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ABSTRACT The first polynomial time algorithm in the graph setting is the fa-
mous “Hungarian” algorithm due to Kuhn [9]. The fastest known
implementation of this algorithm runs i@(|V|*) time on dense

|B] = n, and we want to pair up each red point with a distinct graphs (see Lawer [10]) and roughty(| £]|V’|) time on sparse

blue point so that the sum of distances between the paired points i$raphs [8], whergV’| and| | are respectively the number of ver-

minimized. We present an approximation algorithm that given any ices and edges in the graph. There/_is a scaling algorithm due to
parametef) < ¢ < 1 runsinO(n'"¢) expected time and returns Gabow and Tarjan [7] that runs @(/|V|| E| log([V'|V)) time,

a matching whose expected cost is within a multiplicative factor where IV is the largest weight of an edge in the graph (weights

. . o . are assumed to be integers). For the two-dimensional Euclidean
ﬁ?(gggéééizgrif the optimal. The dimensiodis consideredtobe a o ion of this problem, Vaidya [13] showed that geometry can

be exploited to get algorithms running @(n°/2 log®™® n) time.

] ) ] Agarwal et al. [1] improved the running time for the bipartite case
Categories and Subject Descriptors: F.2.2 [Theory of Computa- 5 O(2+?), for any§ > 0. Agarwal and Varadarajan [2] gave an
tion]: Nonnumerical Algorithms and Problemsgeemetrical prob- (1 + ¢)-approximation algorithm for this problem that returns, for
Ien_1s and computatl_ons' G.2.1_[D|screte Mathematics]: Combina- any0 < e < 1, a perfect matching whose cost is at mist- ¢)
torics—combinatorial complexity times the optimal irO((n*/2 /&) log® (n/e)) time. This is a geo-
metric implementation of the scaling algorithm mentioned above.
No algorithm with a better running time is known for computing

In the Euclidean bipartite matching problem, we are given aiset
of “red” points and a seB of “blue” points inR? where|R| =

General Terms: Theory, Combinatorial Optimization

Keywords: Matching, approximation algorithms even a constant factor approximation to the optimal matching. We
restrict our attention to surveying the two-dimensional Euclidean
1. Introduction case because this is a good indication of the state of the art. The

best algorithms in any fixed dimension are obtained by a straight-
In the Euclidean bipartite matching problem, we are given a@set  forward translation of the two-dimensional algorithms.
of “red” points and a seB3 of “blue” points inR? where|R| = A generalization of the Euclidean bipartite matching is the so-
|B| = n, and we want to pair up each red point with a distinct blue calledtransportation problem, in which we are given two sets of
point so that the sum of distances between the paired points is min-pointst/ andV” in R? and a positive integralemand (p) for each
imized. This is a well known geometric optimization problem that , ¢ U/ U V so that
has applications in operations research, pattern recognition, shape
matching, statistics, and VLSI. > AW = A).
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Related work. Euclidean bipartite matching problem is a spe-

cial case of the classical bipartite matching problem in a graph. A feasible solution to this problem is a subgelt € I/ x V" of

edges and positive integrakights w(u, v) for each(u,v) € M
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The nonbipartite version of Euclidean matching, where we are
given a setP of 2n points inR? and we want to pair up the points

small-sized transportation problem. Our analysis of the cost of the
matching computed by our algorithm has some new ideas which

into n pairs so as to minimize the sum of the distances between may be useful elsewhere.

paired points, is also widely studied. The first polynomial-time al-
gorithm for the graph version of this problem is the classical al-
gorithm due to Edmonds [6]. The best implementations of this
algorithm and the best scaling algorithm have running times sim-
ilar to the bipartite case. Vaidya [13] gave an algorithm for the
two-dimensional Euclidean version of this problem that runs in

Organization. In Section 2 we define the problem more carefully
and state some preliminary lemmas and results that we will subse-
quently use. To simplify the presentation we first present in Sec-
tion 3 an algorithm that runs i@ (n' ™) expected time and returns
amatching whose expected cost is withi(il /&) of the optimal. In

Section 4 we describe our improved algorithm that returns a match-
ing whose expected cost is withi(log <) of the optimal. We will
restrict our exposition to the two-dimensional version. Our algo-
rithms and their analysis readily generalize to any fixed dimension.

