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Abstract

Northeastern University

Department of Electrical and Computer Engineering

Doctor of Philosophy in Electrical Engineering

Convex Relaxations for Robust Identification of Hybrid Models

by Necmiye Ozay

In order to extract useful information from a data set, it is necessary to understand the underlying

model. This dissertation addresses two of the main challenges in identification of such models. First,

the data is often generated by multiple, unknown number of sources; that is, the underlying model is

usually a mixture model or hybrid model. This requires solving the identification and data association

problems simultaneously. Second, the data is usually corrupted by noise necessitating robust identi-

fication schemes. Motivated by these challenges we consider the problem of robust identification of

hybrid models that interpolate the data within a given noise bound. In particular, for static data we try

to fit affine subspace arrangements or more generally a mixture of algebraic surfaces to the data; and

for dynamic data we try to infer the underlying switched affine dynamical system. Clearly, as stated,

these problems admit infinitely many solutions. For instance, one can always find a trivial hybrid

model with as many submodels/subspaces as the number of data points (i.e. one submodel/subspace

per data point). In order to regularize the problem, we define suitable a priori model sets and objec-

tive functions that seek ”simple” models. Although this leads to generically NP-Hard problems, we

develop computationally efficient algorithms based on convex relaxations.

Additionally, we discuss a related problem: robust model (in)validation for affine hybrid systems.

Before a given system description, obtained either from first principles or an identification step, can be

used to design controllers, it must be validated using additional experimental data. In this dissertation,

we show that the invalidation problem for switched affine systems can be solved within a similar

framework by exploiting a combination of elements from convex analysis and the classical theory of

moments.

Finally, the effectiveness of the proposed methods are illustrated using both simulations and several

non-trivial applications in computer vision such as video and dynamic texture segmentation, two-view

motion segmentation and human activity analysis. In all cases the proposed methods significantly

outperform existing approaches both in terms of accuracy and resilience to noise.

http://www.neu.edu/
file:necmiye@coe.neu.edu
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Chapter 1

Introduction

Hybrid models are abundant in a wide range of applications and processes. In dynamical systems

community hybrid systems, systems characterized by the interaction of both continuous and discrete

dynamics, have been the subject of considerable attention during the past decade. These systems arise

naturally in many different contexts, e.g. biological systems ([2, 3], etc.), systems incorporating logi-

cal and continuous elements ([4, 5]), manufacturing ([6]), automotive ([7]), etc, and in addition, affine

hybrid systems can be used to approximate nonlinear dynamics. Computer vision and pattern recogni-

tion communities have also extensively considered subspace arrangements ([8, 9, 10, 11]) and mixture

models ([12, 13, 14]) in various segmentation/clustering applications such as affine motion segmenta-

tion, face clustering under varying illumination, image, video and dynamic texture segmentation.

In this dissertation, we consider the problem of parametric identification of hybrid models. In partic-

ular, for dynamic input/output data we try to infer the underlying switched affine dynamical system

(i.e. a time–varying system that switches among a finite number of linear time invariant subsystems

according to a discrete mode signal); and for static data we try to fit a union of affine subspaces (i.e.

affine subspace arrangement) or more generally a mixture of algebraic surfaces to the data. The main

challenge in both problems is that one needs to solve the identification and data association problems

simultaneously. For switched affine dynamical systems, if we knew the mode signal (i.e. we knew

which submodel was active at which time instants), then we can treat the problem as the identification

of linear time–invariant systems. Conversely, if we knew the parameters of the submodels, then we

could use model invalidation techniques to find which model is valid for each time instant. Similarly

for static data, if we knew which data points came from the same subspace, then we could easily fit

a subspace to those points. On the other hand if the subspaces were known, each data point could

1



Chapter 1. Introduction 2

be assigned to the subspace closest to it. Identification of hybrid models is a hard problem mainly

due to this chicken-and-egg nature. Moreover, taking into account the fact that the data is usually

corrupted by noise makes the problem even more challenging. We try to address these challenges with

the proposed robust identification schemes.

Also, unless additional constraints are imposed, the identification problem admits infinitely many

solutions. For instance, one can always find a trivial hybrid model with as many submodels/subspaces

as the number of data points (i.e. one submodel/subspace per data point). In order to regularize the

problem, we define suitable a priori model sets and objective functions that seek “simple” models.

Hence, we recast the problem into an optimization form. Although this leads to generically non-convex

NP-Hard problems, we develop computationally efficient algorithms based on convex relaxations.

Convex optimization problems constitute a special class of mathematical optimization problems for

which there are efficient polynomial time algorithms that are guaranteed to converge1 to a global

optimum [15]. Convex relaxations can be used to approximate (in some cases, even exactly solve

for) the global optimum of a non-convex problem in a principled way. With this in mind, we try to

convexify our problems and make use of the powerful tools developed for convex optimization.

We also consider a related problem: robust model (in)validation for affine hybrid systems. Before a

given system description, obtained either from first principles or an identification step, can be used to

design controllers, it must be validated using additional experimental data. Considering the inherent

difficulties in hybrid system identification, an invalidation step becomes even more crucial for such

systems. We show that the invalidation problem for switched affine systems can be solved within a

similar framework by exploiting a combination of elements from convex analysis and the classical

theory of moments.

In addition to developing hybrid identification and (in)validation schemes, we show that many in-

teresting problems in computer vision can be robustly and efficiently solved within a hybrid iden-

tification/(in)validation framework. In particular, we apply the proposed methods in video and dy-

namic/static texture segmentation, two-view motion segmentation and human activity analysis. In all

cases the proposed methods significantly outperform existing approaches both in terms of accuracy

and resilience to noise.

1More precisely, one can get a solution arbitrarily close to the global optimum, in polynomial time.
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1.1 Contributions and Outline

The main contributions of this dissertation are:

• Reformulation of the problems of identification of switched ARX systems with minimum num-

ber of switches and minimum number of submodels as sparsification problems, making a con-

nection between sparse signal recovery and hybrid system identification. This reformulation

enables efficient convex optimization based solution methods.

• An exact switch detection algorithm for SARX systems with ℓ∞ bounded noise. A notion of

switch identifiability is presented together with necessary and sufficient conditions for identifi-

ability of switches purely from input/output data.

• Derivation of the convex envelop for the function that counts the nonzeros vectors in a vec-

tor valued sequences which lead to a convex relaxation for sparsity problems involving vector

valued sequences.

• Reformulation of identification of switched ARX systems with known number of submodels

and ℓ∞ bounded noise as a matrix rank minimization problem where all the matrices involved

are affine in decision variables. This problem can be solved by using efficient convex relaxations

for rank minimization.

• An extension of moment-based polynomial optimization method for the case where the function

to be minimized is not a polynomial function (i.e. rank). In hybrid system identification problem

considered, keeping the rank objective instead of a more complicated equivalent polynomial

objective function, it is possible to better utilize the problem structure to significantly reduce the

computational complexity.

• Convex certificates for robust (in)validation of multi-input multi-output SARX models and re-

casting activity monitoring problem as a hybrid model invalidation problem.

• Application of hybrid system identification to several non-trival problems in computer vision

establishing the fact that hybrid dynamical models provide a compact representation for complex

data streams that are generated by multiple sources or for which the underlying process varies

with time. Also in all cases, the proposed approaches are shown to outperform the state-of-the-

art techniques currently used in the computer vision field.



Chapter 1. Introduction 4

• A sparsification based method, which takes into account the order dependency, for clustering

noise corrupted data that lie on a mixture of subspaces and its applications in video and dynamic

texture segmentation.

• A moments-based convex method for segmentation of multiple algebraic surfaces from noisy

sample data points. This method is applied to the problems of simultaneous 2-D two view mo-

tion segmentation and motion segmentation from two perspective views. Simulations and real

examples illustrate that our formulation substantially reduces the noise sensitivity of existing

approaches.

The rest of the dissertation is organized as follows. We start with a summary of convex relaxations

used through out the dissertation in Chapter 2. The proposed methods are discussed in two main parts.

First we discuss the dynamic case and then we present parallel results on the static case. Specifically, in

Chapter 3, we consider the problem of identification of switched affine dynamical systems. A general

introduction to this problem is presented in Section 3.1. In Sections 3.2 and 3.3, some relevant defini-

tions are given and the problem is formally stated, respectively. We propose two different approaches

for this problem. The sparsification–based approach is introduced in Section 3.4; and the moments–

based approach is introduced in Section 3.5. The problem of model (in)validation for switched affine

dynamical systems together with the proposed solution is presented in Chapter 4. Chapter 5 addresses

the problem of segmentation of affine subspace arrangements or more generally mixture of algebraic

surfaces. In Section 5.1, we present the sparsification method for clustering data into an unknown

number of affine subspaces where the sequential nature of the data is relevant. The motivation for

this problem is given in Section 5.1.1 and main results are presented in Section 5.1.2. In Section 5.2,

we present a polynomial kernel denoising method and discuss its application in segmentation of noise

corrupted data lying on a mixture of algebraic surfaces. Each chapter includes an example section

illustrating the applications of the proposed methods and their advantages against existing algorithms.

Finally, Chapter 6 concludes the dissertation with some remarks and directions for future research.



Chapter 2

Convex Relaxations

Convex optimization is a special class of mathematical optimization problems for which there are ef-

ficient polynomial time algorithms that are guaranteed to converge to a global minimum [15]. Least

squares, linear programming, semidefinite programming, second order cone programming are all con-

vex optimization problems. If a problem can be formulated as a convex problem, it can reliably and

efficiently solved, for instance, using interior point methods. There are free optimization packages (i.e.

solvers) such as SEDUMI [16] and SDPT3 [17] for solving convex programs. Moreover, user-friendly

modeling languages such as CVX [18] and YALMIP [19] make these solvers accessible for a wide

range of users.

On the contrary to convex problems, non-convex problems usually have lots of local minima where

solution algorithms are likely to get trapped if not initialized properly. Convex relaxations can be used

to approximate (in some cases, even exactly solve for) the global optimum of a non-convex problem

in a principled way. In some cases, they can also be used to find bounds on the global optimum or to

provide a good initial point for gradient search.

In this dissertation, we recast identification and invalidation problems into appropriate optimization

problems. Unfortunately, these problems are usually non-convex and NP-Hard. Nevertheless, re-

sorting to convex relaxations, we obtain efficient solutions. In what follows some important convex

relaxations, which play a central role in deriving our main results, are summarized. It is important to

note that this chapter is by no means a comprehensive treatment of the subject. Rather, it aims at giving

the basic intuition behind each relaxation together with readily usable, relaxed, convex formulations

that will help the reader understand the development in the proceeding chapters. We refer to several

5
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relevant publications where one can find an in-depth treatment of each relaxation. More details are

provided for the cases where modifying the existing theory was necessary to make it suitable for our

problem.

2.1 Background Results on Sparsification

2.1.1 Sparse Signal Recovery

In this section, we present the background results on the problem of sparse signal recovery [20, 21,

22] that motivate the approach pursued in sections 3.4 and 5.1. We also provide some necessary

modifications to the standard sparsification results so that they are applicable the problems considered

in this dissertation.

Sparse signal recovery problem can be stated as: given some linear measurements y = Ax of a

discrete signal x ∈ R
n where A ∈ R

m×n, m ≪ n, find the sparsest signal x∗ consistent with

the measurements. In terms of the ℓ0 quasinorm (i.e. ‖ · ‖o satisfies all of the norm axioms except

homogeneity since ‖cx‖o = ‖x‖o for all non-zero scalars c), this problem can be recast into the

following optimization form:

min ‖x‖o subject to : y = Ax (2.1)

It is well known that the problem above is at least generically NP–complete ([23, 24]). Two fundamen-

tal questions in sparse signal recovery are: (i) the uniqueness of the sparse solution, (ii) existence of

efficient algorithms for finding such a signal. In the past few years it has been shown that if the matrix

A satisfies the so-called restricted isometry property (RIP), the solution is unique and can be recovered

efficiently by several algorithms. These algorithms fall into two main categories: greedy algorithms

(e.g. orthogonal matching pursuit [25, 26, 27]) and ℓ1-based convex relaxation (also known as basis

pursuit [20, 21, 22]). In this thesis we follow the latter approach which is based on replacing ‖x‖o

in the optimization above by ‖x‖1. The idea behind this relaxation is the fact that the ℓ1 norm is the

convex envelope of the ℓ0 norm, and thus, in a sense, minimizing the former yields the best convex

relaxation to the (non-convex) problem of minimizing the latter. Moreover, as shown in [20, 21, 22],

this relaxation is stable and robust to noise. That is, even when only noisy linear measurements are

available, if RIP holds for A, which is true with high probability for random matrices, recovery of the

correct support of the original signal and approximating the true value within a factor of the noise are
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possible by solving:

min ‖x‖1 subject to : ‖y − Ax‖ ≤ ǫ (2.2)

where ǫ is a bound on the norm of noise. This formulation arises naturally in many engineering appli-

cations such as magnetic resonance imaging, radar signal processing and image processing. Moreover,

existence of efficient algorithms to solve this problem led to the compressed sensing framework which

enabled speeding up signal acquisition considerably since the original sparse signal can be recon-

structed using relatively few measurements. We refer the interested reader to the recent survey paper

[28] for a comprehensive treatment of the subject.

In hybrid system identification, we will pursue a similar approach. However, we will work with

sparsification problems in the space of vector valued finite1 sequences

S =
{

{g(t)}T
t=t0

| g(t) ∈ R
d
}

rather than with vectors x ∈ R
N . This change requires extending the theory behind the ℓ1-norm relax-

ation to the space S . To this effect, begin by noting that the number of non-zero elements (i.e. vectors)

in {g} ∈ S (i.e. ‖{g}‖0) is the same as in ‖ḡ‖0 where ḡ = [‖g(to)‖ , . . . , ‖g(T )‖]T ∈ R
T−to+1. This

suggests the use of ‖ḡ‖1 =
∑

t ‖g(t)‖ as a convex objective function with an appropriate choice of

the norm ‖g(t)‖. In particular, we will use ‖g(t)‖∞. The theoretical support for this intuitive choice

is provided next.

Lemma 1. The convex envelope of the ℓ0-norm of a vector valued sequence on ‖{g}‖∞ ≤ 1 is given

by

‖{g}‖0,env ,
∑

t

‖g(t)‖∞. (2.3)

Proof. Given in the Appendix A.1.

A related line of results recently appeared in compressed sensing/sparse signal recovery community

for structured sparsity (see for instance [29, 30, 31]).

Next, we provide a sufficient condition for exactness of the convex envelope based relaxation for the

vector valued case. The original sparsity problem we would like to solve has the following form:

1Since the experimental data consists of only finite samples, we consider finite sequences. However, with appropriate

modifications the discussions in this section can easily be extended to deal with infinite sequences.
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ming(t) ‖{g(t)}‖0

s.t Ag̃ = y
(2.4)

where {g(t)}T
t=1 is a vector valued sequence with g(t) ∈ Rd. g̃ ∈ RdT is a vector formed by

stacking the elements of {g(t)}T
t=1. Assume the minimum number of switches is k and the above

problem (2.4) has a unique optimizer {go(t)}
T
t=1 with k non-zero elements. Next, consider the convex

envelope based relaxation:

ming(t)

∑T
t=1 ||g(t)||∞

s.t Ag̃ = y
(2.5)

Now, define the constants c1, c2 such that

c1||g̃||
2
2 ≤ ||Ag̃||22 ≤ c2||g̃||

2
2 (2.6)

where c1 is the maximum and c2 is the minimum of all scalars such that these inequalities hold for all

2k-sparse {g(t)}T
t=1.

Lemma 2. Let g̃o and g̃1 be the arguments of the optimal solutions of problems (2.4) and (2.5),respectively.

If for the matrix A, the coefficients defined in (2.6) satisfy

c1

c2
>

T + dk2

T + dk2 + 4k
(2.7)

then, the problems (2.4) and (2.5) are equivalent (i.e. g̃o = g̃1).

Proof. Given in the Appendix A.2.

2.1.2 Matrix Rank Minimization

Through out this dissertation, we recast several problems into a matrix rank minimization form. This

problem is closely related to sparsification in that ℓ0-norm minimization is a special case of matrix

rank minimization where the matrix whose rank to be minimized is a diagonal matrix. Since rank

minimization can be reduced to a sparsification problem which is NP-Hard, it follows that rank mini-

mization as well is generically NP-Hard. However, as recalled next, efficient convex relaxations exist
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when the constraint set is convex. Most of the material presented in this section is from [32, 33, 34];

and further details can be found therein.

The problem of rank minimization over convex sets can be formally stated as follows:

minimize rank X

subject to X ∈ C
(2.8)

where X ∈ R
m×n is the optimization variable and C is the convex constraint set.

A well-known convex relaxation for rank minimization is to replace rank objective with the nuclear

norm objective. Nuclear norm is indeed the convex envelope of rank on the set of bounded matrices

[32]; and is equal to sum of singular values. That is:

‖X‖nuc
.
=

min(m,n)
∑

i=1

σi(X) (2.9)

where σi(X) is the ith largest singular value of X.

Remark 1. A few interesting observations on nuclear norm are in order. First, as stated earlier, for

diagonal matrices, rank minimization corresponds to ℓ0-norm minimization. Similarly, for this specific

case, nuclear norm reduces to ℓ1-norm. Second, for positive semidefinite matrices, nuclear norm

corresponds to the trace of the matrix. Hence, this relaxation is also known as trace heuristic.

By employing nuclear norm relaxation, (2.8) can be relaxed to the following convex program:

minimize ‖X‖nuc

subject to X ∈ C
. (2.10)

Moreover, by exploiting the so called semidefinite embedding lemma ([33]), problem (2.10) can be

converted to an equivalent semidefinite program as follows:

minimize trace Y + traceZ

subject to

[

Y X

XT Z

]

� 0

X ∈ C

(2.11)

which can be solved using of-the-shelf semidefinite programming solvers.
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A crucial property of this relaxation is that when the convex set C is made up of a system of linear

equalities (i.e. C = {X|A(X) = b)} where A is a linear transformation), there exist some sufficient

conditions for the exactness of the relaxation ([35]). In particular, as shown in [35], if the matrix rep-

resentation of A satisfies a version of RIP, which holds true with high probability for certain families

of random matrices, the minimizers of (2.11) and (2.8) are the same.

2.2 The Problem of Moments and Polynomial Optimization

In this section, we recall some results from the classical theory of moments and their use in polynomial

optimization. In particular, linear matrix inequality based characterization of moment sequences can

be used to recast non-convex polynomial optimization problems as convex semidefinite programming

problems (see the recent paper [36] for an excellent survey on this subject). These techniques play a

key role in establishing the main results of sections 3.5, 4 and 5.2.

2.2.1 The Problem of Moments

2.2.1.1 One Dimensional Case

Given a sequence of scalars {mi}
n
i=1, the problem of moments is to determine whether there exist

a probability measure in R that has {mi} as its first n moments (see references [37, 38, 39] for a

historical review and details of the problem). In particular, in the section 3.5 we are interested in

probability measures that are supported on bounded symmetric intervals of the real line. This problem

is known as truncated Hausdorff moment problem. The following theorem provides necessary and

sufficient conditions for the existence of such a measure.

Theorem 1. Given a sequence {mi : i = 1, 2, . . . , n}, there exists a probability measure supported on

[−ǫ, ǫ] such that

mi = Eµ(xi) =

∫ ǫ

−ǫ
xiµ(dx)

if and only if

• when n = 2k + 1 (odd case), the following holds

ǫM(0, 2k) � M(1, 2k + 1) (2.12)
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M(1, 2k + 1) � −ǫM(0, 2k) (2.13)

• when n = 2k (even case), the following holds

M(0, 2k) � 0 (2.14)

ǫ2M(0, 2k − 2) � M(2, 2k) (2.15)

where M(i, i + 2j) is the (j + 1) by (j + 1) Hankel matrix formed from the moments, that is:

M(i, i + 2j)
.
=















mi mi+1 . . . mi+j

mi+1 . .
.

. .
.

mi+j+1

... . .
.

. .
. ...

mi+j . . . . . . mi+2j















, (2.16)

and where m0 = 1.

Proof. Direct application of Theorem III.2.3 and Theorem III.2.4 in [38].

2.2.1.2 Multi-Dimensional Case

In this section, we consider probability measures supported in certain subsets of R
D. There is an

important difference in passing from one-dimensional distributions to multi-dimensional distributions.

Note that in the one dimensional case, the truncated moment sequences can be exactly characterized

with finite-sized linear matrix inequalities. However, in multi-dimensional case such a semidefinite

characterization, in general, requires infinite LMIs. Nevertheless, it is possible to obtain arbitrarily

good approximations by using a truncated version of the infinite LMIs.

Let K be a closed subset of R
D and let α be a multi–index (i.e. α ∈ N

D) representing the powers of a

monomial in D variables. Given a sequence of scalars {mα}, the K-moment problem is to determine

whether there exists a probability measure µ supported on K such that it has each mα as its αth

moment. That is:

mα = Eµ(xα) =

∫

K
xαµ(dx) (2.17)

where xα = xα1
1 xα2

2 · · · xαD

D .
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First, we are interested in the case where K is the ǫ-ball. The following theorem taken from [40]

provides necessary and sufficient conditions for the existence of a probability measure that is supported

on a ball of radius ǫ centered at the origin.

Theorem 2. Let p =
∑

α cαxα ∈ P denote a generic (multivariate) polynomial. Given a sequence

m
.
= {mα}, there exists a linear functional E : P → R such that

E(p) =
∑

α

cαmα (2.18)

and {mα} are the moments of a distribution supported on ‖x‖2 ≤ ǫ, if and only if the following two

conditions hold for all p ∈ P:

E(p2) ≥ 0 (2.19)

E((ǫ2 − (x2
1 + . . . + x2

D))p2) ≥ 0 (2.20)

Remark 2. The conditions given in the above theorem consist of infinite semidefinite quadratic forms

which can be converted into (infinite) linear matrix inequalities (LMIs) in the moment variables {mα}.

