TuX?: Distributed Graph Computation for Machine Learning

Wencong Xiao'*, Jilong Xue*?, Youshan Miao*, Zhen Lit*, Cheng Chen*,
Ming Wu*, Wei Lif, Lidong Zhou*
YSKLSDE Lab, Beihang University, *Microsoft Research, °Peking University

Abstract

TuX? is a new distributed graph engine that bridges
graph computation and distributed machine learning.
TuX? inherits the benefits of an elegant graph compu-
tation model, efficient graph layout, and balanced par-
allelism to scale to billion-edge graphs; we extend and
optimize it for distributed machine learning to support
heterogeneity, a Stale Synchronous Parallel model, and
a new MEGA (Mini-batch, Exchange, GlobalSync, and
Apply) model.

We have developed a set of representative distributed
machine learning algorithms in TUX?, covering both su-
pervised and unsupervised learning. Compared to im-
plementations on distributed machine learning platforms,
writing these algorithms in TUX? takes only about 25%
of the code: Our graph computation model hides the de-
tailed management of data layout, partitioning, and par-
allelism from developers. Our extensive evaluation of
TuX?, using large data sets with up to 64 billion edges,
shows that TUX? outperforms state-of-the-art distributed
graph engines PowerGraph and PowerLyra by an order of
magnitude, while beating two state-of-the-art distributed
machine learning systems by at least 48%.

1 Introduction

Distributed graph engines, such as Pregel [30], Pow-
erGraph [17], and PowerLyra [7], embrace a vertex-
program abstraction to express iterative computation
over large-scale graphs. A graph engine effectively en-
codes an index of the data in a graph structure to expedite
graph-traversal-based data access along edges, and sup-
ports elegant graph computation models such as Gather-
Apply-Scatter (GAS) for ease of programming. A large
body of research [7, 18, 22, 24, 32, 33, 36, 39, 46, 47]
has been devoted to developing highly scalable and ef-
ficient graph engines through data layout, partitioning,
scheduling, and balanced parallelism. It has been shown

that distributed graph engines can scale to graphs with
more than a trillion edges [10, 43, 38] for simple graph
algorithms such as PageRank.

Early work on graph engines (e.g., GraphLab [29])
was motivated by machine learning, based on the ob-
servation that many machine learning problems can be
modeled naturally and efficiently with graphs and solved
by iterative convergence algorithms. However, most sub-
sequent work on graph engines adopts a simplistic graph
computation model, driven by basic graph benchmarks
such as PageRank. The resulting graph engines lack flex-
ibility and other key capabilities for efficient distributed
machine learning.

We present TUX?, a distributed graph engine for ma-
chine learning algorithms expressed in a graph model.
TUuX? preserves the benefits of graph computation, wh-
lie also supporting the Stale Synchronous Parallel (SSP)
model [20, 11, 42, 13], a heterogeneous data model,
and a new MEGA (Mini-batch, Exchange, GlobalSync,
and Apply) graph model for efficient distributed ma-
chine learning. We evaluate the performance of TUX?
on a distributed cluster of 32 machines (with over 500
physical cores) on both synthetic and real data sets with
up to 64 billion edges, using representative distributed
machine learning algorithms including Matrix Factoriza-
tion (MF) [16], Latent Dirichlet Allocation (LDA) [45],
and Block Proximal Gradient (BlockPG) [27], covering
both supervised and unsupervised learning. The graph
model in TUX? significantly reduces the amount of code
(by 73-83%) that developers need to write for the algo-
rithms, compared to the state-of-the-art distributed ma-
chine learning platforms such as Petuum [20, 44] and
Parameter Server [26]. It also enables natural graph-
based optimizations such as vertex-cut for achieving bal-
anced parallelism. Our evaluation shows that TUX? out-
performs state-of-the-art graph engines PowerGraph and
PowerLyra by more than an order of magnitude, due
largely to our heterogeneous MEGA graph model. TUX?
also beats Petuum and Parameter Server by at least 48%

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 669

thanks to a series of graph-based optimizations.

As one of our key contributions, TUX? bridges two
largely parallel threads of research, graph computation
and parameter-server-based distributed machine learn-
ing, in a unified model, advancing the state of the art
in both. TUX? significantly expands the capabilities of
graph engines in three key dimensions: data represen-
tation and data model, programming model, and execu-
tion scheduling. We propose a set of representative ma-
chine learning algorithms for evaluating graph engines
on machine learning applications, guiding graph engines
towards addressing the real challenges of distributed ma-
chine learning and thereby becoming more widely used
in practice. We have also, through extensive evaluation
on real workloads at scale, shown significant benefits
in programmability, scalability, and efficiency for graph
computation models in distributed machine learning.