O(n®/?10g®Y n) time. Varadarajan [14] later gave a divide-and-
conquer algorithm that runs i(n*/? log®™® n) time. For the ap-
proximate version of this problem, Vaidya [12] gave an algorithm
that, for anye > 0, runs in roughlyO(n®/? /) time and returns

a (1 + ¢)-approximate perfect matching. In a seminal paper that
gave improved algorithms for many geometric optimization prob-
lems like the TSP, Arora [3] gave a Monte-Carlo algorithm that runs
in O(n 1og®/®) n) time and returns él +¢)-approximate match-
ing with high probability. Building on his approach, Rao and Smith
[11] give a Monte-Carlo algorithm that runs @(nlogn) time
and produces (with probability atlealst2) a matching whose cost
is within a constant factor of the optimal. Agarwal and Varadara-
jan [2], also building on Arora’s approach, gave a Monte Carlo
algorithm that returns @l + ¢)-approximate matching with proba-
bility at least1/2 in O((n/c*) log® n) time.

From the discussion of the state of the art, it appears that bipar-
tite matching is harder than nonbipartite matching in the geometric
setting. This seems counterintuitive at first but a little reflection re- whered(u, v) is the Euclidean distance betweeandv. If the set
veals that the bipartite case can be more “non-local” than the nonbi- P is fixed or obvious from the context, we will us€)/) to denote
partite case. Indeed the near-linear approximation algorithm due tou (P, M). Let
Arora [3], which is based on a hierarchical decomposition of a point
set by a randomly shifted quadtree, does not extend to the bipartite
case. One source of difficuity is that when a cell of the quadtre_e denote the cost of the min-cost matchingfafand letM*(P) be a
is divided into four cells, the number of edges of even an approxi- min-cost matching of?
mate matching that cross the subdividing lines may be much larger o ' . ) )
than a constant dog n. This makes the number of subproblems in We begin with the following simple observations.
the natural dynamic programming approach too large, and it is not
clear how to get around this difficulty.

Nevertheless the general feeling among researchers has been th
a near-linear time algorithm that gives at least a constant-factor ap-
proximation must exist, and that the subdivision due to a randomly
shifted quadtree should be a useful tool.

Our results. In this paper, we make substantial progress towards
realizing the above intuition: we give a Monte Carlo algorithm for
the two-dimensional bipartite matching problem that, for &ny

e < 1, runs inO(n'*¢) expected time and returns a matching
whose expected cost is withifi(log(1/¢)) of the optimal. Thus
the closer our asymptotic running time getsQ¢n), the larger is
the constant in the constant-factor approximation we get.

Our algorithm uses a variant of the idea of the randomly shifted
quadtree. When a cell of the quadtree is subdivided into “subcells”,
we compute a matching in which the number of edges that “cross”
a subcell is the minimum number that needs to in any matching
(due to an imbalance between the number of red and blue points )
in the subcell). We resolve the question of which points of the  The following lemma suggests how to compute a rough approx-
subcell are to be matched outside the subcell by picking an arbitraryimation of u(P).
subset of the right size from the points of the predominant color.

We bound the expected increase in the cost of the matching thatwe LEMMA 2.2. Let R be a set of n red points and B a set of n
compute using the fact that we are using a probabilistic partition, blue pointsin R?; set P = R U B. We can compute in O(n log n)

To ensure that the overall increase in cost is not too much we maketime a number « such that

sure that the number of levels in the quadtre®{%g(1/¢)). To 2
do this we allow a cell of the quadtree to be pargitiorge(/i i)n)to alarge o < u(P) < 2n7a.
number of subcells, not just 4. The size of the subproblems in the
“merge” step may be quite large but we reduce this problem to a

2. Preliminaries

Let R be a set ofn “red” points andB a set ofn “blue” points
in R?. A perfect bipartite matching of P = R U B is a subset
M C R x B of red-blue pairs such that each pointfms present
in exactly one pair of\/; we refer to a perfect bipartite matching
as simply a matching. Obviously)/| = n. We define theost of

a matchingM of P to be

w(P, M) = Z d(u,v),

(u,v)eM

p(P) = min p(P, M)

LEMMA 2.1.Let P = R U B, let P’ be the point set ob-
ined by “moving” each point p € P toapoint p/, and let A =
pep Ap; D).

