
Incremental Synthesis of Switching Protocols via Abstraction Refinement

Petter Nilsson and Necmiye Ozay

Abstract— We consider the problem of synthesizing switching
protocols that regulate the modes of a switched system in
order to guarantee that the trajectories of the system satisfy
certain high-level specifications. In particular, we develop a
computational framework for incremental synthesis of switch-
ing protocols. Augmented finite transition systems are used as
abstract representations of continuous dynamics. Inspired by
counter-example guided abstraction refinement procedures for
hybrid system verification, we start with a coarse abstraction
and gradually refine it according to preorder relations on
augmented finite transition systems. At each iteration, the
proposed procedure can produce either a switching protocol
that ensures the satisfaction of the specification, a certificate
for nonexistence of such a protocol, or a refinement suggestion
together with a partial solution to be used in the next iteration.
Although the procedure is not guaranteed to terminate in
general, we illustrate its practical applicability with two simple
examples.

I. INTRODUCTION

Designing a switching protocol that determines the mode
signal of a switched system is crucial in many different
applications. The modes of a switched system may represent
different configurations of the system (e.g., corresponding to
different valve or switch positions [1], [2]), the evolution of
the system under various pre-designed feedback controllers
tuned to achieve different performance criteria [3], [4], or,
realization of different primitive tasks [5], [6]. The switching
protocol orchestrates these low-level dynamics by identifying
a mode signal in order to ensure that the trajectories of the
system satisfy certain high-level specifications.

We consider reachability and safety specifications.
Correct-by-construction controller synthesis from high-level
specifications has attracted considerable attention in the past
decade. Although a thorough survey is beyond the scope of
this paper, we give a brief overview of the work that is most
relevant to switching protocol synthesis. This line of research
can be broadly classified into two categories: (i) synthesis
methods based on direct computation of safe or reachable
sets [1], [7], [8]; (ii) abstraction-based approaches that lift
the problem to a finite space and solve the synthesis problem
at the discrete-level [9], [10], [11], [2], [12]. Our method
falls into this latter category. For linear [11] or incremen-
tally stable [9] switched systems, it is possible to construct
deterministic finite transition systems using (approximate)
bisimulation relations. Alternatively, one can compute non-
deterministic abstractions based on a finite set of predicates,
which is applicable to a larger class of switched systems [10],
[2], [12]. We do not make linearity or stability assumptions

The authors are with the Electrical Engineering and Computer Sci-
ence Department, University of Michigan, Ann Arbor, MI, 48109.
{pettni,necmiye}@umich.edu

and consider non-deterministic abstractions. Instead of using
a fixed set of predicates or a fixed state-space partition as in
earlier work, we gradually refine the abstractions until either
a switching protocol or a non-existence certificate is found;
or the computational resources are exhausted.

Our approach can be seen as an extension of several
methods in hybrid system verification to switching protocol
synthesis. In particular, we are inspired by the counter-
example guided abstraction refinement techniques [13], [14]
and 3-valued abstractions [15]. We enhance the abstraction-
refinement loop with an incremental synthesis algorithm.
Incremental synthesis methods are gaining popularity, es-
pecially in robotic motion planning. Karaman and Frazzoli
[16] employ incremental model checking for synthesis with
deterministic abstractions, whereas we consider an incre-
mental solution to a game as our abstract models are non-
deterministic. Ulusoy et al. [17] and Livingston et al. [18]
consider incremental synthesis in games with stochastic and
non-deterministic agents, respectively. Both approaches start
with finite discrete models, hence abstracting dynamics is
not a concern in these papers. Our approach is also related
to [19], where an incremental verification algorithm for
discrete-time hybrid systems is proposed.

In [2], a general framework for synthesis of reactive
switching protocols is proposed, where it is assumed that
a finite description of the system can be computed. In
[12] augmented finite transition systems serving as abstract
models for switched systems are introduced, along with a
preorder relation. Furthermore, a computationally tractable
method for computing such abstract models given a partition
of the state-space is proposed (see also [20]). In this paper,
we further extend these earlier results by providing a com-
putational framework for switching protocol synthesis where
abstract models are automatically refined. The refinement is
based on certificates from an incremental synthesis algorithm
tailored for augmented finite transition systems. Integration
of incremental synthesis and a refinement procedure miti-
gates the computational burden by systematically increasing
the discrete state-space size only when needed. Another
novelty of the current paper is that the proposed method can
provide certificates for non-existence of switching protocols.
Such certificates can be particularly useful to inform a low-
level design process that additional modes, or new low-level
feedback controllers, are needed for the system.

II. PROBLEM FORMULATION

In this section, we introduce the main components of
the problem, namely continuous-time switched systems and



augmented finite transition systems. We also define the
switching protocol synthesis problem.

A. Continuous-time switched systems

A continuous-time switched system is a tuple S =
(X,A, {fa}a∈A, D), where the domain (i.e. state-space)
X ⊂ Rn is a compact set, A .

= {1, . . . , s} is a finite index
set counting the modes of the system, {fa}a∈A is a family
of vector fields, and D ⊂ Rd is a compact disturbance set.

The evolution of the system S is governed by:

ẋ(t) = fσ(t)(x(t), δ(t)), (1)

where x(t) ∈ X ⊂ Rn is the state, σ(t) ∈ A is the mode
of the system, and δ(t) ∈ D ⊂ Rd is the disturbance at
time t. We assume that the switching signal σ : R+ → A
is piecewise constant with finite number of discontinuities
on every bounded interval; and that δ and each fa satisfy
standard conditions to guarantee the existence and unique-
ness of solutions of (1) when σ(t) = a for all t. Given
an initial condition x(0) ∈ X , a switching signal σ and
a disturbance signal δ, they together define a unique state
trajectory x : [0, tf ]→ X that satisfies (1) for all t ∈ [0, tf ],
where tf

.
= inf{t : x(t) /∈ X}.

