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ABSTRACT
In the Euclidean bipartite matching problem, we are given a setR
of “red” points and a setB of “blue” points inRd where|R| =
|B| = n, and we want to pair up each red point with a distinct
blue point so that the sum of distances between the paired points is
minimized. We present an approximation algorithm that given any
parameter0 < ε < 1 runs inO(n1+ε) expected time and returns
a matching whose expected cost is within a multiplicative factor
O(log(1/ε)) of the optimal. The dimensiond is considered to be a
fixed constant.

Categories and Subject Descriptors: F.2.2 [Theory of Computa-
tion]: Nonnumerical Algorithms and Problems—geometrical prob-
lems and computations; G.2.1 [Discrete Mathematics]: Combina-
torics—combinatorial complexity

General Terms: Theory, Combinatorial Optimization

Keywords: Matching, approximation algorithms

1. Introduction
In the Euclidean bipartite matching problem, we are given a setR
of “red” points and a setB of “blue” points inRd where|R| =
|B| = n, and we want to pair up each red point with a distinct blue
point so that the sum of distances between the paired points is min-
imized. This is a well known geometric optimization problem that
has applications in operations research, pattern recognition, shape
matching, statistics, and VLSI.

Related work. Euclidean bipartite matching problem is a spe-
cial case of the classical bipartite matching problem in a graph.
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The first polynomial time algorithm in the graph setting is the fa-
mous “Hungarian” algorithm due to Kuhn [9]. The fastest known
implementation of this algorithm runs inO(|V |3) time on dense
graphs (see Lawler [10]) and roughlyO(|E||V |) time on sparse
graphs [8], where|V | and|E| are respectively the number of ver-
tices and edges in the graph. There is a scaling algorithm due to
Gabow and Tarjan [7] that runs inO(

p|V ||E| log(|V |N)) time,
whereN is the largest weight of an edge in the graph (weights
are assumed to be integers). For the two-dimensional Euclidean
version of this problem, Vaidya [13] showed that geometry can
be exploited to get algorithms running inO(n5/2 logO(1) n) time.
Agarwal et al. [1] improved the running time for the bipartite case
toO(n2+δ), for anyδ > 0. Agarwal and Varadarajan [2] gave an
(1 + ε)-approximation algorithm for this problem that returns, for
any0 < ε < 1, a perfect matching whose cost is at most(1 + ε)

times the optimal inO((n3/2/ε2) log5(n/ε)) time. This is a geo-
metric implementation of the scaling algorithm mentioned above.
No algorithm with a better running time is known for computing
even a constant factor approximation to the optimal matching. We
restrict our attention to surveying the two-dimensional Euclidean
case because this is a good indication of the state of the art. The
best algorithms in any fixed dimension are obtained by a straight-
forward translation of the two-dimensional algorithms.

A generalization of the Euclidean bipartite matching is the so-
called transportation problem, in which we are given two sets of
pointsU andV in R2 and a positive integraldemand λ(p) for each
p ∈ U ∪ V so that

X

u∈U

λ(u) =
X

v∈V

λ(v).

A feasible solution to this problem is a subsetM ⊆ U × V of
edges and positive integralweights w(u, v) for each(u, v) ∈ M
such that

λ(p) =
X

(p,q)∈M

w(p, q) ∀p ∈ U

λ(q) =
X

(p,q)∈M

w(p, q) ∀q ∈ V

The goal is to find a feasible solutionM,w that minimizes
X

(u,v)∈M

w(u, v)d(u, v).