The rest of the paper is organized as follows. §2 offers
an overview of graph computation and machine learning,
highlighting their connections. §3 describes TUX?’s de-
sign. §4 presents three machine learning algorithms, de-
tailing how they are expressed and realized in TUX?; §5
discusses the implementation and evaluation of TUX?Z.
We discuss related work in §6 and conclude in §7.

2 Graphs for Machine Learning

In this section, we highlight the benefits of abstraction
into a graph model, show how a large class of machine
learning algorithms can be mapped to graph models, and
outline why existing graph engines fall short of support-
ing those algorithms in expressiveness and efficiency.

Graph parallel abstraction. A graph parallel abstrac-
tion models data as a graph G = {V,E} with V the
set of vertices and E the set of edges. A vertex-
program P is provided to execute in parallel on each ver-
tex v € V and interact with neighboring instances P(u),
where (u,v) € E. The vertex-program often maintains
an application-specific state associated with vertices and
with edges, exchanges the state values among neighbor-
ing vertices, and computes new values during graph com-
putation. It typically proceeds in iterations and, when
a Bulk Synchronous Parallel (BSP) model is used, in-
troduces a synchronization barrier at the end of each it-
eration. By constraining the interactions among nodes
of a vertex-program using a graph model, this abstrac-
tion lets the underlying system encode an index of the
data as a graph structure to allow fast data access along
edges. Many existing state-of-the-art graph engines have
adopted this parallel vertex-program approach, though
the actual form of vertex-program design might vary. As
a representative graph model, the GAS model proposed

in PowerGraph [17] defines three phases of a vertex-
program: Gather, Apply, and Scatter. For each vertex
u, the gather phase collects information about neighbor
vertices and edges of u through a generalized sum func-
tion that is commutative and associative. The result of
this phase is then used in the apply phase to update u’s
state. Finally, the scatter phase uses u’s new state to up-
date its adjacent edges.

With a graph model like GAS, a graph algorithm can
be succinctly expressed in three functions, without hav-
ing to worry about managing data layout and partition-
ing, or about scheduling parallel executions on multiple
cores and multiple machines. A graph engine can then
judiciously optimize data layout for efficient graph data
access, partition the data in a way that reduces cross-
core or cross-server communication, and achieve bal-
anced parallelism for scaling and efficiency. For exam-
ple, PowerGraph introduces vertex-cut to achieve bal-
anced partitioning of graph data, resulting in improved
scalability even for power-law graphs. In our experience,
these optimizations are effective for machine learning al-
gorithms; further, they need only be implemented once
per engine rather than redundantly for each algorithm.

Machine learning on graphs. Machine learning is
widely used in web search, recommendation sys-
tems, document analysis, and computational advertising.
These algorithms learn models by training on data sam-
ples consisting of features. The goal of machine learning
can often be expressed via an objective function with pa-
rameters that represent a model. This objective function
captures the properties of the learned model, such as the
error it incurs when predicting the probability that a user
will click on an advertisement given that user’s search
query. The learning algorithm typically minimizes the
objective function to obtain the model. It starts from an
initial model and then iteratively refines the model by
processing the training data, possibly multiple times.
Many machine learning problems can be modeled nat-
urally and efficiently with graphs and solved by iterative
convergence algorithms. For example, the Matrix Fac-
torization (MF) algorithm [16], often used in recommen-
dation systems, can be modeled as a computation on a
bipartite user-item graph where each vertex corresponds
to a user or an item and each edge corresponds to a user’s
rating of an item. As another example, a topic-modeling
algorithm like LDA performs operations on a document-
word graph where documents and words are vertices. If
a document contains a word, there is an edge between
them; the data on that edge are the topics of the word
in the document. For many machine learning algorithms
described as computations on a sparse matrix, the com-
putation can often be easily transformed to operations on
a graph representation of the sparse matrix. For example,

670 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Model: #,; = q7p,

User, User, User,
Compute Ag,, Ap,

and update p,

Propagate Ag;
to item vertex.-2 2%

s =" Propagate q;to
user vertex

Item, Item,

(a) Matrix Factorization

Model: § = sigmoid (XL, xw,)

Sample, Sample, Sample,

Accumulate Aw,
and update w,

Feature, Feature,

Feature;

(b) Logistic Regression

Figure 1: Examples of machine learning on graphs.

in Logistic Regression (LR) the parameters of the model
are maintained in a weight vector with each element be-
ing the weight of the corresponding feature. Each train-
ing sample is a sparse feature vector with each element
being the value of a specific feature. The entire set of
training samples can be treated as a sparse matrix with
one dimension being the samples and the other being the
features. If a sample i contains a value for feature j, the
element (i, j) of the matrix is the value. Therefore, the
data can also be modeled as a graph with samples and
features being vertices. Weights are the data associated
with feature vertices, and the feature values in each train-
ing sample are the data on edges. Figure 1 illustrates how
MF and LR are modeled by graphs.