The basic switching protocol synthesis problem we ad-
dress in this paper is the following.

Problem 1: [Continuous reach-avoid-stay game] Given
a switched system S = (X,A, {fa}a∈A, D), a set X0 ⊆ X
of initial states, a goal set Xg ⊆ X and a bad set Xb ⊆
X , find a state-feedback mode signal σ such that for all
x(0) ∈ X0, the trajectories x : [0, tf ] → X of S satisfy the
following:
1.1 the trajectories never leave X \Xb (implies tf =∞);
1.2 tr defined as tr

.
= inf{t : x(t) ∈ Xg} is finite, and

x(t) ∈ Xg for all t > tr;
or, declare that no such mode signal exists.

A specific instance of a continuous reach-avoid-stay game
is denoted by 〈S, (X0, Xg, Xb)〉. A mode signal ensuring
satisfaction of conditions 1.1 and 1.2 is called a winning
switching protocol for the game 〈S, (X0, Xg, Xb)〉. We also
consider a variant of Problem 1, where the set X0 is
not specified (a game denoted by 〈S, (Xg, Xb)〉) and the
objective is to find a set W (x) ⊆ X such that for all initial
conditions x(0) ∈W (x), it is possible to find a mode signal
so that conditions 1.1 and 1.2 are satisfied. Such a set W (x)

is called a winning set for S in the game 〈S, (Xg, Xb)〉.

B. Augmented finite transition systems

An augmented finite transition system is a tuple T =
(Q,A,→T ,G) where Q is a finite set of states, A a finite
set of actions (i.e., control inputs), →T ⊆ Q × A × Q a
transition relation, and G : A → 22Q

a progress group
map, respectively. The progress group map G maps each
action a ∈ A to a set of subsets of Q such that the system
cannot remain indefinitely within any set of states G ∈ G(a)
by using only the action a. A set G ∈ G(a) is called a
progress group under action a. For each action a ∈ A,
there is an associated directed graph Ta = (Q,

a−→), where

the set a−→ of edges corresponds to the transitions in →T
with action a. For an augmented finite transition system
to be well-formed, it is required that for all a ∈ A and
for all G ∈ G(a), given a state q1 ∈ G, there exists a
path from q1 to some state q2 /∈ G in the graph Ta. Note
that, otherwise, the system cannot make progress from the
state q1 to a state not in G, which would contradict to the
definition of progress group. An execution ρ of an augmented
finite transition system T = (Q,A,→T ,G) is a sequence
of pairs ρ = (q(0), a(0))(q(1), a(1))(q(2), a(2)) . . ., where
(q(i), a(i), q(i + 1)) ∈→T for all i ≥ 0 and ρ satisfies
the progress conditions encoded by G. A state trajectory
ρ|q = q(0)q(1)q(2) . . . of T is the projection of an execution
ρ onto the set of states.

Finite transition systems considered in this paper are non-
deterministic, that is, from a given state with a given action,
there are multiple states the system can transition to. A
control strategy for an augmented transition system T is a
partial function µ : (q(0), a(0), . . . , q(i−1), a(i−1), q(i)) 7→
a(i) that maps the execution history to the next action.

Similarly to Problem 1, we now define reach-avoid-stay
games for augmented finite transition systems.

Problem 2: [Discrete reach-avoid-stay game] Given a
well-formed augmented finite transition system T =
(Q,A,→T ,G), a set Q0 ⊆ Q of initial states, a goal set
Qg ⊆ Q and a bad set Qb ⊆ Q, synthesize a control
strategy µ that generates state trajectories q(0)q(1)q(2) . . .
such that whenever q(0) ∈ Q0, the state trajectory satisfies
the following:
2.1 for all k ≥ 0, q(k) /∈ Qb;
2.2 kr defined as kr

.
= min{k : q(k) ∈ Qg} is finite, and

q(k) ∈ Qg for all k ≥ kr;
or, provide a certificate for non-existence of such a strategy.

A specific instance of a discrete reach-avoid-stay game is
denoted by 〈T , (Q0, Qg, Qb)〉. A control strategy guarantee-
ing conditions 2.1 and 2.2 is called a winning strategy for the
game 〈T , (Q0, Qg, Qb)〉. When Q0 is not specified, one can
define the winning set W (q) of the game 〈T , (Qg, Qb)〉 as
the set of all states from which there exists a control strategy
that ensures the satisfaction of conditions 2.1 and 2.2.

When no strategy (resp. mode signal) that solves Prob-
lem 2 (resp. Problem 1) exists, the problem is said to be
unrealizable.

III. SOLUTION OVERVIEW

The objective of this paper is to develop a computational
framework to solve Problem 1. However, Problem 1 is gen-
erally undecidable with some exceptions when the dynamics
(i.e., the vector fields f ) are fairly simple [21]. On the other
hand, Problem 2 constitutes a special case of two-player
temporal logic games for which there are polynomial-time
algorithms that can efficiently determine whether a winning
strategy exists, and in that case compute one [22].

Given a continuous reach-avoid-stay game
〈S, (X0, Xg, Xb)〉 and a maximum iteration count K,
we will incrementally generate a sequence of discrete
reach-avoid-stay games

〈
T t, (Qtg, Qtb)

〉
t∈{1,...,K}. The



generated T t’s will be gradually better (in a sense to be
made clear next) approximations of S and winning sets
of these discrete games will be used to reason about the
solution of 〈S, (X0, Xg, Xb)〉.

A. Abstraction and refinement relations

We next introduce system relations adapted from [12],
first relations between switched systems and augmented finite
transition systems, and thereafter relations between different
augmented finite transition systems.