Next, we briefly discuss how to build a matrix representation of a given sequence m that contains

all the moments up to order 2d. Although the order of the subsequence is immaterial, for the sake

of clarity of presentation, we arrange the moments according to a graded reverse lexicographic order

(grevlex) of the corresponding monomials so that we have 0 = α(1) < . . . < α(Md), where Md
.
=

(

d + D

D

)

is the number of moments in R
D up to order d. Then, the moment conditions take the

form:

L(d)(m) � 0

K(d)(ǫ,m) � 0
(2.21)

where

L(d)(i, j) = mα(i)+α(j) for all i, j ≤ Md

K(d)(i, j) = (ǫ2mα(i)+α(j) − mα(i)+α(j)+(2,0,...,0)−

. . . − mα(i)+α(j)+(0,...,0,2))for all i, j ≤ Md−1

It can be shown [41] that the linear matrix inequalities in equation (2.21) are necessary conditions for

the existence of a measure µ supported in the ǫ-ball that has the sequence m as its moments. Moreover,

as d ↑ ∞, (2.21) becomes equivalent to conditions (2.19)–(2.20) in Theorem 2; hence it is sufficient
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as well. Thus, it is possible to get progressively better approximations to the infinite dimensional

conditions (2.19)–(2.20) with finite dimensional LMIs by increasing the size of the moment matrices

(i.e. by increasing d) [41]. It is also worth noting that if as d increases, the rank of the moment

matrices stops increasing, the so-called flat extension property ([42]) is satisfied. In this case, the finite

dimensional conditions (2.21) corresponding to this value of d are necessary and sufficient for the

existence of a measure supported in the ǫ ball.

Example 2.1. This simple example illustrates the structure of moment matrices when D = 2, d = 2:

L =

























1 m(1,0) m(0,1) m(2,0) m(1,1) m(0,2)

m(1,0) m(2,0) m(1,1) m(3,0) m(2,1) m(1,2)

m(0,1) m(1,1) m(0,2) m(2,1) m(1,2) m(0,3)

m(2,0) m(3,0) m(2,1) m(4,0) m(3,1) m(2,2)

m(1,1) m(2,1) m(1,2) m(3,1) m(2,2) m(1,3)

m(0,2) m(1,2) m(0,3) m(2,2) m(1,3) m(0,4)

























(2.22)

K = ǫ2L(1 : 3, 1 : 3) −









m(2,0) m(3,0) m(2,1)

m(3,0) m(4,0) m(3,1)

m(2,1) m(3,1) m(2,2)









−









m(0,2) m(1,2) m(0,2)

m(1,2) m(2,2) m(1,3)

m(0,3) m(1,3) m(0,4)









(2.23)

Finally, we state conditions that moment sequences of probability measures supported in an arbitrary

compact semialgebraic set K should satisfy. For a historical review and details of this more general

moment problem, we refer the interested reader to [42, 43] and references therein. As shown in

[41, 42], the existence of such a measure can again be characterized by positive semidefiniteness

of some infinite matrices, the so-called moment M(mα) and localization matrices L(gkmα) where

gk(x) ≥ 0 are the polynomials defining K.

Next, we briefly discuss how to build truncated versions of M and L of a given sequence m
.
= {mα}

that contains all the moments up to order 2d. Although the order of the subsequence is immaterial, for

the sake of clarity of presentation, we arrange the moments according to a graded reverse lexicographic

order (grevlex) of the corresponding monomials so that we have 0 = α(1) < . . . < α(Sd), where

Sd
.
=

(

d + D

D

)

is the number of moments in R
D up to order d. The truncated version of M is

defined as follows:

Md(m)(i, j) = mα(i)+α(j) for all i, j ≤ Sd. (2.24)
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Let gk(x) =
∑

β gk,β(l)xβ(l)
be one of the defining polynomials of K with coefficients gk,β(l) and

degree δk, then the corresponding truncated localization matrix is defined as:

Ld(gkm)(i, j) =
∑

β gk,β(l)mβ(l)+α(i)+α(j)

for all i, j ≤ S
d−
⌊

δk
2

⌋

(2.25)

2.2.2 Polynomial Optimization via Moments

This section reviews some results from [41] that relate polynomial optimization to the problem of

moments. Specifically, consider the problem of minimizing a real valued polynomial:

p∗K := min
x∈K

p(x) (P1)

where K ⊂ R
D is a compact set defined by polynomial inequalities. This problem is usually non-

convex, hence hard to solve. Next, we consider a related problem:

p̃∗K := min
µ∈P(K)

∫

p(x)µ(dx) := min
µ∈P(K)

Eµ [p(x)] (P2)

where P(K) is the space of finite Borel signed measures on K. Although (P2) is an infinite dimensional

problem, it is, in contrast to (P1), convex. The next result, taken from [41], establishes the relation

between the two problems:

Theorem 3. Problems (P1) and (P2) are equivalent; that is:

• p̃∗K = p∗K.

• If x∗ is a global minimizer of (P1), then µ∗ = δx∗ (the Dirac at x∗) is a global minimizer of

(P2).

• For every optimal solution µ∗ of (P2), p(x) = p̃∗, µ∗ almost everywhere.

Proof. See Proposition 2.1 in [41].

One direct consequence of this theorem is that when combined with the LMI-based characterizations

of moments presented in Section 2.2.1, it is possible to convert the infinite dimensional problem (P2) in

measures (or equivalently, the polynomial optimization problem (P1)) to a semidefinite programming
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problem in the moments. When probability measures are supported on compact intervals (i.e. one

dimensional case), (P2) can be reduced to a finite dimensional LMI optimization problem in the mo-

ments. In the more general multidimensional case, it is possible to obtain asymptotically convergent

SDP relaxations. To this effect, define

p∗d = minm

∑

α pαmα

s.t.

Md(m) � 0,

Ld(gkm) � 0, k = 1, . . . , ng

(2.26)

where moment Md(m) and localization Ld(gkm) matrices are as defined in equations (2.24) and

(2.25).

Theorem 4. As d → ∞, p∗d ↑ p∗K.

Proof. See [41].

2.2.2.1 Exploiting the Sparse Structure

The next property will play a key role in reducing the computational complexity of problem (P1) by

exploiting its structure.

Definition 1. Let K ∈ R
D be a semialgebraic set defined by ng polynomials gk. Let Ik ⊂ {1, . . . ,D}

be the set of indices of variables such that each gk contains variables from some Ik and assume that

the objective function p can be partitioned as p = p1 + . . . + pl where each pj contains only variables

from some Ik. If there exists a reordering Ik′ of Ik such that for every k′ = 1, . . . , d − 1:

Ik′+1 ∩
k′

⋃

j=1

Ij ⊆ Is for some s ≤ k′ (2.27)

then the running intersection property is satisfied.

For the case of generic polynomials and constraints, solving problem (P1) using the method of mo-

ments requires considering moments and localization matrices containing O(D2d) variables. On the

other hand, if the running intersection property holds, it can be shown [44, 45] that it is possible to

define ng sets of smaller sized matrices each containing only variables in Ik (i.e. number of vari-

ables is O(κ2d), where κ is the number of elements in the maximum cardinality set among Ik’s). In
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many practical applications, including the one considered in Chapter 4, κ ≪ n. Hence, exploiting

the sparse structure substantially reduces the number of variables in the optimization (and hence the

computational complexity), while still providing convergent relaxations.



Chapter 3

Identification of a Class of Hybrid

Dynamical Systems

3.1 Introduction and Motivation

Hybrid systems, systems characterized by the interaction of both continuous and discrete dynamics,

have been the subject of considerable attention during the past decade. These systems arise naturally

in many different contexts, e.g. biological systems, systems incorporating logical and continuous el-

ements, manufacturing, etc, and in addition, can be used to approximate nonlinear dynamics. As a

result of this research, an extensive body of results is now available addressing issues such as control-

lability/observability, stability analysis and control synthesis. However, applying these results requires

using an explicit model of the system under consideration. While in some cases these models can be

obtained from first principles, many practical applications require identifying the system from a com-

bination of experimental data and some a priori information. This has prompted a substantial research

effort devoted towards developing a framework for input/output identification of hybrid systems. As a

result, several methods have been proposed addressing different aspects of the problem (see the excel-

lent tutorial paper [46] for a summary of the main issues and recent developments in the field). While

successful in many situations, a common feature of these methods is the computational complexity

entailed in dealing with noisy measurements: in this case algebraic procedures [47] lead to noncon-

vex optimization problems, while optimization methods lead to generically NP–hard problems, either

necessitating the use of relaxations [48] or restricted to small size problems [49].

17
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Motivated by the computational complexity noted above, in the first portion of this dissertation we pro-

pose a new framework to the problem of set membership identification of a class of hybrid systems:

switched affine models. Specifically, given noisy input/output data and some minimal a priori infor-

mation about the set of admissible plants, our goal is to identify a suitable set of affine models along

with a switching sequence that can explain the available experimental information, while optimizing a

performance criteria (either minimum number of plants or minimum number of switches). Our main

result shows that this problem can be reduced to a sparsification form, where the goal is to minimize

the number of non–zero elements of a given vector sequence. Although in principle this leads to an

NP-hard problem, efficient convex relaxations can be obtained by exploiting recent results on sparse

signal recovery based on ℓ1-norm minimization [20, 21]. Then, we illustrate these results using two

non-trivial problems arising in computer vision applications: segmentation of video sequences and

of dynamic textures. As shown there, application of the proposed techniques outperforms existing

state-of-the-art techniques.

In the second part, we consider the hybrid system identification problem when the number of subsys-

tems is known. In this case we propose a moments-based convex optimization approach. The starting

point is the algebraic geometric procedure due to Vidal et al. [47, 50]. In the case of noiseless mea-

surements, the (unknown) parameters of each subsystem are recovered from the null space of a matrix

V(r) constructed from the input/output data r via a nonlinear embedding (the Veronese map). In the

case of noisy data, the entries of this matrix depend polynomially on the unknown noise terms. Thus,

finding a model in the consistency set (e.g. a model that interpolates the data within the unknown noise

level) is equivalent to finding an admissible noise sequence η that renders the matrix V(r) is rank de-

ficient, and a vector c in its null space. However, this is not a trivial problem, given the polynomial

dependence noted above. The main result of this section shows that the problem of jointly finding η

and c is equivalent to minimizing the rank of a matrix whose entries are affine in the optimization vari-

ables, subject to a convex constraint imposing that these variables are the moments of an (unknown)

probability distribution function with finite support. This results is achieved by using first an idea

similar to that of [41] relating polynomial optimization and the problem of moments, to eliminate the

polynomial dependence on the optimization variables, albeit at the price of introducing infinitely many

constraints. The structure of the problem, and in particular the independence of the noise terms, can

then be exploited to decouple this problem into several finite dimensional smaller ones, each involving

only the moments of a one–dimensional distribution. Combining these ideas with a convex relaxation,

similar to log-det heuristic of [51], that aims at dropping the rank of V by one and estimating a vector

in its nullspace, allows for recasting the original problem into a semidefinite optimization form that
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can be solved efficiently. We illustrate the performance of the proposed method with one academic

and one practical example.

3.2 Definitions

In this section we will consider switched autoregressive exogenous (SARX) hybrid affine models of

the form:

y(t) =

na
∑

i=1

ai(σt)y(t − i) +

nc
∑

i=1

ci(σt)u(t − i) + f(σt) + η(t) (3.1)

where u, y and η denote the input, output and noise, respectively, and where t ∈ [to, T ]. The discrete

variable σt ∈ {1, . . . , s}–the mode of the system– indicates which of the s submodels is active at time

t. The time instants where the value of σt changes are called discrete transitions or switches. These

switches partition the interval [t0, T ] into a discrete hybrid time set [52], τ = {Ii}
k
i=0, such that σt is

constant within each subinterval Ii = [τi, τ
′
i ] and different in consecutive intervals. In the sequel we

denote by τi and τ ′
i the beginning and ending times of the ith interval, respectively. Clearly, τ satisfies:

• τ0 = t0
1 and τ ′

k = T ,

• τi ≤ τ ′
i = τi+1 − 1,

and the number of switches is equal to k.

An equivalent representation of (3.1) is:

y(t) = p(σt)
T r(t) + η(t) (3.2)

where r(t) = [y(t−1), . . . , y(t−na), u(t−1), . . . , u(t−nc), 1]
T is the regressor vector and p(σt) =

[a1(σt), . . . , ana(σt), c1(σt), . . . , cnc(σt), f(σt)]
T is the unknown coefficient vector at time t.

1Since it is not possible to deduce information for t < max(na, nc) when the initial conditions are unknown, in the

identification problem we take t0 = max(na, nc).
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3.3 Problem Statement

In this section we consider the problem of identifying switched autoregressive exogenous (SARX)

hybrid affine models from experimental measurements corrupted by noise. From a set-membership

point of view, this problem can be formally stated as follows:

Problem 1. [Consistency] Given input/output data over the interval [t0, T ], and a bound ǫ on the ℓp

norm of the noise (i.e. ‖η‖ ≤ ǫ), find a hybrid affine model of the form (3.1) that is consistent with the

a priori information and experimental data.

It is clear that this problem, though ensuring consistency, is not well-posed and has infinitely many

solutions. For instance, one can always find a trivial hybrid model with T − t0 + 1 submodels or one

model with a large order that perfectly fits the data. This situation can be partially avoided by imposing

upper bounds ny and nu on the order of each of the terms on the right hand side of (3.1), e.g. na ≤ ny

and nc ≤ nu for some known ny, nu. Still, even in this case the problem admits multiple solutions.

More interesting problems can be posed by using the existing degrees of freedom to optimize suitable

performance criteria.

One such criterion is to minimize the number of switches (i.e. minimum k), subject to consistency.

Practical situations where this problem is relevant arise for instance in segmentation problems in com-

puter vision and medical image processing, where it is desired to maximize the size of regions (roughly

equivalent to minimizing the number of boundaries), and in fault-detection, in cases where it is desired

to minimize the number of false alarms.2 This criterion may also be useful when the piecewise con-

stant mode signal σt is known to satisfy a dwell-time constraint (i.e. the time between any consecutive

switches is bounded below by a dwell-time) or an average dwell-time constraint (i.e. the number of

switches in any given interval is bounded above by its length normalized by an average dwell-time,

plus a chatter bound)3. The formal statement of the identification problem with this criterion is as

follows:

Problem 2. [Minimum Number of Switches] Given input/output data over the interval [t0, T ], and

bounds ǫ > ‖η‖p, nu ≥ nc and ny ≥ na on the ℓp norm of the noise and the order of the regressors,

respectively, find a hybrid affine model of the form (3.1) that is consistent with the a priori information

and that can explain the experimental data with the minimum number of switches.

2A similar problem is considered in econometrics society [53] where a dynamic programming approach is developed for

a fixed number of switches (i.e. when k is known).
3These are the discrete-time counterparts of some sets of mode signals defined in [54]. Detailed definitions of different

sets of mode signals can be found therein.
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An alternative is to try to find the minimum number of submodels (i.e. minimum s) capable of ex-

plaining the data record. This criterion, used in [48], leads to the following identification problem:

Problem 3. [Minimum Number of Submodels] Given input/output data over the interval [t0, T ], and

bounds ǫ, ny, nu on the norm of the noise and regressor orders, find a hybrid affine model of the

form (3.1) with minimum number of submodels that is consistent with the a priori information and

experimental data.

3.4 A Sparsification Approach

In this section, we develop identification schemes where we pose an optimization problem that is in

the form of a sparse signal recovery problem. In Section 2.1, we present some background results on

sparsification and their extensions that will be used to recast the identification problem into a convex

optimization form.

3.4.1 Main Results

In this section we show that both, Problems 2 and 3, can be converted into an equivalent sparsification

form where the objective is to maximize the number of zero elements of a suitably defined vector

valued sequence. While in principle maximizing sparsity is a generically non-convex, hard to solve

problem, recent developments in sparse signal recovery reveal that efficient, computationally tractable

relaxations can be obtained by exploiting elements from convex analysis. To this effect, we start by

defining a time varying parameter vector p(t) ∈ Rny+nu+1. Replacing p(σt) in (3.2) with p(t),

allows for recasting the consistency problem into the following feasibility form:

find p(t)

s.t y(t) − r(t)Tp(t) = η(t) ∀t

‖{η}‖∗ ≤ ǫ

(3.3)

where ‖.‖∗ denotes a suitable norm, specified according to the problem under consideration, and where

ǫ is an upper bound on the noise level. Thus, restricting problems 2 and 3 to the feasible set of (3.3)

guarantees consistency.
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3.4.1.1 Identification with Minimum Number of Switches

In this section we address Problem 2 and show that in the case of ℓ∞ bounded noise, it can be reduced

to a convex optimization. For general convex noise descriptions, the problem can be converted into

an equivalent sparsification form where the objective is to maximize the number of zero elements of a

suitably defined vector valued sequence. The resulting (non–convex) optimization can then be solved

using the relaxation proposed in Lemma 1 in the Appendix.

A Greedy Algorithm for the ℓ∞ Case: In the sequel we propose a computationally simple algo-

rithm for solving Problem 2 in the case where the noise term is characterized in terms of its ℓ∞ norm.

This solution is motivated by existing results in time series clustering showing that a greedy sliding

window algorithm [55] is optimal. As we show below, similar ideas can be applied to problem 2,

leading to an algorithm that entails solving a sequence of smaller linear programs in a greedy fashion.

Greedy Algorithm

k = 0

t0 = max(ny, nu)

τk = t0

FOR i = t0 : T

Solve the following feasibility problem in p:

F :
{

∣

∣y(t) − r(t)T p
∣

∣ ≤ ǫ ∀t ∈ [τk, i]
}

IF F is infeasible

Set Ik = [τk, i − 1], k = k + 1, and τk = i

END IF

END FOR

Set Ik = [τk, T ] and τ = {Ij}
k
j=0

RETURN τ and k

TABLE 3.1: Optimal Greedy Algorithm for Problem 2

Theorem 5. Let k∗ denote the number of switches in an optimal solution to Problem 2 when the noise

is characterized in terms of an ℓ∞ bound: ‖{η}‖∞ ≤ ǫ. Then the value k returned by the greedy

algorithm outlined in Table 3.1 coincides with the optimal k∗.
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Proof. Assume τ∗ = {I ∗i }
k∗

i=0 is the discrete hybrid time set corresponding to an optimal solution with

k∗ switches. Let τ = {Ii}
k
i=0 and k be the pair of values returned by the greedy algorithm. In order

to establish that the proposition is true, it is enough to show that if τi ∈ I
∗
j then τ ′

i ≥ τ ′
j
∗
. Then, an

induction step shows that, τ ′
i ≥ τ ′

i
∗ ∀i ∈ {0, . . . , k∗} implying k ≤ k∗.

Since τ∗ is optimal (hence feasible), p∗(t) is constant in each subinterval I
∗. In particular, there

exists pj such that for all t ∈ I
∗
j , p∗(t) = pj and

∣

∣y(t) − r(t)T pj

∣

∣ ≤ ǫ. When τi ∈ I
∗
j , the same

pj is a feasible solution of F in the (τ ′
j
∗)th iteration of the greedy algorithm since τi ∈ I

∗
j implies

[τi, τ
′
j
∗] ⊆ I

∗
j . Therefore, the algorithm will continue to the next iteration without entering the if

condition within the for loop, which implies τ ′
i ≥ τ ′

j
∗
.

Next, we show by induction that for all i ≤ k, there exists j ≥ i such that τ ′
i ≥ τ ′

j
∗
, hence τ ′

i ≥ τ ′
i
∗
:

• For i = 0: τ0 = τ∗
0 ∈ I

∗
0 ⇒ τ ′

0 ≥ τ ′
0
∗
.

• For i = m: Assume ∃j ≥ m s.t. τ ′
m ≥ τ ′

j
∗
.

• For i = m + 1: From the previous line and properties of hybrid time sets, we have that τm+1 =

τ ′
m + 1 > τ ′

m ≥ τ ′
j
∗ ⇒ ∃l > j (or equivalently ∃l ≥ j + 1) s.t. τm+1 ∈ I

∗
l ⇒ τ ′

m+1 ≥ τ ′
l
∗ ≥

τ ′
j+1

∗
. Since j ≥ m implies j + 1 ≥ m + 1, this proves the induction hypothesis.

Using the fact that T = τ ′
k = τ ′

k∗

∗
and the result of the induction particularly at i = k leads to

τ ′
k ≥ τ ′

k
∗ ⇒ τ ′

k∗

∗ ≥ τ ′
k
∗ ⇒ k∗ ≥ k.

Since by construction the result of the greedy algorithm is feasible for problem 2 and k∗ is the mini-

mum solution of the problem, k∗ ≤ k. Therefore, k∗ = k.

Remark 3. By construction, the greedy algorithm pushes the end points of each interval forward in

time as much as possible (i.e. τ ′
i is as large as possible). Similarly, running the algorithm backwards

(i.e. i = T : t0) would push the start points of intervals (equivalently, end points of previous intervals)

backward in time as much as possible. Therefore, running it once backwards and once forwards, it is

possible to bracket the true locations of the switches.

Identifiability of the Switches and Convergence of the Greedy Algorithm: In this section, we

address the issue of identifiability of the switches from input output data. We first present a necessary

and sufficient condition under which the switches can be exactly identified in a noiseless setup. Later,



Chapter 3. Identification of a Class of Hybrid Dynamical Systems 24

we show that when these identifiability conditions hold, the greedy algorithm given in Table 3.1 finds

the exact switching times for sufficiently small noise levels (i.e., as ǫ → 0).

