence, [w, A] is marked “pushed”. Therefore, Case 2.3.i of MDFS applies,
and for node [u, A] = Ly, 4, the operation PUSH([u, A]) is performed. (Note
that by Invariant 2, |Lp, 4| < 1. We thus write Ly, 41 = [u, A] instead of
L4 = {[u, A]}.) Hence, the algorithm extends the current search paths
by a path [w, A], @, [u, A]. Note that only [u, A] will be pushed. Later, the
subpath [w, A], @ must be reconstructed if needed. By the definition of Ly, 4],
and by Lemma 3, the operations PUSH([z, X]), POP([z, X]), PUSH([2, X]),
and POP([z, X]) have been performed, for all [z, X] € Q. Hence, the only
possible situation in which PUSH([u, A]) destroys the property “strongly
simple” is the following:

There is a node [p, X] € [w, A],Q, [u, A], and a subpath @ of a current
search path which is caused by an application of Case 2.3.i such that [p, X] €
Q' or [p,X] € Q'. Since one end node of an edge in the current matching
uniquely determines the other end node, we can choose [p, X| such that
[p, Al € Q.

Consider node [u’, A] € K with PUSH([u', A]) is the operation which adds
the subpath @' to this current search path. By the definition of Ly, 4}, Lemma
3 and Invariant 2, before the performance of PUSH([u', A]), Ly, 41 = [u', A].
Hence, by Invariant 3, after the performance of PUSH([u', A]), always Ly, 47 =
Lpw, 4. By the choice of [p, A], Ly, 41 = [u, A], and hence, Ly 41 = [u, A] in
the situation under consideration. Hence, POP([u/, A]) is performed. Hence,
[u', A] € K, a contradiction.

Case 2: Invariant 2 is not maintained.

Then there is [w, A, [p1, A], [p2, A] € V' with the property that Ly, 4 =
{[p1, A]} before the performance of POP([p,, B]), and Ly, 41 = {[p1, Al, [p2, A}
after the performance of POP([ps, B]). Hence, MDFS has found a path P, =
[p1, B, Q, [p1, A] with [w, A] € @ and found a path P, = [ps, B],Q’, [p2, 4]
with [w, A] € Q.

13

If MDFS has found the path P, after the performance of POP([p;, B]),
then [w, A] can only be added to @’ in the following way:

An operation PUSH([u, A]), caused by an application of Case 2.3.i with
respect to a node [v, A] (i.e., [u, A] € Ly, 4)) is performed such that the current
search path is extended by a path [v, A], Q, [u, A] with [w, A] € Q. But then,
[u, A] € Ly, 4 before the performance of PUSH([u, A]). PUSH([u, A]) is
performed after POP([p;, B]). Hence, [u, A],[p1, A] € Ly, 4 between the
performance of these two operations. This contradicts the assumption that
we consider the situation in which Invariant 2 is not maintained for the first
time.

Hence, MDFS has found the path P, before the performance of POP([p1, B]).
Note that [p1, B] ¢ Q. Otherwise, by Lemma 3, PUSH([py, A]) is performed
before POP([ps, B]), and hence, [p1, A] € Ly, 47 after POP([p,, B]). Let [r, A]
be the first node on @)’ such that [r, A] € @, or [r, B] € (). Since node [w, A]
has this property, node [r, A] exists. Let

Q' =@, [r, A, Q3 and @ = { 81 E: g]]%; gtk[lré:vlv]isi ¢

Consider the path

B { Ll AL Qanp, A] i Al € Q
Ll Al r(Q1), [p1, A] otherwise

Then Lemma 2 applies with respect to [p2, B, [p1, A], and the strongly simple
path R. Hence, PUSH([p1, A]) is performed before POP([p2, B]), and hence,
[p1, A] & L, 4 after POP([p;, B]), a contradiction.

Case 3: Invariant 3 is not maintained.

After the performance of PUSH([u, A]), there holds Ly, 41 = L4 =
(. We will prove that Ly, 4 = Liy,a) after the next POP-operation which
changes L, 4 or L, 4. Then, the assertion follows because of Invariant 2
and the transitivity of the relation =.

Let POP([p, B]) be the next POP-operation which enlarges Ly, 4 or
Liy,4)- K[, 4] denotes the current MDFS-stack, directly after the performance
of PUSH([w, A]). Let K’ = K, 41 N K[y 4. Note that [u, B] € K, 4 \ K’
According to the location of [p, B] with respect to K, 4 and to K, 4, we
distinguish three cases.

14

By construction, [p, B] € K, 4 \ K'. Otherwise, POP([p, B]) would be
performed before PUSH([u, A]).

Assume that [p, B] € K[, 4\ K'. Let [¢, B] be the first node in K, 41\ K’
such that [q, A] € Ky 4 \ Kj.p- Node [g, B] exists since [u, B] has the
property that [u, B] € K[, 41 \ K.

Consider the backpath of the path from node [p, B] to node [¢, A]. This
backpath implies that [¢, B] and [p, A] fulfill the assumptions of Lemma 2.
Hence, PUSH([p, A]) occurs before POP([q, B]). Since [q, B] € K4 \ K,
the operation PUSH([p, A]) is also performed before POP([p, B]). Hence,
POP([p, B]) can enlarge neither Ly, 4] nor L, 4.

[t remains to consider [p, B] € K. Let [¢, B] € K’ be the node nearest to
the top of K’ for which PUSH([g, A]) has not been performed at the moment
when MDFS performs PUSH([u, A]). Since [p, B] has this property, [q, B]
exists. By consideration of the backpath of the path from [¢, B] to [u, B], it
is easy to prove that MDFS finds a path from [u, A] to [¢, A] not containing
lq, B]. Hence, Ly, a1 = [q, A] after the performance of POP([q, B]), and hence,
[q, B] = [p, B]. Since MDFS has found a path from [w, A] to [u, A] which
does not contain [g, B], there holds Ly, 4 = [q, A] = [p, A]. 1

Now, the correctness of the algorithm MDFS can easily be derived from
Lemma 2 and Lemma 4.

