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Abstract

This paper addresses the problem of robust identification of a class of discrete-time linear hybrid systems, switched linear models, in a
set membership framework. Given a finite collection of noisy input/output data the objective is twofold: (i) establish whether this data
was generated by a system that switches amongst an a-priori known number of subsystems, and (ii) in that case identify a suitable set of
linear models along with a switching sequence that can explain the available experimental information. Our main result shows that these
problems are equivalent to minimizing the rank of a matrix whose entries are affine in the optimization variables, subject to a convex
constraint imposing that these variables are the moments of an (unknown) Borel measure with finite support. The use of well known
(tight) convex relaxations of rank allows for further reducing the problem to a semidefinite optimization that can be efficiently solved.
In the second part of the paper we extend these results to handle sensor failures that result in corrupted input/output measurements.
Assuming that these failures are infrequent, we show that the problem can be recast into an optimization form where the objective is to
simultaneously minimize the rank of a matrix and the number of nonzero rows of a second one. In both cases, appealing to well known
convex relaxations of rank and sparsity leads to overall semidefinite optimization problems that can be efficiently solved. These results are
illustrated with multiple examples showing substantially improved identification performance in the presence of noise and sensor faults.
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1 Introduction and Motivation

In the past few years, considerable attention has been de-
voted to the problem of identifying hybrid systems from
noisy experimental data, under different scenarios. The case
where it is of interest to obtain a model that explains the ob-
served data with the minimum possible number of switches
(relevant for instance for fault detection applications) was
recently addressed in [20], where it was shown that it can
be reduced to a convex optimization problem. On the other
hand, in several situations of practical interest, the number
of subsystems s is known a-priori. For example, the system
is known to switch amongst a given number of operating
points (in the case of control systems), metabolic stages (in
systems biology applications), or classes (computer vision
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and image processing). Thus, in these cases, the goal is to
obtain a model that explains the data with s subsystems.
Unfortunately it is known that, in the presence of unknown–
but–bounded noise, this scenario leads to an NP–hard prob-
lem [21,8]. Several approaches have been proposed to ad-
dress this difficulty [14,3,23,12]. While these are successful
when dealing with relatively small noise levels or moderate
size problems, performance deteriorates as the noise level
or problem size increases. An alternative approach based on
the use of convex optimization was proposed in [19,20,1].
This method tends to work well in practice, but it is not hard
to construct academic counterexamples where it fails, due
to its greedy nature.

Motivated by these difficulties, in this paper we propose
a convex optimization–based approach to the problem of
identifying hybrid systems from noisy input/output data and
some minimal a–priori information (order and number of
subsystems and bounds on the norm of the noise). Note that
in this scenario, no information is available about the distri-
bution of the noise, other than its support. Thus, in the spirit
of set–membership identification, in the sequel the noise will
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be treated as a deterministic, bounded sequence. The start-
ing point is the algebraic procedure due to Vidal et al. [28],
[14]. In the case of noiseless measurements, the (unknown)
parameters of each subsystem are recovered from the null
space of a matrix V(r) constructed from the input/output
data r via a nonlinear embedding (the Veronese map). In the
case of noisy data, the entries of this matrix depend polyno-
mially on the unknown noise terms. Thus, finding a model
in the consistency set (e.g. a model that interpolates the data
within the noise level) is equivalent to finding an admissible
noise sequence η that renders the matrix V(r) rank deficient,
and a vector c in its null space. However, this is not trivial,
given the polynomial dependence noted above. The main re-
sult of this paper shows that the problem of jointly finding η
and c is equivalent to minimizing the rank of a matrix whose
entries are affine in the optimization variables, subject to a
convex constraint imposing that these variables are the mo-
ments of a suitable Borel measure. This result is achieved by
using first an idea similar to that of [11] relating polynomial
optimization and the problem of moments, to eliminate the
polynomial dependence on the optimization variables, albeit
at the price of introducing infinitely many constraints. The
structure of the problem can then be exploited to decouple
it into several finite dimensional smaller ones, each involv-
ing only the moments of a one–dimensional Borel measure.
Combining these ideas with a convex relaxation, similar to
the log-det heuristic of [7], that aims at dropping the rank
of V by one and estimating a vector in its nullspace, allows
for recasting the original problem into a semidefinite opti-
mization form that can be solved efficiently.

In the second part of the paper, we generalize these re-
sults to handle potentially faulty measurements. This prob-
lem arises in many practical situations, typically involving
data collected remotely and transmitted over a channel sub-
ject to outages. In principle, one can circumvent the diffi-
culties associated with faulty measurements by restricting
the identification algorithm to use only those measurements
known to be reliable (note that data records with gaps pose
no particular problems to the algebraic methods mentioned
above). However, the main obstacle in pursuing such an ap-
proach is that neither the underlying dynamics, the switch-
ing sequence nor the location of the faulty measurements
are a-priori known. To address this difficulty, in this paper
we will exploit the fact that the failures under considera-
tion are sparse. When combined with an algebraic geomet-
ric identification algorithm, this observation allows for re-
casting the identification with faulty measurements problem
into an optimization form where the objective is to simul-
taneously minimize the rank of a matrix and the number of
nonzero rows of a second one, both generated from the ex-
perimental information. Finally, the use of recently devel-
oped convex relaxations for problems of this type, leads to
a computationally efficient algorithm, based on the solution
of a semidefinite optimization problem. These results are il-
lustrated with a non–trivial example: classifying human ac-
tivities from video data transmitted over a noisy channel.

The rest of the paper is organized as follows. Section 2

presents some background results related to the problem of
moments. In section 3, we formally state the problem un-
der consideration and present a solution to this problem. In
section 4, we address the issue of handling outliers. Section
5 illustrates the proposed method with several academic ex-
amples and a practical one. Finally, section 6 concludes the
paper with some remarks.

2 PRELIMINARIES

For ease of reference, we summarize next the notation used
in the paper and recall some results required to recast the
identification problem into a convex optimization form.

2.1 Notation

By x and M, we denote a vector in Rn and a matrix in
Rn×m, respectively. ‖x‖∞

.
= supi |xi| is the ∞-norm of

a vector. When clear from context, we also use x to de-
note a sequence {x}Tt=0. ||M||row,0 denotes the number of
nonzero rows of the matrix M. I denotes the identity matrix
of appropriate dimensions. M � N indicates that the matrix
M−N is positive semidefinite. Given a subspace W ⊂ Rn,
W⊥ denotes its orthogonal complement. The Veronese map
of degree s, denoted by νs, is a mapping from Rn to Rm

with m =

(
s+ n− 1

s

)
, defined by νs([x1, . . . , xn]T ) =

[. . . , ξs, . . .]T where ξs .
= xs11 x

s2
2 . . . xsnn ,

∑
si = s, e.g.

all possible monomials of order s, in lexicographical order.
For a given polynomial p(x), its gradient is denoted by ∇p.
Finally, in the sequel P[n](x) denotes the ring of multivari-
ate polynomials in the indeterminate x ∈ Rn. Finally, P[n]

s

denotes the subset of P[n] formed by homogeneous polyno-
mials of degree s.