Hered(u, v) is the Euclidean distance betweenu andv. The bi-
partite matching problem is a special case of the transportation
problem in which all demands are 1. Atkinson and Vaidya [4]
presented an algorithm to solve the transportation problem in time
O(k2.5 log k logN) wherek = |U | + |V | andN is the maximum
demand.
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The nonbipartite version of Euclidean matching, where we are
given a setP of 2n points inRd and we want to pair up the points
into n pairs so as to minimize the sum of the distances between
paired points, is also widely studied. The first polynomial-time al-
gorithm for the graph version of this problem is the classical al-
gorithm due to Edmonds [6]. The best implementations of this
algorithm and the best scaling algorithm have running times sim-
ilar to the bipartite case. Vaidya [13] gave an algorithm for the
two-dimensional Euclidean version of this problem that runs in
O(n5/2 logO(1) n) time. Varadarajan [14] later gave a divide-and-
conquer algorithm that runs inO(n3/2 logO(1) n) time. For the ap-
proximate version of this problem, Vaidya [12] gave an algorithm
that, for anyε > 0, runs in roughlyO(n3/2/ε3) time and returns
a (1 + ε)-approximate perfect matching. In a seminal paper that
gave improved algorithms for many geometric optimization prob-
lems like the TSP, Arora [3] gave a Monte-Carlo algorithm that runs
inO(n logO(1/ε) n) time and returns a(1+ε)-approximate match-
ing with high probability. Building on his approach, Rao and Smith
[11] give a Monte-Carlo algorithm that runs inO(n log n) time
and produces (with probability atleast1/2) a matching whose cost
is within a constant factor of the optimal. Agarwal and Varadara-
jan [2], also building on Arora’s approach, gave a Monte Carlo
algorithm that returns a(1+ ε)-approximate matching with proba-
bility at least1/2 in O((n/ε3) log6 n) time.

From the discussion of the state of the art, it appears that bipar-
tite matching is harder than nonbipartite matching in the geometric
setting. This seems counterintuitive at first but a little reflection re-
veals that the bipartite case can be more “non-local” than the nonbi-
partite case. Indeed the near-linear approximation algorithm due to
Arora [3], which is based on a hierarchical decomposition of a point
set by a randomly shifted quadtree, does not extend to the bipartite
case. One source of difficulty is that when a cell of the quadtree
is divided into four cells, the number of edges of even an approxi-
mate matching that cross the subdividing lines may be much larger
than a constant orlog n. This makes the number of subproblems in
the natural dynamic programming approach too large, and it is not
clear how to get around this difficulty.

Nevertheless the general feeling among researchers has been that
a near-linear time algorithm that gives at least a constant-factor ap-
proximation must exist, and that the subdivision due to a randomly
shifted quadtree should be a useful tool.
Our results. In this paper, we make substantial progress towards
realizing the above intuition: we give a Monte Carlo algorithm for
the two-dimensional bipartite matching problem that, for any0 <
ε < 1, runs inO(n1+ε) expected time and returns a matching
whose expected cost is withinO(log(1/ε)) of the optimal. Thus
the closer our asymptotic running time gets toO(n), the larger is
the constant in the constant-factor approximation we get.

Our algorithm uses a variant of the idea of the randomly shifted
quadtree. When a cell of the quadtree is subdivided into “subcells”,
we compute a matching in which the number of edges that “cross”
a subcell is the minimum number that needs to in any matching
(due to an imbalance between the number of red and blue points
in the subcell). We resolve the question of which points of the
subcell are to be matched outside the subcell by picking an arbitrary
subset of the right size from the points of the predominant color.
We bound the expected increase in the cost of the matching that we
compute using the fact that we are using a probabilistic partition.
To ensure that the overall increase in cost is not too much we make
sure that the number of levels in the quadtree isO(log(1/ε)). To
do this we allow a cell of the quadtree to be partitioned into a large
number of subcells, not just 4. The size of the subproblems in the
“merge” step may be quite large but we reduce this problem to a

small-sized transportation problem. Our analysis of the cost of the
matching computed by our algorithm has some new ideas which
may be useful elsewhere.

Organization. In Section 2 we define the problem more carefully
and state some preliminary lemmas and results that we will subse-
quently use. To simplify the presentation we first present in Sec-
tion 3 an algorithm that runs inO(n1+ε) expected time and returns
a matching whose expected cost is withinO(1/ε) of the optimal. In
Section 4 we describe our improved algorithm that returns a match-
ing whose expected cost is withinO(log 1

ε
) of the optimal. We will

restrict our exposition to the two-dimensional version. Our algo-
rithms and their analysis readily generalize to any fixed dimension.