(i) Let M be any perfect matching of P, and let
M ={(,d) | (p,a) € M}
be the corresponding perfect matching of P’. Then
lW(M') — p(M)] < A.

(i) Let M be the matching in P corresponding to the optimal
perfect matching of P’. Then

p(M) < p(P) +2A.

@)
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Figure 1. A recursive step of the matching algorithm: (i) An input set and

numbers near the points are their demands, and the numbers near the arcs are the edge weights in the solution of the transportation problersivéii) A recu

solution for each cell in the grid. (iv) The output matching.

G

Figure 2. Computing a rough approximation pf P).

PROOF We compute irD(n log n) time the minimum spanning
treeT" of P (ignoring the colors), under thB.-metric, using the
algorithm by Callahan and Kosaraju [5]. Le&t, . .. ,e2,—1 be the
edges off" in increasing order of their lengths. Fo i < 2n—1,
let G; denote the subgraph induced by the edges. . ,e;, and
leti* be the smallest integer for which each componertefhas
equal number of red and blue points. Given the ordering of the
edges;* can be computed i®(n) time. The length ot;« is the
desired value ofv. See Figure 2.

Indeed, the grapli/;«_, has at least one connected component
C' in which the number of red and blue points is not the same. So
any perfect matching/ of P has an edgethat has one endpointin
C and another endpoint in a component®f _, different fromC.

By a well known property of MSTSe||cc > ||€i*||oo. Moreover,
llell2 > |le]lso, We conclude thagt(P) > a.

Every connected component 6f- has the same number of red
and blue points. We construct a perfect matchidgof P by find-
ing an arbitrary perfect matching for the points within each compo-
nent. Note that for each edde, v) € M’ there is a path between
u andv in G;=. Since each edge @f;- has length at most, we
conclude from the triangle inequality thitv|l« < na. Thus
d(u,v) < 2naandu(M’) < 2n’a.

For a parameted > 0, let G5 be the square grid formed by
the horizontal lineg; = ¢§ and the vertical lines = j§, where
i,j € Z. We define arandom shift of G; to be the grid formed
by the linesy = iy + a, andz = j6 + ay, Wherea,, a,, are two
independently chosen random numbers in the intdéval).

3. TheAlgorithm

In this section, we describe an algorithm that, given the input set
P = RU B of 2n points and a parameter> 0, runs inO(n'**)
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its min-cost matching. (ii) The transportation problem correspofdlitite to

expected time and returns a matchingiofvhose expected cost is
at mostO(1/¢) times the optimal. We assume that the pointBet
is enclosed in a bounding squafe The algorithm is a call to the
following procedureM atch with parameters® and E. The algo-
rithm is described in a way that will make it easy to describe the
modifications needed to obtain the improved algorithm. Through-
out the algorithmp will denote|R| = |B|.

ProcedureV atch(S, D).

1. If m = |S|/2 is smaller than some constant, then compute
an optimal matching of using the Hungarian algorithm and
and return this matching.

. Using the algorithm of Lemma 2.2, we first compute an ap-
proximationa to () such thatr < p(9) < 2m*a.

. If 2mPa is greater tharl /8 times the side-length ab, we
compute a matching of by making a call to the proce-
dure SubMatch with parametersS, D, «, m and return
this matching. Otherwise, we take a random shift of the
grid G,,,5,- Let C denote the set of grid cells that inter-
sectD. For each grid celC' € C, let S¢ SnNc, let
x(C) = ||Se N R| — |Sc N BJ|. If S¢ contains more red
points than blue points (resp. blue points than red points)
we arbitrarily pickx(C) red points (resp. blue points) and
denote the set b)c. Let Q@ = Ucece@Qc. Note that@
contains an equal number of red and blue points. We com-
pute a perfect matching of the points ¢h as follows. For
each cellC, we “move” each point i) to the center of the
grid cell C. We compute an optimal perfect matching for the
moved points using the Hungarian algorithm; Mtdenote
the corresponding matching 6f.