Theorem 3

a) MDFS constructs a path from s to t, if a strongly simple path from s
tot exists.

b) MDFS constructs only strongly simple paths.

Proof: a) Let P = s, [vg, B], [v1, A], [v}, B],...,[v._, B], [vr, A], t be a strongly
simple path from s to ¢. It is clear that MDF'S considers the edge (s, [vg, B]),
and performs the operation PUSH([v(, B]). (Note that v is M-free.) Hence,
[vg, B, [v, A] fulfill the assumptions of Lemma 2 with respect to the path
[vg, B], [v1, A], ..., [v._|, B],[v., A]. Hence, by Lemma 2, MDFS performs
PUSH([v,, A]), and hence, PUSH(¢). Hence, MDFS constructs a path from
s to 1.

b) is a direct consequence of Invariant 1 of Lemma 4. 1

15

6 An implementation of MDEFS

Now we will describe how to implement MDFS efficiently. Only two parts of
the algorithm are nontrivial to implement.

1. The manipulation of Ly, 4, [w, A] € V.

2. The reconstruction of a strongly simple path P from s to ¢ which is
constructed by the algorithm.

For the solution of both subproblems it is useful not to perform the POP-
operations explicitly, and to maintain the whole MDFS-tree T'. This can be
done as follows:

The data structure is a tree T'. A pointer TOP always points to TOP(K’)
in T'. The current MDFS-stack K is represented by the unique path from
the root s of T' to TOP(K') in T. For performing the operation POP, pointer
TOP is changed such that it points to the unique direct predecessor in T
When we perform a PUSH-operation, T obtains a new leaf to which TOP
points.

Invariant 2 and Invariant 3 are the key for the efficient implementation of
our method. Now we will describe the update of L, 4;. By the definition of
Ly, 47, we have only to change Ly, 4) after a PUSH- or after a POP-operation.
More exactly, we have to perform:

After PUSH([U,A]) L[w,A] = @ if L[w,A] = [U,A]
After POP([u, B]): Ly, 41 = [u, A] if

1. PUSH([u, A]) has never been performed, and
2. MDFS has found a path P = [w, A], @, [u, A] with [u, B] € Q.

After the performance of POP([u, B]), eventually, MDFS has to find all nodes
[w, A] which fulfill Property 2. This can easily be done by any graph search
method like depth-first search, starting in node [u, A] and running the con-
sidered edges backwards. When the node [u, B] is reached, a backtrack is
performed. But with respect to the efficiency, it is useful to investigate the
properties of MDFS and to refine the graph search.

First, we will characterize the paths P = [w, A], Q), [u, A] with [u, B] € Q,
found by MDFS. Let P = ey, €es,...,€;. Then, the following properties are
fulfilled:

16

1. e is a weak back edge.

2. If we start in edge e; and consider P backwards, then we see some tree
edges followed by a single cross, forward or back edge, followed by a
sequence of tree edges, and so on.

Hence, we need after the performance of POP([u, B]) the following sets of
edges:

Rpyay =A{lv, Bl € V' | ([v, B], [u, A]) is a weak back edge}
and for some [¢, A] € V'
Epya=A{lv,Bl € V'| ([v, B],[q, A]) is a cross, forward, or back edge}.

According to Invariant 3, during the backward search some subpaths can be
skipped over. Therefore, we need the following set of nodes

Diy.a1=A{lp, Al € V' | Ly 41 = [q, A] previously}.

By Invariant 3, Dy, 4] € Dy 41 implies Ly, 41 = Ly 4). Hence, the knowledge
of Ly 41 and the fact Dy, 41 C Djyr 41 implies the knowledge of Ly, 4.
We say that Dy, 4 is current if Dy, a7 € Dyy a3, for all [¢, A] € V'\{[q, A]}.

According to Invariant 3, we can compute Ly, 41 in the following way.
1. Compute [q, A] such that [p, A] € Dy, 41, and Dy, 47 is current.

2. If [¢, A] does not exist, then Ly, 4y = (). Otherwise,

I { [q, A] if PUSH([q, A]) has never been performed
[p,A] =

0 otherwise

As described above, a correct manipulation of the current sets Dy, 4 allows
the solution of the first subproblem. Note that every [p, A] € V' is contained
in at most one current set Dy, 4.

For the organisation of the backward search, we also need the knowledge
if Ly, 41 # 0 previously. This will be realized by the correct update of the
following set.

L ={[p, Al € V''| L, 41 # 0 previously}.

17

Now we can give a detailed description of the backward search which will be
performed after POP([u, B]).

The consideration of those paths P = [w, A], Q, [u, A] with [u, B] € @ is
done in several rounds. In the first round, we construct backwards all paths
without any cross, forward, or back edge. In the second round, all paths with
exactly one such edge are constructed implicitly, and so on. In the ¢th round,
we consider the weak back edges ([v, B],[u, A]) if i = 1, and we consider
those edges ([v, B],[q, A]) € Ej, .4 for which Ly, 41 = [u, A] is computed in
the (¢ — 1)th round, if i > 1. Starting in node [v, B], we follow backwards the
tree edges as long as node [u, B] is reached. If we reach a node [p, A] € L,
then we compute the current Dy, 41 such that [p, A] € Dy, 4}, and we jump to
[r, A] for the continuation of the backward search. According to Invariant 3,
Liz 4] = Ly 4] and hence, Li; 41 = [u, A] for all [z, A] € Dj, 4.

For the reconstruction of a strongly simple path from s to ¢ constructed by
the algorithm, we store in variable [, 4 that edge in Ej, 4) which concludes
that block of tree edges containing the tree edge with end node [r, A], for all
[r, A] € V' with L, 41 # 0 for the first time. As soon as P}, 4] is defined, the
node [r, A] is inserted into L. Hence, node [¢q, A] is determined unambiguously
by the algorithm.