2.2 Properties of Subspace Arrangements

In this section we briefly recall some results from algebraic
geometry that are key in establishing the convergence prop-
erties of the proposed identification algorithm.

Definition 1 The arrangement A(W ) of a set of subspaces
W = {Wi}si=1 ⊆ Rn is defined as:

A(W )
.
= W1 ∪W2 ∪ . . . ∪Ws (1)

Definition 2 Is(A), the homogeneous component of degree
s of the vanishing ideal of a subspace arrangementA ⊆ Rn
is the set of all homogeneous multivariate polynomials of
degree s in n variables that vanish on all points inA, that is:

Is(A)
.
=
{
p ∈ P[n]

s : p(z) = 0 ∀z ∈ A
}

(2)
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As we will show in the paper, convergence of any inter-
polatory algorithm for identifying a switched linear system
with s subsystems is intimately related to the dimension of
Is(A), where A is the subspace arrangement generated by
the null spaces of each subsystem. Unfortunately, computing
dim[Is(A)] for a generic arrangement is non-trivial (see for
instance [15]). On the other hand, a simple expression exists
for the practically relevant case of transversal arrangements,
defined below. 1

Definition 3 Consider a subspace arrangement of the
form (1) and, for each nonempty subset S of the index set
{1, 2, .., s} define its dimension dS and co-dimension cs as:

dS = dim(∩i∈SWi), cS = n− dS (3)

then, the arrangement A is said to be transversal if

cS = min

(
n,
∑
i∈S

ci

)
for all S ⊆ {1, 2, ..s} (4)

In this case, from the results in [15] it follows that if the co-
dimension of each subspace in the arrangement is 1, then
dim(Is) = 1.

2.3 The Problem of Moments

Given a sequence of scalars {mi}ni=1, the problem of mo-
ments is to determine whether there exists a representing
Borel measure that has {mi} as its first n moments (see ref-
erences [25], [10], [5] for a historical review and details of
the problem). In particular, in the sequel we are interested in
Borel measures whose support is included in bounded sym-
metric intervals of the real line. In this case, the following
theorem provides necessary and sufficient conditions for the
existence of such a measure.

Theorem 1 Given a sequence {mi : i = 1, 2, . . . , n}, there
exists a Borel measure µ(.) with support contained in X .

=
[−ε, ε] such that µ(X ) = 1 and

mi = Eµ(xi) =

∫ ε

−ε
xiµ(dx)

if and only if

• when n = 2k + 1 (odd case), the following holds

εM(0, 2k) �M(1, 2k + 1) (5)

M(1, 2k + 1) � −εM(0, 2k) (6)

1 Intuitively, a subspace arrangement is transversal if and only if
all intersections are as small as possible [15].

• when n = 2k (even case), the following holds

M(0, 2k) � 0 (7)

ε2M(0, 2k − 2) �M(2, 2k) (8)

where M(i, i+ 2j) is the (j + 1) by (j + 1) Hankel matrix
formed from the moments, that is:

M(i, i+ 2j)
.
=


mi mi+1 . . . mi+j

mi+1 . .
.

. .
.
mi+j+1

... . .
.

. .
. ...

mi+j . . . . . . mi+2j

 , (9)

and where m0 = 1.

Proof: Direct application of Theorem III.2.3 and Theorem
III.2.4 in [10]. 2

The problem of moments, especially its multivariate exten-
sions, has been used in the optimization community to con-
vert polynomial optimization problems into a hierarchy of
convex semidefinite programming problems with increas-
ing size ([11],[13]). In this paper, we apply similar ideas to
feasibility problems involving a combination of polynomial
and rank constraints. By exploiting the problem structure,
we show that it suffices to use one dimensional Borel mea-
sures for which the moments can be precisely characterized
by fixed sized linear matrix inequalities of the form given
in Theorem 1.

3 Set Membership Identification of Hybrid Linear
ARX models

In this paper we consider the problem of set membership
identification of switched autoregressive exogenous (SARX)
linear models of the form:

yt =

na∑
j=1

aj(σt)yt−j +

nc∑
j=1

cj(σt)ut−j + ηt (10)

where yt ∈ R, ut ∈ R and ηt ∈ R, with |ηt| ≤ ε ∀t, denote
outputs, inputs and noise respectively, σt ∈ {1, . . . , s} is the
latent discrete state or mode of the system, and where aj and
cj are unknown coefficients. Note that as stated, the problem
above is ill defined, since, even in the absence of noise, a
given input/output sequence (u,y) can be explained by an
infinite number of models of the form (10), with different
orders. To avoid this ambiguity, in the sequel we will work
with minimal realizations, in the following sense. Let

Di(z)
.
= zmax(na,nc) −

∑na

j=1 aj(i)z
max(na,nc)−j

Ni(z)
.
=
∑nc

j=0 cj(i)z
max(na,nc)−j .

(11)
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Assumption 1 For each subsystem, the polynomials
{Di(z), Ni(z)} are coprime.

For ease of reference, let

pi
.
=
[
a1(i) . . . ana(i) c1(i) . . . cnc(i)

]
rt =

[
yt . . . yt−na

ut−1 . . . ut−nc

]T
and p

.
= {pi}si=1. Under Assumption 1, the problem of

interest in this paper can be precisely defined as follows:
Given experimental input/output data rt over the interval
[t0, T ], and a priori information {s, na, nc, ε}, the number
of submodels, their order and a bound on the `∞ norm of
the noise, respectively, define the consistency set:

T (r)
.
= { p : (10) holds for some sequences

σt ∈ [1 . . . s]
T and ηt, |ηt| ≤ ε; for t ∈ [t0, T ]

}
(12)

that is, the set of all switched linear models compatible with
both the a-priori assumptions and the experimental data. In
this context, the problem of interest here can formally be
stated as follows:

Problem 1 (Consistency) Determine whether or not
T (r) = ∅, (that is whether or not the a-priori assumptions
have been invalidated by the experimental data)

Problem 2 (Identification) If T (r) 6= ∅, then find a model
pid ∈ T (r)

Remark 1 Note that all elements in T (r) are indistinguish-
able based on the available information. Thus, interpolatory
identification algorithms such as the one proposed in this
paper simply select an arbitrary element of T . Using infor-
mation based complexity arguments [26], it can be shown
that any such choice is, in terms of the worst case identifi-
cation error, optimal within a factor of 2 [24] 2 .

In the sequel, we show that Problem 1 above can be reduced
to minimizing the rank of a matrix affine in the optimization
variables, subject to finite–dimensional convex constraints.
Further, if T (r) 6= ∅ then a solution to Problem 2 can be ob-
tained from the solution to this rank minimization problem.