2. Preliminaries

Let R be a set ofn “red” points andB a set ofn “blue” points
in R

2 . A perfect bipartite matching of P = R ∪ B is a subset
M ⊆ R×B of red-blue pairs such that each point inP is present
in exactly one pair ofM ; we refer to a perfect bipartite matching
as simply a matching. Obviously,|M | = n. We define thecost of
a matchingM of P to be

µ(P,M) =
X

(u,v)∈M

d(u, v),

whered(u, v) is the Euclidean distance betweenu andv. If the set
P is fixed or obvious from the context, we will useµ(M) to denote
µ(P,M). Let

µ(P ) = min
M
µ(P,M)

denote the cost of the min-cost matching ofP , and letM∗(P ) be a
min-cost matching ofP .

We begin with the following simple observations.

LEMMA 2.1. Let P = R ∪ B, let P ′ be the point set ob-
tained by “moving” each point p ∈ P to a point p′, and let ∆ =P

p∈P d(p, p
′).

(i) LetM be any perfect matching of P , and let

M ′ = {(p′, q′) | (p, q) ∈M}
be the corresponding perfect matching of P ′. Then

|µ(M ′) − µ(M)| ≤ ∆.

(ii) Let M be the matching in P corresponding to the optimal
perfect matching of P ′. Then

µ(M) ≤ µ(P ) + 2∆.

The following lemma suggests how to compute a rough approx-
imation ofµ(P ).

LEMMA 2.2. Let R be a set of n red points and B a set of n
blue points in R2 ; set P = R ∪B. We can compute in O(n log n)
time a number α such that

α ≤ µ(P ) ≤ 2n2α. (1)
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Figure 1. A recursive step of the matching algorithm: (i) An input set and its min-cost matching. (ii) The transportation problem corresponding toQ; the
numbers near the points are their demands, and the numbers near the arcs are the edge weights in the solution of the transportation problem. (iii) A recursive
solution for each cell in the grid. (iv) The output matching.

G Gi∗

ei∗

Figure 2. Computing a rough approximation ofµ(P ).

PROOF. We compute inO(n log n) time the minimum spanning
treeT of P (ignoring the colors), under theL∞-metric, using the
algorithm by Callahan and Kosaraju [5]. Lete1, . . . , e2n−1 be the
edges ofT in increasing order of their lengths. For0 ≤ i ≤ 2n−1,
let Gi denote the subgraph induced by the edgese1, . . . , ei, and
let i∗ be the smallest integer for which each component ofGi∗ has
equal number of red and blue points. Given the ordering of the
edges,i∗ can be computed inO(n) time. The length ofei∗ is the
desired value ofα. See Figure 2.

Indeed, the graphGi∗−1 has at least one connected component
C in which the number of red and blue points is not the same. So
any perfect matchingM of P has an edgee that has one endpoint in
C and another endpoint in a component ofGi∗−1 different fromC.
By a well known property of MSTs,‖e‖∞ ≥ ‖ei∗‖∞. Moreover,
‖e‖2 ≥ ‖e‖∞, we conclude thatµ(P ) ≥ α.

Every connected component ofGi∗ has the same number of red
and blue points. We construct a perfect matchingM′ of P by find-
ing an arbitrary perfect matching for the points within each compo-
nent. Note that for each edge(u, v) ∈ M′ there is a path between
u andv in Gi∗ . Since each edge ofGi∗ has length at mostα, we
conclude from the triangle inequality that‖uv‖∞ ≤ nα. Thus
d(u, v) ≤ 2nα andµ(M ′) ≤ 2n2α.

For a parameterδ > 0, let G δ be the square grid formed by
the horizontal linesy = iδ and the vertical linesx = jδ, where
i, j ∈ Z. We define arandom shift of G δ to be the grid formed
by the linesy = iδ + ax andx = jδ + ay, whereax, ay are two
independently chosen random numbers in the interval[0, δ).