. For each cell’ € C for which Sc — Q¢ is nonempty, we
compute a perfect matching/c of the pointsSc — Q¢
using a call to the subroutinfubMatch with parameters
Sc—Qc, C, a,m. We return the matching/ U{J .o Mc.

The subroutineSubM atch is a recursive procedure that takes
as input a point seb consisting of an equal number of red and
blue points, a boxD containingS, and parameters andm. Note
thatm here will be set to the size of the point set in the original
Match routine that invokedSubM atch; anda will be the crude
approximation computed by thi&fatch routine. The subroutine
SubM atch will compute a perfect matching &f.

ProcedureSubM atch(S, D, o, m)

1. LetL denote the side length @. If L < a/m2, we com-
pute an arbitrary perfect matching 8fand return it.



2. Letd = ¢/12. If |S|/2 < n%®, we compute a perfect match-  point setP and its bounding square. In general, a node of the subdi-
ing of S using the Hungarian algorithm and and return it. vision is associated with a point s&tC P and a squaré® contain-
) ing S. Ifthis is a leaf of the subdivision (corresponding to Step 1 of
3. We take a random shift of the grifl,; (s msy- Let C Match and Steps 1 and 2 &fubM atch), the algorithm directly
denote the set of grid cells that interséztFor each grid cell  computes a matching of the point st If this is an internal node
C e C,letSc = SNC, letx(C) = [[Sc NR[—|Sc N B|. of the subdivision, the algorithm uses a randomly shifted grid of
If Sc contains more red points than blue points (resp. blue an appropriate size to break upinto a set of cellS”, computes a
points than red points) we arbitararily pig{C’) red points matching of a subs&p C S of points that are then discarded, and
(resp. blue points) and denote the set®@y. LetQ = recursively computes a matching for the poists — Q¢ within
Ucee@c. Note that) contains an equal number of red and  each cellC’ € C. Thus there is a node of the subdivision for each

blue points. We compute a perfect matching of the points ce|| ¢ for which S¢ — Q¢ is non-empty, and each such node be-
in @ as follows. For each cell’, we “move” each point in comes a child of the current node.

Qc to the center of the grid cedl'. We compute an optimal
perfect matching for the moved points using an algorithm for
the transportation problem; |87 denote the corresponding
matching ofQ.

For any nodev of the subdivisiorE that is produced by the al-
gorithm, letS, be the associated set of points anglthe bounding
square. Ifv is an internal node dg, let@, C S, denote the set of
“discarded” points, le¥, = S, — Q., letC, denote the matching
of @, computed by our algorithm, I€t,, denote the set of cells into
which D, is subdivided, and lek, denote the side-length of any
cell in C,. LetV, denote the set of leaves &fandV; the set of
internal nodes.

Let M denote the optimal perfect matching of the input set of
. . . points P. For the sake of analysis, we describe a scheme for con-
Running time analysis structing a perfect matchingj, for the pointsS, associated with

Step 2 of procedur@/atch takesO(m log m) time. The expected ~ €2Ch lealu € Vo. Let M' = U,ev, N, Let M* = Uvevl_(c”'_
running time of Step 3 i©)(m), becausdQ| = Y x(C) is CIearIy,M’ U M4 is a perfect matchlng aP. Tlhe cogstructlon is
bounded by the number of edges of the optimal perfect matching of best viewed as a scheme that convéftato A" U M*.
_Sthatcross the_ grid lines, angd the probability tha_t th_e latter number The conversion scheme. We visit =
is greater thao is at mostl /m~ due to the large grid size. Thus the
running time isO(m?) (for running the Hungarian algorithm) with
probability at mostl /m* and isO(m) otherwise. The expected
time is thus linear. The overall expected running timébditch is

4. For each celC € C for which Sc — Q¢ is nonempty, we
compute a perfect matching/c of the pointsSc — Q¢
using a call to the subroutinfubMatch with parameters
Sc—Qc, C, a,m. We return the matching/ U{J .o Mc.

in a top down manner (in a
post-order fashion). At each nodewe have a matching, of .S,.