3.1 Algebraic formulation

In the noise free case (i.e., ηt = 0 ∀t), Problems 1 and 2
can be elegantly solved using an algebraic procedure, Gen-
eralized Principal Component Analysis (GPCA), proposed

2 In principle one could attempt to reduce this error by choosing
the Chebyshev center of T as the identified system. However,
finding this center is far from trivial, even for LTI systems. Hence,
the usual practice is to select an arbitrary element of T .

by Vidal et al. [28],[14]. Note that in this case an equivalent
representation of (10) is:

b(σt)
T rt = 0 (13)

where rt = [−yt, yt−1, . . . , yt−na , ut−1, . . . , ut−nc ]T and
b(σt) = [1, a1(σt), . . . , ana(σt), c1(σt), . . . , cnc(σt)]

T , de-
note the regressor and (unknown) coefficients vectors at time
t, respectively.

The idea behind the algebraic method is based on a polyno-
mial constraint, the so-called hybrid decoupling constraint,
that decouples the identification of model parameters from
the identification of the discrete state and switching se-
quence. That is, (13) holds for some σt if and only if

ps(rt) =

s∏
i=1

(bTi rt) = cTs νs(rt) = 0 (14)

holds for all t independent of which of the s submodels is
active at time t. In the above equality, bi ∈ Rna+nc+1 is the
parameter vector corresponding to the ith submodel, rt is
the known regressor vector at time t, νs(.) is the Veronese
map of degree s and cs is a vector that collects unknown
parameters from bi’s (see [27] for explicit definition). Col-
lecting all data into a matrix form leads to 3 :

Vs(r)cs
.
=


νs(rt0)T

...

νs(rT )T

 cs = 0, (15)

where r, without the subscript, stands for the set of all
regressor vectors for all t ∈ [t0, T ]. In the sequel, when
it is clear from context, and with a slight abuse of nota-
tion, we will use Vs to denote the data matrix, Vs(r) ∈

R
(T−t0+1)×( s + na + nc

s )
. Under suitable transversality as-

sumptions (see Section 3.3 for details), T (r) 6= ∅ if and only
if Vs is rank deficient. In that case, Problem 2 can be solved
by first finding a vector cs in the nullspace of Vs to find the
coefficients of the multivariate polynomial ps(r). Then bi,
the parameters of the models, can be computed from cs via
polynomial differentiation (see the Appendix).

In the presence of noise, the approach outlined above breaks
down, since conditions (14) and (15) no longer hold. Indeed,
the noisy equivalent of (14) is given by:

ps(rt, ηt) =

s∏
i=1

(bTi r̃t) = cTs νs(r̃t) = 0 (16)

where r̃t = [−yt + ηt, yt−1, . . . , yt−na
, ut−1, . . . , ut−nc

]T .
Proceeding as in the noiseless case, a “noisy” data matrix

3 Note that since the initial conditions are unknown, the regressor
rt is not available for t < t0

.
= max(na, nc).
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Vs(r,η)
.
= Vs(r̃) can be built. However, finding the coef-

ficients of each subsystem entails now finding both an ad-
missible noise sequence ηo and a vector co in the nullspace
of Vs(r,η

o) such that

Vs(r,η
o)co = 0 (17)

Since Vs is a polynomial function of the unknown noise
terms ηt, this approach leads to a computationally very chal-
lenging nonlinear, nonconvex optimization problem. How-
ever, as we show next, by exploiting the method of moments,
(17) can be recast into a constrained rank minimization form
which in turn can be relaxed to an efficient convex optimiza-
tion.

3.2 A moments based convex relaxation for robust identi-
fication of SARX models

Consider the following rank minimization problem:

minimizeηt rankVs(r,η)

subject to |ηt| ≤ ε, ∀t ∈ [t0, T ].
(18)

Clearly, a necessary condition for consistency is the exis-
tence of rank deficient solutions to (18). Further, as shown
in the sequel, the problem of searching for these solutions
admits a computationally tractable relaxation.

Exploiting Theorem 1 and using the facts that (i) ηt and ηt̄
are uncoupled (in the sense of having no functional depen-
dency) for t 6= t̄, and (ii) ηt only appears in the tth row of
Vs, leads to the following moments optimization problem:

minimizem rank Ṽs(r,m)

subject to (5)− (6) ∀m(t) ∀t ∈ [t0, T ] if s is odd

(7)− (8) ∀m(t) ∀t ∈ [t0, T ] if s is even

(19)
where m(t) = [m

(t)
1 , . . . ,m

(t)
s ] is the moment sequence

corresponding to ηt, m is the collection of all m(t) and
Ṽs(r,m) is a matrix linear in the moments, obtained by re-
placing each kth degree monomial ηkt in Vs(r,η) with the
corresponding kth order moment m(t)

k .

Example 1 For instance when s = 2 and (na, nc) = (1, 1),
then rt = [−yt, yt−1, ut−1]T . In this case the rows of
Vs(r,η) and the corresponding rows of Ṽs(r,m) are

given by:

ν2(rt, ηt)
T =



y2
t − 2ytηt + η2

t

−ytyt−1 + yt−1ηt

−ytut−1 + ut−1ηt

y2
t−1

yt−1ut−1

u2
t−1



T

;

Eµ
[
ν2(rt, ηt)

T
]

=



y2
t − 2ytm

(t)
1 +m

(t)
2

−ytyt−1 + yt−1m
(t)
1

−ytut−1 + ut−1m
(t)
1

y2
t−1

yt−1ut−1

u2
t−1



T

.

(20)

Thus, Ṽs(r,m) is affine in the unknown moments.

Next, we present the main equivalence result of the paper:

Theorem 2 Let η∗ be an optimal solution to problem (18)
and m∗ be an optimal solution to (19). Then, Vs(r,η

∗)

is rank deficient if and only if Ṽs(r,m
∗) is rank deficient.

Moreover, if c belongs to the nullspace of Ṽs(r,m
∗) then

there exists a noise sequence η∗∗ with ‖η∗∗‖∞ ≤ ε such
that c belongs to the nullspace of Vs(r,η

∗∗).

Proof: Assume that the minimum rank r1 in (18) is achieved
by some sequence η∗t for all t ∈ [t0, T ]. Then Ṽs(r,m

∗)
with m∗(t) = [η∗t , (η

∗
t )2, . . . , (η∗t )s] (i.e., all representative

Borel measures have point support) has rank r1 and m∗(t)

satisfies the LMI constraints. Hence the minimum rank ob-
tained by solving (19) is less than or equal to the minimum
rank obtained by solving (18).

Consider now an optimal solution m∗ of (19). Note that,
from Theorem 1, this guarantees the existence of T − t0 + 1
measures µ∗(t), each supported on [−ε, ε]. Let c be in the
nullspace of Ṽs(r,m

∗) (i.e., Ṽs(r,m
∗)c = 0). Thus, for

each row of Vs, Eµ∗(t) [νs(rt, ηt)] c = Eµ∗(t) [νs(rt, ηt)c] =
0. By noting that νs(rt, ηt)c is a polynomial function of
ηt (hence continuous) and µ∗(t) is supported on [−ε, ε],
we can invoke the mean value theorem for integration to
conclude that there exist η∗∗t ∈ [−ε, ε] for all t such that
νs(rt, η

∗∗
t )c = 0.