The implementation of MDFS must be done with attention to the cor-
rect manipulation of the sets Dy, 41, I, 4, and Ly, 4). The following table
describes in terms of the case of MDFS, and in terms of the operation which
is performed, how MDFS has to update these sets.

case, operation | set updating

Case 1 no update

Case 2.1 Epp, a1 := Ep.ap U {[v, B}

Case 2.2.1 Epp, a1 := Ep.ap U {[v, B}

Case 2.2.i1 Rpuw,4) := Rpw,4 U {[v, B}

Case 2.3.1

Liwap # 0 no update

Lpw,ay =10 Epu,a = Ep,ay U {[v, B} if [w, A] ¢ L

Case 2.3.1i no update

PUSH([u, A]) | no update

POP([v, B]) Dy, 41 := {[p, A] | MDFS has found a path from
[p, A] to [v, A], not containing [v, B]}

18

In Case 2.1, it is clear that [w, A] € L since POP([w, A]) is not performed.
In Case 2.2.1, [w, A] € L follows directly from [w, B] € K and Lemma 1.
Note that in Case 2.3.i, subcase Ly, 4] # 0, we have to store the information
that edge ([v, B], [w, A]) is used. In the implementation, we accomplish this
by adding the edge ([v, B], [w, A]) to node [v, B] in K. Then we obtain an
expanded node (([v, B], [w, A]); [v, B]). The considerations above lead to the
following implementation of the procedure SEARCH.

procedure SEARCH:;
if TOP(K) =t then
reconstruct a strongly simple path P from s to ¢
which has been constructed by the algorithm
else
mark TOP(K) “pushed”;
for all nodes [w,Y] € N[TOP(K)]

do
(Case 1) if Y = B then
PUSH([w, B]);
SEARCH
(Case 2) else
(Case 2.1) if [w, A] € K then
E[w,A] = E[w,A] U {TOP([()}
else
(Case 2.2) if [w, B] € K then
(Case 2.2.1) if [w, A] is marked “pushed” then
E[w,A] = E[w,A] U {TOP([()}
(Case 2.2.ii) else
Rpw) = Rpw,a) U {TOP(K)}
fi
(Case 2.3) else
(Case 2.3.1) if [w, A] is marked “pushed” then

if L[w,A] 75 @ then
expand TOP(K) in K to
(TOP(K), [w, A)); TOP(K));
PUSH(Lpw,4); Liw,a) := 0;
SEARCH

else

19

if [w, A] € L then
Epyoa) = Epyoa U {TOP(K)}
fi
fi
(Case 2.3.ii) else
PUSH([w, A)]);
SEARCH

fi
od;
(* let TOP(K) = [v, X]*)
if TOP(K) = [v, B] and [v, A] is not marked “pushed” then

Lact = U, A],
DLact = ?
Ldef = @;

(* Lgep will contain the start nodes for the next round. *)
for all [q, B] € R[%A]
do
CONSTRL(([g, B], [v, A]), [v, B]);
od;
while Ldef 7£ @
do
choose any [k, A] € Lg.y;
Laes := Laes \ {[k, Al};
for all [q, B] € E[k,A]
do
CONSTRL(([¢, B], [k, A]), [v, B])
od
od
fi;
POP;
fi.

CONSTRL is a call of the following procedure.

20

procedure CONSTRL(([q, B], [u, A]), [z, B]);
Pt = ([Q7 B]v [uv A]),
[z, B] := [q. B];
while [z, B] is not reached
do
for all [y, A] on the backpath from [z, B] to L U {[z, B]}
do
Dins = Dy U {[y Al):
L L0y Al
Ply,ay = Pact;
Laes = Laes U {ly, A]};
od;
if the last considered [y, A] € L then
(* Let Dy, 4 be the current set containing [y, A] *)
Dree = Dipge U Dy ap;
[z, B] := [r, B]
fi
od.

The reconstruction of a strongly simple path P from s to ¢ constructed by the
algorithm remains to be explained. Beginning at the end of P, such a path P
can be reconstructed by traversing the MDFS-tree T backwards. Note that
TOP points to the end of P, and that the father of each node in T is always
unique. As long as we traverse tree edges of the algorithm MDFS, we have
no difficulty. But every time we meet a node [u, A] which was added to P by
an application of Case 2.3.1, we have to reconstruct a subpath [w, A], @, [u, A]
which was joined to P. In this situation, the considered portion of 7' is the
expanded node (([v, B], [w, A]);[v, B]); i.e., the structure of T' tells us that
MDF'S has applied Case 2.3.i. It remains to reconstruct (). Note that F,, 4
contains the non-tree edge of MDFS, which finishes the block containing
the tree edge with end node [w, A]. Let P4 = ([v/,B],[v", A]). Then
By, 4 denotes [v', B], and P, 4 denotes [v", A]. As long as [u, A] is met, we
reconstruct) block by block, beginning at node [w, A]. Each block can be
reconstructed as the path P itself. These considerations lead to the following
procedure for the reconstruction of an augmenting path, constructed by the
algorithm.

21

procedure RECONSTRPATH(¢, s);
ACTNODE =t
while ACTNODE # s
do
if father(ACTNODE) is not expanded then
ACTNODE = father(ACTNODE)
else (x let father(ACTNODE) = (([v, B], [w, A]); [v, B])*)
RECONSTRQ(ACTNODE, [w, Al);
ACTNODE := [v, B]
fi
od.

RECONSTRQ is a call of the following procedure.

procedure RECONSTRQ([u, A], [w, A]);
ANF = [w, Al;
RECONSTRPATH(P}y, ANF);
while P35y # [u, A
do
ANF = Piyp;
RECONSTRPATH(P}yp, ANF)
od.