In order to relate the sets of behaviors of a switched
system S with those of a finite transition system T , a
common language to compare trajectories of S and T is
required. For this purpose, a finite set Π of propositions
is used. Accordingly, the switched system S is associated
with an observation map hX : X → 2Π which gives
an extended representation in the form of a tuple S =
(X,A, {fa}a∈A, D,Π, hX). An augmented finite transition
system T can also be extended with an observation map
hQ : Q → 2Π to obtain a representation T = (Q,A,→T
,Π, hQ,G). With these representations, it is possible to define
relations on different systems sharing a common set Π of
propositions.

We start with the definition of transience, an important
property while reasoning about the trajectories of nonlinear
switched systems. Then, we define a class of augmented
finite transition systems that abstracts the behavior of a
switched system.

Definition 1: Given a switched system S =
(X,A, {fa}a∈A, D,Π, hX), a set Y ⊂ X is transient
on mode a ∈ A if and only if for any state ξ0 ∈ Y
and for any disturbance signal δ taking values in the set
D, there exists a finite time τ such that the solution of
ẋ(t) = fa(x(t), δ(t)) leaves Y at time τ .

Definition 2: An augmented finite transition system T =
(Q,A,→T ,Π, hQ,G), is said to be an over-approximation
for the switched system S = (X,A, {fa}a∈A, D,Π, hX),
denoted by T �

O.A.
S, if there exists a function α : X → Q,

such that the following statements hold.
(i) For all ξ ∈ X , hX(ξ) = hQ(α(ξ)).

(ii) Given states q, q′ ∈ Q, there is a transition
(q, a, q′) ∈→T , if there exist ξ0 ∈ α−1(q), a time τ >
0, and some exogenous disturbance δ : [0, τ ]→ D such
that the corresponding trajectory x of the subsystem fa
starting from ξ0, i.e., x : [0, τ ]→ Rn with

x(0) = ξ0, ẋ(t) = fa(x(t), δ(t)), ∀t ∈ (0, τ),

satisfies

x(τ) ∈ α−1(q′) x(t) ∈ α−1(q)∪α−1(q′), t ∈ [0, τ ].

(iii) The progress group map G is such that given an action
a ∈ A, for all G ∈ G(a), the set

⋃
q∈G α

−1(q) is
transient on mode a of S.

The next definition gives a relation between two aug-
mented finite transition systems, which leads to a preorder.

Definition 3: Given two augmented finite transition sys-
tems T̂ = (Q̂,A,→T̂ ,Π, ĥQ̂, Ĝ) and T = (Q,A,→T
,Π, hQ,G), T is said to be a refinement of T̂ (or, T̂ is an
abstract model of T ), denoted by T̂ �

A.S.
T , if there exists a

function β : Q→ Q̂ such that the following conditions hold.
(i) For all q ∈ Q, hQ(q) = ĥQ̂(β(q)).

(ii) For all (q1, a, q2) ∈→T , (β(q1), a, β(q2)) ∈→T̂ .

(iii) For all a ∈ A, for all Ĝ ∈ Ĝ(a), there exists G ∈ G(a)
such that for all q̂ ∈ Ĝ, we have β−1(q̂) ⊆ G.

The functions α in Def. 2 and β in Def. 3 are called
abstraction functions.

Proposition 1: Let S = (X,A, {fa}a∈A, D,Π, hX), T =
(Q,A,→T ,Π, hQ,G), with Π = {πg, πb}, and hX , hQ be
defined as follows:
• for all i ∈ {g, b}, πi ∈ hX(ξ) if and only if ξ ∈ Xi;
• for all i ∈ {g, b}, πi ∈ hQ(q) if and only if q ∈ Qi,

for some sets Xi ⊆ X and Qi ⊆ Q. If T �
O.A.
S and if W (q)

is the winning set of the game 〈T , (Qg, Qb)〉, then the set
α−1(W (q)) ⊆ X is a winning set of the game 〈S, (Xg, Xb)〉.

Proof: Noting that reach-avoid-stay objective can be
expressed in linear temporal logic without next operator1, the
result directly follows from properties of overapproximations
given in Proposition 3 in [12].

Corollary 1: Given S = (X,A, {fa}a∈A, D,Π, hX) and
T = (Q,A,→T ,Π, hQ,G) with Π = {π0, πg, πb}, and hX
and hQ defined as follows:
• for all i ∈ {0, g, b}, πi ∈ hX(ξ) if and only if ξ ∈ Xi;
• for all i ∈ {0, g, b}, πi ∈ hQ(q) if and only if q ∈ Qi,

for some sets Xi ⊆ X and Qi ⊆ Q, respectively. If
T �

O.A.
S and if there is a winning strategy in the game

〈T , (Q0, Qg, Qb)〉, then there is a winning switching protocol
in the game 〈S, (X0, Xg, Xb)〉.

IV. ABSTRACTION REFINEMENT LOOP

In this section we first summarize the overall abstraction
refinement loop. Then, we elaborate on different pieces (i.e.,
algorithms) in the loop and argue their correctness.

A. Overview

Fig. 1 shows the proposed abstraction refinement loop.
In order to solve Problem 1, we start by computing an
augmented finite transition system T 0 that is an over-
approximation of S. This step is explained in Section IV-
B, using ideas borrowed from [12]. Then, we use the
incremental synthesis algorithm described in Section IV-C to
solve a discrete reach-avoid-stay game on T 0. The synthesis
algorithm outputs four sets of states: (i) winning set W (q),
(ii) for-sure losing set L(q), (iii) a candidate winning set
C

(q)
W where abstraction refinement may enable expansion of

the winning set, and, (iv) a candidate losing set C(q)
L where

1The linear temporal logic formula ϕ equivalent to the
reach-avoid-stay game objective is given by ϕ

.
= π0 →

((¬πb ∧ ¬πg) U 2(¬πb ∧ πg)). We refer the interested reader
to [23] for syntax and semantics of linear temporal logic.