Thus, whenever the nullspace of the solution of (18) is non-
trivial, so is that of (19), which proves the theorem. 2

An alternative way of obtaining an equivalent moment–
based problem to (18) when Vs(r,η) is known to be rank
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deficient by one is to define the equivalent polynomial ob-
jective function det[Vs(r,η)

T
Vs(r,η)]. However, in this

case one would need higher order (possibly infinite number
of) moments of a multidimensional Borel measure since it
is not clear how to exploit the independence of noise terms
while keeping the problem linear in moments of a one di-
mensional Borel measure. Although the rank objective is
non-convex, it has the following advantages: (i) the equiv-
alent moment based problem is finite dimensional (i.e., it
requires only finite moment matrices); (ii) there are efficient
convex relaxations for rank minimization; and (iii) extract-
ing solutions requires only solving for the roots of a poly-
nomial in one variable whereas for the case with multidi-
mensional measures this is a non-trivial task. We elaborate
on the last two points next.

Although rank minimization is an NP–Hard problem, effi-
cient convex relaxations are available. In particular, good
approximate solutions can be obtained by using a log–det
heuristic [7] that relaxes rank minimization to a sequence
of convex problems. Furthermore, since from a set member-
ship point of view it suffices to find a rank deficient solution,
we propose a modification of log–det heuristic that aims at
dropping the rank by one. The algorithm, which is inspired
by the adaptive step size defined for weighted `1 minimiza-
tion in [4], is summarized next:

Algorithm 1: Drop Rank

X ∈ Rm×n and assuming wlog m ≤ n, initialize:

k = 0, ε0 =∞, W(0)
y = Im×m, W(0)

z = In×n

REPEAT

Solve

minX(k),Y(k),Z(k) Tr

[
W

(k)
y Y(k) 0

0 W
(k)
z Z(k)

]

subject to

[
Y(k) X(k)

X(k)T Z(k)

]
� 0

X(k) ∈ C

Decompose X(k) = UDVT using SVD.

Set εk+1 = min{εk,D(m,m)}.
Set W(k+1)

y = (Y(k) + εk+1I)
−1,

W
(k+1)
z = (Z(k) + εk+1I)

−1.

Set k = k + 1.

UNTIL (a convergence criterion is reached)

RETURN X(k)

Above, for the sake of notational simplicity, we used X =

Ṽs(r,m); and X(k) ∈ C stands for convex constraints, that
is, m(t) lies on a convex set C defined by the LMIs in (19). In
the first iteration this algorithm minimizes the nuclear norm,

a well-known convex surrogate for rank, of Ṽs(r,m). Then,
if it cannot drop the rank, it uses the weighting matrices,
Wy and Wz , to further decrease the small singular values
towards zero. Explicit conditions under which the nuclear
norm minimization is guaranteed to recover minimum rank
solutions are given in [22], and convergence of this algorithm
to a possible local minima when these fail follows from [7].

Assuming a rank deficient Ṽs(r,m) is found, a vector c
in its nullspace can be obtained by simply performing a
singular value decomposition. From Theorem 2, it follows
that c is also in the nullspace of Vs(r,η) (i.e., Vs(r,η)c =
0). Hence, for each row, we have νs(rt, η∗t )c = 0 which is a
polynomial equation in one variable. One can solve for the
noise values by finding the roots of this polynomial that lie in
[−ε, ε] (which are guaranteed to exist again by Theorem 2).
The roots of a univariate polynomial can be easily computed,
for instance, by computing the eigenvalues of the companion
matrix of the polynomial - a method that is standard in most
of the numerical computing packages. Once the noise values
are estimated, the problem can be converted to the noise
free case by plugging the noise estimates into Vs(r,η) and
the system parameters can be computed using the procedure
described in the Appendix.

Note that the proposed approach can be easily extended
to accommodate additional a priori information about the
noise. For instance, a switched system is likely to have dif-
ferent noise characterizations for different modes (e.g., each
submodel has its own noise bound ε1, . . . , εs). This con-
straint can be written as |ηt| ≤ εi if σt = i and the hybrid
decoupling constraint (16) can be modified by appropriately
scaling the noise variables, that is

ps(rt, ηt) =

s∏
i=1

(bTi r̃
(i)
t ) = 0 (21)

where r̃(i)
t = [−yt+ηt/εi, yt−1, . . . , yt−na , ut−1, . . . , ut−nc ]T .

Thus, enforcing that |ηt| ≤ 1 in the corresponding optimiza-
tion problem (18) leads to submodel parameters and noise
values that are consistent with this type of a priori infor-
mation.

Remark 2 When the number of the submodels s is un-
known, it is possible to search for minimum number of sub-
models that explains the data. This can be accomplished with
a simple iteration on s; starting with s = 1 and increasing
s up until a rank deficient solution to Problem (19) is found.

Remark 3 The results presented in this section can be
directly applied for identifying multi-input single-output
(MISO) systems. Under appropriate coprimeness/minimality
conditions, it is possible to use these results for identifica-
tion of multi-input multi-output (MIMO) SARX models. One
extension of algebraic approach to MIMO case is presented
in [2] by projecting the outputs y onto a single randomly
chosen vector. As an alternative, which better utilizes the
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problem structure in moment-based reformulations, one
can proceed by considering each component [yt]j of the
output yt of an MIMO system, as the output of a separate
MISO system where the other components, [yt]i, i 6= j, are
treated as inputs. We omit the details due to limited space.

3.3 Identifiability and Convergence

Consider first the case of noiseless data and assume that
the subspace arrangement A .

= b⊥1 ∪ . . . b⊥s generated by
the null spaces of the coefficient vectors of each subsys-
tem is transversal 4 . Under these conditions, from the re-
sults in [15] it follows that Is(A), the subspace of homoge-
neous polynomials of degree s in n variables that vanishes
on this arrangement, has dimension 1. Thus, if the input and
switching sequences (u,σ) are such that the correspond-
ing trajectories span sufficiently dense subsets of the each
subspace in the arrangement, the null space of the corre-
sponding data matrix,N (Vs) has dimension one and hence,
the consistency set T (r) is a singleton. As we show in Ap-
pendix B, the minimality assumption (Assumption 1) is a
sufficient condition for the existence of pairs (u,σ) that ren-
der dim(N (Vs)) = 1.

Extending the ideas outlined above to the case of noisy mea-
surements, requires introducing the following definition:

Definition 4 Consider a transversal SARX system of the
form (10), given input and switching sequences (u,σ) and
the corresponding regressor sequence r with elements rt =[
yt . . . yt−na ut−1 . . . ut−nc

]T
. The pair (u,σ) is said to

be ε-robustly persistently exciting if the corresponding data
matrix satisfies

dim[N (Vs(r,η)] ≤ 1 (22)

for all noise sequences such that ‖ηt‖ ≤ ε for all t ∈ [t0, T ].