Note that the correctness of the manipulation of Ly, 4, [w, A] € V', and the
correctness of the reconstruction of the M-augmenting path P follow from
Lemma 4, and are straightforward to prove. The procedure RECONSTR-
PATH resembles standard recursive methods used for the reconstruction of
augmenting paths (i.e., see [18]).

The time and space complexity of our implementation of MDF'S remain to
be considered. It is easy to see that the time used by the algorithm MDFS
is bounded by O(n + m) plus the total time needed for the manipulation
of the sets Dy, a1, [¢, A] € V'. If we use linear lists for the realization of
the sets Dy, 4] with a pointer to the node [gq, A] for each element of Dy, 4,
the execution time for each union operation is bounded by O(n). Following
the pointer corresponding to [p, A], we can find the set containing [p, A]

22

in constant time. At most n union operations are performed by MDFS.
Hence the total time used for the manipulation of the sets Di, 47 is bounded
by O(n?). The time needed for the n union operations can be reduced to
O(nlogn) if we use the following standard trick, the socalled weighted union
heuristic:

We store with each set the number of elements of the set. A union
operation is performed by changing the pointer of the smaller of the two
sets which are involved and updating the number of elements. Everytime
when the pointer with respect to an element is changed, the size of the set
containing this element is at least twice of the size of its previous set. Hence,
for each element, its pointer is changed at most log n-times. Hence, the total
time used for all union operations is O(nlogn). Altogether, the total time
used for the augmentation of one augmenting path is O(m + nlogn).

If we use for the update of the sets Dy, 4 disjoint set union [18], the total
time can be bounded O((m + n)a(m,n)). Note that for each node [p, A]
one find operation suffices for the decision of Ly, 4;. Further, we can reduce
these bounds to O(m + n) using incremental tree set union [12]. The space
complexity of MDFS is bounded by O(m + n). The considerations above
lead to the following theorem.

Theorem 4 MDFS can be implemented such that it uses only O(m-+n) time
and O(m + n) space.

7 Definitions and the primal-dual method

Let G = (V, E) be an undirected graph. If we associate with each edge (¢, 7) €
FE a weight w;; > 0 then we obtain a weighted undirected graph G = (V, F, w).
The weight w(M) of a matching M is the sum of the weights of the edges in
M. A matching M C F has maximum weight if 32 year wi; < Yo jyenr Wij
for all matchings M’ C E. Given a weighted undirected graph G = (V, E, w),
the mazimum weighted matching problem is finding a matching M C E of
maximum weight.

First, we will describe the primal-dual method for the computation of
a maximum weighted matching. Let G = (V, E) be a weighted undirected
graph. Let F = {Fy, FEs, ..., K.}, E; C E be a family of pairwise distinct

23

subsets of E. With each node i € V we associate a node weight m(¢) > 0.
Furthermore, with each edge set E; € F, we associate a set weight u(FE;) > 0.
These new variables are called dual variables.

Note that the primal-dual method for bipartite graphs only uses dual
variables with respect to the nodes of the graph. This suffices since every
node v € AUB has the property that all M-alternating paths from an M-free
node in B to v have even length if v € B and odd length if v € A. But in
general graphs, with respect to a node v € V simultaneously, there can exist
M-alternating paths from M-free nodes in B to v of odd and of even length.
Moreover, both end nodes of an edge can have even or odd distances from
the M-free nodes in B with respect to M-alternating paths. Hence, the dual
variables with respect to the edge sets are needed. The exact reasons for this
will be clearer during the development of the method.

The values of the dual variables are treated such that the following in-
variant is always fulfilled:

e For all (z,7) € E there hold w(z,7) < (i) + 7(3) + X jyem #(Er).
For each edge (7,) € F, its dual weight d(1, j) is defined by
diij) =m(i)+7()+ > p(E),
(%])GE[

We define the dual weight d(M) of a matching M by

dM)= > d(i,j).

(¢,7)eM

Note that always w(M) < d(M) for all matchings M C FE.

With respect to an arbitrary matching M C F, the maximum contribu-
tion of the node weight 7(i) to its dual weight can be (i) since ¢ is adjacent
to at most one edge in M. Note that |E;N M| < ¢(F;) where ¢(F)) is the size
of a maximum cardinality matching with respect to ;. Hence, the maximum
contribution of the set weight u(F;) can be ¢(Fp)u(F;). Hence,

Yo+ D ENp(E)

eV EeF

24

will be always an upper bound for the dual weight of any matching of G.
Therefore, with respect to a matching M,

w(M) =3 7(i)+ > c(E)u(E)

eV EeF

implies that the matching M is a maximum weighted matching.

The question is now, when with respect to a matching M, this equality
holds. Since the dual weight of an edge is at least as large as its weight,
we obtain the necessary condition d(i,j) = w(i,7) for all edges (i,5) € M.
Since all summands in both sums are nonnegative, the node weight (1)
has to be 0 for all M-free nodes ¢ € V. Furthermore, for all I} such that
|M N Ey| < c(F)) the set weight u(F£;) has to be 0. Altogether, we obtain the
following necessary and sufficient conditions:

L. r(i,7) =d(1,5) —w(i,7) = 0 for all (¢,7) € M,
2. m(¢) = 0 for all M-free nodes ¢ € V, and
3. p(Ep) =0 for all E; € F with |E;N M| < ¢(FEp).

The value (1, 5) is called the reduced cost of the edge (i, 7).

The primal-dual method for the weighted matching problem can be sepa-
rated into rounds. The input of every round will be a matching M and values
for the dual variables which fulfill the Conditions 1 and 3 with respect to the
matching M. Our goal within the round is to modify M and the values of
the dual variables such that Conditions 1 and 3 remain valid and the number
of nodes violating Condition 2 is strictly decreased.