Gaps. Even though these machine learning algorithms
can be cast in graph models, we observe gaps in cur-
rent graph engines that preclude supporting them natu-
rally and efficiently. These gaps involve data models,
programming models, and execution scheduling.

Data models: The standard graph model assumes a
homogeneous set of vertices, but the graphs that model
machine learning problems often naturally have different
types of vertices playing distinct roles (e.g., user vertices
and item vertices). A heterogeneity-aware data model
and layout is critical to performance.

Programming models: For machine learning computa-
tions, an iteration of a graph computation might involve
multiple rounds of propagations between different types
of vertices, rather than a simple series of GAS phases.
The standard GAS model is unable to express such com-
putation patterns efficiently. This is the case for LR,
where the data (weights) of the feature vertices are first
propagated to sample vertices to compute the objective

function, with the gradients propagated back to feature
vertices to update the weights. Implementing this pro-
cess in GAS would unnecessarily require two consecu-
tive GAS phases, with two barriers.

Execution scheduling: Machine learning frameworks
have been shown to benefit from the Stale Synchronous
Parallel (SSP) model, a relaxed consistency model with
bounded staleness to improve parallelism. This is be-
cause machine learning algorithms typically describe the
process to converge to a “good” solution according to
an objective function and the convergence process itself
is robust to variations and slack that can be leveraged
to improve efficiency and parallelism. The mini-batch
is another important scheduling concept, often used in
stochastic gradient descent (SGD), where a small batch
of samples are processed together to improve efficiency
at the expense of slower convergence with respect to the
number of iterations. Mini-batch size is an important pa-
rameter for those algorithms and needs to be tuned to
find the best balance. Graph engines typically operate
on individual vertices [29], or define an “iteration” or a
batch on the entire graph [30], while mini-batches offer
the additional flexibility to be in between.

TuX? therefore supports and optimizes for hetero-
geneity in the data model, advocates a new graph model
that allows flexible composition of stages, and supports
SSP and mini-batches in execution scheduling.

3 TuX? Design

TuX? is designed to preserve the benefits of graph en-
gines while extending their data models, programming
models, and scheduling approaches in service to dis-
tributed machine learning.

TuX? uses the vertex-cut approach, in which the edge
set of a (high-degree) vertex can be split into multiple
partitions, each maintaining a replica of the vertex. One
of these replicas is designated the master; it maintains
the master version of the vertex’s data. All remaining
replicas are called mirrors, and each maintains a local
cached copy. We adopt vertex-cut because it is proven
effective in handling power-law graphs and it connects
naturally to the parameter-server model [26, 11]: The
master versions of all vertices’ data can be treated as
the (distributed) global state stored in a parameter server.
In each partition, TUX? maintains vertices and edges in
separate arrays. Edges in the edge array are grouped by
source vertex. Each vertex has an index giving the off-
set of its edge-set in the edge array. Each edge contains
information such as the id of the partition containing the
destination vertex and the index of that vertex in the cor-
responding vertex array. This graph data structure is op-
timized for traversal and outperforms vertex indexing us-
ing a lookup table.

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 671

Each partition is managed by a process that logically
plays both a worker role, to enumerate vertices in the
partition and propagate vertex data along edges, and a
server role, to synchronize states between mirror vertices
and their corresponding masters. Inside a process, TUX?>
uses multiple threads for parallelization and assigns both
the server and worker roles of a partition to the same
thread. Each thread is then responsible for enumerat-
ing a subset of mirror vertices for local computation and
maintaining the states of a subset of master vertices in the
partition owned by the process. Figure 2 shows how data
are partitioned, stored, and assigned to execution roles in
TuX>.

Partition, in Process, Partition, in Process,

Server role

Worker role

— : Edge link - : Master-mirror link

Figure 2: Graph placement and execution roles in TUX?

3.1 Heterogeneous Data Layout

While traditional graph engines simply assume a homo-
geneous graph, TUX? supports heterogeneity in mul-
tiple dimensions of data layout, including vertex type
and partitioning approach; it even supports heterogene-
ity between master and mirror vertex data types. Support
for heterogeneity translates into significant performance
gains (40%) in our evaluation (§5.2).