For the rootu of T, T,, = M. If v is an internal node, we process
I, in two stages, each of which involves performing a sequence
of edge swaps. Let? C I, denote the subset of edges that are

thusO(m log m)_' _ “cut” by the subdivision ofD, into C,, that is, those edges whose
The running time of Step 2 of procedus@bM atch is O(|S?), endpoints lie in different cells dof,,.
where|S| < n%. Thus the contribution of Step 2 to the overall Stage |. Let M’ = I, initially. We repeat the following step
. . . 3 . . v .
overallﬁr(;mnlng time i, O(n;’) given thatziﬁ_ié nandeach | we are done: While there are two edges, b1 ) and(r», b2 ) in
ni < n”. Thus the cost of Step 2 overall(3(n )- Instep 3, M’ such that both edges are cut by the subdivisiompinto C.,

the size of) may be quite large but the size of the moved point set, -, andb, are both in the same cell &, and are of opposite color,
not counting multiplicities, is only)(m*’) = O(n*’) (because the  we replace these b1, b») and(r», by ); see Figure 3. At the end
number of grid cells irC is O(m25)). Thus solving this matching  of this stage, exactly(C) = |Q, NC| edges of\/’ from each cell
problem by running the algorithm for the transportation problem ¢ ¢ C, are cut by the subdivision intG.,.

due to Atkinson and Vaidya [4] take3(n*’ log? n) time which is

O(n%%). This is bounded by the size of the point $etThus the @b1 b1
running time ofSubM atch is linear in|S| if we ignore Step 2. "l ¢ ™

The number of levels in the recursion(¥1/4) because the size —_
of the bounding box whesubMatch is first invoked is at most bary | o,y bo o
16m®a, the bounding box size falls by a factor of at leagt with

each level of the recursion, and the smallest bounding box size is
a/m?. So the overall expected running time of the algorithm is
O(mlogm + m/§ + n'*12°). Note that the third term comes
from Step 2 ofSubMatch. With our choice of§ = /12 the
overall expected running time &(n' ). Stage I1. For each celC € C,, we repeat the following
step till we are done: if there is iM’ a cut edge(rz, b2) where
Remark 3.1 The procedures/atch and SubMatch are quite ro € Z, N C and (by necessity) a non-cut edga, b1) where
similar. The purpose a#/atch is to handle the scenario when the r1 € @, N C has the same color as, we replace these edges by

Figure 3. Swapping an edge in Stage I.

initial bounding box of the input point set is too large. the cut edgéri, b2) and the non-cut edge-, b1 ); see Figure 4.
Let I, be the matchingV/’ at nodev after having performed
Quality of the matching produced edge swaps in Stage | and Il. Cleaily,= C, UL, , whereC, is a

matching of@Q, andL, is a matching ofZ,. Furthermore, no edge
In analyzing the quality of the matching produced, it will be con- of L, is cut by the subdivision oD, into C,. That is, for each
venient to speak of the hierarchical subdivision or the generalized C' € C,, the restriction of_, to Z, N C is a matching ofZ, N C
quadtree that the procedurgsatch and. SubM atch together pro- (and indeed constitutes the input matchingof S, = Z, N C for
duce. The root node of this subdivision is associated with the input the nodew in Z corresponding t@).
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Figure 4. Swapping an edge in Stage II.

LEMMA 3.2. After having processed an internal node v € =,
we have the following:

(i) pw(Ly) + u(Cy) < u(Ly) + cA|[IF], where ¢ > 0 isa con-
stant.

(i) |Lo \ L] < 3[17].

PROOF. Each step in Stage | decreases the number of cut edges,
in M’ by at least one and increases the cost of the matching by at

most2\,,. Thus the number of steps is at m¢sf| and the cost of
the matching has increased by at mst |17 in this stage. At the
end of the stage, exactlyy(C') edges of\’ from each celC € C,
are cut by the subdivision int@’,.