Abstraction Xg, XbS

Synthesis

?Refinement
Switching
protocol

Unrealizable

T 0, (Qg, Qb)

W(q), L(q), C
(q)
W , C

(q)
L

else

if X0 ⊆ W (x)

if X0 ∩ L(x) 6= ∅
or if

X0 6⊂ W (x) ∧ C(x)
W = ∅

T t+1, (W (q), L(q))

Fig. 1: Proposed abstraction refinement loop.

refining the abstraction may enable expansion of the losing
set. The sets W (q), L(q) and C(q)

W ∪ C
(q)
L are disjoint.

Strictly speaking, the winning set in the discrete reach-
avoid-stay game is only W (q), and for all q ∈ Q\W (q), non-
determinism can prevent the system from safely reaching the
goal set or from remaining within the goal set. The reason
for computing L(q) is that it may provide useful information
about the underlying continuous game which in turn can be
used to determine unrealizability.

Let α be the abstraction function relating the states of
the continuous system S to the states of the discrete system
T �

O.A.
S. Then, by construction of W (q) and L(q), we have

the following: (i) the set W (x) = α−1(W (q)) is a winning set
for the continuous reach-avoid-stay game, (ii) the set L(x) =
α−1(L(q)) contains only continuous states from which it is
not possible to avoid the bad set Xb for all disturbances, (iii)
the set C(x)

W = α−1(C
(q)
W ) contains continuous states from

which there exist some trajectories entering W (x), hence
these are candidate states to be part of the winning set, and,
(iv) the set C(x)

L = α−1(C
(q)
L ) contains continuous states

from which there exists at least one trajectory per mode
entering L(x), hence these are candidate states to be part
of the losing set.

If neither a switching protocol nor a certificate of unreal-
izability can be extracted from the synthesis at iteration k,
the finite transition system T t is refined to obtain T t+1 as
explained in Section IV-D. After refinement, the synthesis
method is called again with the goal set, bad set and initial
state set derived from the winning set, losing set and the
initial state set of the synthesis problem at the previous
iteration via the abstraction function β from T t+1 to T t.
From the properties of the refinement relations, it can be seen
that the computed winning and losing sets of the switched
system S are non-contracting through these iterations.

B. Abstraction

Given a switched system S = (X,A, {fa}a∈A, D) to-
gether with an initial set X0 and ‘good’ and ‘bad’ sets
Xg and Xb, we first equip S with a set Π = {π0, πg, πb}
of atomic propositions and an observation map hX as in
Corollary 1. Then, an initial over-approximation T 0 =

(Q0,A,→T 0 ,Π, hQ0 ,G0) is computed in two steps.
Firstly, the set of discrete states Q0 is set in a way that

there is a bijection between Q0 and the coarsest partition P
of X induced by the sets X0, Xg and Xb. This uniquely
defines an abstraction function α : X → Q0, which satisfies
for all ξ1, ξ2 ∈ X , α(ξ1) = α(ξ2) =⇒ hX(ξ1) = hX(ξ2),
and an observation map hQ0 such that for all ξ ∈ X ,
hQ0(α(ξ)) = hX(ξ). Secondly, the transitions →T 0 and the
progress group map G0 are computed using Algorithms 3
and 4 given in the Appendix.

C. Incremental synthesis algorithm

In this section, we present an incremental synthesis al-
gorithm for reach-avoid-stay games 〈T , (Qg, Qb)〉 on aug-
mented finite transition systems. In addition to computing
the winning and losing sets for the discrete reach-avoid-
stay game, this algorithm computes two additional candidate
sets C(x)

W and C
(x)
L that provide potentially useful informa-

tion about the underlying continuous reach-avoid-stay game.
These sets are used as input to the refinement step.

The winning set of a reach-avoid-stay game can be
characterized using a maximal controlled invariant set and
a controllable predecessor set. Given an augmented finite
transition system T and a set Qs ⊆ Q, we give the following
definitions:

Definition 4: The maximal controlled invariant set of T
contained in Qs, denoted CInv∞(Qs), is the largest set of
states in Qs such that there exists a control strategy µ that
guarantees that for any initial condition q ∈ CInv∞(Qs), any
µ-controlled state trajectory remains within CInv∞(Qs).

Definition 5: The controllable predecessor set of Qs in
T , denoted CPre∞(Qs), is the set of all states in T from
which there exists a control strategy µ that can enforce any
µ-controlled state trajectory to visit Qs.

These sets can be exactly computed for augmented fi-
nite transition systems using fixed point operations [20].
We also define the standard one step operators, which are
used to find the candidate sets. The guaranteed to reach
operator for action a is given by Prea,∀(Qs)

.
= {q ∈ Q :

∀q′ (q, a, q′) ∈→T , q′ ∈ Qs}, and, the no chance to avoid
operator is given by Pre∀,∀(Qs)

.
= ∩a∈APrea,∀(Qs). Simi-

larly, potential to reach operators are given by Prea,∃(Qs)
.
=

{q ∈ Q : ∃q′ (q, a, q′) ∈→T , q′ ∈ Qs}, and, Pre∃,∃(Qs)
.
=

∪a∈APrea,∃(Qs). Finally, the potential to not avoid operator
is given by Pre∀,∃(Qs)

.
= ∩a∈APrea,∃(Qs).

Algorithm 1 attempts to find a winning set given a discrete
game 〈T , (Qg, Qb)〉 and consists of three parts. Firstly,
in order to satisfy the ‘stay’ part of the specification, a
controlled invariant set inside of Qg \Qb needs to be found.
If no such set can be found, the algorithm returns C(q)

W = Qg
for the goal set to be refined, hoping that a refined abstraction
of Xg will reveal a controlled-invariant set.