Definition 2. Let τ = {Ii}
k
i=0 be a hybrid time set corresponding to a particular trajectory of a switched

linear ARX system. τ is said to be causally identifiable if whenever σt−1 6= σt, it is possible to detect

the switch as soon as y(t) is observed.

Definition 3. Given the current regressor vector r(t), two submodels with parameter vectors p1 and

p2 are one-step indistinguishable from r(t) if r(t)T (p1 − p2) = 0.

The next result presents a necessary and sufficient condition for a switching sequence to be causally

identifiable from input output data. Here, for notational simplicity, we define Rt0,t1 = [r(t0), r(t0 +

1), . . . , r(t1)], Yt0,t1 = [y(t0), y(t0 + 1), . . . , y(t1)]
T and Nt0,t1 = [η(t0), η(t0 + 1), . . . , η(t1)]

T .

Lemma 3. If r(τi+1) ∈ range
(

Rτi,τ ′

i

)

then rT (τi+1) [pi+1 − pi] = constant for all pairs (pi,pi+1)

satisfying

Yτi,τ ′

i
= RT

τi,τ ′

i
pi

y(τi+1) = rT (τi+1)pi+1

(3.4)

Proof. Since r(τi+1) ∈ range
(

Rτi,τ ′

i

)

then rT (τi+1) = vTRT
τi,τ ′

i
for some v 6= 0. Consider now

two pairs (pi,pi+1) and (p̂i, p̂i+1) satisfying (3.4). Then

rT (τi+1) [pi+1 − pi] − rT (τi+1) [p̂i+1 − p̂i] = rT (τi+1) [p̂i − pi]

= vT
[

RT
τi,τ ′

i
p̂i − RT

τi,τ ′

i
pi

]

= 0

where the last equality follows from the first equality in (3.4).

Theorem 6. In the noise free case, τ = {Ii}
k
i=0 is causally identifiable from input/output data if and

only if the following two conditions hold for all i:

rT (τi+1) [pi+1 − pi] 6= 0 (3.5)

r(τi+1) ∈ range
(

Rτi,τ ′

i

)

(3.6)

Proof. Necessity: Clearly (3.5) is necessary for the switch to be detectable. To show that (3.6) is also

necessary, assume that it fails. Then rT (τi+1)R
⊥
τi,τ ′

i

.
= vT 6= 0, where R⊥

τi,τ ′

i
denotes a basis for the

orthogonal complement of Rτi,τ ′

i
. Define:

p
.
= pi +

y(τi+1) − rT (τi+1)pi

‖v‖2
R⊥

τi,τ ′

i
v
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Simple algebra shows that p satisfies Yτi,τ ′

i
= RT

τi,τ ′

i
p and y(τi+1) = rT (τi+1)p. It follows that the

model

y(t) = rT (t)p (3.7)

can explain all the data in the interval [τi, τi+1], and thus the switch is not causally detectable from the

input/output data alone.

Sufficiency: Since rT (τi+1) [pi+1 − pi] 6= 0, it follows, from Lemma 3, that there does not exist a

single p such that (3.7) holds for all t ∈ [τi, τi+1]. Hence the switch is causally detectable from the

input/output sequences {u, y}.

Remark 4. The results about formalizes the intuition that a switch is causally detectable if and only

in the two modes involved are not one–step indistinguishable and no new modes of the present model

have been excited at the last time step (condition (3.6)). In addition, it can be shown that conditions

(3.5)–(3.6) are equivalent to

rank[Yτi,τi+1 RT
τi,τi+1

] > rank[RT
τi,τi+1

] (3.8)

However, the former are easier to generalize to the noisy case.

The next result shows that if the identifiability conditions (3.5)–(3.6) hold, the greedy algorithm finds

the exact switches for sufficiently small noise levels.

Theorem 7. If a hybrid time set τ is causally identifiable, then there exists a noise level ǫ0 such that

greedy algorithm finds the switches correctly whenever the noise level ǫ is below ǫ0.

Proof. In order to show that the greedy algorithm correctly identifies the hybrid time set τ , we need

to show that

∥

∥y(τi+1) − r(τi+1)
T p
∥

∥ > ǫ (3.9)

for all p such that

RT
τi,τ ′

i
p = Yτi,τ ′

i
+ Nτi,τ ′

i
(3.10)

or, equivalently
∥

∥r(τi+1)
T pi+1 − r(τi+1)

Tp
∥

∥ ≥ 2ǫ for all p that satisfy (3.10). Since τ is identifiable

by hypothesis, it follows from Theorem 6 that for i ∈ {I}, r(τi+1) ∈ range
(

Rτi,τ ′

i

)

. Hence,

r(τi+1) = Rτi,τ ′

i
λ for some λ 6= 04 and ‖r(τi+1)‖2 ≥ σRi

‖λ‖2, where σRi
denotes the smallest

4If Rτi,τ ′

i
does not have full column rank, this representation is not unique. In this case, we choose λ∗ with minimum

2-norm.
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(non–zero) singular value of Rτi,τ ′

i
. It follows that, for all (p, p̂ that satisfy (3.10) we have

r(τi+1)
T (p− p̂) = λTRT

τi,τ ′

i
(p− p̂) = λT

(

Nτi,τ ′

i
− N̂τi,τ ′

i

)

Hence

∣

∣r(τi+1)
T (p− p̂)

∣

∣ ≤ ‖λ‖2

√

(τi − τi+1)2ǫ ≤ 2
‖r(τi+1)‖2

√

(τi − τi+1)

σR

ǫ
.
= b(ǫ) (3.11)

In addition, identifiability of τ implies that

∥

∥r(τi+1)
Tpi+1 − r(τi+1)

T pi

∥

∥ = γi > 0 (3.12)

From (3.11) and (3.12), it follows that, if the noise level ǫ satisfies

ǫ < min
i∈{I}

σRi
γi

2
(

‖r(τi+1)‖2

√

(τi − τi+1) + σRi

) (3.13)

then (3.9) holds for all i ∈ {I} and hence all switches will be correctly detected by the greedy

algorithm.

The Case of General Convex Noise Descriptions: In the case of general noise descriptions η ∈ N

all samples are coupled through the noise description. This requires the use of batch algorithms that

consider all available data, as opposed to the greedy one used in the ℓ∞ case. As we show next,

in this case the problem can be reduced to a sparsification form and efficiently reduced to a convex

optimization using the tools described in the Appendix. The starting point it to consider the sequence

of first order differences of the time varying parameters p(t), given by

g(t) = p(t) − p(t + 1) (3.14)

Clearly, since a non-zero element of this sequence corresponds to a switch, the sequence should be

sparse having only k non-zero elements out of T − t0. Thus, with this definition, Problem 2 is equiv-

alent to the following (non–convex) sparsification problem:
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minp(t) ‖{p(t) − p(t − 1)}‖0

s.t y(t) − r(t)T p(t) ∈ N ∀t
(3.15)

From Lemma 1 in the Appendix, it follows that a convex relaxation can be obtained replacing ‖.‖o

by ‖.‖1. A better heuristic can be obtained by adapting to this case the iterative weighted ℓ1 heuristic

proposed in ([51, 56, 57]). This requires solving, at each iteration, the following convex program:

minimizez,p
∑

t w
(k)
t zt

subject to ‖p(t) − p(t − 1)‖∞ ≤ zt ∀t

y(t) − r(t)Tp(t) ∈ N ∀t

(3.16)

where w
(k)
t = (z

(k)
t + δ)−1 and where z

(k)
t denotes the optimal solution at the kth iteration, with

z(0) = [1, 1, . . . , 1]T , and δ is a (small) regularization constant.

In the first iteration, this method solves the standard ℓ1-norm relaxation. Then at each subsequent

iteration, it increases the weight w
(k)
t associated with the small z

(k)
t s, thus pushing these elements

further towards zero.

Remark 5. Algorithm (3.16) requires solving m linear programs with (ny + nu + 2) × (T − t0 + 1)

variables and 2(ny +nu +2)×(T − t0 +1) inequality constraints, where m is the number of iterations

required for convergence of the weighted ℓ1-norm relaxation, typically around 5. On the other hand,

the greedy algorithm requires solving (T − t0 + 1) linear programs with only (ny + nu + 1) variables

and at most 2(T − t0 + 1) inequality constraints (the worst case scenario is when a single parameter

value is feasible for the entire [t0, T ] interval). Thus, in cases where both algorithms are applicable

(e.g. when the noise is characterized in terms of its ℓ∞ norm), the greedy algorithm is preferable from

a computational complexity standpoint.

Extension to Multi-input Multi-output Models: It is straight forward to extend the sparsity based

identification procedure with minimum number of switches criterion to multi–input multi–output

(MIMO) models. Consider the MIMO switched ARX model with mu inputs and my outputs:

y(t) =

na
∑

i=1

Ai(σt)y(t − i) +

nc
∑

i=1

Ci(σt)u(t − i) + f(σt) + η(t) (3.17)

where y ∈ R
my , u ∈ R

mu are outputs and inputs, Ai ∈ R
my×my , Ci ∈ R

my×mu and f ∈ R
my

are coefficient matrices, and η ∈ R
my is the noise, respectively. It is possible to solve for coefficient
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matrices in a similar manner as in (3.16). Particularly, the following modification steps are required: (i)

define time varying coefficient matrices (i.e. Ai(t), Ci(t) and f(t)) (ii) form p(t) ∈ R
m2

y+mymu+my

by stacking the elements of the coefficient matrices at time t into a column vector, and (iii) replace the

regressor equation in (3.16) with the multivariate regressor corresponding to (3.17).

Extension to Multidimensional Models: In this section we consider the identification of hybrid

multidimensional systems (i.e. hybrid systems where the process dynamics depend on more than

one indeterminate). In particular, systems that are governed by affine switched-coefficient difference

equations (ASCDEs) are considered. ASCDE is a generalization of the so-called linear constant-

coefficient difference equations (LCCDEs) ([58]). An n-dimensional ASCDE has the following form:

y(t1, . . . , tn) =
∑

(k1,...,kn)∈Ra
ak1,...,kn

(σt1,...,tn)y(t1 − k1, . . . , tn − kn)

+
∑

(k1,...,kn)∈Rc
ck1,...,kn

(σt1,...,tn)u(t1 − k1, . . . , tn − kn)

+f(σt1,...,tn) + η(t1, . . . , tn)

(3.18)

where y is the output; u is the input; η is noise; σt1,...,tn ∈ {1, . . . , s} is the discrete mode signal as

before. Ra,Rc ⊂ Z
n are coefficient support regions; and ak1,...,kn

(σt1,...,tn), ck1,...,kn
(σt1,...,tn) and

fk1,...,kn
(σt1,...,tn) are the coefficients to be identified.

3-D models of this form in noise-free setup are considered in [59] for spatiotemporal segmentation.

Such a model can be useful in approximating the behavior of a wave traveling in an inhomogeneous

space or the images where different regions of the image are occupied by different textures.

As a shorthand notation, we denote the indeterminate in vector form, i.e. t = [t1, . . . , tn] ∈ Zn. Let

D ⊂ Z
n denote the domain over which experimental measurements are collected. The interior of the

domain can be prescribed as:

int(D) = {t ∈ D| t − k ∈ D ∀k ∈ Ra ∀k ∈ Rc} (3.19)

Now, we can define the set of neighboring indices as a set of unordered pairs:

I =
{{

t, t̃
}

|
∥

∥t − t̃
∥

∥

1
= 1, and t, t̃ ∈ int(D)

}

. (3.20)

A switch is defined between neighboring indices. That is, we say that there is a switch whenever

σt 6= σt̃ for
{

t, t̃
}

∈ I (analogous to 1D case where switches are defined between t and t + 1). A
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multidimensional hybrid “time” set is a partition {Pi} of int(D) such that within each part (where we

call the elements of partition as parts or segments) σt is constant and it is different between neighboring

parts (Pi and Pj are called neighboring parts if there exists
{

t, t̃
}

∈ I such that t ∈ Pi and t̃ ∈ Pj).

As in the 1D case, identification of a system of the form (3.18) is ill-posed since for example one can

choose a partition where each part consists of a single t. We are interested in finding a partition with

minimum number of switches (this corresponds to minimizing the boundary of the segments in image

segmentation problem). In order to minimize the number of switches, one should consider sparsifying

the following difference sequence:

g(i) = p(t) − p(̃t),
{

t, t̃
}

∈ I (3.21)

where p(t) = [ak1(σt), . . . , akna
(σt), ck1(σt), . . . , cknc

(σt), f(σt)], and i = 1, . . . , |I| is an index

counting the elements of I . Then, the identification problem can be written as:

minp(t) ‖{g(i)}‖0

s.t Equation (3.18)

‖{η}‖∗ ≤ ǫ

(3.22)

which can be solved, exactly as in the 1D case, with the weighted ℓ1 norm approximation.

3.4.1.2 Identification with Minimum Number of Submodels:

In this section, motivated by an idea used in [48], we present an iterative procedure for solving Problem

3. The main idea is to find one submodel at a time, along with the associated parameter vector p̃,

through the solution of a sparsification problem. This is accomplished by finding a parameter vector p̃

that makes
∣

∣y(t) − r(t)T p̃
∣

∣ ≤ ǫ feasible for as many time instants t as possible. Equivalently, defining

g̃(t) = p(t) − p̃, the goal is to maximize sparsity of g̃(t) leading to the following optimization

problem:

minp(t),p̃ ‖{p(t) − p̃}‖0

s.t
∣

∣y(t) − r(t)T p(t)
∣

∣ ≤ ǫ ∀t
(3.23)
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Algorithm for Minimum # of Submodels

t0 = max(ny, nu)

N1 = {t0, . . . , T}

l = 0

WHILE Nl+1 6= ∅

Let l = l + 1

Find p̃l by solving the re–weighted ℓ1 optimization:

minzt,p(t),p̃

∑

t w
(k)
t zt

subject to ‖p(t) − p̃‖∞ ≤ zt ∀t ∈ Nl
∣

∣y(t) − r(t)T p(t)
∣

∣ ≤ ǫ ∀t ∈ Nl

where w
(k)
j = (z

(k)
j + δ)−1 are weights with z

(k)
j the arguments of the optimal solu-

tion in kth iteration and z(0) = [1, 1, . . . , 1]T ; and δ is the regularization constant.

Let i = 1

WHILE i < l

Let Kil =
{

t ∈ Ni :
∣

∣y(t) − r(t)T p̃l

∣

∣ ≤ ǫ
}

IF #Kil > #Ki

Let p̃i = p̃l and l = i

END IF

Let i = i+1

END WHILE

Let Kl =
{

t ∈ Nl :
∣

∣y(t) − r(t)T p̃l

∣

∣ ≤ ǫ
}

Let Nl+1 = Nl \ Kl

END WHILE

RETURN s = l and Ki, i = 1, . . . , s

TABLE 3.2: Algorithm for Problem 3

Then, we can eliminate the time instants t for which g̃(t) is zero, and solve the same problem with the

rest of the t’s up until all data points are clustered. The number of times (3.23) is solved gives an upper

bound on the minimum number of submodels s. Combining this idea with a refinement step similar to

the one proposed in [48] to re-estimate parameter values and reassign, if needed, data points, leads to

the overall algorithm listed in Table 3.2, where minimization of ‖.‖0 is (approximately) accomplished

through the use of the weighted ℓ1 norm minimization relaxation.

Next, we briefly discuss an alternative formulation of the problem (3.23). The main idea is similar

to that of above that is, to find a parameter vector p̃ that makes
[

y(t) − r(t)T p̃
]

∈ N feasible for as
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many time instants t as possible. Equivalently, if we define e(t) = y(t)− r(t)T p̃+ η(t), the goal is to

maximize sparsity of e(t) leading to the following optimization problem:

mine(t),p̃ ‖{e(t)}‖0

s.t
[

e(t) − y(t) + r(t)T p̃
]

∈ N ∀t
(3.24)

We define, Rt0,T = [r(t0), r(t0+1), . . . , r(T )], y = [y(t0), y(t0+1), . . . , y(T )]T and e = [e(t0), e(t0+

1), . . . , e(T )]T . Assuming noise is characterized with a norm bound, we obtain the following sparsifi-

cation problem:

mine ‖e‖0

s.t

∥

∥

∥

∥

∥

[I Rt0,T ]

[

e

p̃

]

− y

∥

∥

∥

∥

∥

∗

≤ ǫ
(3.25)

The advantage of this formulation over (3.23) is that instead of having a time dependent parameter

vector p(t), we just have the error sequence e(t) as unknowns. Hence, as long as number of outputs

ny is smaller than order of the regressor nc + na, there are less variables in optimization. The other

advantage is that problem (3.25) has the same form as standard sparse recovery problems for single

output systems.

Remark 6. While consistent numerical experience shows that the idea of finding one system at a time

works well in practice, counterexamples are available where it overestimates the number of systems.

This is due to its greedy nature that tends to assign as many points as possible to the parameters

found earlier, possibly resulting in the later need to use additional parameter values in order to explain

unassigned data points. At this point the issues of existence of conditions under which the greedy

algorithm is indeed optimal and bounds on its worst case performance are open research questions.

3.4.2 Examples

Example 1: This example illustrates the fact that dwell–time constraints are not necessary for identifi-

ability of the switches. Consider three autonomous systems (σt ∈ {1, 2, 3}) of the form:

yt = a1(σt)yt−1 + a2(σt)yt−2 + a3(σt)yt−3
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with

[a1(1), a2(1), a3(1)] = [−3, 2, 1]

[a1(2), a2(2), a3(2)] =
[

1
3 , 1

3 , 1
3

]

[a1(3), a2(3), a3(3)] = [2,−1, 1]

and

σt =















1, t ∈ [1, 4]

2, t = 5

3, t = 6

The trajectory corresponding to the initial conditions y0 = 0, y−1 = 7, y−2 = −12, is given by

2, 1, 1, 1, 1, 2. Thus, the rank condition (3.8) evaluated at t = 6 yields

rank

[

1 1 1 1

2 1 1 1

]

= rank

[

1 1 1

1 1 1

]

+ 1

which implies that it is possible to detect the switch from t = 5 to t = 6 although the system remains

in σt = 2 for only one time instant.

Example 2: The goal of this example is to illustrate that noiseless switch identifiability does not imply

that mode switches are identifiable under arbitrarily small noise. To this effect consider a system with

2 submodels: the first corresponds to p1 =
[

1/3 1/3 1/3
]

, and is active for t=1,2. The second

corresponds to p2 =
[

1 −1 2
]

and is active for t=3. The trajectory corresponding to the initial

conditions r(1) =
[

1 1 1
]

and no external input is given by y(1) = 1, y(2) = 1 and y(3) = 2. In

this case the associated matrices satisfy:

rank

















1 1 1 1

1 1 1 1

2 1 1 1

















> rank

















1 1 1

1 1 1

1 1 1

















Hence the switch is causally identifiable. However, adding the noise sequence η(1) = ǫ, η(2) = 0,

η(3) = 0 leads to the trajectory: y(1) = 1 + ǫ, y(2) = 1 + ǫ
3 , y(3)=2 − 2 ǫ

3 . In this case the

corresponding matrices satisfy:

rank

















1 + ǫ 1 1 1

1 + ǫ
3 1 + ǫ 1 1

2 − 2 ǫ
3 1 + ǫ

3 1 + ǫ 1

















= rank

















1 1 1

1 + ǫ 1 1

1 + ǫ
3 1 + ǫ 1

















∀ǫ > 0
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Hence, the switch is not identifiable, regardless of how small ǫ is. This is due to the fact that in this

case condition (3.6) fails since r(3) =
[

1 + ǫ
3 1 + ǫ 1

]T
6∈ range





[

1 1 1

1 + ǫ 1 1

]T


.

Example 3: In this example, we considered input/output data generated by a hybrid system that

switched among the following two ARX submodels:

y(t) = 0.2y(t − 1) + 0.24y(t − 2) + 2u(t − 1); t ∈ [1, 25] ∪ [51, 75]

y(t) = −1.4y(t − 1) − 0.53y(t − 2) + u(t − 1); t ∈ [26, 50] ∪ [76, 100]

with ‖η‖∞ = 0.5. The goal here was to identify a model that explained the experimental data record

with the fewest possible number of switches. Figure 3.1 compares the performance of sparsification-

based (both the ℓ1-based algorithm (3.15) and the greedy algorithm of Table 3.1) against the algebraic

method and the bounded error method. As shown there, the sparsification based methods correctly

estimated the parameters and number of switches, while the other two failed to do so. The running

times for ℓ1-based, greedy, algebraic and bounded error methods are 5.9, 40.5, 1.1 and 17.9 seconds

respectively. Additional examples illustrating the use of sparsification to find the minimum number of

switches are given in section 3.4.3.

For this example, ǫo in (3.13) was found to be 0.3136 which corresponds to 4.15% of the maximum

absolute value of the output y(t). Note that the analysis in section 3.4.1.1 is worst-case, meaning for

all noise values below ǫo = 0.3136, the greedy algorithm finds the correct switches. Even though the

noise level in our example was 0.5 which was above ǫo, greedy algorithm was still capable of correctly

detecting the switches.