Note that, for transversal systems, any persistently exciting
pair (u,σ) is robustly persistently exciting for some ε small
enough.

Clearly, under the transversality and robustly persistent ex-
citation assumptions, a necessary condition for consistency
is the existence of a noise sequence ηo such that the right
null space of Vs(r,η

o) has dimension 1. As we show in
the sequel, this is also sufficient, under suitable conditions
on the noise level and the solution to the rank minimization
problem (18). To this effect, we begin by introducing the
following result:

Lemma 1 Given m points xi =
[
x1,i . . . xn,i

]
∈ Rn, de-

note by Vs(X)
.
=
[
νs(x1) . . . νs(xm)

]T
the data matrix

4 In the sequel, by a slight abuse of notation we will refer to these
systems as transversal.

obtained from the Veronese map of degree s. Assume Vs(X)
is rank deficient and denote by ps a monic (in lexicographi-
cal ordering) polynomial associated with its null space. Fi-
nally, given m numbers ρi, define the following sets:

B .
=

{
b̃i :

[
1 b̃Ti

]
= ∇T ps

eT
1 ∇ps

∣∣∣
xi

, i = 1, . . . ,m

}

Bρ
.
=
{
`i ∈ Rn : `i =

[
1 (1 + ρi)b̃

T
i

]
, i = 1, . . . ,m

}
Xρ

.
=
{
x ∈ Rn : x =

[
(1 + ρi)x1,i . . . xn,i

]
,

i = 1, . . . ,m}
(23)

If there exist m scalars ρi 6= −1, i = 1, . . . ,m, such that
|Bρ| ≤ s then there exists an arrangement As ⊂ Rn of s
proper subspaces such that Xρ ⊂ As.

Proof: For any given set {ρi}, define the arrangementAρ =
∪`⊥i . Clearly 5 |Aρ| = |Bρ|. Since ps is homogeneous, as
all the monomials in the Veronese map have degree s, and
ps(xi) = 0, then [∇T ps(xi)]xi = 0. Therefore,

`ix
T
i,ρi = (1 + ρi)

[
1 b̃Ti

]
xTi = 0 (24)

where xi,ρi
.
=
[
(1 + ρi)x1,i . . . xn,i

]
. Hence Xρ ⊂ Aρ.

This together with |Aρ| = |Bρ| ≤ s implies Xρ ⊂ As.

Next, we use the result above to establish necessary and
sufficient conditions for consistency.

Theorem 3 Consider T noisy measurements {yt} of the
output of a transversal SARX system, excited by an ε robust
pair (u,σ). Then the consistency set T 6= ∅ if and only if
(18) admits a solution ηo such that

(i) dim[N (Vs(r,η
o)] = 1 and

(ii) there exist T − t0 +1 numbers {ρt} such that |Bρ| ≤ s
and

|ρtyt + (1 + ρt)η
o
t |
.
= |η̃t| ≤ ε. (25)

Proof: Under the transversality and robust persistency as-
sumptions, if T 6= ∅, then there exists at least one se-
quence ηo such that dim[N (Vs(r,η

o)] = 1, where r is
constructed according to the a priori information on model
orders, and the corresponding polynomial can be factored
as a product of linear forms. Thus, the conditions in the
Theorem hold with ρi ≡ 0. On the other hand, if (18) ad-
mits a solution ηo such that condition (i) and (ii) hold,
then from Lemma 1 it follows that the points r̃t = [−yt −

5 By a slight abuse of notation, here we define cardinality of
Aρ as the number of distinct n− 1 dimensional subspaces in the
arrangement.
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η̃t, yt−1, . . . , yt−na , ut−1, . . . , ut−nc ]T , with |η̃t| ≤ ε, lie in
an arrangement of s subspaces. 2

Note that the existence of suitable ρt can be checked by per-
forming O((T − to)2) inner products, to find collinear b̃i,
followed by Hadamard divisions to check whether (25) is
satisfied. Further, a necessary condition for (25) to hold is
that |ρt| ≤ 2ε

|yt+ηot |
. Thus, intuitively, the result above states

that if the rank minimization problem (18) leads to a poly-
nomial p that is not factorable as a product of s linear vari-
eties, then, for suitable small noise levels, the experimental
data could not have been generated by points laying in an
arrangement of s subspaces.

Finally, we consider the convergence properties of the
proposed algorithm. Assume that persistence of excitation
condition holds and that the uncorrupted experimental data
rt = [−yt, yt−1, . . . , yt−na , ut−1, . . . , ut−nc ]T is generated
by s systems that correspond to a transversal subspace ar-
rangement, so that dim N (Vs(r)) = 1. Let co denote the
(monic) vector in N (Vs(r)), and, for a given noise level
ε let ηot (ε) and c(ε) denote a solution to (18) and a monic
vector in N (Vs(r,η

o(ε))), respectively. Since the entries
of Vs(r,η

o(ε)) are polynomial functions of ηot , from a con-
tinuity argument, it follows that as the noise level ε → 0,
then c(ε) → co. Hence the subsystems identified from the
solution to (18) converge to the actual ones.

4 Handling sensor failures

In this section, we extend the results presented in the earlier
section to the case where we allow for instantaneous fail-
ures in the measurement sensors at unknown times. These
failures lead to corrupted input/output data, that if used in
the identification process would result in substantial iden-
tification errors. This scenario is motivated by several ap-
plication domains, including computer vision, where data is
transmitted through channels subject to interference or out-
ages. Exploiting the fact that these failures are infrequent,
combined with ideas similar to the previous section, allows
for recasting the problem into an optimization form where
the objective is to simultaneously minimize the rank of a
matrix and the number of nonzero rows of a second one.

In particular, we consider switched autoregressive exoge-
nous (SARX) linear models of the form:

yt =
∑na

i=1 ai(σt)yt−i +
∑nc

i=1 ci(σt)ut−i + ηt

ỹt =

{
yt if ft = 0

θt otherwise

(26)

where u, ỹ and η denote the input, output and process noise
respectively; ft is an unknown sparse binary sequence that
represents the reliability of measurements (i.e., ft = 1 for
time instances when the measurement sensor fails), θt de-
notes the faulty measurements, and σt ∈ {1, . . . , s} is the
discrete state.