3. The Algorithm
In this section, we describe an algorithm that, given the input set
P = R ∪ B of 2n points and a parameterε > 0, runs inO(n1+ε)

expected time and returns a matching ofP whose expected cost is
at mostO(1/ε) times the optimal. We assume that the point setP
is enclosed in a bounding squareE. The algorithm is a call to the
following procedureMatch with parametersP andE. The algo-
rithm is described in a way that will make it easy to describe the
modifications needed to obtain the improved algorithm. Through-
out the algorithm,n will denote|R| = |B|.

ProcedureMatch(S,D).

1. If m = |S|/2 is smaller than some constant, then compute
an optimal matching ofS using the Hungarian algorithm and
and return this matching.

2. Using the algorithm of Lemma 2.2, we first compute an ap-
proximationα to µ(S) such thatα ≤ µ(S) ≤ 2m2α.

3. If 2m5α is greater than1/8 times the side-length ofD, we
compute a matching ofS by making a call to the proce-
dure SubMatch with parametersS, D, α, m and return
this matching. Otherwise, we take a random shift of the
grid G 2m5 α. Let C denote the set of grid cells that inter-
sectD. For each grid cellC ∈ C, let SC = S ∩ C, let
χ(C) = ||SC ∩ R| − |SC ∩ B||. If SC contains more red
points than blue points (resp. blue points than red points)
we arbitrarily pickχ(C) red points (resp. blue points) and
denote the set byQC . Let Q = ∪C∈CQC . Note thatQ
contains an equal number of red and blue points. We com-
pute a perfect matching of the points inQ as follows. For
each cellC, we “move” each point inQC to the center of the
grid cellC. We compute an optimal perfect matching for the
moved points using the Hungarian algorithm; letM denote
the corresponding matching ofQ.

4. For each cellC ∈ C for which SC − QC is nonempty, we
compute a perfect matchingMC of the pointsSC − QC

using a call to the subroutineSubMatch with parameters
SC−QC , C, α,m. We return the matchingM∪SC∈CMC .

The subroutineSubMatch is a recursive procedure that takes
as input a point setS consisting of an equal number of red and
blue points, a boxD containingS, and parametersα andm. Note
thatm here will be set to the size of the point set in the original
Match routine that invokedSubMatch; andα will be the crude
approximation computed by thisMatch routine. The subroutine
SubMatch will compute a perfect matching ofS.

ProcedureSubMatch(S,D, α,m)

1. LetL denote the side length ofD. If L ≤ α/m2, we com-
pute an arbitrary perfect matching ofS and return it.
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2. Letδ = ε/12. If |S|/2 ≤ n6δ , we compute a perfect match-
ing of S using the Hungarian algorithm and and return it.

3. We take a random shift of the gridGL/ max{8,mδ}. Let C
denote the set of grid cells that intersectD. For each grid cell
C ∈ C, letSC = S∩C, letχ(C) = ||SC ∩R|− |SC ∩B||.
If SC contains more red points than blue points (resp. blue
points than red points) we arbitararily pickχ(C) red points
(resp. blue points) and denote the set byQC . Let Q =
∪C∈CQC . Note thatQ contains an equal number of red and
blue points. We compute a perfect matching of the points
in Q as follows. For each cellC, we “move” each point in
QC to the center of the grid cellC. We compute an optimal
perfect matching for the moved points using an algorithm for
the transportation problem; letM denote the corresponding
matching ofQ.

4. For each cellC ∈ C for which SC − QC is nonempty, we
compute a perfect matchingMC of the pointsSC − QC

using a call to the subroutineSubMatch with parameters
SC−QC , C, α,m. We return the matchingM∪SC∈CMC .

Running time analysis
Step 2 of procedureMatch takesO(m logm) time. The expected
running time of Step 3 isO(m), because|Q| =

P
C∈C χ(C) is

bounded by the number of edges of the optimal perfect matching of
S that cross the grid lines, and the probability that the latter number
is greater than0 is at most1/m3 due to the large grid size. Thus the
running time isO(m3) (for running the Hungarian algorithm) with
probability at most1/m3 and isO(m) otherwise. The expected
time is thus linear. The overall expected running time ofMatch is
thusO(m logm).