Example 4: This example considers the problem of estimating the minimum number of systems and

investigates the effects of noise level on algorithm performance. The data used corresponded to the

trajectories of 100 randomly generated SARX models of the form:

y(t) = a1(σt)y(t − 1) + a2(σt)y(t − 2) + c1(σt)u(t − 1) + η(t) (3.26)

with

σt =















1, t ∈ [1, 60]

2, t ∈ [61, 120]

3, t ∈ [121, 180]
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FIGURE 3.1: True and estimated parameter sequences for parameter a1(σt) for Example 3.

where for all i ∈ {1, 2, 3}, c1(i) is a sample from a zero mean unit variance normal distribution, a1(i)

and a2(i) are chosen such that the complex conjugate poles of the ith submodel are distributed in

0.5 ≤ ‖z‖ ≤ 1 with uniform random phase and magnitude, and η(t) is an iid noise term uniformly

distributed in [−ǫ, ǫ]. For each of these systems, the number of submodels was estimated by solving the

minimum submodels problem with our method and the bounded-error method; and by approximating

the rank of an appropriate matrix obtained from data as proposed in [50] for the algebraic method. The

former two methods give upper bounds of true value s = 3, whereas the latter estimate depends on the

threshold chosen to calculate the rank and could be lower than the true value. The same experiment

was repeated for different noise levels. Results on these experiments are summarized in Figure 3.2 and

Table 3.3.

Next we consider the parameter estimation accuracy for the same 100 random systems. To this end,

the following normalized parameter identification error measure is defined:
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FIGURE 3.2: Each histogram shows the frequency of estimated number of submodels for different

noise levels. (a) ǫ = 0.05, (b) ǫ = 0.1, (c) ǫ = 0.25, (d) ǫ = 0.5. The true number of submodels is

s = 3.

∆n =
1

T − t0 + 1

T
∑

t=t0

‖p(σt) − p̂(σ̂t)‖2

‖p(σt)‖2

(3.27)

The parameter estimation results are summarized in Figure 3.3 and Table 3.4. As shown there, the

sparsification–based method outperformed both the bounded-error and algebraic procedures. While

all methods proved considerably robust to noise in estimating the number of submodels, segmentation

quality and parameter identification performance degraded significantly for the algebraic method as

the noise level increased. On the other hand, sparsification was the most robust in terms of these
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Noise Level ǫ Absolute Error Sparsification Bounded-Error Algebraic

0.05

Mean 1.40 (0.99) 6.20 0.52

Standard deviation 3.48 (2.66) 2.09 0.77

Median 0 (0) 6 0

Median absolute deviation 0 (0) 1 0

0.1

Mean 0.84 (1.04) 5.64 0.87

Standard deviation 1.36 (2.20) 2.03 1.02

Median 1 (0.5) 5 1

Median absolute deviation 1 (0.5) 1 1

0.25

Mean 1.59 (1.95) 4.84 1.60

Standard deviation 2.17 (2.31) 1.61 1.16

Median 1 (1) 5 1

Median absolute deviation 1 (1) 1 1

0.5

Mean 1.93 (2.39) 4.07 2.18

Standard deviation 1.65 (2.11) 1.58 1.25

Median 2 (2) 4 2

Median absolute deviation 1 (1) 1 1

TABLE 3.3: Minimum number of submodel estimation error statistics for different noise levels.

The results for sparsification is given both with formulation (3.23) and with formulation (3.24) in

parantheses.

performance criteria. The bounded-error method performed relatively poorly when estimating the

number of submodels. Even though it clustered most of the data in the largest three submodels, it also

generated superfluous submodels with parameter values far from the true values.

Among the two sparsification formulations (3.23) and (3.24) (results shown in parantheses in Tables

3.3 and 3.4 for the latter), we did not observe a significant difference in terms of these performance

criteria, with (3.23) performing slightly better. Also, although problem (3.24) involves less variables,

it required more iterations of the algorithm given in Table 3.2. Hence, the overall computation times

were also similar.

Example 5: For the next example, we present more numerical results on a single system. In particular,

we considered input/output data generated by an SARX system of the form (3.26) with the same mode

signal σt and coefficients:

[a1(1), a2(1), c1(1)] = [−1.6758, −0.8292, 1.8106]

[a1(2), a2(2), c1(2)] = [−0.8402, −0.6770, 0.2150]

[a1(3), a2(3), c1(3)] = [1.0854, −0.9501, 0.6941].
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Noise Level ǫ ∆n Sparsification Bounded-Error Algebraic

0.05

Mean 0.11 (0.08) 0.38 0.20

Standard deviation 0.23 (0.19) 0.77 0.27

Median 0.04 (0.04) 0.20 0.08

Median absolute deviation 0.02 (0.02) 0.10 0.05

0.1

Mean 0.11 (0.15) 1.72 0.79

Standard deviation 0.18 (0.44) 10.90 4.30

Median 0.06 (0.07) 0.25 0.15

Median absolute deviation 0.02 (0.03) 0.10 0.08

0.25

Mean 0.24 (0.26) 0.49 0.61

Standard deviation 0.21 (0.21) 0.87 0.82

Median 0.17 (0.19) 0.34 0.37

Median absolute deviation 0.08 (0.08) 0.12 0.17

0.5

Mean 0.41 (0.42) 0.61 1.05

Standard deviation 0.27 (0.27) 0.50 1.43

Median 0.35 (0.35) 0.49 0.70

Median absolute deviation 0.15 (0.15) 0.12 0.28

TABLE 3.4: Normalized parameter identification error statistics of minimum number of submodels

problem with different noise level. The results for sparsification is given both with formulation (3.23)

and with formulation (3.24) in parantheses.

In this case we used two different criteria to assess the performance, for different noise levels, of the

sparsification-based, bounded error, and algebraic algorithms, both in terms of quality of the segmen-

tation and parameter identification error. Quality of the clustering was assessed using the Rand index

[60] to compare the estimated mode signal σ̂t against the true σt
5. Quality of the parameter estimation

was evaluated using ∆n in (3.27).

For the noise level of ǫ = 0.05, the sparsification, bounded error and algebraic methods found 4, 9 and

4 submodels, respectively. For the noise level of ǫ = 0.5, the number of submodels found were 3, 9

and 4, respectively. The results of these experiments are summarized in Tables 3.5 and 3.6.

Noise Level Sparsification Bounded-error Algebraic

ǫ = 0.05 0.9681 0.9157 0.9212

ǫ = 0.5 0.8436 0.7482 0.6849

TABLE 3.5: Rand Indices that show the quality of mode signal estimates.

In these last two examples the sparsification–based method outperformed both the bounded-error and

algebraic procedures. While all methods proved considerably robust to noise in estimating the number

of submodels, segmentation quality and parameter identification performance degraded significantly

5Recall that a Rand index of 1 corresponds to a perfect clustering.
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FIGURE 3.3: Median of parameter estimation error ∆n versus noise level ǫ. Error bars indicate the

median absolute deviation.

Noise Level Sparsification Bounded-error Algebraic

ǫ = 0.05 0.0699 0.2883 0.0504

ǫ = 0.5 0.1459 0.8604 0.9245

TABLE 3.6: Error measure ∆n that shows the quality of parameter estimates.

for the algebraic method as the noise level increased. On the other hand, sparsification was the most

robust in terms of these performance criteria. The bounded-error method performed relatively poorly

when estimating the number of submodels. Even though it clustered most of the data in the largest

three submodels, it also generated superfluous submodels with parameter values far from the true

values.
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FIGURE 3.4: Results for detecting switches in a 2-D system. Left: Original segmentation (i.e. σi,j ).

Middle: Output of the system in (3.28). Difference in frequency content of output values correspond-

ing to the two different submodels can be inferred from the texture. Right: Resulting segmentation.

Example 6: In this example, we consider the identification of a 2-D system governed by the following

linear switched-coefficient difference equation:

y(i, j) = a1,1(σi,j)y(i−1, j−1)+a0,1(σi,j)y(i, j−1)+a1,0(σi,j)y(i−1, j)+c0,0(σi,j)u(i, j)+η(i, j)

(3.28)

with

σi,j =

{

1, (i, j) ∈
{

(i, j) ∈ Z
2 : (i − 15)2 + (j − 30)2 < 60

}

2, otherwise

where a1,1(1) = 0.3, a0,1(1) = −0.3, a1,0(1) = −0.3, a1,1(2) = −0.5, a0,1(2) = 0.5, a1,0(2) = 0.7

and c0,0(1) = c0,0(2) = 1. The boundary conditions and the input u are generated randomly from

a zero-mean, unit-variance Gaussian distribution. Similarly, noise is uniformly randomly distributed

in [−0.1, 0.1]. Input/output data on (i, j) ∈ [1, 30] × [1, 40] is used for identification with minimum

number of switches objective which in this case corresponds to shortest boundary between two dif-

ferent regions. Figure 3.4 shows the output of the system together with original and the resulting

segmentation.

Example 7: This example illustrates the use of the proposed method to segment textured images. We

generated two images, shown in Figure 3.5, by combining two different textures. The following 2D

autonomous linear switched-coefficient difference equation was used to model the images:

I(x, y) =
∑

(kx,ky)∈Ra

akx,ky
(σx,y)I(x − kx, y − ky) + η(x, y) (3.29)

where I(x, y) denotes the intensity at pixel location (x, y) and the support region Ra was chosen

according to fundamental period of the textures. The images together with the resulting segmentations

are shown in figure 3.5. We used our algorithm to minimize the number of switches, which in this
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FIGURE 3.5: Results for detecting switches (i.e. estimating σ̂i,j) in a texture image. Left: Original

image. Middle: GPCA segmentation. Right: Segmentation via proposed method.

case corresponds to minimizing the length of the boundaries between regions; and compared the result

against GPCA. Note that our model assumes continuity of the state through the region boundaries (i.e.

there is no reset map) which is usually not the case with images. That’s why the resulting segmentation

does not have perfect boundaries. Nevertheless, the performance is better than that of GPCA as shown

in figure 3.5.

3.4.3 Applications: Segmentation of Video Sequences.

In this section we illustrate the application of the proposed identification algorithm to two non-trivial

problems arising in computer vision: segmentation of video-shots and dynamic textures. Here the goal

is to detect changes, e.g. scenes or activities in the former, texture in the latter, in a sequence of frames.

Given the high dimensionality of the data, the starting point is to perform a principal component

analysis (PCA) compression [61] to obtain low dimensional feature vectors y(t) ∈ R
d representing

each frame t. Specifically, we first convert each frame to gray scale. Next, we vectorize each frame

of size Nx × Ny and represent it with a vector f(t) ∈ R
NxNy . Then, we find the sample mean

m = 1
T−t0+1

∑T
t=t0

f(t) to form the mean subtracted data matrix F = [f(t0) − m, . . . , f(T ) − m].
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Sparsification MPEG GPCA B2B

mountain 0.9965 0.9816 0.9263 0.5690

family 0.9946 0.9480 0.8220 0.9078

TABLE 3.7: Rand indices for video-shot segmentation

Finally, performing a singular value decomposition on F = UDVT and projecting the data using the

first d columns of U give the low dimensional representations [y(t0), . . . ,y(T )] = UT
1:dF.

The next step is to assume, motivated by [8, 9, 13, 62], that each component yj(.) of the feature vector

y(t) evolves independently, according to an unknown model of the form6:

yj(t) =

na
∑

i=1

ai,j(σt)yj(t − 1) + η(t), ‖η(t)‖2 ≤ ǫ (3.30)

Finally, defining g(t) = [p1(t)− p1(t + 1), . . . ,pd(t)−pd(t + 1)] allows to the (minimum number

of switches) sparsification-based approach to segment a given sequence according to the non-zero

elements in the corresponding sequence ‖g(.)‖∞.

Video-Shot Segmentation: The goal here is to detect scene changes in video sequences. These

changes can be categorized into two: (i) abrupt changes (cuts)7, and (ii) gradual transitions, e.g. vari-

ous special effects that blend two consecutive scenes gradually. Figure 3.6 shows the ground truth and

the segmentations obtained using the proposed method (using 3rd order models and d = 3), GPCA

[8], a histogram based method (bin to bin difference (B2B) with 256 bin histograms and window aver-

age thresholding [63]), and an MPEG-based method [64] for two sample sequences, mountain.avi and

family.avi, available from http://www.open-video.org. Both the B2B and MPEG methods

rely on user adjustable parameters (two in the B2B case, seven for MPEG). In our experiments we

adjusted these parameters, by trial and error, to get the best possible results. Hence the resulting com-

parisons against the proposed sparsification method correspond to best-case scenarios for both MPEG

and B2B. As shown in Table 3.7, the proposed method has slightly better performance than MPEG

(the runner up), without the need to manually adjust seven parameters one of which, length of the

transition, is very sensitive.

6This is a multioutput model as described in section 3.4.1.1 with diagonal coefficient matrices.
7Since we assume the continuity of the state, this might cause a few superfluous switches around cut frames. It is possible

to overcome this problem by passing the resulting mode signal through a majority smoothing filter.
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FIGURE 3.6: Video Segmentation Results. Left Column: Ground truth segmentation (jumps corre-

spond to cuts and slanted lines correspond to gradual transitions). Right Column: Changes detected

with different methods. Value 0 corresponds to frames within a segment and value 1 corresponds to

the frames in transitions.

Dynamic Textures: Next, we consider two challenging sequences generated using the dynamic

texture database http://www.svcl.ucsd.edu/projects/motiondytex/synthdb/. In

the first one, we appended in time one patch from smoke to another patch from the same texture but

transposed. Therefore, both sequences have the same photometric properties, but differ in the main

motion direction: vertical in the first half and horizontal in the second half of the sequence. For the

second example, we generated a sequence of river by sliding a window both in space and time (by

going forward in time in the first half and by going backward in the second). Hence, the dynamics

due to river flow are reversed. Sample frames from each sequence are shown in Figure 3.7. For these
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FIGURE 3.7: Sample dynamic texture patches. Top: smoke, Bottom: river

sequences both histogram and MPEG methods failed to detect the cut since the only change is in the

dynamics. On the other hand, the proposed method (using 5th order models and d = 3) correctly

segmented both sequences. These results are summarized in Figure 3.8.

3.5 A Moments-Based Convex Optimization Approach

In this section we consider the problem of identifying hybrid systems from noisy input/output data

when the number of subsystems is known. In the noise free case, Vidal et al. [47, 50] proposed a

closed form solution to this problem. However, noise enters their formulation polynomially leading

to a nonconvex problem. In this section, by using ideas from polynomial optimization we reformulate

the problem in terms of probability distributions and moments. Our formulation, which is shown to be

equivalent to the original non-convex problem, requires to solve a rank minimization subject to LMI

constraints. Finally, we resort to a convex relaxation for dropping the rank to obtain a semidefinite

programming problem that can be solved efficiently.

The problem of interest here can formally be stated as follows:

Problem 4. Given input/output data over the interval [1, T ], a bound on the ℓ∞ norm of the noise

(i.e. ‖η‖∞ ≤ ǫ), and the number of submodels s, find a hybrid linear model of the form (3.1) that is

consistent with the a priori information and experimental data.
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FIGURE 3.8: Results for detecting change in dynamics only. Top: Smoke sequence concatenated with

transposed dynamics. Bottom: River sequence concatenated with reversed dynamics.
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Practical situations where this problem is relevant arise for instance in segmentation problems in com-

puter vision and medical image processing, where it is desired to segment an image or video clip into

a given number of (not necessarily contiguous) regions, for instance corresponding to healthy versus

diseased tissue, or a fixed number of activities.

In the noise free case (i.e. ηt = 0 ∀t), the problem above can be elegantly solved using an algebraic

procedure, Generalized Principal Component Analysis (GPCA), proposed by Vidal et al. [47, 50].

Note that in this case an equivalent representation of (3.1) is:

b(σt)
T
rt = 0 (3.31)

where rt = [−yt, yt−1, . . . , yt−na , ut−1, . . . , ut−nc ]
T and b(σt) = [1, a1(σt), . . . , ana(σt), c1(σt),-

. . . , cnc(σt)]
T , denote the regressor and (unknown) coefficients vectors at time t, respectively.

The idea behind the algebraic method is based on a polynomial constraint, the so-called hybrid decou-

pling constraint, that decouples the identification of model parameters from the identification of the

discrete state and switching sequence. That is,

ps(r) =

s
∏

i=1

(bi
T rt) = cs

T νs(rt) = 0 (3.32)

holds for all t independent of which of the s submodels is active at time t. In the above equality,

bi ∈ R
na+nc+1 is the parameter vector corresponding to the ith submodel, rt is the known regressor

vector at time t, and νs(.) is the Veronese map of degree s 8. Collecting all data into a matrix form

leads to:

Vscs
.
=









νs(rt0)
T

...

νs(rT )T









cs = 0 (3.33)

Hence, one can solve for a vector cs in the nullspace of Vs. Finally, bi, the parameters of the models

can be computed via polynomial differentiation (see the Appendix B).

8Veronese map of degree s, νs : R
n → R

m, is defined as:

νs([x1, . . . , xn]T ) = [. . . , ξs
, . . .]T

where m =

(

s + n − 1
s

)

and ξs .
= x

s1

1 x
s2

2 . . . xsn

n ,
∑

si = s, e.g. all possible monomials of order s, in lexicographical

order.
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3.5.1 Main Results

In the presence of noise, the approach outlined above breaks down, since conditions (3.32) and (3.33)

no longer hold. Indeed, the noisy equivalent of (3.32) is given by:

ps(r, η) =

s
∏

i=1

(bi
T r̃t) = cs

T νs(̃rt) = 0 (3.34)

where r̃t = [−yt + ηt, yt−1, . . . , yt−na , ut−1, . . . , ut−nc ]
T . Proceeding as in the noiseless case, a

“noisy” data matrix Vs(r, η) can be built. However, finding the coefficients of each subsystem entails

now finding both an admissible noise sequence ηo and a vector co in the nullspace of Vs(r, η
o) such

that

Vs(r, η
o)co = 0 (3.35)

Since Vs is a polynomial function of the unknown noise terms η(t), this approach leads to a com-

putationally very challenging nonlinear, nonconvex optimization problem. However, as we show in

the sequel, by exploiting the method of the moments, (3.35) can be recast into a constrained rank

minimization form which in turn can be relaxed to an efficient convex optimization. We recall some

background results on polynomial optimization and problem of moments, which will be used to recast

the identification problem into a convex optimization form, in Appendices 2.2.1 and 2.2.2.

3.5.1.1 A Moments Based Convex Relaxation:

Consider the following rank minimization problem:

minimizeηt rankVs(rt, ηt)

subject to ‖ηt‖∞ ≤ ǫ
(3.36)

Clearly, Problem 4 is solvable if and only if (3.36) admits a rank deficient solution. Indeed, in the case

where the order of each subsystem is precisely (na, nc) and Vs has generically full column rank (e.g.

enough data points have been collected from each subsystem), then there exists a noise sequence ηo
t

such that the right null space of Vs(rt, η
o
t ) has dimension 1. When some of the subsystems have order

lower than (na, nc) or the number of subsystems is overestimated, the dimension of the nullspace

of Vs is higher than 1 (see [47] for details). In that sense, minimizing the rank of Vs amounts to

searching for the simplest model that explains the data.
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Since in this section we are interested in finding just one model consistent with the a-priori infor-

mation (bounds on the ‖ηt‖∞, the number of subsystems and their order), we will simply search for

rank deficient solutions to (3.36). As we show next, this problem admits a computationally tractable

relaxation.

Exploiting Theorem 1 and using the facts that (i) ηt and ηt̄ are independent for t 6= t̄, and (ii) ηt only

appears in the tth row of Vs, leads to the following moments optimization problem:

minimizem(t) rank Ṽs(rt,m
(t))

subject to (2.12) − (2.13) ∀m(t) if s is odd

(2.14) − (2.15) ∀m(t) if s is even

(3.37)

where m(t) = [m
(t)
1 , . . . ,m

(t)
s ] is the moment sequence corresponding to ηt and Ṽs(rt,m

(t)) is a

matrix linear in the moments, obtained by replacing each kth degree monomial ηk
t in Vs(rt, ηt) with

the corresponding kth order moment m
(t)
k .

Example 1. For instance when s = 2 and (na, nc) = (1, 1), then rt = [−yt, yt−1, ut−1]
T and the rows

of Vs(rt, ηt) depend on r and η as follows:

ν2(rt, ηt)
T =

























y2
t − 2ytηt + η2

t

−ytyt−1 + yt−1ηt

−ytut−1 + ut−1ηt

y2
t−1

yt−1ut−1

u2
t−1

























T

. (3.38)

The corresponding row of Ṽs(rt,m
(t)) is given by:

Eµ

[

ν2(rt, ηt)
T
]

=

























y2
t − 2ytm

(t)
1 + m

(t)
2

−ytyt−1 + yt−1m
(t)
1

−ytut−1 + ut−1m
(t)
1

y2
t−1

yt−1ut−1

u2
t−1

























T

(3.39)

Thus, Ṽs(rt,m
(t)) is affine in the unknown moments.



Chapter 3. Identification of a Class of Hybrid Dynamical Systems 48

Note that Theorem 3 cannot be directly applied to show the equivalence of (3.36) and (3.37) since

rank is not a polynomial function. Nevertheless, as we show next, a result similar to Theorem 3 can

be obtained:

Theorem 8. There exists a rank deficient solution to problem (3.36) if and only if there exists a rank

deficient solution to problem (3.37). Moreover, if c belongs to the nullspace of the solution of (3.37)

then there exists a noise value η∗ with ‖η∗‖∞ ≤ ǫ such that c belongs to the nullspace of Vs(rt, η
∗).

Proof. Assume that the minimum rank r1 in (3.36) is achieved by some sequence η∗t . Then Ṽs(rt,m
∗(t))

with m∗(t) = [η∗t , (η
∗
t )2, . . . , (η∗t )s] (i.e. all distributions have point support) has rank r1 and m∗(t)

satisfies the LMI constraints. Hence the minimum rank obtained by solving (3.37) is less than or equal

to the minimum rank obtained by solving (3.36).