One round devides into two steps, the search step and the extension step.
The search step try to improve the current matching by finding an augment-
ing path P such that the number of free nodes with node weight larger than
0 can be decreased by the augmentation of P. If this is not possible then the
extension step decreases the values of some dual variables by an appropriate
value §. The extension step can decrease the reduced cost of some edges to
0. Hence, the next search step possibly finds an augmenting path.

During the search step, we will use MDFS. Hence, we define with respect
to the current matching M the directed bipartite graph Gy = (V/, Ear, w)

25

as follows:

V' o= {[v,AL[v,B]|veVIU{s,t} s t&V, s#t
Ev = (v, A}, [w, B]), ([w, A], [v, B]) | (v,w) € M}

U{([z, B, [y, A, (ly, Bl, [z, A]) | (w,y) € E\ M}
U{(s,[v, B]), ([v,A],t) | v € V is M-free}.

Both copies ([, X],[7, X]) and ([, X],[;, X]), X € {A, B} obtain weight
w(1,7) and reduced cost r(i, 7). We arrange that edges with tail s or head
t have always reduced cost 0. According to Condition 1, it is only allowed
to consider augmenting paths where all edges on these paths have reduced
cost 0. Hence, the input graph G3;, = (V', E};,w) will be the subgraph
of Gy containing exactly those edges in Fjs having reduced cost 0. lLe.,

Ex = {([i,X1,[7, X)) € Ex | (i, 5) = 0}. Note that M C E},.

We start with the empty matching () and define the graph Gy = (V' Ey, w)
as described above. Let W = max(; jyep w;;. We initialize all node weights
m(i) by W/2. At the beginning, the family F of subsets of F will be the
empty set such that no set weight has to be defined. In dependence to the
algorithm, the needed elements of F and the corresponding set weights will
be defined. As soon as p(E;) becomes zero for an edge set £, € F, we will
delete E; from F.

Altogether, we obtain the input graph G = (V’, Ejj, w) for the first search
step, where

Ey = A, B, 15, AD, (1, BL, li, AD | ([BL, [, A]) € By, w(i,) = W}
U{(s, [i, B]), ([i, Al 1) | i € V1.

A search step terminates with a matching M, a weighted directed graph
Gy = (V') Ey,w) and a current subgraph G%, = (V/, E5;, w) such that G,
contains no M-augmenting path P. It is not hard to see that no augmenting
path P with the property that after the augmentation of P, Condition 3
would be not fulfilled, exists. Otherwise, another M-augmenting path would
also exist.

For the treatment of the extension step, consider the expanded MDFS-
tree T.,,, computed by the last modified depth-first search on G3;. Note
that this MDFS was unsucessful; i.e., no path from the start node s to the
target node ¢ was found. The goal of the extension step is to add edges to

26

T.,, such that possibly an augmenting path is found. Therefore, we have to
decrease the reduced cost of edges with positive reduced cost. Such edges
(7,7) have to be in £\ M. Moreover, [i, B] has to be in T,,,. But according
to the conditions which we have to maintain, some nodes in Vg N T,,, are
not allowed. Let B; denote the set of these nodes. The exact definition of
By will be given during the development of the method. Let

BT = VB N Tmp \ Bf and AT = VA N Tmp.

The idea is to decrease the reduced cost r(1, j) of all edges (i, 7) with positive
reduced cost and [i, B] € By by the appropriate value §. With respect to the
other end node j of edge (1, j), the following four cases can arise:

L. [j, B] ¢ By and [j, A] ¢ Ar,
2. [j, B] € By and [j, A] € Ar,
3. [7,B] € Br and [j, A] € Ar, and
4. [j, B] € Br and [j, A] € Ap.

We decrease r(i,7) by decreasing (i) by the appropriate value §; i.e., we
decrease 7(¢) by 4 for all nodes ¢ with [i, B] € By. As a consequence of the
decrease of the node weights (i), the reduced cost of edges e in (3, with end
node [i, A] or [i, B] becomes negative. According to Condition 1, we have to
increase such reduced cost. We distinguish two cases:

1. The other end node of ¢ corresponds to Ay but not to Br.
2. The other end node of ¢ corresponds to Br.

If Case 1 is fulfilled then we can increase the reduced cost of edge e by
increasing the node weight of the other end node of ¢ by §; i.e., we increase

7(7) by ¢ for all nodes j such that [j, A] € Ay and [j, B] € Br.

If Case 2 is fulfilled then the reduced cost r(i,) is decreased by 24. This
can be corrected by increasing the set weight u(F;) of exactly one set F;
containing the edge (i,7) by 24. F; will have the property that all edges in
E; are in I3, and both end nodes of these edges are contained in Br. Two
questions have to be answered:

27

1. What is the accurate edge set F; for increasing its set weight?
2. What is the appropriate value 67

To answer the first question let use consider MDFS which is used as sub-
routine during the search step. Review the definitions and the properties of
the sets Ly, 4) and Dy, 41 as given at Pages 8 and 17, respectively. First, it is
useful to investigate the structure of a set Dy, 4. Let

Dy, qg=Ap €V |Ip, Al € Dy aU{lg, Al}}.

Furthermore, let

Dy.ay = {[p, Al, [p, Bl | p € Dy, 4}

The unique node p € Df%A] such that p is end node of an edge (r,p) € M
with v & Dy, 4 is the node ¢. Let (r,q) € M be the unique matched edge

with end node gq. We say that a path P enters or leaves D[%A] via an edge
([, B), [y, A]) in E\ M if (x,y) € E\ M. During the performance of MDF'S,
for an M-augmenting path P there are three possibilities to run through a

set Dy, a1.