The number of times the step in Stage Il is performed over all
cells in C, is at most|Q.| < 2|T%|, and each step increases the
cost of the matching by at mogh,. It is therefore clear that

w(Lo) + p(C,) < p(l) + A [I7].
for some constant’ > 0. Now
#(Co) < u(C,) + 200 |Qu| < p(Cy) + 8N L],

where the first inequality follows from Lemma 2.1 (ii). This com-

pletes the proof of (i). We introduced at most one new edge into

descendents of an edgkin M is proportional to the charge to
the edge itself. What is the expected charge to the gdgé&his

is at most the number of levels of the subdivision times the ex-
pected charge to it at an internal nodef the subdivision given
that f € I,. The number of levels in the subdivision¥1/¢).
Given thatf € I,, the expected charge tp at v is the proba-
bility f is in IZ timesc\,. It is easy to see that this probability

is at most2||f||/\.. We conclude that the expected chargefto
atv is O(||f||), the expected total charge fois O(||f||/¢), and

the expected total charge applied to all the edgeEifior each

v € V1isO(1/e) * u(M). We conclude that the expected value of
u(MY) + (M%) is O(1/e) * (M.

Increasein cost at the leaves. As we have already remarked, the
cost of the matching computed by our algorithm would be bounded
by w(M"' U M?) if the algorithm computes an optimal matching
for the points associated with each leaf of the subdivision. The al-
gorithm in fact does this at any leaf that is handled by Step 1 of
Match or Step 2 ofSubMatch. The only place where the al-
gorithm computes a sub-optimal matching of the points associated
ith a leaf of the subdivision is in Step 1 SfubMatch. In such a
situation, each edge of the computed matching has length at most
v2a/n?. Thus the cost of the matching computed by our algo-
rithm is at most

u(MAUMY) +nxvV3a/m® < p(M*UMY) +V2u) /n

<
< (M UMY+ p(M).

Since the expected value pf M U M") is O(1/¢) * u(M), we
have established the following result.

THEOREM 3.3. Let R be a given set of n red pointsand B a
given set of n blue pointsin R?, and ¢ > 0 be a parameter. \e can
compute in O(n' ™) expected time a perfect matching of B U R
whose expected cost isat most O(1/¢) timesthe optimal.

M’ in each step of stage 1 and stage 2. Hence the overall numbers  Thel mproved Algorithm

of new edges is at most« |I7|, completing the proof of (i). O

In this section we present our improved algorithm that, given a

It is clear that at the end of the traversal, we have the matching point setP = RU B of 2n points and a parametér< ¢ < 1, runs

M' U M9 as stated. Indeed, for any leafe Vo, N, is going to
bel,. The significance of\f! U M is that if our algorithm were
to compute aroptimal matching for the points, associated with
each leafv € Vg, then the cost of the overall matching computed
by our algorithm would be at mogi( M’ U M%).

We therefore wish to bound(A! UM®) — (M). From Lemma
3.2 (i), we see that(M'UM?) — (M) is at mostJ, ¢, cAo[I].

We account for this by charging\, to each edge ifiZ for each
internal nodev € V.

To bound the total charge, we do the following for each internal
nodev € Vi: For each edge € T, we pick up to three edges
fromL, \ I, and call these thehildren of e. We ensure that each
edge inL, \ I, is a child of exactly one edge iif’. This is possible
because of Lemma 3.2 (ii).

Consider an edgg in the optimal perfect matchiryl, and sup-
pose it is cut (appears iff’) at some internal node € V; and is
chargede),. Let Si(f) denote its children and far < i define
Si(f) to be the union of the children of the edgessin (f). Note
that|Si(f)| < 3'. Furthermore, each edge #(f) is charged at

mostc), /8", because the diameter of the bounding square falls by

at least8 with each level of the subdivision. Thus the total charge
accumulated by the “descendants” fofs cA, 3, 3°/8" which

is at mostc’\, for some constant’ > 0. Thus the charge to the
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in O(n'**) expected time and returns a matching whose expected
cost is at mosO (log <) times the optimal. Note that if we ignore
step 2 of subroutin&ubM atch, the algorithm of Section 3 runs
in O(nlogn + n/d) expected time, has/o levels, and reduces
the problem to subproblems of size at mp&t. The idea of the
modification is to set = 1/12 instead ofé = ¢/12. Then the
algorithm runs inD(n log n) expected time, has a constant number
of levels, and reduces the problem to subproblems of size at most
v/n. We then apply the same algorithm on the subproblems till we
get subproblems of size at most/4. We continue in this fashion
till we are left with subproblems of size at mast/2, which we
then solve using the Hungarian algorithm. The number of levels
is now O(log 1/¢), and the analysis goes through giving an ap-
proximation ofO(log 1/¢) times the optimal. The running time is
O(nlognlog1/e +n'te).