The running time of Step 2 of procedureSubMatch isO(|S|3),
where|S| ≤ n6δ. Thus the contribution of Step 2 to the overall
overall running time is

P
iO(n3

i ) given that
P

i ni ≤ n and each
ni ≤ n6δ . Thus the cost of Step 2 overall isO(n1+12δ). In step 3,
the size ofQmay be quite large but the size of the moved point set,
not counting multiplicities, is onlyO(m2δ) = O(n2δ) (because the
number of grid cells inC isO(m2δ)). Thus solving this matching
problem by running the algorithm for the transportation problem
due to Atkinson and Vaidya [4] takesO(n5δ log2 n) time which is
O(n6δ). This is bounded by the size of the point setS. Thus the
running time ofSubMatch is linear in|S| if we ignore Step 2.

The number of levels in the recursion isO(1/δ) because the size
of the bounding box whenSubMatch is first invoked is at most
16m5α, the bounding box size falls by a factor of at leastmδ with
each level of the recursion, and the smallest bounding box size is
α/m2. So the overall expected running time of the algorithm is
O(m logm + m/δ + n1+12δ). Note that the third term comes
from Step 2 ofSubMatch. With our choice ofδ = ε/12 the
overall expected running time isO(n1+ε).

Remark 3.1 The proceduresMatch andSubMatch are quite
similar. The purpose ofMatch is to handle the scenario when the
initial bounding box of the input point set is too large.

Quality of the matching produced
In analyzing the quality of the matching produced, it will be con-
venient to speak of the hierarchical subdivision or the generalized
quadtree that the proceduresMatch andSubMatch together pro-
duce. The root node of this subdivision is associated with the input

point setP and its bounding square. In general, a node of the subdi-
vision is associated with a point setS ⊆ P and a squareD contain-
ingS. If this is a leaf of the subdivision (corresponding to Step 1 of
Match and Steps 1 and 2 ofSubMatch), the algorithm directly
computes a matching of the point setS. If this is an internal node
of the subdivision, the algorithm uses a randomly shifted grid of
an appropriate size to break upD into a set of cellsC, computes a
matching of a subsetQ ⊆ S of points that are then discarded, and
recursively computes a matching for the pointsSC − QC within
each cellC ∈ C. Thus there is a node of the subdivision for each
cell C for which SC − QC is non-empty, and each such node be-
comes a child of the current node.

For any nodev of the subdivisionΞ that is produced by the al-
gorithm, letSv be the associated set of points andDv the bounding
square. Ifv is an internal node ofΞ, letQv ⊆ Sv denote the set of
“discarded” points, letZv = Sv −Qv, let C v denote the matching
ofQv computed by our algorithm, letCv denote the set of cells into
whichDv is subdivided, and letλv denote the side-length of any
cell in Cv. LetV0 denote the set of leaves ofΞ andV1 the set of
internal nodes.

Let M denote the optimal perfect matching of the input set of
pointsP . For the sake of analysis, we describe a scheme for con-
structing a perfect matchingNv for the pointsSv associated with
each leafv ∈ V0. LetM l =

S
v∈V0 Nv . LetMd =

S
v∈V1 C v .

Clearly,M l ∪Md is a perfect matching ofP . The construction is
best viewed as a scheme that convertsM intoMl ∪Md.