Consider now an optimal solution m∗(t) of (3.37). Note that, from Theorem 1, this guarantees the

existence of T measures µ∗(t), each supported on [−ǫ, ǫ]. Let c be in the nullspace of Ṽs(rt,m
∗(t))

(i.e. Ṽs(rt,m
∗(t))c = 0). Thus, for each row of Vs, Eµ∗(t) [νs(rt, ηt)] c = Eµ∗(t) [νs(rt, ηt)c] = 0.

By noting that νs(rt, ηt)c is a polynomial function of ηt (hence continuous) and µ∗(t) is supported on

[−ǫ, ǫ], we can invoke the mean value theorem for integration to conclude that there exist η∗t ∈ [−ǫ, ǫ]

for all t such that νs(rt, η
∗
t )c = 0.

Thus, whenever the nullspace of the solution of (3.36) is non-trivial, so is that of (3.37), which proves

the theorem.

An alternative way of obtaining an equivalent moment–based problem to (3.36) when Vs(rt, ηt) is

known to be rank deficient by one is to define the equivalent polynomial objective function

det[Vs
T (rt, ηt)Vs(rt, ηt)]. However, in this case one would need higher order (possibly infinite num-

ber of) moments of a multidimensional distribution since it is not clear how to exploit the indepen-

dence of noise terms while keeping the problem linear in moments. Although the rank objective is

non-convex, it has following advantages: (i) the equivalent moment based problem is finite dimen-

sional (i.e. it requires only finite moment matrices); (ii) there are efficient convex relaxations for

rank minimization; and (iii) extracting solutions requires only solving for the roots of a polynomial

in one variable whereas for the case with multidimensional distributions this is a non-trivial task. We

eloborate on the last two points next.

Although rank minimization is an NP–Hard problem, efficient convex relaxations are available. In

particular, good approximate solutions can be obtained by using a log–det heuristic [51] that relaxes
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rank minimization to a sequence of convex problems. Furthermore, since from a set membership point

of view it suffices to find a rank deficient solution, we propose a modification of log–det heuristic that

aims at dropping the rank by one. The algorithm, which is inspired by the adaptive step size defined

for weighted ℓ1 minimization in [65], is summarized next:

Algorithm for dropping the rank

X ∈ R
m×n and assuming wlog m ≤ n, initialize:

k = 0

W
(0)
y = Im×m

W
(0)
z = In×n

REPEAT

Solve

minX(k),Y(k),Z(k) trace

[

W
(k)
y Y(k) 0

0 W
(k)
z Z(k)

]

subject to

[

Y(k) X(k)

XT (k) Z(k)

]

� 0

X(k) ∈ C

Decompose X(k) = UDVT using SVD.

Set ǫ = D(m,m).

Set W
(k+1)
y = (Y(k) + ǫI)−1.

Set W
(k+1)
z = (Z(k) + ǫI)−1.

Set k = k + 1.

UNTIL (a convergence criterion is reached)

RETURN X(k)

Above, for the sake of notational simplicity, we used X = Ṽs(rt,m
(t)); and X(k) ∈ C stands for

convex constraints, that is, m(t) lies on a convex set C defined by LMIs in (3.37).

Assuming a rank deficient Ṽs(rt,m
(t)) is found, a vector c in its nullspace can be found by simply

performing a singular value decomposition. From Theorem 8, it follows that c is also in the nullspace

of Vs(rt, ηt) (i.e. Vs(rt, ηt)(c) = 0). Hence, for each row, we have νs(rt, η
∗
t )c = 0 which is a

polynomial equation in one variable. One can solve for the noise values by finding the roots of this

polynomial that lie in [−ǫ, ǫ] (which is guaranteed to exist again by Theorem 8). Once the noise values

are estimated, the problem can be converted to the noise free case by plugging the noise estimates into

Vs(rt, ηt) and the system parameters can be computed using the GPCA procedure.
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Remark 7. When the number of the submodels s is unknown, it is possible to search for minimum

number of submodels that explains the data. This can be accomplished with a simple iteration on s;

starting with s = 1 and increasing s up until a rank deficient solution to the problem (3.37) is found.

3.5.2 Illustrative Examples

In this section we use both an academic and a practical example to illustrate the effectiveness of the

proposed method.

3.5.2.1 Academic Example:

Consider a hybrid system that switches among the following three ARX subsystems

yt = 0.2yt−1 + 0.24yt−2 + 2ut−1 + ηt (Submodel 1)

yt = −1.4yt−1 − 0.53yt−2 + ut−1 + ηt (Submodel 2)

yt = 1.7yt−1 − 0.72yt−2 + 0.5ut−1 + ηt (Submodel 3)

modeled as

yt = p1(σt)yt−1 + p2(σt)yt−2 + p3(σt)ut−1 + ηt. (3.40)

where σt ∈ {1, 2, 3} depending on which model is active at time t. Experimental data was obtained

by running a simulation for T = 96 time steps with ‖η‖∞ = 0.25 where σt = 1 for t = [1, 32],

σt = 2 for t = [33, 64] and σt = 3 for t = [65, 96]. The parameter values used for the simulation are

shown in Table 3.8 together with the results obtained by our robust version of the algebraic method and

the original algebraic method of [50]. Figures 3.9 and 3.10 show the clustering of data into different

submodels. As seen there, the proposed method outperforms the method in [50]. Figures 3.11 and 3.12

show the absolute error given the identified model. The error values are quite large for the method in

[50] whereas they mostly satisfy the prior bound of ‖η‖∞ = 0.25 for the new method. Indeed, in

the latter case, the error exceeds the bound only at a single time instant. This is due to the convex

relaxation used to solve the original algebraic problem.
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True Moments-based GPCA

Submodel 1

p1 0.2000 0.1964 0.2248

p2 0.2400 0.2332 0.3764

p3 2.0000 1.9287 2.5907

Submodel 2

p1 -1.4000 -1.2959 -0.4491

p2 -0.5300 -0.4469 0.9188

p3 1.0000 1.0315 1.5262

Submodel 3

p1 1.7000 1.6505 1.7213

p2 -0.7200 -0.6713 -0.7103

p3 0.5000 0.5007 1.2194

TABLE 3.8: Estimated and true values of parameters
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FIGURE 3.9: Clustering via GPCA.

3.5.2.2 A Practical Example: Human Activity Segmentation:

Next, we illustrate an application of the proposed method in a computer vision problem: human activ-

ity analysis. The input data consists of 55 frames extracted from a video sequence of a person walking

and bending in front of the camera. Figure 3.13 shows some sample frames from the sequence. In the
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FIGURE 3.10: Clustering via moments-based method.

middle of the sequence the person bends down, then stands up and keeps walking. In order to recast the

problem into the identification of a piecewise affine system, we first used simple background subtrac-

tion to estimate the location of the center of mass of the person in each frame. The horizontal9 position

of the center of mass was then modeled as the output of a first order switched affine autoregressive

system:

xt = a(σt)xt−1 + f(σt) + ηt (3.41)

where a(σt) and f(σt) are unknown parameters. We set ‖ηt‖∞ = 3, allowing ±3 pixels error in the

position estimates.

Figure 3.15 shows that the proposed method is capable of segmenting normal activity (walking) from

abnormal activity (bending). It also correctly classifies the activity at the initial and final portions of

the video as the same. There is a single frame at the end of the sequence where the classification

is incorrect. This is due to the fact that, as the person starts to leave the camera’s field of view, the

9It may seem more natural to use the vertical position. However, this would have resulted in 3 segments, corresponding

to roughly no vertical motion, downward and upward motion, while there are only two different activities involved.
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FIGURE 3.11: Absolute error for GPCA identification.

estimates of her center of mass become inaccurate. On the other hand, the classification with the

original GPCA is less accurate as can be seen from figure 3.14.
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FIGURE 3.12: Absolute error for moments-based identification.
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FIGURE 3.13: Sample frames from the video.
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FIGURE 3.14: Activity segmentation via GPCA.
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FIGURE 3.15: Activity segmentation via moments-based method.



Chapter 4

Model (In)validation for a Class of

Hybrid Dynamical Systems

4.1 Introduction and Motivation

As mentioned in the previous Chapter, hybrid systems, dynamical systems where continuous and

discrete states interact, are ubiquitous in many different contexts. Thus, during the past few years, a

considerable research effort has been devoted to the problem of identifying hybrid systems, leading

to several methods (see the excellent tutorial paper [46] for a summary of the main issues and recent

developments in the field). Since the identification problem is generically NP-Hard, the majority of

existing identification algorithms, including the ones presented in Chapter 3, are based on heuristics or

relaxations ([48, 66, 67, 68, 69]). Hence, a crucial step before using the resulting models, is to check

their validity against additional experimental data. Model (in)validation of Linear Time Invariant

(LTI) systems has been extensively addressed in the past two decades and both time and frequency

domain results are available in the literature (see for instance [70, 71, 72] and references therein). A

related line of research is model (in)validation of Linear Parameter Varying (LPV) systems ([73, 74])

where it is assumed that parameter values are measurable during the experiment and used as part of

a posteriori data during the (in)validation step. Finally, (in)validation of continuous-time nonlinear

models was addressed in [75] using sum of squares methods and barrier functions. However, to the

best of our knowledge, similar results for discrete-time switched linear systems with unknown switches

has not been considered, with the main difficulty here being the combination of noisy measurements

and an unknown mode signal.

56
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The main result of this chapter is a necessary and sufficient condition for a multi-input multi-output

switched affine autoregressive exogenous model to be (in)validated by the experimental data. Specif-

ically, given a nominal model and experimental input/output data, we provide certificates for the ex-

istence/nonexistence of a switching sequence such that the resulting output sequence interpolates the

given experimental data within a given noise bound. The starting point to obtain such certificates is to

recast the (in)validation problem as one of checking whether a semialgebraic set is empty. By using a

combination of recent results on moments-based sparse polynomial optimization and duality we show

that emptiness of this set is equivalent to strict positivity of the solution of a related, convex optimiza-

tion problem. In principle, checking this condition requires solving a sequence of convex optimization

problems involving increasingly large matrices. However, as we show in this chapter, if in the process

of solving these problems either a positive solution is found or the rank of certain matrices formed

using the solution to the dual problem ceases to increase (the so-called flat extension property), then

the process terminates with either an invalidation or a consistency certificate. A salient feature of the

proposed approach is its ability to exploit the inherently sparse structure of the optimization problem

to substantially reduce its computational complexity.

In the second portion of the chapter, these results are illustrated both with academic examples and a

non-trivial problem arising in computer vision: activity monitoring. Typically, a visual surveillance

system captures high volume data streams from multiple cameras. However, interesting (e.g. ab-

normal) activities are rare. Thus, it is important to be able to automatically eliminate the “normal”

behavior and trigger an appropriate response when something potentially interesting or “abnormal”

occurs. As we show in Section 4.4.2, this problem can be recast into a piecewise–affine model invali-

dation form and solved using the framework developed in this chapter.

4.2 (In)validating MIMO SARX Models

In this section we formally state the problem under consideration and show that it can be reduced to a

polynomial optimization over a semialgebraic set. In turn, this allows for exploiting the results briefly

discussed in section 2.2.1 to obtain computationally tractable (in)validation certificates.
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4.2.1 Problem Statement

In this chapter, we consider multi-input, multi-output (MIMO) switched affine autoregressive exoge-

nous (SARX) models of the form:

yt =
∑na

k=1 Ak(σt)yt−k

+
∑nc

k=1 Ck(σt)ut−k + f(σt)

ỹt = yt + ηt

(4.1)

where ut ∈ R
nu is the input, ỹt ∈ R

ny is the measured output corrupted by the noise ηt ∈ R
ny ,

and σt ∈ Ns is the discrete mode signal indicating which of the s submodels is active at time

t. We do not make any dwell-time assumptions, hence the mode signal σt can switch arbitrar-

ily among the s submodels Gi, each of which is associated with the set of its coefficient matrices

{A1(i), . . . ,Ana(i),C1(i), . . . ,Cnc(i), f(i)}.

The model (in)validation problem for the setup described above and shown in Figure 4.1 can be for-

mally stated as follows:

Problem 5. Given a nominal hybrid model of the form (4.1) together with its s submodels G1, . . . , Gs,

an a priori bound ǫ on noise, and experimental data {ut, ỹt}
T
t=t0 , determine whether or not the a

priori information and the a posteriori experimental data are consistent, i.e. whether the consistency

set

T (η, σ) = {||ηt||∞ ≤ ǫ, σt ∈ Ns

subject to (4.1) ∀t ∈ [t0, T ]}

is nonempty.

Since T (η, σ) contains all possible noise and mode signal sequences that can explain the observed

data, clearly establishing that T (η, σ) = ∅ is equivalent to invalidating the model.

4.2.2 A Convex Certificate for (In)validating MIMO SARX Models

Next, we present the main result of the chapter, showing that a necessary and sufficient condition for

the model to be invalidated by the experimental data is strict positivity of the solution to a related

convex optimization problem. We begin by constructing a semialgebraic set T ′(η) and showing its

equivalence, in a sense to become clear later, to the consistency set T (η, σ). To this effect, assume
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FIGURE 4.1: Problem Setup. The coefficient matrices of the submodels Gi and a bound on the noise

are known a priori. The experimental data consists of input/output measurements, u and ỹ. The mode

signal σt and noise sequence η are unknown.

that the ith submodel is active at time t. Rearranging the terms in Eq. (4.1) yields:

A1(i)(ỹt−1 − ηt−1) + . . . + Ana(i)(ỹt−na − ηt−na
)

−(ỹt − ηt) + C1(i)ut−1 + . . . + Cnc(i)ut−nc + f(i) = 0
(4.2)

which consists of ny linear equations in na + 1 unknown noise vectors ηt:t−na
. Denote the equation

corresponding to jth output by h
(j)
t,i (ηt:t−na

). Then Eq. (4.2) is equivalent to

[h
(1)
t,i (ηt:t−na

) = 0] ∧ . . . ∧ [h
(ny)
t,i (ηt:t−na

) = 0] (4.3)

or algebraically

gt,i(ηt:t−na
)

.
=

ny
∑

j=1

[

h
(j)
t,i (ηt:t−na

)
]2

= 0. (4.4)

Note that since the mode signal σt is unmeasurable, the actual subsystem Gi that is active at any given

time t is not known. However, in order for the set of submodels given as part of a priori information

not to be invalidated by the experimental data, Eq. (4.4) should hold true for some i ∈ {1, . . . , s}1.

This condition can be expressed as

[gt,1(ηt:t−na
) = 0] ∨ . . . ∨ [gt,s(ηt:t−na

) = 0] (4.5)

or algebraically

pt(ηt:t−na
)

.
=

s
∏

i=1

gt,i(ηt:t−na
) = 0. (4.6)

1This idea is similar to the hybrid decoupling constraint proposed in [47]
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Next we use the equalities above to define a semialgebraic set and establish its relationship with the

consistency set T :

Proposition 1. Let

T ′(η)
.
=

{

η | ft,j(η
(j)
t ) ≥ 0 ∀t ∈ [0, T ], j ∈ Nnyand

pt(ηt:t−na
) = 0 ∀t ∈ [na, T ]

}

.

where

ft,j(η
(j)
t )

.
= ǫ2 −

[

η
(j)
t

]2

Then, T (η, σ) is empty if and only if T ′(η) is empty.

Proof. Follows from the construction of T ′(η) and the fact that |η
(j)
t | ≤ ǫ ⇐⇒ ft,j(η

(j)
t ) ≥ 0

At this point, one can use the Positivstellenstaz and derive sum of squares certificates for the emptiness

of T ′(η), as proposed in [76]. However, as we show next, adopting a dual approach based on the theory

of moments allows for exploiting the inherently sparse structure of the problem. In order to pursue

this approach, start by considering the following optimization problem:

o∗ = minη

∑T
t=na

pt(ηt:t−na
)

s.t.

ft,j(η
(j)
t ) ≥ 0 ∀t ∈ [0, T ], j ∈ Nny .

(4.7)

Note that o∗ ≥ 0, since the objective function in (4.7) is a sum of squares polynomial2 . Further, if

T ′(η) is non-empty, then there exist a noise sequence η∗ for which (4.7) attains its minimum o∗ = 0.

Equivalently, o∗ > 0 ⇐⇒ T ′(η) = ∅.

Proposition 2. Problem (4.7) above satisfies the running intersection property.

Proof. Consider the T − na + 1 subsets Ik of the variables η0:T where each Ik contains only the

variables ηk:k+na
. One can associate each ft,j with I0 for t ≤ na and with It−na for t > na. The

collection Ikj formed by repeating each Ik, ny times, satisfies (2.27) hence the running intersection

property in Definition 1 holds.

2since it is formed by multiplication and addition of SOS polynomials in (4.4), and the cone of SOS polynomials is

closed under these operations.
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Next, we use results from the theory of moments to obtain a convex problem where the objective and

constraints have affine (rather than polynomial) dependence on the data and exploits sparsity. Consider

the related moments-based optimization:

d∗N = minm

∑T
t=na

lt(mt−na:t)

s.t.

MN (mt−na:t) � 0 ∀t ∈ [na, T ]

LN (ft,jmt−na:t) � 0 ∀t ∈ [na + 1, T ], j ∈ Nny

LN (ft,jm0:na) � 0 ∀t ∈ [0, na], j ∈ Nny

(4.8)

where each lt is the linear functional of moments defined as lt(mt−na:t)
.
= E

{

pt(ηt:t−na
)
}

, E de-

notes expectation and where MN and LN are the moments and localization matrices associated with a

truncated moments sequence containing terms up to order 2N with N ≥ s. Clearly d∗N ≥ 0, since the

objective function in (4.7) is a sum of squares polynomial, and, from Theorem 4, d∗N ↑ o∗ as N → ∞.

These observations lead to the following necessary and sufficient conditions for (in)validation:

Proposition 3. The following statements are equivalent:

(i) The consistency set T ′(η) is empty

(ii) There exists some finite No such that d∗No
> 0

(iii) The solution r∗ to the following optimization problem is strictly greater than zero:

r∗ = minm

∑T
t=na

lt(mt−na:t)

s.t.

Ms(mt−na:t) � 0 ∀t ∈ [na, T ]

rank [Ms(mt−na:t)] = 1 ∀t ∈ [na, T ]

Ls(ft,jmt−na:t) � 0 ∀t ∈ [na + 1, T ], j ∈ Nny

Ls(ft,jm0:na) � 0 ∀t ∈ [0, na], j ∈ Nny

(4.9)

where each of the T − na + 1 moments sequences mt−na:t, t ∈ [na, T ], contains moments up

to order 2s (i.e. two times number of submodels).

Proof. (i)⇔(ii) Recall that T ′(η) = ∅ ⇐⇒ o∗ > 0. Since d∗N ↑ o∗ as N → ∞, if o∗ > 0, there exist

No such that d∗No
> 0. On the other hand, if d∗No

> 0 then o∗ > 0 since d∗No
< o∗. Hence, T ′(η) is

empty.
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(i)⇔(iii) To prove this equivalence, we show that r∗ in (4.9) is equal to o∗ in (4.7). Assume η∗ is an

optimizer of (4.7), then the moments of the distribution µ∗ with point support at η∗ is feasible for (4.9)

with the same objective value which implies r∗ ≤ o∗. On the other hand, if m∗ is a minimizer of

(4.9), the rank condition implies that there is a corresponding measure µ∗ with point support, say at

η∗. Since this value of η∗ is a feasible point of (4.7), o∗ ≤ r∗. Therefore, r∗ = o∗ from which we

conclude that r∗ > 0 is equivalent to (i).

Note that by forming a single block diagonal matrix containing all LMI constraints in (4.8), it can be

transformed into the standard dual form of semidefinite programs. That is:

d∗N = infm bTm + co

s.t.
∑

α∈I Aαmα � C

(4.10)

where I is the set of the multi-indexes of all moments that occur in (4.8) except the zeroth moment

m0 = 1 which is used to form the constant terms C and co.

Remark 8. It is important to highlight the reduction achieved by employing the running intersec-

tion property while forming the optimization problem (4.8). The conventional moment relaxation

of order N in [41] would require O((Tny + ny)
2N ) variables with a moment matrix of the size

(

N + Tny + ny

Tny + ny

)

. On the other hand, (4.8) involves only O((nany + ny)
2N ) variables with

T − na + 1 moment matrices of the size

(

N + nany + ny

nany + ny

)

where, in general, the length of the

experimental data T is substantially larger than the order of the regressor na (i.e. na ≪ T ).

4.3 Numerical Considerations

From Proposition 3 it follows that (in)validation/validation certificates can be obtained, for instance,

by solving a sequence of problems with increasing N until either a solution with d∗ > 0 is found

(in which case the data invalidates the model) or condition (iii) fails, in which case the data record

is consistent with the model and a-priori information. However, a potential numerical difficulty here

stems from the fact that in practice d∗ = 0 is never reached since there is no closed form solution to

the problem and numerical solvers terminate when the duality gap drops below a certain level. Thus,

from a practical standpoint, more useful conditions can be obtained by examining the primal problem,
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which can be written as

p∗N = maxX < C,X > +co

s.t.

< Aα,X >= bα ∀α ∈ I

X � 0

(4.11)

where, without loss of generality, X can be chosen to have the same block-diagonal structure that

Aαs and C. Note that, from duality, p∗N ≤ d∗N , and hence p∗N > 0 provides an invalidation certificate.

In fact if problem (4.11) is feasible, strong duality holds [44]. Thus p∗N > 0 is strictly equivalent to

d∗N > 0, leading to the following result:

Proposition 4. The consistency set T ′(η) is empty if and only if p∗No
> 0 for some finite No.

Proof. Follows directly from strong duality and Proposition 3.