1. P enters and leaves Dy, 41 via an edge in '\ M.

2. P enters Dy, 41 via the matched edge ([r, A], [¢, B]) and leaves Dy, 4 via
an edge in K\ M.

3. P enters Dy, 41 via an edge in '\ M and leaves Dy, 4 via the matched
edge ([q, A, [r, B]).

If an M-alternating path R enters Dy, 4 via the edge ([r, A],[q, B]) then, by
Lemma 3, for all v € Dy 4, [v, B] € By. Then, with respect to each edge in

E3yp = {(i.5) [([i. AL [, B]) € E3y or ([i, BL, [j, A]) € E3/}

with both end nodes in Df%A], we have to increase exactly one edge set
containing this edge. Note that for all v € V' there exists at most one current
Dy, 41 such that v € Df%A]. Hence, we define the edge set E, corresponding
to Dy, 4 by

28

Note that F, changes when E]*W changes. If we have to increase the set
weight with respect to an edge (¢, 7), then we choose the edge set E, where
l.)[%A] i.s the curr(?nt s‘et with the property that 1,5 € Df%A]. Note that
[i, B, [J, B] € By implies that Dy, 4 exists.

Let us examine the effect of the augmentation of P to the number of
edges in the current matching with both end nodes in D[q ap- 1T the crossing
of P through D is of Type 1, then this number decreases by 1. In the
other cases, this number does not change. Hence, the augmentation of an
augmenting path of Type 2 or 3 is always allowed but the augmentation of
an augmenting path of Type 1 is only allowed if u(E,) = 0.

Next, we will determine the accurate value for 9.

Since all node weights have to be nonnegative, cannot be larger than
the node weight of an M-free node . Note that with respect to an M-free
node 7, always [1, B] € By is fulfilled. Hence, all free nodes have the same
node weight and § > 7 (1), 1 M-free implies that after the change of the dual
values, all node weights are nonnegative.

If edge ([¢, B], [J, A]) is of Type 1, we have to choose § = r(i,) for de-
creasing r(¢,7) to 0. If ([, B],[J, A]) is of Type 2, independently from the
choice of 4, r(¢,7) doesn’t change.

If ([¢, B], [J, A]) is of Type 3 or 4, we have to choose § = 1/2r(z,5), since
both node weights 7(¢) and 7(j) will be decreased. Note that § has to be
chosen in such a way that after the extension step r(z,7) > 0 for all edges
(1,7) € E. Hence, ¢ should not be larger than the minimal reduced cost with
respect to edges (i,7) with [7, B] € By and [j, A] € Ap, and also not larger
than the half of the minimal reduced cost with respect to edges (i,7) with
[+, B],[7, B] € Br and r(i,7) > 0.

Since Invariant 3 has to be maintained, with respect to current Dy, 4) the
following holds: Let E; be the latest created edge set with respect to Dy, 4
with p(F;) > 0. We Call this edge set £, current with respect to Dy, 4. If
during the MDFS, no path enters Dy, 4 via ([r, A], [¢, B]) but there is a path
R entering Dy, 4 via an edge in E'\ M, R has to leave Dy, via ([q, A, [r, B]),
independently if [¢, A] is already pushed or not. Since (¢,r) € M and hence,
(lg, Al, [r, B]) € B}y, this is always possible. Note that i enters Dy, through
a node in Ay and leaves D through a node in Ar.

29

In dependence which nodes in D, 4 are entering nodes of such paths I,
with respect to a node v € Df%A] the following can happen:

a) [v, B] € Br,
b) [v, B] € Br but [v, A] € A, or
¢) [v,B] € Br and [v, A] € Ar.

The problem to solve is the following: How to change the node weights of

the nodes in Df%A]?

[t is clear that according to Condition 1, we have to increase m(q) and also
m(v) for all entering nodes [v, A] by 4. Possibly there are edges in E; with
exactly one end node is an entering node, with both end nodes are entering
nodes or with no end node is an entering nodes. With respect to all these
cases, the node weights and (/) have to be changed in such a manner that
the invariants remain valid. For doing this, we increase m(v) by ¢ for all
v E Df%A]. Since we have increased the reduced cost of every edge in F] by
26, we decrease () by 24. Since u(E;) has to be nonnegative, ¢ has to be
chosen such that before the change of the dual variables, u(E]) > 24.

Note that there can exist nodes [, B] € D[%A] which are also in T,,,. This
are exactly those nodes in Vg which are not allowed to be in Br. Hence, we
can give the exact definition of the node set By as follows:

By ={[i, B] | [#, B] € Dyy 41, Dy, 41 current and [q, B] & Terp }-
Altogether, we can define § in the following way:

do = (i), where i is M-free,
6 = min{r(s,7) | [1, B] € Br and [j, A] € Ar},
dy = min{r(s,7) | [, B], [, B] € Br and r(¢,7) > 0}, and
65 = min{u(E]) | Dy 4 current, I current, [¢, B] € Br and [¢, A] € Ar}.
Then we define
d = min{dy, d1,2/2,05/2}.

Altogether, we have obtained the following extension step:

30

do := m(¢) for an M-free node i;
§, = min{r(i.j) | [, B] € Br and [j, A] ¢ Ar}:
O 1= mln{r(lv.]) | [lvB]v [.]7 B] € Br and T(l,]) > 0}7
o3 := min{u(E}) | Dig.a) current, B, current, [¢, B] € Br and [q, A] € Ar};
(S = min{%, (Sl, 52/2, 53/2},
for all 1, B] € Br
do
(i) :=m(i)— ¢
od;
for all [i, B] ¢ Br, [1,A] € Ar and 1 € Dy, 4 for any current Dy, 4)
do
(i) =m(i)+ 4

od;
for all Dy, 4 current with [q, B] & Br but [¢, A] € Ar
do
(i) =m(i)+ 4
od;
for all Dy, 4 current and [¢, B] € By
do
(k) == p(Ey) + 26
od;
for all Dy, 4 current, [q, B] € By and [q, A] € Ay
do

. p(Ey) := p(k)) — 26, where F is current with respect to Dy, 4
od.

The correctness of the described primal-dual method follows directly from
the discussion done during the development of the method.

8 An implementation of the primal-dual
method

First, we will determine the number of dual changes which can occur between
two augmentations in the worst case. We distinguish four cases.