Secondly, if a controlled invariant set W0 was found inside
of Qg \Qb, this is a winning set. This set is then expanded
using the first function of Algorithm 2 which returns the set
W from which W0 is reachable and a set CW of states that
has potential to transition to the winning set W . A refinement



in CW may enable expansion of W at a later stage. Finally,
the losing set is expanded to include states from where the
current losing set is impossible to avoid, and a candidate
losing set CL is computed that can potentially expand the
losing set if refined.

Roughly speaking, when a fixed-point operation is used
while computing the winning or losing sets, candidate sets
contain those states that are “neighbors” to the fixed-point.

Algorithm 1 Synthesis
1: function SYNTHESIS(T , Qg , Qb)
2: W0 = CInv∞(Qg \Qb)
3: if W0 6= ∅ then
4: (W (q), C

(q)
W ) = EXPANDWINNING(T ,W0, Qb)

5: else
6: W (q) = ∅, C(q)

W = Qg

7: (L(q), C
(q)
L ) = EXPANDLOSING(T , Qb)

8: return W (q), L(q), C(q)
W , C(q)

L

Algorithm 2 Winning/losing set expansion
1: function EXPANDWINNING(T , W0, Qb)
2: W = CPre∞(W0)
3: CW = Pre∃,∃(W ) \ (W ∪Qb)
4: return W , CW

5: function EXPANDLOSING(T , L0)
6: L̃ = L0, L = ∅
7: while L 6= L̃ do
8: L = L̃, L̃ = L ∪ Pre∀,∀(L)
9: CL = Pre∀,∃(L)

10: return L, CL

D. Refinement

Let T t = (Qt,A,→T t ,Π, hQt ,Gt) with state space Qt =
{q1, . . . qk} and an abstraction function α : X → Qt.
A refinement T t+1 of T t is constructed by splitting a
cell α−1(qi) corresponding to a state qi ∈ C

(q)
W ∪ C(q)

L

into two parts, and assigning to each part a discrete state.
The splitting policy can be chosen in different ways. For
instance, the α−1(qi) with the largest volume could be
split along some canonical middle line. The splitting creates
two new discrete states qi1 and qi2 and thus a new set
of states Qt+1 = {q1, . . . , qi−1, qi1 , qi2 , qi+1, . . . , qk}. We
define the refined abstraction function αt+1 : X → Qt+1

such that αt+1(ξ) = αt(ξ) for ξ 6∈ (αt)−1(qi), and such
that (αt+1)−1(qi1), (αt+1)−1(qi2) form a 2-cell partition of
(αt)−1(qi). This allows to implicitly define an abstraction
function β : Qt+1 → Qt by αt = β ◦αt+1 and we can write
hQt+1 = hQt ◦ β.

To compute transitions →T t+1 and a progress group map
Gt+1 for Qt+1, Algorithms 3 and 4 in the Appendix could be
run to create an augmented transition system from scratch.
However, in order to mitigate the computational burden,
→T t+1 can be constructed from →T t using local modifica-
tions. To this effect, let M : Q×Q→ {0, 1} be a neighbor
map of the state-space partition in the sense that M(q, q′) =
1 if and only if cl((αt+1)−1(q)) ∩ cl((αt+1)−1(q′)) 6= ∅,
where cl is set closure. Given M , →T t+1 is constructed as
follows:

• For each (qj , a, qk) ∈→T t such that i 6∈ {j, k}, add
(qj , a, qk) to →T t+1 .

• For each action, run lines 5–6 of Algorithm 3 for all
(qj , qk) such that M(qj , qk) = 1 and {j, k}∩{i1, i2} 6=
∅.

• For each action, run lines 8–9 of Algorithm 3 for qi1
and qi2 and lines 10-11 for all q such that M(q, qi1) = 1
or M(q, qi2) = 1.

Similarly, the progress group map Gt+1(a) for action a can
be updated as follows:
• For each G ∈ Gt(a) such that qi ∈ G, add (G \ {qi})∪
{qi1 , qi2} to Gt+1(a).

• For each G ∈ Gt(a) such that qi 6∈ G, if there exists
a q ∈ G with M(q, qil) = 1 for some l ∈ {1, 2} and
∪q∈G(αt+1)−1(q)∪ (αt+1)−1(qil) is transient on mode
a, add G ∪ {qil} to Gt+1(a); else add G to Gt+1(a).

• For l ∈ {1, 2}, if (αt+1)−1(qil) is transient on mode a,
add {qil} to Gt+1(a).

The following then holds by construction.
Proposition 2: Given a switched system S and an aug-

mented finite transition system T t such that T t �
O.A

S,

the result T t+1 = (Qt+1,A,→T t+1 ,Π, hQt+1 ,Gt+1) of the
refinement procedure satisfies T t �

A.S.
T t+1 �

O.A
S.

E. Extraction of control law

The procedure presented in the previous subsections for
computing a winning set can also be used to incrementally
construct a winning strategy. In order to construct a winning
strategy we extract a function K : W (q) → 2A that maps a
discrete winning state q to a (set of) “winning” mode(s) for
that state. Every time a new state q is added to the winning
set, a list of corresponding winning modes is appended
to K using a procedure similar to Algorithm 1 in [20].
Given the list of winning modes K, a memoryless winning
strategy µ : (q(i)) 7→ a(i) can be constructed by ensuring
that a(i) ∈ K(q(i)). This strategy µ, together with the
abstraction function α, induces a winning switching protocol
σ : W (x) → A for the underlying continuous reach-avoid-
stay game in the form σ(ξ)

.
= µ(α(ξ)) for all ξ ∈W (x).

V. COMPUTATIONAL ASPECTS

The algorithms outlined in the preceding sections are
general in terms of dynamics and the abstraction function α.
In practice, the applicability of the abstraction and refinement
algorithms rely on how efficiently the subroutines for com-
puting transitions (i.e., isBlocked) and progress groups (e.g.,
isTransient) can be implemented, which limits the choices
of α and the feasible classes of dynamics. The properties of
these subroutines are explained in the Appendix.