The conversion scheme. We visit Ξ in a top down manner (in a
post-order fashion). At each nodev we have a matchingIv of Sv.
For the rootu of T, Iu = M . If v is an internal node, we process
Iv in two stages, each of which involves performing a sequence
of edge swaps. LetIE

v ⊆ Iv denote the subset of edges that are
“cut” by the subdivision ofDv intoCv, that is, those edges whose
endpoints lie in different cells ofCv.
Stage I. LetM ′ = Iv initially. We repeat the following step

till we are done: While there are two edges(r1, b1) and(r2, b2) in
M ′ such that both edges are cut by the subdivision ofDv intoCv,
r1 andb2 are both in the same cell ofCv and are of opposite color,
we replace these by(r1, b2) and(r2, b1); see Figure 3. At the end
of this stage, exactlyχ(C) = |Qv ∩C| edges ofM ′ from each cell
C ∈ Cv are cut by the subdivision intoCv.

r2b2

b1
r1

r2

b1

b2

r1

Figure 3. Swapping an edge in Stage I.

Stage II. For each cellC ∈ Cv, we repeat the following
step till we are done: if there is inM ′ a cut edge(r2, b2) where
r2 ∈ Zv ∩ C and (by necessity) a non-cut edge(r1, b1) where
r1 ∈ Qv ∩ C has the same color asr2, we replace these edges by
the cut edge(r1, b2) and the non-cut edge(r2, b1); see Figure 4.

Let Iv be the matchingM ′ at nodev after having performed
edge swaps in Stage I and II. Clearly,Iv = C

′
v ∪Lv , whereC ′

v is a
matching ofQv andLv is a matching ofZv. Furthermore, no edge
of Lv is cut by the subdivision ofDv into Cv. That is, for each
C ∈ Cv, the restriction ofLv to Zv ∩ C is a matching ofZv ∩ C
(and indeed constitutes the input matchingIw of Sw = Zv ∩C for
the nodew in Ξ corresponding toC).
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b2

r2

b1

r1

b1

b2

r2

r1

Figure 4. Swapping an edge in Stage II.

LEMMA 3.2. After having processed an internal node v ∈ Ξ,
we have the following:

(i) µ(Lv ) + µ(C v ) ≤ µ(Iv) + cλv|IE
v |, where c > 0 is a con-

stant.

(ii) |Lv \ Iv| ≤ 3|IE
v |.

PROOF. Each step in Stage I decreases the number of cut edges
in M ′ by at least one and increases the cost of the matching by at
most2λv. Thus the number of steps is at most|IE

v | and the cost of
the matching has increased by at most2λv|IE

v | in this stage. At the
end of the stage, exactlyχ(C) edges ofM′ from each cellC ∈ Cv

are cut by the subdivision intoCv.
The number of times the step in Stage II is performed over all

cells inCv is at most|Qv| ≤ 2|IE
v |, and each step increases the

cost of the matching by at most2λv. It is therefore clear that

µ(Lv ) + µ(C ′
v ) ≤ µ(Iv) + c′λv|IE

v |.
for some constantc′ > 0. Now

µ(C v ) ≤ µ(C ′
v ) + 2λv |Qv| ≤ µ(C ′

v ) + 8λv|IE
v |,

where the first inequality follows from Lemma 2.1 (ii). This com-
pletes the proof of (i). We introduced at most one new edge into
M ′ in each step of stage 1 and stage 2. Hence the overall number
of new edges is at most3∗ |IE

v |, completing the proof of (ii).

It is clear that at the end of the traversal, we have the matching
M l ∪Md as stated. Indeed, for any leafv ∈ V0, Nv is going to
beIv. The significance ofM l ∪Md is that if our algorithm were
to compute anoptimal matching for the pointsSv associated with
each leafv ∈ V0, then the cost of the overall matching computed
by our algorithm would be at mostµ(Ml ∪Md).

We therefore wish to boundµ(Ml∪Md)−µ(M ). From Lemma
3.2 (i), we see thatµ(M l∪Md)−µ(M ) is at most

S
v∈V1 cλv|IE

v |.
We account for this by chargingcλv to each edge inIE

v for each
internal nodev ∈ V1.

To bound the total charge, we do the following for each internal
nodev ∈ V1: For each edgee ∈ I

E
v , we pick up to three edges

from Lv \ Iv and call these thechildren of e. We ensure that each
edge inLv \Iv is a child of exactly one edge inIEv . This is possible
because of Lemma 3.2 (ii).