31

Case 1: § = dg

After the change of the dual variables, m(i) = 0 for all M-free nodes
¢ € V. Hence, the current matching M is of maximum weight and the
algorithm terminates. Hence, Case 1 occurs at most once.

Case 2: § = 0,

Then, during the next search step, at least one new node [j, A] enters Ay
Hence, Case 2 occurs at most n-times.

Case 3: 6 = b

Then, during the next search step, at least one new edge enters E]*W
Furthermore, [i, B],[j, B] € Br as long as no augmentation is performed.
Hence, this edge can leave E]*W for the first time after the next augmentation.
Hence, Case 3 occurs at most m-times.

Case 4: 6 = 03

Then at least one current edge set F, disappears. As long as [¢, B] € Br,
the reduced cost of edges in E, cannot be decreased. Hence, such an edge
cannot produce a new current edge set before the node [¢, B] is put into By
by the algorithm. But [¢, B] stays in By at least until the next augmentation.
Hence, such an edge set cannot contribute to the definition of d3 before the
next augmentation. Hence, Case 4 occurs at most m-times.

First, we will discuss the implementation of the search steps between two
augmentations. Note that after an extension step, the last MDFS can be
continued instead of to start a new MDFS. With respect to the primal-dual
method, the following special situation has to be treated by the search step:

If according to an extension step, pu(F,) becomes 0, the corresponding
edge set leaves the family F. We distinguish two cases.

Case 1: Dy, 4] remains current.

Then another set I, € F corresponds to the current Dy, 47 and it is not

allowed that an augmenting path P enters and leaves Dy, 4] via an edge in I/\
M. Nothing is to do with respect to the data structure for the manipulation
of the sets Dy, 41, [p, A] € V.

Case 2: Dy, 41 loss the property to be current.

32

If 1(F,) becomes 0 for the last edge set I, corresponding to Di, 4 then
it is allowed that an augmenting path P enters and leaves D[%A] via an edge
in £\ M. Hence, Dy, 4 loss its property to be current. Then, we have
to undo the union operation done with respect to D, 4;. Note that this
union operation has been performed before the last augmentation. Since
[q, A] is already pushed, no set Dy, 4 can become current before the next
augmentation.

Our goal is to extend the data structure which uses the weighted union
heuristic such that the time used for the deunion operations will be, up to
a small constant factor, the same as the time used for the union operations
and each find operation uses only constant time. This can be done in the
following way:

During the performance of an union operation, instead of changing a
pointer, we add a new pointer. The current pointer of an element will be
always the last created pointer. It is clear, that we use for each element at
most logn extra pointers. The time used for the union operations remains
essentially the same. A deunion can be performed by the deletion of the
current pointers created during the corresponding union operation and the
update of the set sizes and of the name of the larger subset. It is not difficult
to see how to perform these changes such that the used time is, up to a
small constant factor, the same as the time used for the union operations.
Furthermore, it is clear that a find operation needs only constant time.

Altogether, we need for the search step between two augmentations only
O(m+nlogn) time. Next we will give an implementation for the computation
of the ¢’s and the update of the dual variables.

Note that all M-free nodes ¢ have the same dual weight. Hence, dq can
be computed by the consideration of any M-free node.

For the computation of ¢;, we maintain a priority queue P; which contains
for all [j, A] € Ar an edge (i,j) with [¢, B] € Br and the property that
(,7) has minimum reduced cost under all such edges, if such an edge exists.
Furthermore, using an array of size n, we have direct access to the element
of P; corresponding to the node [j, A]. The weight of this element will be
the reduced cost of the current edge (7, j]) such that [¢, B] € By and r(z,J)
is minimum under all such edges. We can use a heap for the realization of
the priority queue.

33

Note that each extension step decreases all weights of the elements in
the priority queue by the current ¢. It is useful to maintain the property
that always the weight of all elements in P; has to be decreased by the same
amount. Hence, we maintain the sum A; of all dual changes done so far and
modify the weights in the appropriate manner.

We update Py with respect to [i, B] € Br at the moment when [i, B] is
added to Br in the following way:

For all edges (7, j) with [, A] € Ar perform the following update opera-
tions:

(1) If no element with respect to j is contained in the priority queue then
insert the element (¢, 7) with weight r(7, j) + A;.

(2) If P1 contains an element with respect to j with larger weight than
r(1,7) + Ay then replace the corresponding edge by (7, j) and decrease
its weight such that its value becomes r(7, j) + A;.

(3) If neither Case 1 nor Case 2 is fulfilled then do nothing.

Note that Step 1 needs O(logn) time and is performed at most n times.
Hence, the total time used for Step 1 is O(nlogn). Step 2 is performed at
most m times. After the decrease, interchanging father and son, we follow
the path from the element to the root of the heap as long as the weight of
the father is strictly larger than the weight of its son. This can be done in
O(log n) time. Hence, the total time used for Step 2 is O(mlogn).

If § = 6;, we have to delete at least one minimal element from P;. Each
deletion can be performed in O(logn) time and the number of deletions
is bounded by the number of nodes in V. Hence, the total time for such
deletions is O(nlogn).

Altogether, with respect to the computation of all d;’s between two aug-
mentations, the used time is O(mlogn).

For the computation of all d;’s, we maintain a priority queue P, which
contains all edges (¢,7) such that [¢, B], [, B] € Br and r(i,7) > 0. We can
use a heap for the realization of the priority queue.

Similary to above, each extension step decreases all weights of the el-
ements in Py. Now, the amount is two times the current 6. Hence, we
maintain with respect to Py the sum A, of all dual changes done so far with
respect to edges in Py and modify the weights in the appropriate manner.

34

We update P, with respect to [i, B] € Br at the moment when [i, B] is
added to Br in the following way:

e For all [j, B] € By with r(z,7) > 0, we insert the edge (i, 7) with weight
r(1,7) + Az to the priority queue.