In particular, one natural restriction is to let the cells in the
partition be defined by linear inequalities, so that the cells in
the partition are polyhedra. In this case polynomial time algo-
rithms exist for implementing isBlocked and isTransient
for both linear and polynomial dynamics, using linear pro-
gramming and sum-of-squares programming, respectively.
For example, to evaluate isBlocked(P1,P2, fa, D) for two



closed polyhedra P1 and P2, the objective fa·n̂ is maximized
over P1 ∩P2 (the common facet of P1 and P2 with normal
direction n̂ pointing towards P2). If the maximal value is
less than zero, no flow exists.

To reduce the computational effort further, the partition of
X can be constructed from hyper boxes {(x1, . . . xn) : xi ∈
[x−i , x

+
i ]}, which constitute a special case of polyhedra. One

advantage of hyper boxes is that their representation has fixed
complexity (linear in the state-space dimension). Another
advantage is that the vertices of a hyper box are easy to
enumerate. Since the optimal value of a linear program over a
facet is attained in one of its vertices, it is enough to consider
the sign of the objective function at each vertex in order to
evaluate isBlocked. This makes hyper boxes in combination
with linear dynamics easy to handle computationally for low
state-space dimensions (e.g., n ≤ 5). In the examples that
follow we will work with hyper boxes.

VI. EXAMPLES

In this section we present two examples to demonstrate
the effectiveness of the proposed approach. The first example
compares finite transition systems with augmented finite tran-
sition systems when used within the proposed framework.
The second example compares the proposed abstraction-
refinement based synthesis with the approach in [20] that
uses a uniform partition of the state-space.

A. Numerical example

We consider a continuous-time switched system with
three modes a ∈ A .

= {1, 2, 3} and with the fol-

lowing dynamics: f1 =

[
−x2 − 1.5x1 − 0.5x3

1

x1 − x2
2 + 2

]
, f2 =[

−x2 − 1.5x1 − 0.5x3
1

x1 − x2

]
, f3 =

[
−x2 − 1.5x1 − 0.5x3

1 + 2
x1 + 10

]
.

Disturbances are not considered, i.e., D = ∅. The domain,
the bad set and the goal set are X = [−2, 2] × [−1.5, 3],
Xb = [−2,−1] × [−1.5,−1] ∪ [1, 2] × [2.5, 3], Xg =
[−1,−0.5]×[1.5, 2], respectively. We consider a reach avoid-
game (ignoring the stay part) of the form 〈S, (Xg, Xb)〉
and demonstrate the applicability of the proposed approach
in computing winning sets of such games with polynomial
dynamics. The upper part of Fig. 2 shows the result of the
proposed method when computing a winning set by running
the abstraction-refinement loop using 100 iterations. The
computed winning set W (x) is the white area.

As a comparison, we also computed a winning set using
the same abstraction-refinement loop and the same number
of iterations, but this time with finite transition systems
defined in [2] as overapproximations instead of augmented
finite transition systems. The lower part of Fig. 2 shows
the result of this experiment with the resulting winning
set Ŵ (x) depicted in white. As can be seen from the fact
that W (x) spans a larger region than Ŵ (x), it is possible
to achieve better results using augmented finite transition
systems within the proposed abstraction-refinement loop with
the same number of iterations.

−2 −1 0 1 2

0

2
Xg

Xb1

Xb2 x1

x2

−2 −1 0 1 2

0

2
Xg

Xb1

Xb2 x1

x2

Fig. 2: Abstraction-refinement-based winning set computation when
augmented finite transition systems (above) and finite transition
systems (below) are used as overapproximations. Xg is the goal set,
Xb1 ∪Xb2 is the bad set, and white regions constitute the resulting
winning sets W (x) (above) and Ŵ (x) (below) on iteration K=100.

B. Radiant systems in buildings

In this section, we consider a hydronic radiant system
for buildings. In the hydronic radiant system, hot or chilled
supply water is pumped through the system tubes (i.e., the
piping system) in order to adjust the temperature of the room.

We use the example from [20] where there are two zones
equipped with one radiant system. The dynamics of this
system can be modeled as a switched system with two
modes and with states Tc (temperature of the pipe), T1, T2
(temperatures of zones). When the pump is circulating water
in its piping system, Mode 0 dynamics are active:

CrṪc =

2∑
i=1

Kr,i(Ti − Tc) +Kw(Tw − Tc),

CiṪi = Kr,i(Tc − Ti) +Ki(Ta − Ti) +
∑
j 6=i

Kij(Tj − Ti) + qi,

for i = 1, 2, where Ta is the ambient air temperature and Tw
is the temperature of the supply water. Similarly, when the
pump is not running, Mode 1 dynamics are active, which is
identical to Mode 0 except that Kw is set to zero. For more
details and parameter values for the system, see [24].

We set the domain as 20 ≤ Tc, T1,2 ≤ 28. The objective is
to control the zone temperatures to a desired range, denoted
by a proposition SET (21 ≤ Tc ≤ 27 and 22 ≤ T1,2 ≤
25), and guarantee invariance of this range. The equilibrium



Fig. 3: Plot showing 100 sample trajectories of (2) over t ∈
[0, 0.7] with randomized initial conditions in the winning set. The
controlled invariant set is green, the goal set lighter green, and the
winning set light gray. Red trajectory pieces correspond to f1 and
blue to f2. Segments inside of the control-invariant set are plotted
in black.

points of (2) are outside of SET , so the problem does not
have a trivial solution. The abstraction-synthesis-refinement
loop in Section IV on a partition based on hyper boxes is
used with the following splitting policy:
• In the search for a controlled invariant set, split each

hyper box in the goal set along its longest dimension,
• When trying to expand the winning set, split the largest

hyper box in C(x)
W ∪ C(x)

L along its longest dimension.
In this example the volume of the domain is 512. After 7
iterations a controlled invariant set consisting of 12 hyper
boxes is found, of total volume 20.25. A winning set con-
sisting of 705 discrete states with total volume 424 is found
after 53 iterations. In fact, this winning set is exactly the set
(20 ≤ Tc ≤ 26.625 and 20 ≤ T1,2 ≤ 28), shown in Fig. 3.
The computation time was approximately 1h and 20 min on
a 3.4 GHz iMac. In order to prevent excessive switching, the
controlled invariant set has been further refined to 48 cells,
and we use a control policy that keeps the control action
constant when there are multiple choices (c.f Section IV-E).
A plot of temperatures versus time for a simulation is shown
in Figure 4.