Consider an edgef in the optimal perfect matchingM , and sup-
pose it is cut (appears inIE

v ) at some internal nodev ∈ V1 and is
chargedcλv. Let S1(f) denote its children and for2 ≤ i define
Si(f) to be the union of the children of the edges inSi−1(f). Note
that |Si(f)| ≤ 3i. Furthermore, each edge inSi(f) is charged at
mostcλv/8

i, because the diameter of the bounding square falls by
at least8 with each level of the subdivision. Thus the total charge
accumulated by the “descendants” off is cλv

P
0≤i 3i/8i which

is at mostc′λv for some constantc′ > 0. Thus the charge to the

descendents of an edgef in M is proportional to the charge to
the edge itself. What is the expected charge to the edgef? This
is at most the number of levels of the subdivision times the ex-
pected charge to it at an internal nodev of the subdivision given
that f ∈ Iv. The number of levels in the subdivision isO(1/ε).
Given thatf ∈ Iv, the expected charge tof at v is the proba-
bility f is in IE

v timescλv. It is easy to see that this probability
is at most2||f ||/λv . We conclude that the expected charge tof
at v is O(||f ||), the expected total charge tof is O(||f ||/ε), and
the expected total charge applied to all the edges inI

E
v for each

v ∈ V1 isO(1/ε) ∗ µ(M ). We conclude that the expected value of
µ(M l) + µ(Md) isO(1/ε) ∗ µ(M ).

Increase in cost at the leaves. As we have already remarked, the
cost of the matching computed by our algorithm would be bounded
by µ(M l ∪ Md) if the algorithm computes an optimal matching
for the points associated with each leaf of the subdivision. The al-
gorithm in fact does this at any leaf that is handled by Step 1 of
Match or Step 2 ofSubMatch. The only place where the al-
gorithm computes a sub-optimal matching of the points associated
with a leaf of the subdivision is in Step 1 ofSubMatch. In such a
situation, each edge of the computed matching has length at most√

2α/n2. Thus the cost of the matching computed by our algo-
rithm is at most

µ(Md ∪M l) + n ∗
√

2α/n2 ≤ µ(Md ∪M l) +
√

2µ(M )/n

≤ µ(M l ∪Md) + µ(M ).

Since the expected value ofµ(Md ∪M l) isO(1/ε) ∗µ(M ), we
have established the following result.

THEOREM 3.3. Let R be a given set of n red points and B a
given set of n blue points in R2 , and ε > 0 be a parameter. We can
compute in O(n1+ε) expected time a perfect matching of B ∪ R
whose expected cost is at most O(1/ε) times the optimal.

4. The Improved Algorithm

In this section we present our improved algorithm that, given a
point setP = R∪B of 2n points and a parameter0 < ε < 1, runs
in O(n1+ε) expected time and returns a matching whose expected
cost is at mostO(log 1

ε
) times the optimal. Note that if we ignore

step 2 of subroutineSubMatch, the algorithm of Section 3 runs
in O(n log n + n/δ) expected time, has1/δ levels, and reduces
the problem to subproblems of size at mostn6δ. The idea of the
modification is to setδ = 1/12 instead ofδ = ε/12. Then the
algorithm runs inO(n log n) expected time, has a constant number
of levels, and reduces the problem to subproblems of size at most√
n. We then apply the same algorithm on the subproblems till we

get subproblems of size at mostn1/4. We continue in this fashion
till we are left with subproblems of size at mostnε/2, which we
then solve using the Hungarian algorithm. The number of levels
is nowO(log 1/ε), and the analysis goes through giving an ap-
proximation ofO(log 1/ε) times the optimal. The running time is
O(n log n log 1/ε+ n1+ε).

The specific modification needed to our formal subroutines is
as follows: We replace Step 2 of subroutineSubMatch by the
following steps:

2a If |S|/2 ≤ nε/2 we compute an optimal matching ofS using
the cubic algorithm and return this matching.