Let d̃N and p̃N be the numerical solutions to problems (4.8) and (4.11) respectively, obtained using

a standard SDP solver. As noted before, in practice, one always has d̃N > 0. Thus it can be hard

to ascertain whether conditions (ii) or (iii) in Proposition 3 fail. On the other hand, p̃ > 0 is an

invalidation certificate.

Remark 9. A certificate that the existing data record is consistent with the model and a priori as-

sumptions can be obtained by resorting to a variation of the so-called flat extension property for

sparse polynomial optimization stated in [44]. In particular, if for some N , p̃ ≤ 0 and the dual

solution satisfies rank
[

MN (m∗
0:na

)
]

= 1; rank
[

MN (m∗
t−na:t−1)

]

= 1 and rank
[

MN (m∗
t−na:t)

]

=

rank
[

MN−2(m
∗
t−na:t)

]

∀t ∈ [na, T ] where m∗ denotes an optimal solution of (4.8), then this certi-

fies that o∗ = d∗N = 0; hence T ′(η) is not empty.

Remark 10. It is also worth pointing out that all of the results above (including the running intersection

property) hold true in the presence of bounded parametric model uncertainty. For instance, if ai(k, l)

is an entry in one of the coefficient matrices of the ith submodel, it is possible to use ai(k, l) + δi(k, l)

with |δi(k, l)| ≤ δ∗ in the a priori model. This only requires additional variables in the optimization

problem.
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4.4 Illustrative Examples

In this section we illustrate the effectiveness of the proposed method both using academic examples

and a computer vision application. In all cases, we used the moments relaxation corresponding to

N = s and the resulting SDP problem was solved using SEDUMI [16].

4.4.1 Academic Examples

We consider the ARX submodels:

yt = 0.2yt−1 + 0.24yt−2 + 2ut−1 (G1)

yt = −1.4yt−1 − 0.53yt−2 + ut−1 (G2)

yt = 1.7yt−1 − 0.72yt−2 + 0.5ut−1 (G3)

and the measurement equation:

ỹt = yt + ηt. (4.12)

We ran different sets of simulations investigating different sources of model mismatch. In all cases,

we collected input/output data {ut, ỹt} for t ∈ [0, 96] and tried to (in)validate the a priori model.

In all experiments, when we used data inconsistent with the a priori information, p̃∗ turned out to

be positive. Hence, we correctly invalidated the model in each of such cases. On the other hand,

whenever the a priori information was consistent with a posteriori data, we had p̃∗ < 0.

Example 2. (Submodel mismatch) For the first set of experiments, we generated input/output data using

different subsets of {G1, G2, G3} with a random switching sequence σt and with uniform random

noise ||ηt|| ≤ 0.5. The noise used in the experiments was within the a priori noise bound. We

used both correct and incorrect a priori submodel sets. Hence, the model should be invalid when a

submodel that is not contained in the a priori submodel set is used in the actual experiment. The

results are summarized in Table 4.1.

Example 3. (Noise bound mismatch) For this example, we generated input/output data using different

subsets of {G1, G2, G3} with a random switching sequence σt and with uniform random noise ||ηt|| ≤

ǫ. The a priori submodel set and the actual submodel set used in the experiment were the same. The

source of invalidation was the actual noise level exceeding the a priori bound. The results of this set

of experiments are summarized in Table 4.2.
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A priori Actual Result

G1, G2, G3 G1, G2, G3 not invalidated

G1, G2, G3 G1, G2 not invalidated

G1, G2 G1, G2, G3 invalidated

G1, G2 G2 not invalidated

G1, G2, G3 G1 not invalidated

G1, G2 G2, G3 invalidated

TABLE 4.1: Invalidation results for example 2. The values of p̃ were respectively −3.8441e − 008,

−8.2932e− 009, 0.8585, −5.4026e− 008, −1.5490e− 007 and 0.7566.

Submodels A priori ǫ Actual ǫ Result

G1, G2, G3 0.5 1 invalidated

G1, G2, G3 0.8 1 invalidated

G1, G2, G3 1.2 1 not invalidated

G1, G2 0.5 1 invalidated

G1, G2 0.8 1 invalidated

G1, G2 1.2 1 not invalidated

TABLE 4.2: Invalidation results for example 3. The values of p̃ were respectively 0.0724, 0.0035,

−5.1810e− 007, 0.0737, 0.0034 and −1.4930e− 007.

Example 4. (Submodel perturbation) For this set of experiments, we generated input/output data by

perturbing the coefficients of a priori submodels {G1, G2, G3}, and again using a random switching

sequence σt and uniformly sampled random noise ||ηt|| ≤ 0.5. We denote the submodel whose

coefficient values are perturbed by e percent of their original values as Gi + ∆e. This case is more

challenging than the one considered in Example 2 since the dynamics are similar. Nevertheless, we

could invalidate in each of our trials. The results for this example are summarized in Table 4.3.

A priori Actual Result

G1, G2, G3 G1 + ∆5, G2 + ∆5, G3 + ∆5 invalidated

G1, G2, G3 G1 + ∆2, G2 + ∆2, G3 + ∆2 invalidated

G1, G2, G3 G1 + ∆1, G2 + ∆1, G3 + ∆1 invalidated

G1, G2 G1 + ∆5, G2 + ∆5 invalidated

G1, G2 G1 + ∆2, G2 + ∆2 invalidated

G1, G2 G1 + ∆1, G2 + ∆1 invalidated

G1, G2 G1 + ∆2 invalidated

TABLE 4.3: Invalidation results for example 4. The values of p̃ were ,respectively, 0.8963, 0.0997,

0.0080, 0.0308, 2.8638e− 004, 2.9069e− 006 and 6.2061e− 006.
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4.4.2 A Practical Example: Activity Monitoring

In this section we illustrate the application of the proposed model invalidation framework to a non-

trivial problem arising in computer vision: activity monitoring. Here we start with a set of dynamic

models associated with “normal” behavior. If a person passing in front of the camera exhibits a com-

bination of the normal activities (i.e. his/her behavior can be modeled with a hybrid system that has

the normal activity dynamics as submodels), then the activity is considered not interesting. On the

other hand, if he/she does something different than what has been encoded in the initial set of normal

dynamics, this is an indication of an interesting event. In such cases the model should be invalidated.

We used a training video of walk shown in Fig. 4.2 to identify an autoregressive model for the dynam-

ics of the center of mass of a person walking. By minimizing the ℓ∞ norm of process noise via linear

programming, we obtained the following model for “walk”:

(

xt

yt

)

=

(

0.4747 0.0628

−0.3424 1.2250

)(

xt−1

yt−1

)

+

(

0.5230 −0.1144

0.3574 −0.2513

)(

xt−2

yt−2

) (A1)

where (xt, yt) is the normalized coordinate of the center of the person in the tth frame. Another

activity that we considered normal is “waiting” which can simply be modeled as:

(

xt

yt

)

=

(

1 0

0 1

)(

xt−1

yt−1

)

. (A2)

We normalized the image coordinate system so that (x, y) ∈ [0, 1] × [0, 1] and set the measurement

noise level to ||ηt|| ≤ 0.04. This bound together with the submodels (A1) and (A2) for “normal”

activities constitute the a priori information.

As for test purposes, we used four different video sequences. Background subtraction was used to

locate the person; and the center of mass was estimated and tracked using the silhouettes. Then the

center of mass trajectories were used for model (in)validation. In the first sequence, the person walks,

waits and walks again; so the overall activity is normal. In the second sequence, the person runs for

which our method found the certificate for invalidity by finding p̃ > 0. In the third sequence, the

person walks and then starts jumping. In the last sequence, the person passes in front of the camera

by jumping. Again, our method flagged these abnormal activities by verifying the invalidity of the
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frame4 frame15 frame26 frame38 frame49

FIGURE 4.2: Training sequence used in identification of the submodel (A1) for walking.

models. Sample frames from the sequences are shown in Fig. 4.3 and the results are summarized in

Table 4.4.

A priori Actual Result

walk, wait walk, wait not invalidated

walk, wait run invalidated

walk, wait walk, jump invalidated

walk, wait jump invalidated

TABLE 4.4: Invalidation results for activity monitoring. The values of p̃ were, respectively,

−2.3303e− 008, 2.3707e− 005, 5.0293e− 007, and 1.5998e− 006.

4.5 Conclusions

In this chapter we considered the model (in)validation problem for switched ARX systems with un-

known switches. Given a nominal model, a bound on the measurement noise and experimental input

output data, we provided a necessary and sufficient condition that certifies the existence/nonexistence

of admissible noise and switching sequences such that the resulting output sequence interpolates the

given experimental data within the noise bound. In principle, computing these certificates entails solv-

ing a sequence of convex optimization problems involving increasingly large matrices. However, as

we show here, if in the process of solving these problems either a positive solution is found or the so-

called flat extension property holds, then the process terminates with a certificate that either the model

has been invalidated (first case) or that the experimental data is indeed consistent with the model and

a–priori information. By using duality, the proposed approach exploits the inherently sparse structure

of the optimization problem to substantially reduce its computational complexity. The effectiveness of

the proposed method was illustrated using both academic examples and a non-trivial problem arising

in computer vision: activity monitoring.
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frame4 frame16 frame28 frame40 frame55

frame4 frame15 frame27 frame40 frame55

FIGURE 4.3: Top row: Walk, wait, walk sequence (not invalidated). Second row: Running sequence

(invalidated). Third row: Walk, jump sequence (invalidated). Last row: Jumping sequence (invali-

dated).



Chapter 5

Clustering Data into Multiple Unknown

Subspaces

In this chapter, we deal with static data and we try to cluster the data such that the data within each

cluster lie on a subspace of the ambient space. This type of subspace clustering is relevant to many

computer vision problems such as affine motion segmentation, face clustering under varying illumi-

nation, and image, video and dynamic texture segmentation. The subspace clustering problem and the

problem of switched affine dynamical system identification have a quite similar structure. Hence, as

we show next, methods developed for one can be easily modified to be used for the other. In particular,

in section 5.1, we consider the case where temporal (spatial) ordering of the data points matters and

show that utilizing the order dependence it is possible to develop more robust segmentation algorithms

based on sparsification. In the second part (section 5.2), we consider the case where ordering does not

matter. We build upon an algebraic method ([8]) which is quite sensitive to noise and show that it is

possible to significantly reduce the noise resilience by combining elements from convex analysis and

the problem of moments. Extensions to algebraic surfaces other than subspaces are also presented.

69
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5.1 Sequential Sparsification for Change Detection

5.1.1 Introduction and Motivation

Change detection is a very general concept that is encountered in many areas of computer vision.

From edge detection to video segmentation or image segmentation, a variety of computer vision tasks

can be considered as change detection problems with different interpretations of change. Hence, we

believe that a general purpose change detection method with only a few adjustable parameters will be

valuable. This section takes a step in this direction by exploiting sparsification based optimization.

Under the assumption that there exists an underlying piecewise affine model (e.g. vectors are clustered

in different subspaces), our main objective is to find when the model changes from one mode to another

and, at the same time, learn the parameters of the model. Hybrid piecewise affine models [8, 9] and

mixture models [12, 13, 14] have been the object of considerable attention in the past few years.

Although some of the work (for instance [13]) assumes a fixed number of models, one of the main

problems when working with hybrid models is that the number of models is usually unknown. [8]

provides a closed form algebraic solution for the noise free case, but the estimation of the number of

models usually fails when the data is noisy. As we show in this section, assuming a bound on the noise

level, allows for recasting the problem into a robust optimization form where the objective is to find

the minimum number of clusters (i.e. the simplest model to represent the data). A second point where

our method departs from existing clustering techniques is that we make explicit use of the sequential

nature of the data. For example, neighboring pixels in an image or consecutive frames in a video

sequence are more likely to be within the same segment, and thus imposing continuity of the clusters

leads to improved robustness.

Our main result shows that the robust segmentation problem can be recast into a change detection

form, where the goal is to detect points where the underlying hybrid model switches modes, or, equiv-

alently, to detect changes in the affine parameters describing the model. In principle, detecting these

changes can be hard when the measurements are corrupted by noise. However, as we show, this can be

robustly accomplished by searching for models that explain the observed data with the lowest possible

number of switches (e.g. looking for segmentations that maximize the length of subsequences). This

is equivalent to searching for descriptions that maximize the sparsity of the vector of first order tem-

poral parameter differences, since each non-zero element of this vector corresponds to a switch. This

allows us to proceed as in the dynamic case (see Section 3.4 for details). By exploiting the recently
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developed results on signal sparsification, we obtain efficient, computationally tractable segmentation

algorithms.

5.1.2 Segmentation via Sparsification

In this section we consider the problem of segmenting vector valued sequences {x(t)}T
t=0 that are

generated by an affine parametric hybrid model with unknown parameters. Specifically, the models

that we consider have the following form:

H : f
(

pσ(t), {x(k)}t+j
k=t−i

)

= 0 (5.1)

where f is an affine function1 of the parameter vector pσ(t) which takes values from a finite unknown

set according to a piecewise constant function σ(t). Here i and j are positive integers that account for

the memory of the model (e.g. j = 0 corresponds to a causal model, or i = j = 0 corresponds to a

memoryless model).

We say that there exists a change at time t if σ(t) 6= σ(t + 1). Hence segmentation of a given

sequence into subsequences is equivalent to finding how many times and when these changes occur.

The segmentation problem can be formally stated as follows:

Problem 6. Given a sequence
{

x(t) ∈ R
d
}T

t=1
generated by a hybrid parametric model H of the

form (5.1) find the minimum number of segments (i.e. subsequences) {Si}
N
i=1 where on each Si =

{x(t)}
Ti+1−1
t=Ti

, σ(t) is constant and T1 = 1, TN+1 − 1 = T .

This is a difficult problem, since neither the segmentation nor the parameters of the hybrid model are

known. In order to overcome this difficulty, we consider the sequence of first order differences of the

time varying parameters p(t), given by

g(t) = p(t) − p(t + 1) (5.2)

Clearly, since a non-zero element of this sequence corresponds to a change, the sequence should be

sparse having only N −1 non-zero elements out of T . Next, in order to account for noise we introduce

a noise term η(t), satisfying ‖η‖∗ ≤ ǫ, where ‖.‖∗ denotes a norm relevant to the specific problem

1That is:

f
(

pσ(t), {x(k)}t+j

k=t−i

)

= A(x)pσ(t) + b(x)
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under consideration and ǫ is an upper bound on the noise level. In this context, Problem 6 can be recast

as an optimization problem as follows:

minimizep(t),η(t) ‖{g}‖l0

subject to f
(

p(t), {x(k)}t+j
k=t−i

)

= η(t) ∀t

‖{η}‖∗ ≤ ǫ

(5.3)

2 Here l0 is a quasinorm that counts non-zero elements (i.e. minimizing l0 norm is the same as

maximizing sparsity) and can be approximated by the l1 norm, leading to a linear cost function. When

f is an affine function of p(t), (5.3) has a convex feasibility set F . Thus, using the l1 norm leads to

a convex, computationally tractable relaxation. Further, Fazel et al. proposed an iterative procedure

in [51] and [56] to improve the solution obtained by the l1-norm relaxation. In the sequel, we adopt

this heuristic to solve Problem (5.3). This heuristic solves, at each iteration, the following weighted

l1-norm minimization on the convex feasible set F :

minimizez,g,p,η
∑T−1

t=1 w
(k)
t zt

subject to ‖g(t)‖∞ ≤ zt ∀t

f
(

p(t), {x(k)}t+j
k=t−i

)

= η(t) ∀t

‖{η}‖∗ ≤ ǫ

(5.4)

where w
(k)
i = (z

(k)
i +δ)−1 are weights with z

(k)
i being the arguments of the optimal solution at the kth

iteration and z(0) = [1, 1, . . . , 1]T ; and where δ is a very small regularization constant that determines

what should be considered zero.

The choice of ∗, the norm by which the noise is characterized, is very important and should be done

according to the application in hand. For instance if finding anomalies is desired, l∞-norm performs

well. The change detection algorithm highlights the outliers in the data when l∞-norm is used, since

it looks for local errors. On the other hand, when a bound on the l1 or l2-norm of the noise is used,

the change detection algorithm is more robust to outliers and it favors the continuity of the segments

(i.e. longer subsequences). Moreover, the noise level in different segments are not the same in most

of the applications. Another advantage of using a global noise bound given by l1 or l2-norm is that the

optimization problem adjusts the noise distribution among the segments automatically.

2If f(0, ·) is the zero function, (5.3) has a trivial solution p(t) = 0 for all t. To overcome this problem, we work with

models where f(0, ·) is not the zero function.
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5.1.3 Applications

5.1.3.1 Video Segmentation:

Segmenting and indexing video sequences have drawn a significant attention due to the increasing

amounts of data in digital video databases. Systems that are capable of segmenting video and ex-

tracting key frames that could summarize the video content can substantially simplify browsing these

databases over a network and retrieving important content. An analysis of the performances of early

shot change detection algorithms is given in [63]. The methods analyzed in [63] can be categorized

into two major groups: i) methods based on histogram distances, and ii) methods based on variations

of MPEG coefficients. A recent comprehensive study is given in [77] where a formal framework for

evaluation is also developed. Other methods include those where scene segmentation is based on im-

age mosaicking [78, 79] or frames are segmented according to underlying subspace structure [80].

Formally, the video segmentation problem can be stated as the following instance of Problem 6:

Problem 7. Given the frames
{

I(t) ∈ R
D
}T

t=1
, find N segments (i.e. subsequences) {Si}

N
i=1 where

N is unknown and Si = {I(t)}
Ti+1−1
t=Ti

with T1 = 1, TN+1 − 1 = T , are generated by an underlying

hybrid model.

Since the number of pixels D is usually much larger than the dimension of the subspace where the

frames are embedded, it is reasonable to project the data to a lower dimensional space using PCA:

I(t) 7−→ x(t) ∈ R
d.

Assuming that each x(t) within the same segment lies on the same hyperplane not passing through the

origin3 leads to the following hybrid model:

H1 : f
(

pσ(t),x(t)
)

= pT
σ(t)x(t) − 1 = 0 (5.5)

Thus, in this context algorithm (5.4) can be directly used to robustly segment the video sequence. It

is also worth stressing that as a by-product of our method we can also perform key frame extraction

by selecting I(t) corresponding to the minimum ‖η(t)‖ value in a segment (e.g. the frame with the

smallest fitting error) as a good representative of the entire segment.

3Note that this always can be assumed without loss of generality due to the presence of noise in the data.
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The content of a video sequence usually changes in a variety of different ways. For instance: the

camera can switch between different scenes (e.g. shots); the activity within the scene can change over

time; objects or people can enter or exit the scene, etc. There is a hierarchy in the level of segmentation

one would require. The noise level ǫ can be used as a tuning knob in this sense.

5.1.3.2 Segmentation of Dynamic Textures:

Modeling, recognition, synthesis and segmentation of dynamic textures have drawn a significant atten-

tion in recent years (e.g. see for instance [13, 62, 81, 82]). In the case of segmentation tasks, the most

commonly used models are mixture models, which are consistent with our hybrid model framework.

In our sequential sparsification framework, the problem of temporal segmentation of dynamic textures

reduces to the same mathematical problem as problem 7, with the difference that now the underlying

hybrid model should take the dynamics into account. First, dimensionality reduction is performed via

PCA (I(t) 7−→ y(t) ∈ R
d) and then the reduced-order data is assumed to satisfy a simple causal

autoregressive model similar to the one in [62]. Specifically, the hybrid model we use is:

H2 : f
(

pσ(t), {y(k)}t
k=t−n

)

= pT
σ(t)









y(t − n)
...

y(t)









− 1 = 0 (5.6)

where n is the regressor order. This model, which can be considered as a step driven ARX model, was

found to be effective experimentally4 .

5.1.4 Experiments

5.1.4.1 Video Segmentation:

To evaluate the proposed method for video segmentation, we used three different video sequences

(roadtrip.avi, mountain.avi, drama.avi and family.avi) available from http://-

www.open-video.org. The original mpeg files were decompressed, converted to grayscale and

title frames were removed. Each sequence shows a different characteristic on the transition from one

4The independent term 1 here accounts for an exogenous driving signal. Normalizing the value of this signal to 1,

essentially amounts to absorbing its dynamics into the coefficients p of the model. This allows for detecting both changes

in the coefficients of the model and in the statistics of the driving signal.
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shot to the other. The camera is mostly non-stationary, either shaking or moving. We applied sequen-

tial subspace identification, GPCA, a histogram based method and an MPEG method for segmenting

the sequences. For the first two methods, we preprocessed each frame by downsampling it by four and

projecting to R
3 using principal component analysis (PCA). For histogram based method, we used

bin to bin difference (B2B) with 256 bin histograms and window average thresholding as suggested in

[63]. This method has two different parameters. MPEG method [64] is based on DC-difference im-

ages. This method requires seven different parameters, one of which is very sensitive to the length of

the gradual transitions. In our experiments we adjusted the parameters of both methods, by trial and

error, to get the best possible results. Hence the resulting comparisons against the proposed sequential-

sparsification method correspond to best-case scenarios for both MPEG and B2B.

In the roadtrip sequence, the shot changes are in the form of cuts. The first three segments, captured

in a moving car, have frames switching between the driver and views of country side through the car

windows. The last segment, captured from outside the car, shows the car passing by and moving away

so that there is an extreme change in the view angle. Figure 5.1(c) shows the results for this sequence.

The mountain sequence consists of five shots, connected via three gradual transitions and one cut.

The transitions are in the form of approximately forty frames long dissolving effect. Figure 5.1(b)

shows our groundtruth segmentation together with the initial and final frames of each shot. The results

obtained by applying different methods are shown in 5.1(d).