If we assume, na and nc are known exactly and equal for
each submodel, and if each of the submodels are sufficiently
excited, then it is possible to consider feasibility versions of
(18) and (19):

find η

subject to rank[Vs(r̃,η)] ≤ h
|ηt| ≤ ε, ∀t ∈ [t0, T ],

(27)

and

find m

subject to rank[Ṽs(r̃,m)] ≤ h
(5)− (6) ∀m(t), ∀t ∈ [t0, T ] if s is odd

(7)− (8) ∀m(t), ∀t ∈ [t0, T ] if s is even

(28)
respectively, where h = (number of rows of V)− 1. In the
presence of faulty measurements, (27) and (28) are typically
no longer feasible, since the corrupted measurements do not
satisfy (13), or equivalently, there is no vector c 6= 0 such
that Ṽs(r̃t,m

(t))c = 0 for all t. The effect of the corrupted
rows can be eliminated by introducing an error matrix E

such that Ṽs(r̃,m) +E is rank deficient. Further, under the
assumption that faults are infrequent, E should be row sparse
(that is, only a few rows, corresponding to the rows in Ṽ af-
fected by the corrupted measurements, should be non-zero).
From the reasoning above, it follows that faulty measure-
ments can be accommodated by considering the following
optimization problem:

minimizem,E ||E||row,0
subject to rank[Ṽs(r̃,m) + E] ≤ h

(5)− (6) ∀m(t), ∀t ∈ [t0, T ] if s is odd

(7)− (8) ∀m(t), ∀t ∈ [t0, T ] if s is even.

(29)
Note that if there are k faults,Ewould have at most k(na+1)
nonzero rows, since a single faulty measurement affects na+

1 rows of Ṽ. Therefore, minimizing the nonzero rows of E
amounts to minimizing the number of faulty measurements.

Theorem 4 Let the optimum of (29) be e and let {ri}ei=1
be the indices of nonzero rows of E∗ in the optimal solution.
If c is a vector in the null space of Ṽs(r̃,m

∗) + E∗, then,
for t ∈ [t0, T ]\{ri}ei=1, there exists a noise sequence η∗

with ‖η∗‖∞ ≤ ε such that c belongs to the nullspace of
Vs(r̃,η

∗).

Proof: Since c is in the nullspace of N .
= Ṽs(r̃,m

∗)+E∗,
it is also in the nullspace of the submatrix N′ that is formed
by eliminating the rows of N that correspond to {ri}ei=1.
Note that only Ṽs(r̃,m

∗) contributes to N′, since the cor-
responding rows in E∗ are all zeros. Therefore, N′c = 0
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together with the moment constraints in (29) implies that,
for all t ∈ [t0, T ]\{ri}ei=1, there exists measures µ∗(t), each
supported on [−ε, ε] and having m(t) as their moments.
Hence Eµ∗(t)

[
νs(r̃t, ηt)

T
]
c = 0. Similar to the proof of

Theorem 2, we can invoke the mean value theorem for in-
tegration to conclude that there exist η∗t ∈ [−ε, ε] for all
t ∈ [t0, T ]\{ri}ei=1 such that νs(r̃t, η∗t )T c = 0. 2

Intuitively, the result above states that, in the presence of out-
liers, it is possible to modify just a few rows of the Veronese
map (precisely those corrupted by the outliers) in such a way
that the modified matrix and the ideal, uncorrupted Veronese
map have the same null space, for some admissible noise se-
quence η∗. It follows that, if there are enough uncorrupted
rows to completely characterize this null space, then it can
be identified by solving Problem (29). Once this null space
has been identified, the coefficients of each submodel can
be recovered by proceeding as in [28,14]. Note that this ap-
proach is capable of handling faulty measurements of the
input sequence as well, since these also result in corrupted
rows in the embedded data matrix.

Remark 4 It is worth emphasizing that in the proposed ap-
proach the matrix E enters linearly the constraints in (29)
and its elements are decoupled from those of the moments
sequence m(t). For comparison, introducing a matrix E in
(18) leads to polynomial constraints involving both the el-
ements of ηt and E (originating from expanding the con-
straint rank[Vs(r̃,η

∗) + E] ≤ h), hence necessitating the
consideration of the joint moments. Similarly, working di-
rectly with the sequence θt, unknowns yt and ft in (10), re-
quires considering the joint moments of the sequences {ηt},
{θt}, {yt} and {ft}, substantially increasing the computa-
tional complexity.

4.1 Convex relaxations for rank and row sparsity

In principle, Problem (29) is generically NP-hard, due to
both, the objective function and the rank constraint. How-
ever, as we show next, efficient convex relaxations can be
obtained by combining recent results on rank minimization
and block sparsification. The main idea is to first replace the
objective function by

rank[Ṽs(r̃,m) + E] + γ‖E‖row,0

where γ is a suitably chosen regularization parameter. Next,
note that enforcing row sparsity of E is equivalent to en-
forcing sparsity of a vector formed by norms of its rows.
Following the arguments in [29,16], we relax ‖E‖row,0 to∑
i ‖Ei‖2, where Ei denotes the ith row of E, and we re-

lax rank to nuclear norm. Finally, using a semidefinite char-
acterization of the nuclear norm [6], combined with a re-
weighted heuristic, leads to the following algorithm, based
on solving a sequence of convex optimization problems:

Algorithm 2: SARX Identification with outliers

initialize:

k = 0, δ = small positive constant,

W
(0)
y = Im×m, W (0)

z = In×n, w(0)
i = 1√

Np

REPEAT

Solve

minm,Y (k),Z(k),E(k) Tr
[
W

(k)
y Y (k)

]
+ Tr

[
W

(k)
z Z(k)

]
+ γ(k)

∑Np

i=1 w
(k)
i ‖E

(k)
i ‖2

subject to[
Y (k) Ṽs(r̃,m

(k)) + E(k)

[Ṽs(r̃,m
(k)) + E(k)]T Z(k)

]
≥ 0

and (5)-(6) ∀m if s is odd, or (7)-(8) if s is even.

Let Ṽs(r̃,m(k)) + E(k) = UDV T .

Set ε = D(m,m).

Set W (k+1)
y = (Y (k) + εI)−1.

Set W (k+1)
z = (Z(k) + εI)−1.

Set w(k+1)
i = 1

‖E(k)
i
‖2+δ

.

Set γ(k+1) = γ(0) ‖W
(k)
y ‖2+‖W (k)

z ‖2
2
∥∥[w

(k)
1 ... w

(k)

Np
]
∥∥

2

.

Set k = k + 1.

UNTIL (a convergence criterion is reached)

RETURN Ṽs(r̃,m
(k)),E(k),m(k)

where δ > 0 is a regularization constant, and where the
initial value of γ(0) is a tuning parameter that controls the
number of measurements that are discarded. A small value of
γ(0) will typically result in a large number of measurements
labeled as faulty and dropped. On the other hand, a large
value of γ(0) will result in fewer discarded measurements
and hence may preclude finding a rank deficient solution.
Once a suitable value of γ(0) is selected, the update rule
for γ(k) in the algorithm above attempts to keep the relative
weights of the rank minimization and row sparsity enforcing
terms approximately constant throughout the optimization.