As a comparison with the earlier work [20], our example
used a slightly smaller target set SET . Yet we were able to
find a larger winning set in terms of volume. Our winning
set covered approximately 82% of the domain, while the
corresponding number in the referred work was around 57%.
Moreover, the overall computation took less than one third of
the time compared to [20], although using a faster computer.

VII. CONCLUSIONS

In this paper, we presented a computational framework
for synthesis of switching protocols. This framework uses
augmented finite transition systems to abstract continuous-
time switched systems. The main novelty of the presented
approach is the integration of an abstraction refinement
procedure with an incremental synthesis method. As shown
in the examples, increasing the state-space size only as

0 0.5 1 1.5 2 2.5 3

20

22

24

26

28

t

Te
m

pe
ra

tu
re

TC
T1

T2

Fig. 4: Simulation of (2). Temperatures converge to the desired
ranges. Black dots represent switches.

needed within the abstraction refinement loop provides com-
putational advantages against approaches that work with
uniform partitions of the state space. Another novelty of the
presented approach is its ability to provide unrealizability
certificates, which, for instance, can be used to guide the
low-level control design in the case with switching between
low-level feedback controllers.

In future work, we plan to investigate the trade-offs
between the representations for partitions and efficiency of
subroutines involved in our framework. Also, we will inves-
tigate parallel implementations of the abstraction refinement
loop. Since the switching protocol synthesis problem is
undecidable in general, the proposed abstraction-refinement
loop is not guaranteed to terminate. Identifying classes of
system for which termination can be guaranteed is another
interesting direction. Finally, a thorough experimentation and
comparison with the existing literature is needed.

APPENDIX

In this Appendix we outline the abstraction algorithms
from [12] with some details of the subroutines relevant
to abstraction-refinement. Given a switched system S =
(X,A, {fa}a∈A, D,Π, hX), a mapping α : X → Q defining
discrete states, and a neighbor map M as in Section IV-D, we
compute transitions, observation map, and a progress group
as follows:
• Define the observation map as hQ = hX ◦ α−1.
• Compute G = COMPPROGGROUPS({fa}a∈A, D,Q, α).
• Compute →T = COMPTRANS({fa}a∈A, D,Q, α,M).
• Return T = (Q,A,→T ,Π, hQ,G).

The functions COMPTRANS and COMPPROGGROUPS are
detailed in Algorithms 3 and 4. The intuition behind these
functions are explained next. To find a transition relation→T
that satisfies condition 2) of Definition 2, we must encode
a transition (q1, a, q2) in →T whenever a trajectory of fa
starting in ξ1 ∈ α−1(q1) and ending in ξ2 ∈ α−1(q2) exists.
Since the dynamics of the switched system are continuous
in both state and time, it is enough to look for transitions on
boundaries between cells, which is done by the subroutine



isBlocked. To find self-transitions (q, a, q) and progress
groups the subroutine isTransient is used to look for invari-
ant sets. Lines 10-11 of Algorithm 3 are worth commenting
on; they remove all transitions from a given state q under
an action a, if there exists a continuous mode a-trajectory
starting in q that exits X . This is required since exiting the
continuous domain is forbidden. For the correctness of the
algorithm we therefore require the following for the two
subroutines:

R.1) isBlocked(P1,P2, f,D): Given two sets P1,P2 ∈ Rn,
a vector field f : Rn ×Rd → Rn and a disturbance set
D, return True if a certificate for the non-existence of a
continuous trajectory segment (that does not go through
a third set) from P1 to P2 under the flow of f is found,
and return False otherwise.

R.2) isTransient(P, f,D): Given a set P ∈ Rn, a vector
field f : Rn×Rd → Rn and a disturbance set D, return
True if a certificate for transience of P under the flow
of f is found, and return False otherwise.

Depending on the dynamics and complexity of the sets in
the given partition, it might not be always possible to effi-
ciently to implement isBlocked and isTransient. However,
as shown in [12], even with conservative implementations of
these subroutines, the abstraction procedure outputs an over-
approximation.

Algorithm 3 Compute transitions →T
1: function COMPTRANS({fa}a∈A, D, Q, α, M )
2: initialize →T= ∅
3: for a ∈ A do
4: for (qi, qj) such that M(qi, qj) = 1 do
5: if not isBlocked(α−1(qi), α

−1(qj), fa, D) then
6: add (qi, a, qj) to →T
7: for q ∈ Q do
8: if not isTransient(α−1(q), fa, D) then
9: add (q, a, q) to →T

10: if not isBlocked(α−1(q),Rn \X, fa, D) then
11: remove (q, a, q′) from →T for all q′ ∈ Q
12: return →T

Algorithm 4 Compute progress group map G
1: function COMPPROGGROUPS({fa}a∈A, D, Q, α)
2: initialize G : A → 22

Q

3: for a ∈ A do
4: initialize G(a) = ∅
5: for Q′ ∈ 2Q do
6: X = ∪q∈Q′α−1(q)
7: if isTransient(X , fa, D) then
8: add Q′ to G(a)
9: return G

ACKNOWLEDGMENT

This work was supported in part by NSF Contract #CNS-
1239037 and the University of Michigan startup funds. The
authors would like to thank Richard M. Murray of Caltech,
Jun Liu of Univ. of Sheffield, and Pavithra Prabhakar of
IMDEA for helpful discussions at early stages of this work.