The specific modification needed to our formal subroutines is
as follows: We replace Step 2 of subroutifabMatch by the
following steps:

2a If|S]/2 < n°/? we compute an optimal matching Sfusing
the cubic algorithm and return this matching.

2b if [S|/2 < m!/2, return the matching of computed by
Match(S, D).



Running time analysis. As before, the expected running time of
the subroutined/atch andSubM atch is O(|S| log |S|) if we ig-
nore Step 2a ofubM atch. Using an argument very similar to the
previous algorithm, the overall contribution of Step 2a to the run-
ning time isO(n'"). Furthermore, by construction, there is an
integer constank > 1 such that if the recursion depth is at least
k = 1 for some integei > 0, the size of the associated point set

is at most2n'/2". Since the size of the associated point set is at
least2n°/? when a recursive call is made, we conclude that the re-
cursion depth igD(log 1/¢). (Similar remarks apply to the depth
of the subdivision produced by the new algorithm.) Thus the over-
all expected running time i©(nlognlog 1/ + n'™*), which is
Oo(n'*e).

Quality of the matching produced. The analysis of the expected
value ofj(M") 4+ p(M?) proceeds in a manner identical to the pre-
vious algorithm. Since the depth of the subdivisioifog 1/¢)
now, the expected value p{ M")+u(M?) is O(log 1 /&) u(M). A

little more care is needed to bound the increase in cost at the leaves

of the subdivision. Note that the algorithm computes a suboptimal
matching for the points associated with a leabf the subdivision
only using Step 1 obubM atch. Let us say that an internal node

v of the subdivision ispecial if the algorithm computes a crude
approximation to the optimal matching of the poistsassociated
with v using Step 2 ofMatch. Note that because of Step 1 of
Match, |S»| > 2d for such a nodey, whered is a large enough

integer constant. Let be the smallest integer such th&t > n,
and forl < i < 7, let N; be the set of all special nodessuch that
24" < |S,| < 2d*. The algorithm ensures that if a point is
associated with two special nodesndv’ and|S,| < |S,-|, then
|Su| < 4/|S.|. It follows that no point is associated with more
than one node fronN;. Let M, be the matching obtained by tak-
ing the union of theptimal matching ofS, for eachv € N;. Since
the matchingVf! U M< when restricted t&, yields a matching of
S, we conclude that(M;) < p(M' U M?).

Consider some leafv of the subdivision where the algorithm
computes a matching fd,, using Step 1 ofSubMatch. Corre-
sponding tow, there is a special node such thatS,, C S, the
length of each edge of the matching.$f computed by our algo-
rithm is at most/2a/(|S,|/2)?, wherea < p(S,). We “charge”
the cost of such an edge to

A special nodev can be charged by onlys,|/2 edges, so the
total charge tov is at mosty/2.(S,)/(|S,|/2). It follows that
forany1 < i < j, the total charge to all the nodes W is at
mosty/2u(M;)/d* " < 2u(M' U M%) /d¥ . Thus the total
charge to all the special nodes&u(M'UM?) 37 1/d> " =
O(u(M" U M®)). Since the cost of the matching output by our
algorithm is at mosp(M' U M?) plus the total charge to all the
special nodes, we conclude theth) = O(u(M' U M?)). Thus
the expected value gf(M) is O(log 1/¢)u(M). Thus we have:

THEOREM 4.1. Let R be a given set of n red pointsand B a
given set of n blue pointsin R?, and ¢ > 0 be a parameter. \e can
compute in O(n' ™) expected time a perfect matching of B U R
whose expected cost is at most O(log 1/¢) timesthe optimal.
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5. Conclusions

To obtain a constant-factor approximation algorithm that runs in

sayO(n log n) time, we may have to allow a richer interaction than

we currently do between the children of each internal node of the

subdivision. Itis a very interesting open question to figure out how

a sufficiently rich interaction can be accomplished in the allowed
me.
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