5 Illustrative Examples

In this section we use both numerical and practical examples
to illustrate the effectiveness of the proposed methods.
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5.1 Numerical Examples

5.1.1 SISO example

Consider a hybrid system that switches among the following
three ARX subsystems

yt = 0.2yt−1 + 0.24yt−2 + 2ut−1 + ηt (Submodel 1)

yt = −1.4yt−1 − 0.53yt−2 + ut−1 + ηt (Submodel 2)
yt = 1.7yt−1 − 0.72yt−2 + 0.5ut−1 + ηt (Submodel 3)

modeled as

yt = a1(σt)yt−1 + a2(σt)yt−2 + c1(σt)ut−1 + ηt, (30)

where σt ∈ {1, 2, 3} depends on which model is active at
time t. Experimental data was obtained by running simula-
tions for T = 96 time steps where σt = 1 for t = [1, 32],
σt = 2 for t = [33, 64] and σt = 3 for t = [65, 96]. We
used random noise with ‖η‖∞ = 0.25 and ut were inde-
pendent identically distributed samples from the standard
normal distribution. For evaluating the results, the following
maximum normalized parameter estimation error is defined:

MNPEE = max
i∈{1,...,s}

∥∥∥bi − b̂i

∥∥∥
2

‖bi‖2
(31)

where bi and b̂i are, respectively, the true and the estimated
parameters for the ith submodel, and s is the number of sub-
models. As an additional performance measure, we consider
fitting error defined as:

FE =
1

T − t0 + 1

T∑
t=t0

max(|ŷt − yt| − ε, 0) (32)

where ŷt is the result of simulating the system with identified
dynamics and identified mode sequence. FE basically mea-
sures to what extend the a priori assumptions are violated.
Ideally for the proposed method, one would expect FE to be
zero but due to the relaxation in solving the rank minimiza-
tion problem, which is not guaranteed to converge to a rank
deficient solution, and due to numerical algorithms involved,
there could be small deviations. Tables 1-2 summarize the
results obtained by the proposed moments–based method to-
gether with results of the original algebraic method of [28]
and product-of-errors framework of [12] with least squares
cost function over 25 simulations per noise level, ε, with dif-
ferent realizations of noise and input. Although the method
proposed in [12] seems to improve the results from the orig-
inal algebraic method of [28], the proposed moments-based
approach performs clearly superior to both in these exper-
iments. Figure 1 shows, for a sample simulation run, the
clustering of data into different submodels as well as the
absolute value of noise given the identified model. The es-
timated noise levels are quite large for the method in [28]
whereas they mostly satisfy the prior bound of ε = 0.25 for
the new method.

20 40 60 80
1

2

3
GPCA Clustering

20 40 60 80
1

2

3
Moment Clustering

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Absolute Error |η
t
|

 

 

Moment
GPCA
ε level

Fig. 1. Sample simulation results. Left: Clustering via GPCA. Mid-
dle: Clustering via moments–based method. Right: Comparison of
noise estimates.

5.1.2 Example with faulty measurements

In this section, we illustrate the effectiveness of the extension
proposed in Sec. 4 in the existence of both noise and faults in
measurements with simulation examples. We considered a
model of the form (26) that switches between (Submodel 1)
and (Submodel 2) from the SISO example. We ran 25 ex-
periments for T = 100 time steps where σt = 1 for t =
[1, 25]∪ [51, 75] and σt = 2 for t = [26, 50]∪ [51, 100], and
ut were independent identically distributed samples from
the standard normal distribution. The noise level was set to
ε = 0.25. Faults ft were inserted at times t = 10, t = 50,
and t = 80. We set γ(0) = 13 for all experiments. Note that
γ(0) can be adaptively optimized to improve the results but
even with a single, fixed value, we see that the proposed
method performs a lot better compared to methods that do
not take faulty measurements into account. The results are
summarized in Table 3. As can be seen from the table, if the
data includes faulty measurements (i.e., outliers), ignoring
them either by using a moments-based method or GPCA re-
sults in high errors in estimated parameters. We also ran the
same tests with the product-of-errors framework with Ham-
pel’s and ε-insensitive loss functions as proposed in [12] to
handle the case with outliers. Here we just report the re-
sults with ε-insensitive loss function which performed sig-
nificantly better than Hampel’s. However, still the overall
performance of the moments-based method was better than
that of [12].

5.2 Computer vision application: Activity analysis with
sensor faults

Next, we illustrate the ability of the method to handle real-
istic scenarios by applying it to a non–trivial computer vi-
sion problem: human activity analysis. The goal here is to
segment a video clip containing multiple activities into its
constituent sub-activities and to find a model characteriz-
ing each of these, as a first step towards recognizing con-
textually abnormal situations. The data used in this partic-
ular example consists of 55 frames extracted from a video
sequence of a person walking and bending in front of the
camera. Three randomly chosen frames were corrupted with
large amounts of noise to simulate instantaneous sensor fail-
ures (in this case interference in the wireless communica-
tion channel from the sensor to the base station). Figure 2
shows some sample frames from the sequence. Half way
through the sequence the person bends down, then stands
up and resumes walking. These frames were modeled as the
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ε MNPEE Moments Based GPCA [28] PE [12]

0.05
mean±std 0.0053± 0.0033 0.1487± 0.2187 0.2620± 0.3827

median±mad 0.0051± 0.0011 0.0406± 0.0313 0.0653± 0.0581

0.15
mean±std 0.0193± 0.0100 0.4532± 0.7759 0.2792± 0.2858

median±mad 0.0167± 0.0029 0.2931± 0.2218 0.1580± 0.1173

0.25
mean±std 0.0633± 0.1005 4.4196± 18.1408 0.3565± 0.2902

median±mad 0.0400± 0.0118 0.4103± 0.3045 0.2614± 0.2120

Table 1
Maximum normalized parameter estimation error (MNPEE) statistics (std: standard deviation, mad: median absolute deviation) over 25

simulations per noise level (ε) for the proposed method and the methods of [28] and [12].

ε FE Moments Based GPCA [28] PE [12]

0.05
mean±std 0.0017± 0.0066 0.1590± 0.2409 0.1798± 0.2355

median±mad 0.0002± 0.0001 0.0320± 0.0288 0.0811± 0.070

0.15
mean±std 0.0056± 0.0140 0.3019± 0.2267 0.1737± 0.1681

median±mad 0.0013± 0.0008 0.3021± 0.2229 0.1190± 0.1100

0.25
mean±std 0.0235± 0.0798 0.3990± 0.3463 0.1903± 0.1419

median±mad 0.0048± 0.0028 0.3667± 0.2838 0.1842± 0.1102

Table 2
Fitting error (FE) statistics (std: standard deviation, mad: median absolute deviation) over 25 simulations per noise level (ε) for the

proposed method and for the methods of [28] and [12].