In fact, drama sequence consists of a single shot. However, the semantic meaning of the sequence

changes as the actors and actresses enter and exit the scene. Hence, it is still desirable to segment the

video so that the whole story can be summarized by using just one frame from each segment. Figure

5.1(e) shows the groundtruth segmentation5 together with some key frames. The sequence starts with

an empty room, then the first actor enters the empty room during the first transition. The first actor

leaves the scene between frames 234 and 273. After approximately 20 frames of empty room, the

second actor, the actress and the first actor enter the scene. Hence, three people are in the room during

segment 3. In the final transition the second actor exits leaving the first actor and the actress back in

the room. The segmentation results for this sequence are also show in 5.1(g).

Family sequence consists of six shots, connected via gradual transitions of different lengths as shown

in Figure 5.1(f). The segmentation results for this sequence are given in Figure 5.1(h).

Finally, Table 5.1 shows the Rand indices [60] corresponding to the clustering results obtained using

the different methods, providing a quantitative criteria for comparison. Since Rand index does not

5Since the segments are not well defined in this case, the groundtruth segmentation is not unique.
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Roadtrip Mountain Drama Family

Our Method 0.9373 0.9629 0.9802 0.9638

MPEG 1 0.9816 0.9133 0.9480

GPCA 0.6965 0.9263 0.7968 0.8220

Histogram 0.9615 0.5690 0.8809 0.9078

TABLE 5.1: Rand indices

handle dual memberships (e.g. in the ground truth there are data points in transitions that may either

be considered in the previous or the latter segment), the frames in transition are neglected while cal-

culating the indices. These results show that indeed the proposed method does well, with the worst

relative performance being against MPEG and B2B in the sequence Roadtrip. This is mostly due to

the fact that the parameters in both of these methods were adjusted by a lengthy trial and error pro-

cess to yield optimal performance in this sequence. Indeed, in the case of MPEG based segmentation,

which has seven adjustable parameters, the ones governing cut detection were adjusted to give optimal

performance in the Roadtrip sequence, while the five gradual transition parameters were optimized for

the Mountain sequence.

5.1.4.2 Temporal Segmentation of Dynamic Textures:

For temporal segmentation of dynamic textures, we used the synthetic dynamic texture database (avail-

able from http://www.svcl.ucsd.edu/projects/motiondytex/synthdb/) to gener-

ate a dataset consisting of dynamic textures that change only temporally. We extracted patches of size

35× 35× 60 from each segment in the database and concatenated them in time. We applied our algo-

rithm to find the frame number at which the video sequence switches from one texture to another one.

Since the number of switches is unknown to our method, there were cases where the method found ex-

tra changes or missed an existing change. Table 5.2 shows the precision and recall rates over a hundred

sequences for a fixed noise level. We used fourth order regressors. A change detected within a window

of the size of the regressor order from the true frame of change is considered a correct detection. Some

sample patches of dynamic textures are shown in figure 5.2.

Most of the false positives occurred in the sequences that contain flame. This is probably due to the

fact that the variance of the stochastic process noise necessary to explain the dynamics of flame is a lot

larger than the other textures. Since we used the same noise bound for all dynamic texture experiments,

this resulted in extra segments in the sequences that contain flame.
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FIGURE 5.1: Video Segmentation Results. First and third row: Ground truth segmentation. Second

and last row: Changes detected with different methods. Value 0 corresponds to frames within a

segment and value 1 corresponds to the frames in transitions.
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FIGURE 5.2: Sample dynamic texture patches. From left to right: water, flame, steam.

Sequence Type Precision Recall

Two Different Textures 0.8384 0.9167

Three Different Textures 0.7362 0.6061

TABLE 5.2: Results on Dynamic Texture Database

Next, we consider two more challenging sequences. In the first one, we appended in time one patch

from smoke to another patch from the same texture but transposed. Therefore, both sequences have

the same photometric properties, but differ in the main motion direction: vertical in the first half and

horizontal in the second half of the sequence. For the second example, we generated a sequence of

river by sliding a window both in space and time (by going forward in time in the first half and by

going backward in the second). Hence, dynamics due to river flow are reversed. For these sequences

both histogram and MPEG methods fail to detect the cut since the only change is in the dynamics. On

the other hand, the proposed method correctly segments both sequences. These results are summarized

in Figure 5.3.
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FIGURE 5.3: Results for detecting change in dynamics only. Top: Smoke sequence concatenated with

transposed dynamics. Bottom: River sequence concatenated with reversed dynamics.
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FIGURE 5.4: An image pair with 3 relocated objects with noisy correspondences superimposed.

5.2 GPCA with Denoising: A Moments-Based Convex Approach

5.2.1 Introduction and Motivation

Many problems of practical interest can be reduced to identifying a combination of an unknown num-

ber of subspaces and quadratic surfaces from sample points. Examples include among others image

clustering/classification, segmentation of video sequences, motion segmentation under affine and per-

spective projections, and identification of piecewise affine systems [1, 8, 47, 80, 83]. In the ideal

case of noiseless data, the problem can be elegantly solved using an algebraic approach, General-

ized Principal Components Analysis (GPCA) [8], that only entails finding the null space of a matrix

constructed from the data. In the case where the data is corrupted by noise, pursuing this approach

requires first estimating the null space of a matrix whose entries depend polynomially on the noise,

a non–trivial problem. If the noise is small, an approximate solution to this problem is given by the

subspace associated with the smallest singular value of the matrix [8]. Recently, an improved method

has been proposed [10] based on using a linearization analysis to reduce the problem to minimizing

the Sampson distance from the data points to the zero set of a family of polynomials associated with

the algebraic surfaces. In principle this approach leads to a constrained non-linear optimization prob-

lem. However, an approximate solution can be obtained by solving a generalized eigenvalue problem

and improved using gradient descent methods. While this approach can successfully handle moderate

noise levels, its performance degrades substantially as the noise level increases, as illustrated next.

Consider the image pair shown in Fig. 5.4, taken from [84], where each point coordinate has been

corrupted by uniform random noise. The goal here is to estimate the motion and assign each point to a

rigid object. As shown in [8] (see also Section 5.2.4) this problem can be reduced to that of assigning
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(a) (b) (c)

FIGURE 5.5: Sample segmentation results and mean misclassification rates. (a): GPCA segmentation

(mean misclassification rate: 31.1%). (b): RGPCA segmentation (mean misclassification rate 14.9%).

(c): Proposed algorithm (mean misclassification rate 3.7%). The image size is 600×800 and the noise

level is ±10 pixels.

points to (an unknown number of) subspaces, and hence solved using GPCA. Figures 5.5 (a) and (b)

show a typical outcome when applying the original GPCA method and its robust version (RGPCA)

[10], and summarizes the results of 20 random runs with ±10 pixels noise level. As expected, while

robust GPCA outperforms GPCA, it still has a relatively large misclassification rate.

Contributions of this section:

This section is motivated by the example above. Our goal is to develop a computationally tractable

algorithm for segmenting a mixture of subspaces and quadratic surfaces capable of handling not nec-

essarily small amounts of noise with a-priori unknown statistical properties. Specifically, the main

contributions of this section are:

• Theoretical: Our main theoretical contribution shows that the problem of estimating a multi-

variate polynomial Q(x), with a-priori bounded order, from noisy measurements of its zero set

can be reduced to a constrained rank minimization problem where all the matrices involved are

affine in the decision variables and the constraints are convex. The significance of this result

is that it allows for eliminating the polynomial dependency on the (unknown) noise terms that

renders the problem of estimating Q (or equivalently the null space of the Veronese matrix in

GPCA) difficult, at the price of adding additional (but convex) constraints.

• Algorithmic: The theoretical results outlined above allow for recasting the problem of seg-

menting a mixture of subspaces and quadratic surfaces into a constrained rank minimization
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problem. Although in principle rank minimization problems are NP hard, this is a very active

research area in optimization, and in the past few years a number of efficient convex relaxations

have been proposed. Since all matrices involved are affine in the decision variables, the result-

ing overall problem is convex and can be efficiently solved, leading to a tractable segmentation

algorithm. As we illustrate in this section, this algorithm performs well, even in the presence of

substantial noise. An example of this situation is shown in Figure 5.5 (c).

5.2.2 Problem Statement

Let A
.
= S1∪S2∪ . . . Sn denote an arrangement of subspaces Sk embedded in an ambient space of di-

mension D. To this arrangement of subspaces one can associate a set Vn
A of homogeneous multivariate

polynomials Qj(x) of degree n that has A as its zero set, that is:

Vn
A

.
= {Qj(x) ∈ Pn : Qj(x) = 0 ⇐⇒ x ∈ A} .

Following [10], in the sequel we will refer to the set Vn
A as the set of vanishing polynomials of the

arrangement A. Note that each polynomial Qj(x) can be written as Qj = νn(x)T cj , where the vector

cj ∈ R
m, m =

(n+D−1
D−1

)

, contains the coefficients of the vanishing polynomial in appropriate order.

It follows that given Np noiseless samples x1, . . . ,xNp ∈ A, the vectors cj span the null space N of

the matrix V(x) =
[

νn(x1) νn(x2) . . . νn(xNp)
]T

. Thus these vectors (and hence a basis for Vn
A)

can be found via a simple singular value decomposition of V(x). On the other hand, in the case of

noisy samples xi = x̂i + ηi the matrix V depends polynomially on the noise ηi. Thus, when ‖η‖ is

not small, the procedure outlined above no longer works, even when replacing the null space N of V

with the subspace associated with its smallest singular values.

Our goal is to develop a computationally tractable algorithm (and the supporting theory) that allows

for estimating both the set of vanishing polynomials and the subspaces from samples corrupted by (not

necessarily small) noise. Specifically, we address the following problem:

Problem 8. [Polynomial estimation and subspace segmentation] Given a (sufficiently dense) set of

noisy samples xi = x̂i + ηi of points x̂i drawn from an arrangement of subspaces A, and a–

priori bounds on the number of subspaces, n, and the norm of noise ‖ηi‖2 ≤ ǫ:

1.- Estimate a basis for Vn
A, the set of vanishing polynomials of A of degree up to n.

2.- Estimate a subspace S⊥
k normal to each subspace Sk.
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3.- For each noisy sample xi find a subspace Sk, a point x̂i ∈ Sk and an admissible noise ηi,

‖ηi‖ ≤ ǫ such that xi = x̂i + ηi.

Our main result establishes that the problem above can be reduced to a constrained rank minimization

problem where all the matrices involved are affine in the optimization variables. Once this result is es-

tablished, tractable algorithms can be obtained by appealing to recently introduced convex relaxations

of rank minimization problems.

5.2.3 Main Results

In this section we present the main theoretical result of the section that allows for recasting Problem

8 into a constrained rank minimization form that can be further relaxed to a convex semi-definite

optimization problem.

Theorem 9. Let {Qj(x)} denote the set of polynomials of an arrangement of subspaces A and denote

by nq its dimension. Consider a set of measurements corrupted by norm-bounded noise

xi = x̂i + ηi, i = 1, 2 . . . , Np (5.7)

where x̂i ∈ A and ‖ηi||2 ≤ ǫ. Then:

1. If nq > 1, there exists an admissible noise sequence ηi and Np points x̂i satisfying (5.7) and

such that Qj(x̂i) = 0 if and only if there exist Np sequences mi
.
= {mα} such that the following

conditions hold:

rank
{

M(x,m1, . . . ,mNp)
}

= h − nq (5.8)

Li(mi) � 0, i = 1, . . . , Np (5.9)

Ki(ǫ,mi) � 0, i = 1, . . . , Np (5.10)

rank(Li(mi)) = 1, i = 1, . . . , Np (5.11)

where h =
(

n+D−1
D−1

)

; M
.
= E(V)6 and Li and Ki are the moment matrices, defined in (2.21),

associated with ηi (i.e. the noise affecting the ith sample point).

6Here the expectation operator E acts elementwise on V(x̂) = V(x − η). That is, M is constructed by replacing all

the monomials in the noise terms η in V(x − η) with the corresponding moments.
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2. If nq = 1, e.g. when all the subspaces Sk have dimension D− 1, then the rank constraint (5.11)

is no longer required (e.g only (5.8)-(5.10) need to be enforced.)

Proof. First, if there exits a noise sequence η∗
i such that

Qj(xi − η∗
i ) = νn(xi − η∗

i )
Tcj = 0 for all i, j,

then, the moments mi of the atomic probability measures µi with

Probµi
(ηi = η∗

i ) = 1, Probµi
(ηi 6= η∗

i ) = 0.

trivially satisfy (5.8) through (5.11) and the vectors cj span the null space of the matrix M(x,m1, . . . ,mNp).

To prove the converse, lets first look at part 1. We start by noting that rank(Li) = 1 is equivalent to the

existence of an unique atomic measure µi with one atom whose moments are equal to mi (see [42])

and, hence, there exist η∗
i such that

Probµi
(ηi = η∗

i ) = 1, Probµi
(ηi 6= η∗

i ) = 0.

Therefore, for this measure, one has

V(x − η∗) = M(x,m1, . . . ,mNp).

Note that (5.10) implies that ‖η∗
i ‖2 ≤ ǫ. Given this, let cj be linearly independent vectors which span

the null space of the matrix V(x−η∗). To conclude this part of the proof, define Qj(xi) = νn(xi)
Tcj

and x̂i
.
= xi − η∗

i . From the reasoning above it follows that

Qj(x̂i) = νn(x̂i)
T cj = νn(xi − η∗

i )
Tcj = 0 for all i, j.

We now turn our attention to part 2. Since condition (5.11) might not be satisfied, the measures µi

compatible with the moment sequences mi are not necessarily atomic measures. However, equa-

tion (5.8) implies that N , the null space of the matrix M(x,m1, . . . ,mNp), has dimension one. Let c

span N , i.e.,

M(x,m1, . . . ,mNp)c = 0.
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Linearity of expectation implies that

Eµi
[νn(xi − ηi)

T c] = 0.

Therefore, there exist η+
i and η−

i within the noise bounds such that

νn(xi − η+
i )T c ≥ 0 and νn(xi − η−

i )T c ≤ 0.

Since νn(xi − ηi)
T c is a polynomial and, hence, a continuous function of ηi, there exists a η∗

i such

that

νn(xi − η∗
i )

T c = 0.

The proof is concluded by defining the unique (up to a multiplying constant) vanishing polynomial

Q(x̂i) = νn(x̂i)
Tc which, given the reasoning above, satisfies

Q(x̂i) = νn(x̂i)
Tc = νn(xi − η∗

i )
T c = 0 for all i.

Remark 11. Note that, without the rank constraint (5.11), a finite order approximation in (5.9) and (5.10)

only leads to necessary conditions for mi to be moments of a probability distribution. Hence, imple-

menting the approach in part 2 with these truncated matrices only provides an approximation of the

true Q(·). However, the approximation converges to the true solution as the moment approximation

order increases.

5.2.3.1 A Convex Relaxation

Although there are a few methods to solve rank constrained semidefinite programs (see for instance

[85]), these are usually computationally intensive and do not have convergence guarantees. For this

reason, we proceed by relaxing the conditions in order to obtain a convex program that approximates

the original problem and that can be efficiently solved with off–the–shelf solvers. To this end, we first

consider the following problem:

minimizemi
rank

{

M(x,m1, . . . ,mNp)
}

subject to L
⌈n

2 ⌉
i (mi) � 0 i = 1, . . . , Np

K
⌈n

2 ⌉
i (ǫ,mi) � i = 1, . . . , Np

(5.12)
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where we truncate the moment matrices such that they only contain the moments up to order n (n+1 if

n is odd) which is the maximum order of the noise monomials appearing in the embedded data matrix

V.

Equation (5.12) is an affine matrix rank minimization problem subject to convex constraints. Although

rank minimization is an NP–Hard problem, efficient convex relaxations are available. In particular,

good approximate solutions can be obtained by using a log–det heuristic [51] that relaxes rank mini-

mization to a sequence of convex problems7. Inspired by the adaptive step size defined for weighted

ℓ1 minimization in [65], the following problem is solved at each iteration:

minm1:Np ,Y,Z trace(W
(k)
y Y) + trace(W

(k)
z Z)

subject to

[

Y M(m1:Np)

M(m1:Np)
T Z

]

� 0

L
⌈n

2 ⌉
i (mi) � 0, K

⌈n
2 ⌉

i (mi) � 0 i = 1, . . . , Np

(5.13)

where W
(k+1)
y = (Y(k) + λkI)

−1, W
(k+1)
z = (Z(k) + λkI)

−1 are weights with Y(k),Z(k) being the

arguments of the optimal solution in the kth iteration; λk, the regularization parameter, is set to the

(h−nq+1)th largest singular value of current optimal M in iteration k; and W
(0)
y , W

(0)
z are initialized

with identity matrices8. Note that the matrices M, L and K are affine in the moment variables mi as

defined in Theorem 9, and Y and Z are symmetric positive definite auxiliary variables. Hence, (5.13)

is a convex semidefinite program.

Remark 12. Although when nq > 1, the relaxation is less tight since we drop the rank–constraints

on the moment matrices, in practice the moment matrices found by solving (5.13) are close to rank

1. Hence approximating them with rank 1 matrices using a singular value decomposition (SVD) gives

satisfactory results (for example see Fig. 5.8).

After solving (5.13), it is possible to extract an admissible noise sequence from the moment matrix L

as described in [87]. In particular, when Li has rank 1, one can retrieve the noise from the elements of

the first singular vector of Li corresponding to first order moments. Once an admissible noise sequence

is obtained, we denoise the data and proceed with segmentation using polynomial differentiation as in

[8].

7Although there are very recent faster algorithms for rank minimization (e.g. [86]), they currently cannot handle semidef-

inite constraints.
8The first iteration solves the nuclear norm heuristic. Then each iteration aims to reduce the rank further through the

weighting scheme. In our experiments, the convergence is typically achieved within the first 10 iterations.
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5.2.3.2 Extension to Quadratic Surfaces

In this section we briefly present a straightforward extension of our moments-based approach to the

segmentation of a mixture of quadratic surfaces discussed in [1]. In particular, we are interested in

the class of problems that arises in the context of motion segmentation from two perspective views,

given the point correspondences [1, 88, 89]. The main idea is that point correspondences of a single

rigid body satisfy the epipolar constraint xT
1 Fx2 = 0 9 where F ∈ R

3×3 is the fundamental matrix and

xj = (xj , yj, 1)
T for j = 1, 2, are the corresponding points in two views in homogeneous coordinates.

In the case of n rigid objects, all point correspondences satisfy

n
∏

i=1

xT
1 Fjx2 = 0. (5.14)

Let z = (x1, y1, x2, y2)
T be a joint vector of corresponding pairs and define the perspective embedding

of degree 2n, π2n(z) : R
4 → R

m, m =
(2+n

n

)2
as

π2n(z)
.
=
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where the exponents of the monomials satisfy α
(k)
1 + α

(k)
2 ≤ n, α

(k)
3 + α

(k)
4 ≤ n for all k = 1, . . . ,m.

As in section 5.2.2, we can associate with Eq. (5.14) a polynomial Qj(z) = cT
j π2n(z) where cj is

the coefficient vector. It follows that, given Np noiseless corresponding pairs z1, . . . , zNp , the vectors

cj span the null space N of the embedded data matrix P(z) =
[

π2n(z1) π2n(z2) . . . π2n(zNp)
]T

.

In the noisy case, P(z) depends polynomially on the noise η. However, as before, we can resort to

moments–based rank minimization of E(P) to find a noise sequence η∗ that renders P rank deficient

and obtain its null space (and hence Qj). Once the data is denoised using η∗, we proceed as in [1].

First, we form the mutual contraction subspaces between different pairs (zk, zl) from the derivatives

and hessians of polynomials Qj . Applying spectral clustering to the similarity matrix built from the

subspace angles between mutual contraction subspaces leads then to the desired segmentation.

9As shown in [90], this equation can be written as a quadratic form in the joint image space.
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5.2.3.3 Handling Outliers

Upto this point, we assume that the data is only corrupted by norm bounded noise. However, this

assumption could be quite conservative in many real-world problems due to the existence of outliers

that do not belong to any of the algebraic surfaces. One way of eliminating outliers is proposed in

[10] where authors use methods from robust statistics such as influence functions and multivariate

trimming. In this section, we propose a different approach. Namely, we take a step towards handling

outliers in a principled way within our optimization framework. For simplicity of exposition, we

consider the setup in Problem 8 with the addition of outlying data points. The extension to more

general algebraic surfaces follows similar lines.

We call the sample point xj an outlier if the Euclidean distance of xj to the subspace arrangement A

is more than the noise bound ǫ, and an inlier otherwise. The index sets corresponding to inliers and

outliers are denoted by Iin ⊆ {1, . . . , Np} and Iout = {1, . . . , Np} \Iin, respectively. Let Vin be the

matrix whose rows are νn(x̂i)
T for all i ∈ Iin. Then, for all j ∈ Iout and for any noise value ηj with

‖ηj‖2 ≤ ǫ, νn(xj − ηj)
T will not be in the row space of Vin. Thus, if we form M as in Theorem

9, M will have some “outlying” rows corresponding to outliers. In order to have a rank deficient

M, we should compensate for the outliers. With this observation in mind, we consider the following

optimization problem:

minm1:Np ,E ‖E‖rs

subject to rank
{

M(x,m1, . . . ,mNp) + E
}

= h − nq

Li(mi) � 0, i = 1, . . . , Np

Ki(ǫ,mi) � 0, i = 1, . . . , Np

rank(Li(mi)) = 1, i = 1, . . . , Np

(5.15)

where ‖E‖rs counts the number of non-zero rows in E (i.e. row sparsity) and the rest is the same as in

Equations (5.8)-(5.11). Essentially, non-zero rows of E correspond to outlying data points, hence in a

sense (5.15) looks for a compatible model with minimum number of outliers.