Since at most m edges are inserted, the used time is O(mlogn).

If § = 65, we have to delete at least one minimal element from P,. Each
deletion can be performed in O(logn) time and the number of deletions is
bounded by the number of edges in E. Hence, the total time for such deletions
is O(mlogn).

Altogether, with respect to the computation of all d3’s between two aug-
mentations, the used time is O(mlogn).

For the computation of all d3’s, we maintain a priority queue Ps which
contains for all current Dy, 41 with [¢, B] € Br and [¢, A] € Ar the value
p(E;) where I is current with respect to Dy, 4. We use a heap for the
realization of the priority queue Ps.

Each extension step decreases all weights of the elements in FP5;. The
amount is two times the current 6. Hence, we can use the value A, defined
above and modify the weights in the appropriate manner.

We update P3 before the computation of §. We have to insert for all
lq, A] € V4 such that Dy, 41 is current and [¢, A] was inserted to 7., after the
last dual change and the last augmentation, respectively but [¢, B] € T.up
the value /,L(E;) 4+ Ay where E; is current with respect to Dig, 47 We have to
delete for all [¢, B] which are inserted to T.,, after the last dual change and
the last augmentation, respectively the corresponding value if in Ps3 such a
value exists. Since between two augmentation, a value enters and leaves Ps
with respect to the same edge set at most once, the total time used by the
algorithm is O(m logn).

If § = 63, we have to delete at least one minimal element from Ps. If with
respect to the deleted element there exists another current edge set £} with
respect to the same node set, then we have to insert the value u(E;) 4 A,.
Fach deletion and each insertion can be performed in O(logn) time. The
number of deletions and insertions is bounded by the number of edges in F.
Hence, the total time for such deletions is O(mlogn).

Altogether, with respect to the computation of all d3’s between two aug-
mentations, the used time is O(mlogn).

35

We have proven the following theorem:
Theorem 5 The primal-dual method can be implemented in time O(nmlogn).

We can refine the implementation in several ways. We will sketch some
possibilities.

Note a new edge (¢, 7) with [, B],[j, B] € By but¢,j € Dy, 4 where Dy, 4
is a current set does not help for the construction of an augmenting path.
If we add to the definition of d; the condition that ¢ and j correspond to
different node sets then the number of insertions and deletions in Py would
be decreased to n. This would lead to the property that for all current Dy, 4
there is exactly one corresponding edge set E,. Hence, the computation of
all d3’s would be simplified, too.

In [11], Gabow descibes essentially, how to perform the “blossom steps”
in O(m + nlogn) time between two augmentations. We have solved the
corresponding problem with respect to MDFS by the construction of a data
structure supporting the operations find, union and deunion. This is much
simpler than Gabow’s solution. With respect to the dual adjustment steps,
we can use the same method as Gabow obtaining the same time bounds.

Acknowledgment: [thank Henning Rochow and Marek Karpinski for help-
ful discussions and valuable hints.

References

[1] Aho A. V., Hopcroft J. E, and Ullman J. D., The Design and Analysis
of Computer Algorithms, Addison-Wesley (1974), 187-189.

[2] Balinski M. L., Labelling to obtain a maximum matching, in Combina-
torial Mathematics and its Applications (R. C. Bose and T. A. Dowling,
eds.), University of North Carolina Press, Chapel Hill (1969), 585-602.

[3] Ball M. O., and Derigs U., An analysis of alternative strategies for im-
plementing matching algorithms, Networks 13 (1983), 517-549.

[4] Berge C., Two theorems in graph theory, Proc. Nat. Acad. Sci. U.S.A.,
43 (1957), 842-844.

36

[5] Blum N., A new approach to maximum matching in general graphs, 17th

[CALP (1990), LNCS 443, 586-597.

[6] Blum N.; A simplified realization of the Hopcroft-Karp approach to max-
imum matching in general graphs, Research report, Universitat Bonn

(1999) (available at www.cs.uni-bonn.de/IV/blum/).

[7] Edmonds J., Paths, trees, and flowers, Canad. J. Math, 17 (1965), 449-
467.

[8] Edmonds J., Maximum matching and a polyhedron with 0,1-vertices, .J.
Res. Nat. Bur. Standards 69 B (1965), 125-130.

[9] Gabow H. N., Implementations of algorithms for maximum matching on
nonbipartite graphs, Doctoral thesis, Comp. Sci. Dept., Stanford Univ.,
Stanford, Calif. (1973).

[10] Gabow H. N., An efficient implementation of Edmonds algorithm for
maximum matching on Graph, J. ACM, 23 (1976), 221-234.

[11] Gabow H. N., Data structures for weighted matching and nearest com-

mon ancestors with linking, st SODA (1990), 434-443.

[12] Gabow H. N., and Tarjan R. E., A linear-time algorithm for a special
case of disjoint set union, J. Comput. Syst. Sci., bf 30 (1985), 209-221.

[13] Gabow H. N., and Tarjan R. E., Faster scaling algorithms for general
graph-matching problems, J. ACM 38 (1991), 815-853.

[14] Gondran M., and Minoux M., Graphs and Algorithms, Wiley & Sons,
(1984).

[15] Hopcroft J. E., and Karp R. M., An n*/? algorithm for maximum match-
ing in bipartite graphs, STAM J. Comput., 2 (1973), 225-231.

[16] Lawler E.: Combinatorial Optimization, Networks and Matroids, Holt,
Rinehart and Winston, (1976).

[17] Lovasz L., and Plummer M. D., Matching Theory, North-Holland Math-
ematics Studies 121, North-Holland, New York (1986).

37

[18] Tarjan J. E., Data Structures and Network Algorithms, STAM (1983).

[19] Witzgall C., and Zahn C. T. Jr., Modification of Edmonds maximum
matching algorithm, J. Res. Nat. Bur. Standards, 69 B (1965), 91-98.

38