MNPEE Moments-based PE [12] GPCA [28] Moments-based (no E)

mean±std 0.0882± 0.0722 0.1446± 0.0967 0.6672± 1.0259 0.5852± 0.8605

median±mad 0.0603± 0.0254 0.1190± 0.0623 0.2485± 0.1449 0.2768± 0.2032

Table 3
Maximum normalized parameter estimation error (MNPEE) statistics) over 25 simulations for noise level (ε = 0.25) and 3 faults for the

proposed method with and without using the sparse matrix E introduced in Sec. 4 and for the algebraic geometric method of [28] and
the product-of-errors method in [12] with ε-insensitive loss function.

output of an underlying switched affine system, with 2 sub-
models, each corresponding to a given activity. In particular,
the horizontal 6 position of the center of mass was modeled
as the output of a first order switched affine autoregressive
system 7 :

xt = a(σt)xt−1 + d(σt) + ηt (33)
where a(σt) and d(σt) are unknown parameters. We set
‖η‖∞ = 3, allowing ±3 pixels noise.

For the measurements, we use a simple tracker based on
background subtraction to estimate the location of the center
of mass of the person in each frame. Sensor failures were
captured with the following measurement equation:

x̃t =

{
xt if ft = 0

θt otherwise
(34)

6 It may seem more natural to use the vertical position. However,
this would have resulted in 3 segments, corresponding to roughly
no vertical motion, downward and upward motion, while there are
only two different activities involved.
7 Our approach trivially extends to affine systems where there is
an offset term (d in this example) in addition to the linear model.

where ft is an unknown (yet sparse) binary sequence with
ft = 0 for healthy conditions and ft = 1 for times where
the sensors fail, and where θt is random Gaussian noise with
mean and standard deviation equal to those of xt.

Frame 6 Frame 8 Frame 23

Frame 33 Frame 45 Frame 50

Fig. 2. Sample clean and corrupted frames from the video.

Figures 3 compares the results of applying the proposed
identification method and GPCA in this scenario. As illus-
trated there, while the proposed method is able to identify
the underlying subsystems, the switching sequence and the
corrupted frames, GPCA fails to do so.
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Fig. 3. Left:Activity segmentation via the proposed method. The
outlying rows detected are denoted with red stars and the true
outliers by green circles. Right: Activity segmentation via GPCA.

Remark 5 Although the proposed method is computation-
ally more expensive than GPCA (i.e., the former requires
solving an SDP whereas the latter requires computing a sin-
gular value decomposition), it still leads to a tractable con-
vex problem and performs significantly better in the pres-
ence of noise and sensor faults.

6 Conclusions

This paper considered the problem of identifying switched
linear systems. Its main contribution is two-fold: (i) A new
formulation for set membership identification of switched
linear systems from imperfect input/output measurements.
The formulation is shown to be well-posed when certain
identifiability and persistence of excitation conditions are
satisfied. Moreover, the proposed algorithm is interpolatory,
in the sense that the identified system is guaranteed to be-
long to the consistency set. (ii) A novel optimization proce-
dure to effectively solve this problem. While the problem of
identifying switched linear systems is known to be generi-
cally NP–hard, we showed that efficient convex relaxations
can be obtained by recasting it into a moments optimization
form. This procedure combines ideas from classical theory
of moments, polynomial optimization, and rank/sparsity re-
laxations and it makes efficient use of problem structure. The
effectiveness of the proposed algorithm and its robustness to
noise and outliers was illustrated using extensive simulation
examples and a non-trivial segmentation problems arising in
computer vision.

Acknowledgements: The authors would like to thank Dr.
F. Lauer for providing the code for the products of error
framework [12] and the optimization package [9].
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A Recovering the parameters of the model

Here we recall, for ease of reference, the polynomial differ-
entiation based procedure proposed in [28] to recover the
parameters of the model once cs is computed. The deriva-
tive of ps(r) at a point r is given by

∇ps(r) =
δps(r)

δr
=

s∑
i=1

∏
j 6=i

(bTj r)bi (A.1)

Since bTi r = 0 when r is generated by the ith submodel
(i.e., σt(r) = i), it follows from (A.1) that the parameter
vector is given by:

bi =
∇ps(r)

eT∇ps(r)

∣∣∣∣
σt(r)=i

(A.2)

where eT = [1, 0, . . . , 0].

Since, in general, the association of data points with sub-
models σt(r) is unknown, one can use the following heuris-
tic function, suggested in [27], to choose one point from
each submodel {rti}

s
i=1:

rti−1
= argmin

rt:∇ps(rt)6=0

|ps(rt)|
‖∇ps(rt)‖ + δ∣∣(bTi rt) · · · (bTs rt)∣∣+ δ

(A.3)

where δ > 0 is a small number to avoid division by zero.

Finally, given the parameter vectors {bi}si=1, the mode sig-
nal can be computed as follows:

σt = argmin
i=1,...,s

(bTi rt)
2. (A.4)

B Existence of persistent excitations

Theorem 5 Assumption 1 guarantees the existence of pairs
(u,σ) such that the data matrix built from the corresponding
trajectories satisfies dim(N (Vs)) = 1

Outline of the proof: Begin by noting that a minimal ARX
system of the form

yt =

na∑
j=1

ajyt−j +

nc∑
j=1

cjut−j . (B.1)

can be put as a series interconnection of the following two
(controllable) systems

G1 : vt =

nc∑
j=1

cjut−j+1 and G2 : yt =

na∑
j=1

ajyt−j + vt−1.

(B.2)
Since (B.1) is minimal by assumption, it can be shown that
the interconnection of G1 and G2 is controllable. Consider
now an arbitrary target vector r ∈ Rna+nc+1 satisfying

[−1 a1 · · · ana
c1 · · · cnc

]r = 0. (B.3)

From controllability arguments it follows that, for any ini-
tial condition, there exists N and an input u such that
xt0+N−1 = r(na + 1 : −1 : 2) and zt0+N−1 = [α r(na +
nc+1 : −1 : na+3)T ]T , where α can be chosen arbitrarily.
Setting ut0+N−1 = r(na+2) leads to a trajectory satisfying

[yt0+N · · · yt0+N−na ut0+N−1 · · · ut0+N−nc ]T = r.

To complete the proof, start the system with σt = 1 and se-
lect enough points ri satisfying bT1 r

i = 0, i = 1, 2, . . . , N1

so that the following property is satisfied: Any homogenous
polynomial q(r) of degree less than or equal to s satisfying

q(ri) = 0 for all i = 1, 2, . . . , N1

is of the form q(r) = qaux(r)(bT1 r) for some polynomial
qaux(r) of degree s−1. This can always be done if the points
provide a sufficient cover of the hyperplane {r : bT1 r = 0}.
Using the ideas outlined above it is always possible to find
an input ut such that the trajectory of the first subsystem
goes through all ri, i = 1, 2, . . . , N1. Once the trajectory has
passed through all of these points, the system is switched to
the next subsystem and the procedure repeated.

Given that the points selected in each hyperplane are a suffi-
cient cover (in the sense explained above) then there is only
one homogeneous polynomial ps(r) of degree less than or
equal to s that is zero in points of the obtained trajectory

ps(r) =

s∏
i=1

bTi r.

Hence, the data matrix Vs has a null space with dimension
equal to one.
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