2b if |S|/2 ≤ m1/2, return the matching ofS computed by
Match(S,D).
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Running time analysis. As before, the expected running time of
the subroutinesMatch andSubMatch isO(|S| log |S|) if we ig-
nore Step 2a ofSubMatch. Using an argument very similar to the
previous algorithm, the overall contribution of Step 2a to the run-
ning time isO(n1+ε). Furthermore, by construction, there is an
integer constantk ≥ 1 such that if the recursion depth is at least
k ∗ i for some integeri ≥ 0, the size of the associated point set

is at most2n1/2i

. Since the size of the associated point set is at
least2nε/2 when a recursive call is made, we conclude that the re-
cursion depth isO(log 1/ε). (Similar remarks apply to the depth
of the subdivision produced by the new algorithm.) Thus the over-
all expected running time isO(n log n log 1/ε + n1+ε), which is
O(n1+ε).
Quality of the matching produced. The analysis of the expected
value ofµ(M l)+µ(Md) proceeds in a manner identical to the pre-
vious algorithm. Since the depth of the subdivision isO(log 1/ε)
now, the expected value ofµ(Ml)+µ(Md) isO(log 1/ε)µ(M ). A
little more care is needed to bound the increase in cost at the leaves
of the subdivision. Note that the algorithm computes a suboptimal
matching for the points associated with a leafw of the subdivision
only using Step 1 ofSubMatch. Let us say that an internal node
v of the subdivision isspecial if the algorithm computes a crude
approximation to the optimal matching of the pointsSv associated
with v using Step 2 ofMatch. Note that because of Step 1 of
Match, |Sv| ≥ 2d for such a nodev, whered is a large enough

integer constant. Letj be the smallest integer such thatd2
j ≥ n,

and for1 ≤ i ≤ j, letNi be the set of all special nodesv such that
2d2

i−1 ≤ |Sv | < 2d2
i

. The algorithm ensures that if a point is
associated with two special nodesv andv′ and|Sv | < |Sv′ |, then
|Sv | ≤

p|Sv′ |. It follows that no point is associated with more
than one node fromNi. LetMi be the matching obtained by tak-
ing the union of theoptimal matching ofSv for eachv ∈ Ni. Since
the matchingM l ∪Md when restricted toSv yields a matching of
Sv, we conclude thatµ(Mi) ≤ µ(M l ∪Md).

Consider some leafw of the subdivision where the algorithm
computes a matching forSw using Step 1 ofSubMatch. Corre-
sponding tow, there is a special nodev such thatSw ⊆ Sv, the
length of each edge of the matching ofSw computed by our algo-
rithm is at most

√
2α/(|Sv |/2)2, whereα ≤ µ(Sv). We “charge”

the cost of such an edge tov.
A special nodev can be charged by only|Sv|/2 edges, so the

total charge tov is at most
√

2µ(Sv)/(|Sv|/2). It follows that
for any 1 ≤ i ≤ j, the total charge to all the nodes inNi is at

most
√

2µ(Mi)/d
2i−1 ≤ √

2µ(M l ∪Md)/d2
i−1

. Thus the total

charge to all the special nodes is
√

2µ(M l∪Md)
Pj

i=1 1/d2
i−1

=

O(µ(M l ∪Md)). Since the cost of the matchingM output by our
algorithm is at mostµ(M l ∪Md) plus the total charge to all the
special nodes, we conclude thatµ(M) = O(µ(Ml ∪Md)). Thus
the expected value ofµ(M) isO(log 1/ε)µ(M ). Thus we have:

THEOREM 4.1. Let R be a given set of n red points and B a
given set of n blue points in R2 , and ε > 0 be a parameter. We can
compute in O(n1+ε) expected time a perfect matching of B ∪ R
whose expected cost is at most O(log 1/ε) times the optimal.

5. Conclusions
To obtain a constant-factor approximation algorithm that runs in
sayO(n log n) time, we may have to allow a richer interaction than
we currently do between the children of each internal node of the
subdivision. It is a very interesting open question to figure out how
a sufficiently rich interaction can be accomplished in the allowed
time.
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