As before, we start by relaxing the rank constraints. We drop the rank constraints on Li’s and move

the constraint on M + E to the objective with a Lagrange multiplier:

minimizemi,E rank
{

M(x,m1, . . . ,mNp) + E
}

+ γ ‖E‖rs

subject to L
⌈n

2 ⌉
i (mi) � 0 i = 1, . . . , Np

K
⌈n

2 ⌉
i (ǫ,mi) � i = 1, . . . , Np

(5.16)
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Row sparsity is a non-convex function; it is indeed equivalent to sparsity in vector valued sequences

if we treat each row Ei of the matrix E as a vector in the sequence. Hence, the relaxation developed

in Lemma 1 can be applied in this case as well. As for the rank, nuclear norm relaxation can be used.

On top of these relaxations, we adopt the weigthing scheme to obtain following convex program:

minm1:Np ,Y,Z trace(W
(k)
y Y) + trace(W

(k)
z Z) + γ(k)

∑Np

i=1 w
(k)
i ‖Ei‖∞

subject to

[

Y M(m1:Np) + E

M(m1:Np)
T + ET Z

]

� 0

L
⌈n

2 ⌉
i (mi) � 0, K

⌈n
2 ⌉

i (mi) � 0 i = 1, . . . , Np

(5.17)

where W
(k+1)
y = (Y(k) +λkI)

−1, W
(k+1)
z = (Z(k) +λkI)

−1, w
(k+1)
i = 1

∥

∥

∥E
(k)
i

∥

∥

∥

∞

+δ
are weights with

Y(k), Z(k) and E(k) being the arguments of the optimal solution in the kth iteration; the regularization

parameter λk is set to the (h − nq + 1)th largest singular value of current optimal M + E in iteration

k; and δ is another small regularization constant. W
(0)
y , W

(0)
z are initialized with identity matrices;

and w
(0)
i = 1/

√

Np for all i. Lagrange multiplier γ(0) is a tuning parameter that regulates the amount

of outliers. A small value of γ(0) would allow lots of data points to be classified as outliers, whereas a

large value might result in too few outliers preventing the algorithm to find a rank deficient solution.

Once γ(0) is appropriately initialized, γ(k) is set to γ(k) = γ(0)

∥

∥

∥W
(k)
y

∥

∥

∥

2
+
∥

∥

∥W
(k)
z

∥

∥

∥

2

2
∥

∥

∥
[w

(k)
1 ,...,w

(k)
Np

]
∥

∥

∥

2

so that the effect of

rank minimization term and row sparsity term are approximately constant all through the iterations.

5.2.4 Experiments

In this section we illustrate the ability of the proposed method to deal with relatively large noise using

both synthetic and real data. The data we use here is taken from the literature and thus publicly

available.10

5.2.4.1 Synthetic Data

Example 1: First, we use synthetic data to investigate the performance of the moments–based method

for different number of subspaces, different subspace dimensions and different noise levels. For each

set of examples, we generated 20 random instances of the problem data with data points lying on a

subspace arrangement corrupted by random noise in the direction of subspace normals with uniform

10A reference implementation is provided at http://www.coe.neu.edu/∼necmiye/cvpr10.htm
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random magnitude in [0.8ǫ, ǫ]. All data points were sampled within the unit hypercube of the ambient

space, so that the noise level, ǫ, corresponds roughly to the percent noise level. The segmentation was

performed using the convex relaxation described in section 5.2.3.1, implemented in Matlab using CVX

toolbox [18], and performance was evaluated in terms of the average, over all runs, of the worst case

fitting error,

errf = max
i∈[1,Np]

min
k∈[1,n]

bT
k xi

where bk’s are the subspace normals found by each algorithm. The results are summarized in Table

5.3, showing that in all cases the moments-based method outperforms both GPCA and RGPCA.

D dk N ǫ Moments errf GPCA errf RGPCA errf
4 [3, 3] [50, 50] 0.15 0.250 (0.183) 0.488 (0.477) 0.253 (0.234)

3 [2, 2] [50, 50] 0.10 0.101 (0.100) 0.393 (0.334) 0.192 (0.134)

3 [2, 2] [50, 50] 0.15 0.154 (0.151) 0.488 (0.443) 0.289 (0.225)

3 [2, 2] [50, 50] 0.20 0.227 (0.205) 0.543 (0.539) 0.370 (0.329)

3 [2, 2, 2] [40, 40, 40] 0.15 0.259 (0.206) 0.499 (0.477) 0.421 (0.398)

TABLE 5.3: Synthetic Data Results. D and dk denote the dimension of the ambient space and

subspaces, respectively. N shows the number of samples per subspace. ǫ denotes the true noise level.

The last three columns show the mean and median (in parenthesis) fitting errors.

Figure 5.6 shows a typical noisy data set and the denoised version obtained by substituting the noise

estimates found via moments. As illustrated there, it is possible to align the noisy data points on

subspaces before the clustering stage. Hence applying GPCA clustering to these almost noiseless data

points avoids the difficulties entailed in using polynomial differentiation in the presence of noise.

Example 2: This example illustrates the case where subspaces have different dimensions. In particular,

we considered a subspace arrangement consisting of two lines and a plane in R
3. The set-up is similar

to the simulations in Example 1 with dk = [2, 1, 1], N = [40, 40, 40] and ǫ = 0.1. Figure 5.8 shows the

result where it can be seen that moments-based method successfully denoised the data. Quantitatively,

the fiiting error for our algorithm is errf = 0.09, whereas the fitting error for GPCA is 0.2575.

Example 3: This example illustrates the outlier handling algorithm. We considered a subspace ar-

rangement consisting of two planes in R
3. We sampled 50 data points within the unit cube from each

plane. We corrupted the data with noise along the normal direction of the subspaces with uniform

random magnitude in [0.12, 0.15]. Additionally, we contaminated the data with 10 outliers sampled

from a multivariate Gaussian distribution with zero-mean and identity variance. We solved the prob-

lem using algorithm (5.17) with γ(0) = 17. The data points corresponding to non-zero rows of the E



Chapter 5. Clustering Data into Multiple Unknown Subspaces 91

FIGURE 5.6: Example using synthetic data laying on two planes in R
3. Here the red stars and blue

plus signs indicate the original (noisy) and the denoised data points, respectively.

matrix were classified as outliers. We denoised the rest of the data points (i.e. inliers) with the noise

estimates obtained with moments-based optimization. The results are shown in Fig. 5.9.

5.2.4.2 2-D motion Estimation and Segmentation

Next, we consider the problem of simultaneous multiple 2-D motion estimation and clustering from

two images. Let (x
(n)
i ,y

(n)
i ) be the coordinates of the nth feature point in the ith image. The coordi-

nates of this point across frames are related through

[

x
(n)
1

y
(n)
1

]

= Rj

[

x
(n)
2

y
(n)
2

]

+ Tj
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FIGURE 5.7: Fitting errors for GPCA, RGPCA and moments-based methods for the example in

Fig. 5.6.

where (Rj ,Tj) are the rotation and translation matrices of the motion of the jth object. Rearranging

shows that the vectors, f (n) = [x
(n)
1 ,y

(n)
1 ,x

(n)
2 ,y

(n)
2 , 1]T corresponding to points belonging to the

same object j lay on a 3 dimensional subspace in R
5. If multiple objects with different motions are

present, each lays in a different subspace and thus, in the noiseless case, can be segmented using

GPCA [8].

The image pair shown in Fig. 5.4 is taken from [84]. We manually marked the feature correspondences

and then added uniform random noise to each feature point coordinate in both images. We formed the

vectors f (n), and projected them to R
4 using a 5× 4 matrix with orthonormal columns. Note that such

a projection preserves the subspace clusters with probability 1. Specifically, we performed an SVD

of the matrix F = [f (1), . . . , f (N)] = UDVT ) and projected the data using the first 4 columns of U

(i.e.X = UT
1:4F). Finally, we applied our method, GPCA and RGPCA to cluster these 4-D vectors

in X. The results, along with a typical segmentation, are summarized in Fig. 5.5, showing that the

moments–based algorithm yields a substantially lower misclassification rate.
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FIGURE 5.8: Example using synthetic data lying on two lines (blue and green) and a plane (transpar-

ent red) in R
3. Here the red stars and blue plus signs indicate the original (noisy) and the denoised

data points, respectively.

5.2.4.3 Two View Perspective Motion Segmentation

In this section, we demonstrate the performance of our method in the problem of motion segmentation

from two perspective views and compare against hybrid quadratic surface analysis (HQSA) [1], using

both synthetic and real data.

First, we artificially generated two teapots and projected 95 points from each teapot surface to the

image plane using a perspective camera model. Then we moved both teapots to different locations and

generated a second image proceeding in the same way. The two views used are shown in Fig. 5.10.

Then, we ran 20 random trials by adding iid zero mean Gaussian noise with variance 0.15 to each

image point in both images. The mean misclassification error for moments-based method is around

2% whereas the mean misclassification error for HQSA is 23%.
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FIGURE 5.9: Example using synthetic data lying on two planes in R
3. Here the red stars and blue plus

signs indicate the original (noisy) and the denoised data points, respectively. Cyan circles indicate the

points identified as outliers.

Next we consider two real examples. Figure 5.11 shows two piles of boxes that are moved in two

different directions. This example is taken from [91]. We used the first and ninth frames of the

sequence as our two perspective views. The missing tracks were ignored. In the resulting segmentation

HQSA misclassifies 29 points whereas the moments-based approach misclassifies only 10 points.

Since our model takes into account only additive noise and this is not the only source of error, the final

classification is not perfect. However, the moments-based approach still outperforms HQSA. For the

next example, we used as perspective views the first and last frames of the “truck2”’ sequence from

the Hopkins 155 dataset [92]. In this case, the misclassification rate for the moments-based approach

is 9.06% (it only misclassifies the left rear wheel as background). On the other hand, HQSA has a

misclassification rate of 42.90%, clustering half of the points on the truck as background.

Sequence Moments-based HQSA

teapot 2.1% 23.42%

boxes 4.05% 11.74%

truck2 9.06% 42.90%

TABLE 5.4: Misclassification rates for perspective motion segmentation examples.
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FIGURE 5.10: Two perspective images of points on teapot surfaces.

(a) (b) (c)

FIGURE 5.11: (a)-(b) First and second images with moments-based segmentation superimposed, 10

misclassified points. (c) Segmentation with the method in [1], 29 misclassified points.

(a) (b) (c)

FIGURE 5.12: (a)-(b) First and second images with moments-based segmentation superimposed (

9.06% misclassification rate). (c) Segmentation with the method in [1] (42.90% misclassification

rate).



Chapter 6

Conclusions and Future Work

We consider the problem of robustly identifying hybrid models from data and minimal a priori as-

sumptions on the model sets and noise level. While this problem is known to be generically NP-hard,

we show that efficient convex relaxations can be obtained by recasting it into an optimization form.

Our main results show that, when an explanation with the minimum number of switches is sought (a

problem relevant for instance in the context of segmentation), the problem can be recast into a sparsi-

fication form and efficiently solved using recently introduced relaxations. A similar idea can be also

used when minimizing the number of submodels. However, in this case, while usually working well in

practice, the sparsification approach is suboptimal. We then consider a related problem when the num-

ber of submodels is known. For this case we develop a moments–based convex optimization approach.

We present parallel results for segmentation of subspace arrangements and more generally algebraic

surfaces. The problem of model (in)validation for switched affine systems is also formulated as an

optimization problem from which it is possible to get convex certificates. The advantages of the pro-

posed techniques over existing methods are illustrated using both simulation examples and non-trivial

problems arising in computer vision. As shown there, while most existing methods perform well in

noiseless scenarios, sparsification–based or moments–based techniques are more robust to noise.

There are some open problems and possible extensions of the proposed methods that have not been

addressed in this dissertation. Future work will include:

• Convergence Analysis: It is important to analyze the convergence properties of proposed iden-

tification schemes. We are currently trying to answer the following questions: “Under what

conditions, does a given algorithm find the true system or segmentation?”; “Is there a noise

96
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level, below which, the algorithms are guaranteed to converge?”. We have some preliminary

convergence results for the the greedy algorithm for minimum number of switches problem.

Future work will include extending these results to other problems and algorithms.

• Robust Control of Switched Linear Systems: The ultimate goal in system identification is usually

to obtain a model so that one can design controllers. There are some very recent results on

control of switching linear systems [93] and L2 induced norm characterization [94] of such

systems. Another direction for future research is to exploit these results for robust control of

switched linear systems.

• Segmentation of 2-D Images and Arbitrary Graphs: Similar to multidimensional extension in

dynamical case, our results in static case can be extended to perform unsupervised segmentation

of natural or medical images. The idea is to form an uncertain graph with nodes on each pixel

and potential edges connecting each neighboring pixels. Each node can be associated with a

value, which is an invariant of the segments (e.g. this could be the intensity if we presume that

the intensity is almost constant within each segment, or a statistics derived from some local

neighborhood of the pixel) plus an uncertainty. Then each potential edge can be associated

with a weight that is the difference of the values of the two nodes connected by that edge.

Sparsifing the weights of this graph will result in a segmentation with least complex boundary.

We have some preliminary results in this direction where we used the intensity values of the

low frequency components of the images as invariants. The future work will include extending

these result to different frequency scales by identifying relevant invariants and also developing

methods to reduce computational complexity so that it can be applied to larger images/graphs

efficiently.

• Improving Computational Efficiency: Although there are efficient algorithms to solve generic

LPs or SDPs, it is possible to achieve further speed-ups or solve larger-scale problems by using

specially designed optimization algorithms that take into account the specific problem struc-

ture. Such algorithms start appearing both for ℓ1-norm minimization (sparsification) and nu-

clear norm minimization (rank minimization). In this thesis, we just used of-the-shelf convex

programming solvers. In the future, we will incorporate the recently developed fast sparsifi-

cation and rank minimization algorithms (with modifications if necessary) with the methods

proposed in this thesis to further improve computational efficiency.



Appendix A

Sparsity Related Proofs

A.1 Proof of Lemma 1

In order to prove the lemma, we need some preliminary results from convex analysis. For a function

f : C → R, where C ⊆ R
n, the conjugate f⋆ is defined as

f⋆(y) = sup
x∈C

(〈x, y〉 − f(x))

Under some technical conditions (see [95] Theorem 1.3.5), which are met here, the conjugate of the

conjugate (i.e. f⋆⋆) gives the convex envelope of the function f .

The proof proceeds now along the lines of that of the Theorem 1 in [32], by computing ‖x‖∗∗o , x ∈ S .

The isomorphism I from S to R
d(T−to+1), which simply stacks the elements of the sequence into a

column vector, naturally induces an inner product on S as 〈x, y〉 = 〈I(x),I(y)〉 =
∑T

t=1 xT (t)y(t).

For f : S → R, f(x) = ‖x‖0, the conjugate function in C
.
= ‖x‖∞ ≤ 1 is:

f∗(y) = sup‖x‖
∞
≤1 {〈x, y〉 − f(x)}

=
∑

i∈λ ‖y(i)‖1 − |λ|
(A.1)
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where λ = {j : ‖y(j)‖1 > 1, j ∈ {1, 2, . . . , T}} is an index set and |λ| is its cardinality.

f∗∗(z) = supy∈S {〈y, z〉 − f∗(y)}

= supy∈S

{
∑

i∈λ y(i)T z(i)

+
∑

i/∈λ y(i)T z(i) −
∑

i∈λ ‖y(i)‖1 + |λ|
}

= supy∈S

{
∑

i∈λ y(i)T [z(i) − sign(y(i))]

+
∑

i/∈λ y(i)T z(i) + |λ|
}

(A.2)

Here we consider two cases:

1) If ‖z‖∞ > 1, it is possible to choose y such that the first term in (A.2) grows unboundedly and

f∗∗(z) → ∞. So the domain of f∗∗ is ‖z‖∞ ≤ 1.

2) If ‖z‖∞ ≤ 1, the first term in the last line of (A.2) is nonpositive. So to maximize the first

term, y(i) values should be chosen small in absolute value for i ∈ λ. Keeping in mind the bounds

imposed on y(i) values by λ, the maximum value of the second term is
∑

i/∈λ ‖z(i)‖∞. Similarly,

supy

{
∑

i∈λ y(i)T [z(i) − sign(y(i))] + |λ|
}

=
∑

i∈λ [‖z(i)‖∞ − 1]+ |λ| =
∑

i∈λ ‖z(i)‖∞. Hence,

f∗∗(z) =
∑T

i=1 ‖z(i)‖∞ .
(A.3)

A.2 Proof of Lemma 2

Let g̃1 = g̃o + h̃ be the solution of the relaxed problem (2.5) and let Io = {t|go(t) 6= 0} be the

indeces of non-zeros elements. From the optimality of g̃1:

T
∑

t=1

||g1(t)||∞ =

T
∑

t=1

||go(t) + h(t)||∞ =
∑

t∈Io

||go(t) + h(t)||∞ +
∑

t/∈Io

||h(t)||∞ ≤
T
∑

t=1

||go(t)||∞

(A.4)

From the last inequality:

∑

t∈Io
||go(t)||∞ −

∑

t∈Io
||h(t)||∞ +

∑

t/∈Io
||h(t)||∞ ≤

∑T
t=1 ||go(t)||∞

∑

t/∈Io
||h(t)||∞ ≤

∑

t∈Io
||h(t)||∞

(A.5)
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Since both g̃1 and g̃o are feasible, Ah̃ = 0 which implies

Ah̃Io = −Ah̃Ic
o

(A.6)

where h̃Io(Ic
o) is the restriction of h̃ to Io(Ic

o , complement of Io). Consider a partition of Ic
o in to

disjoint sets of cardinality k, Ic
o = ∪l

j=1I
c
oj where l ≤ ⌈(T − k)/k⌉. From Eq. (2.6), for all j, we

have:

c1||h̃Io ± h̃Ic
oj
||22 ≤ ||Ah̃Io ± Ah̃Ic

oj
||22 ≤ c2||h̃Io ± h̃Ic

oj
||22 (A.7)

From parallelogram identity:

< Ah̃Io ,Ah̃Ic
oj

> =
||Ah̃Io+Ah̃Ic

oj
||22−||Ah̃Io−Ah̃Ic

oj
||22

4

≤
c2||h̃Io+h̃Ic

oj
||22−c1||h̃Io−h̃Ic

oj
||22

4

(A.8)

and

− < Ah̃Io ,Ah̃Ic
oj

> =
||Ah̃Io−Ah̃Ic

oj
||22−||Ah̃Io+Ah̃Ic

oj
||22

4

≤
c2||h̃Io−h̃Ic

oj
||22−c1||h̃Io+h̃Ic

oj
||22

4

=
(c2−c1)(||h̃Io ||

2
2+||h̃Ic

oj
||22)

4

(A.9)

From Eq. (A.6):

||Ah̃Io ||
2
2 = − < Ah̃Io ,Ah̃Ic

o
> = − < Ah̃Io ,A

∑

j h̃Ic
oj

>

= −
∑l

j=1 < Ah̃Io ,Ah̃Ic
oj

>

≤
∑l

j=1

(c2−c1)(||h̃Io ||
2
2+||h̃Ic

oj
||22)

4

= c2−c1
4 (l||h̃Io ||

2
2 +

∑l
j=1 ||h̃Ic

oj
||22)

= c2−c1
4 (l||h̃Io ||

2
2 + ||h̃Ic

o
||22)

(A.10)

Now using the norm equivalence identities and eq. (A.5), we have

||h̃Ic
o
||22 =

∑

t∈Ic
o
||h(t)||22

≤
∑

t∈Ic
o
d||h(t)||2∞

≤ d
(

∑

t∈Ic
o
||h(t)||∞

)2

≤ d
(
∑

t∈Io
||h(t)||∞

)2

≤ d
(
∑

t∈Io
||h(t)||2

)2

≤ dk||h̃Io ||
2
2

(A.11)
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Following from eq. (A.10):

c1||h̃Io ||
2
2 ≤ ||Ah̃Io ||

2
2 ≤ (c2−c1)(l+dk)

4 ||h̃Io ||
2
2

≤
(c2−c1)(⌈T−k

k ⌉+dk)

4 ||h̃Io ||
2
2

(A.12)

If c1 >
(c2−c1)(⌈ T−k

k ⌉+dk)

4 , then we can conclude h̃Io = 0 which implies h̃Ic
o

= 0 and g̃1 = g̃o.

Therefore, a sufficient condition for exactness is:

c1

c2
>

T + dk2

T + dk2 + 4k
(A.13)



Appendix B

Recovering the Parameters of the Model

in GPCA

Here we recall, for ease of reference, the polynomial differentiation based procedure proposed in [50]

to recover the parameters of the model once cs is computed. The derivative of ps(r) at a point r is

given by

Dps(r) =
δps(r)

δr
=

s
∑

i=1

∏

j 6=i

(bj
T r)bi (B.1)

Since bi
T r = 0 when r is generated by the ith submodel (i.e. σt(r) = i), it follows from (B.1) that

the parameter vector is given by:

bi =
Dps(r)

eT Dps(r)

∣

∣

∣

∣

σt(r)=i

(B.2)

where eT = [1, 0, . . . , 0].

Since, in general, the association of data points with submodels σt(r) is unknown, one can use the

following heuristic function, suggested in [8], to choose one point from each submodel {rti}
s
i=1:

rti−1 = argmin
rt:Dps(rt)6=0

|ps(rt)|
‖Dps(rt)‖

+ δ
∣

∣(bi
T rt) · · · (bs

T rt)
∣

∣+ δ
(B.3)

where δ > 0 is a small number to avoid division by zero in noise free case.
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Finally, given the parameter vectors {bi}
s
i=1, the mode signal can be computed as follows:

σt = argmin
i=1,...,s

(bi
T rt)

2. (B.4)
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