REFERENCES

[1] E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli, “Effective
synthesis of switching controllers for linear systems,” Proc. IEEE,
vol. 88, no. 7, pp. 1011–1025, 2000.

[2] J. Liu, N. Ozay, U. Topcu, and R. Murray, “Synthesis of reactive
switching protocols from temporal logic specifications,” IEEE Trans.
on Automatic Control, vol. 58, no. 7, pp. 1771 – 1785, 2013.

[3] J. Hespanha and A. Morse, “Switching between stabilizing con-
trollers,” Automatica, vol. 38, no. 11, pp. 1905 – 1917, 2002.

[4] D. Liberzon and A. Morse, “Basic problems in stability and design of
switched systems,” IEEE Control Systems Magazine, vol. 19, no. 5,
pp. 59–70, 1999.

[5] E. Frazzoli, M. Dahleh, and E. Feron, “Maneuver-based motion
planning for nonlinear systems with symmetries,” IEEE Trans. on
Robotics, vol. 21, no. 6, pp. 1077–1091, 2005.

[6] H.-W. Park, A. Ramezani, and J. Grizzle, “A finite-state machine for
accommodating unexpected large ground height variations in bipedal
robot walking,” IEEE Trans. on Robotics, vol. 28, no. 2, pp. 331 –
345, 2013.

[7] T. Moor and J. Davoren, “Robust controller synthesis for hybrid
systems using modal logic,” in Proc. of HSCC, 2001, pp. 433–446.

[8] J. Ding and C. Tomlin, “Robust reach-avoid controller synthesis for
switched nonlinear systems,” in Proc. of IEEE CDC, 2010, pp. 6481–
6486.

[9] J. Cámara, A. Girard, and G. Gössler, “Synthesis of switching con-
trollers using approximately bisimilar multiscale abstractions,” in Proc.
of HSCC, 2011, pp. 191–200.

[10] B. Yordanov, J. Tumova, I. Cerna, J. Barnat, and C. Belta, “Temporal
logic control of discrete-time piecewise affine systems,” IEEE Trans.
on Automatic Control, vol. 57, no. 6, pp. 1491 –1504, 2012.

[11] E. Gol, X. Ding, M. Lazar, and C. Belta, “Finite bisimulations for
switched linear systems,” in Proc. of IEEE CDC, 2012, pp. 7632–
7637.

[12] N. Ozay, J. Liu, P. Prabhakar, and R. Murray, “Computing augmented
finite transition systems to synthesize switching protocols for polyno-
mial switched systems,” in Proc. of American Control Conf., 2013.

[13] R. Alur, T. Dang, and F. Ivancic, “Counterexample-guided predicate
abstraction of hybrid systems,” Theor. Comput. Sci., vol. 354, no. 2,
pp. 250–271, 2006.

[14] E. Clarke, A. Fehnker, Z. Han, B. Krogh, O. Stursberg,
and M. Theobald, “Verification of hybrid systems based on
counterexample-guided abstraction refinement,” in Proc. of TACAS,
2003, pp. 192–207.

[15] S. Shoham and O. Grumberg, “A game-based framework for CTL
counterexamples and 3-valued abstraction-refinement,” in Proc. of
CAV, 2003, pp. 275–287.

[16] S. Karaman and E. Frazzoli, “Sampling-based motion planning with
deterministic µ-calculus specifications,” in Proc. of IEEE CDC held
jointly with CCC, 2009, pp. 2222–2229.

[17] A. Ulusoy, T. Wongpiromsarn, and C. Belta, “Incremental control syn-
thesis in probabilistic environments with temporal logic constraints,”
in Proc. of IEEE CDC, 2012, pp. 7658–7663.

[18] S. Livingston, P. Prabhakar, A. Jose, and R. Murray, “Patching task-
level robot controllers based on a local µ-calculus formula,” in Proc.
of the IEEE ICRA, 2013.

[19] B. Yordanov, J. Tumova, I. Cerni, J. Barnat, and C. Belta, “Formal
analysis of piecewise affine systems through formula-guided refine-
ment,” Automatica, vol. 49, no. 1, pp. 261 – 266, 2013.

[20] F. Sun, N. Ozay, E. M. Wolff, J. Liu, and R. M. Murray, “Efficient
control synthesis for augmented finite transition systems with an
application to switching protocols,” in Proc. of American Control
Conf., 2014.

[21] T. Henzinger, P. Kopke, A. Puri, and P. Varaiya, “What’s decidable
about hybrid automata?” J. of Computer and System Sciences, vol. 57,
no. 1, pp. 94–124, 1998.

[22] E. Grädel, W. Thomas, and T. Wilke, Eds., Automata, Logics, and
Infinite Games: A Guide to Current Research, ser. Lecture Notes in
Computer Science, vol. 2500. Springer, 2002.

[23] C. Baier and J. Katoen, Principles of Model Checking. MIT Press,
2008.

[24] T. Nghiem, G. Pappas, and R. Mangharam, “Event-based green
scheduling of radiant systems in buildings,” in Proc. of American
Control Conf., 2013.


	Introduction
	Problem formulation
	Continuous-time switched systems
	Augmented finite transition systems

	Solution overview
	Abstraction and refinement relations

	Abstraction refinement loop
	Overview
	Abstraction
	Incremental synthesis algorithm
	Refinement
	Extraction of control law

	Computational aspects
	Examples
	Numerical example
	Radiant systems in buildings

	Conclusions
	Appendix
	References