We highlight optimizations on bipartite graphs be-
cause many machine learning problems map naturally to
bipartite graphs with two disjoint sets of vertices, e.g.,
users and items in MF, features and samples in LR, and
so on. The two sets of vertices therefore often have dif-
ferent properties. For example, in the case of LR, only
feature vertices contain a weight field and only sample
vertices contain a target label field. And, in variants of
LR like BlockPG [27], feature vertices also maintain ex-
tra history information. TUX? therefore allows users to
define different vertex types, and places different types
of vertex in separate arrays. This leads to compact data
representation, thereby improving data locality during
computation. Furthermore, different vertex types may
have vastly different degrees. For example, in a user-
item graph, item vertices can have links to thousands of
users but user vertices typically only link to tens of items.

TUX? uses bipartite-graph aware partitioning algorithms
proposed in PowerLyra [7] and BiGraph [8] so that only
high-degree vertices have mirror versions.

D : Updated vertex in a mini-batch
<-=: Master-mirror link

— : Edge link

One partition in a process One partition in a process

Server role

Server role

Worker role Worker role

(a) Scan item vertices (b) Scan user vertices

Figure 3: Example showing how separate vertex arrays
are used for an MF bipartite graph. Edge arrays are omit-
ted for conciseness.

In a bipartite graph, TUX? can enumerate all edges
by scanning only vertices of one type. The choice of
which type to enumerate sometimes has significant per-
formance implications. Scanning the vertices with mir-
rors in a mini-batch tends to lead to a more efficient syn-
chronization step as long as TUX? can identify the set of
mirrors that have updates to synchronize with their mas-
ters, because these vertices are placed contiguously in an
array. In contrast, if TUX? scans vertices without mir-
rors in a mini-batch, the mirrors that get updated for the
other vertex type during the scan will be scattered and
thus more expensive to locate. TUX? therefore allows
users to specify which set of vertices to enumerate dur-
ing the computation.

Figure 3 illustrates how TUX? organizes vertex data
for a bipartite graph, using MF on a user-item graph as
an example. Because user vertices have much smaller
degree in general, only item vertices are split by vertex-
cut partitioning. Therefore, a master vertex array in the
server role contains only item vertices, and the worker
role only manages user vertices. This way, there are no
mirror replicas of user vertices and no distributed syn-
chronization is needed. In the worker role, the mirrors of
item and user vertices are stored in two separate arrays.

The figure also shows the benefit of scanning item ver-
tices in a mini-batch. As shown in Figure 3(a), this leads
to updated mirror vertices being located contiguously in
an item vertex array. TUX? can therefore easily iden-
tify them for master-mirror synchronization by simply
rescanning the corresponding range of that array. In con-
trast, scanning user vertices in a mini-batch would re-
quire an extra index structure to identify the mirror up-

672 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

dates. This is because they are scattered in an item vertex
array as shown in Figure 3(b). Such an index structure
would introduce extra overhead.

Another type of heterogeneity comes from different
computations performed on master and mirror replicas of
vertices, which may require different data structures for
synchronization efficiency. For example, the BlockPG
algorithm accesses and updates weights of a block of fea-
tures in a mini-batch, while the objective function com-
puted at sample vertices might depend on weights of fea-
tures not in this block. This leads to auxiliary feature
vertex attributes on mirrors, to record the historical deltas
of feature weights to compute the value of the objective
function incrementally. However, this delta attribute is
not needed on masters, and hence does not need to be
exchanged during synchronization. Similarly, a master
vertex also maintains some extra attributes that are not
needed on mirrors. TUX? therefore allows users to de-
fine different data structures for the master and mirror
replicas of the same vertex.

Slack of 1 clock

g 1 ... |eslen|esa|an|esfcn)
S o .. |es]ea]es|e)
s N
S 3 _... |eoleaes)
Clock 2 3 4

:l: visible update
:l: possibly visible update

: current running work
E:j: blocked work

Figure 4: SSP with bounded staleness. A block labeled
(i,) indicates a task with id j in clock i.

3.2 Scheduling with SSP

TuX? supports the Stale Synchronous Parallel (SSP)
model [11] with bounded staleness and mini-batches.
SSP is based on the notion of work-per-clock, where a
clock corresponds to an iteration over a mini-batch ex-
ecuted by a set of concurrent tasks. Iterative batch pro-
cessing can be considered as a special case in which each
iteration uses all input data. SSP introduces an explicit
slack parameter, which specifies in clocks how stale a
task’s view of the globally shared state can be. The slack
thus dictates how far ahead of the slowest task any task
may progress. With a slack of s, a task at clock ¢ is guar-
anteed to see all updates from clocks 1 tot —s— 1, and it
may see the updates from clocks ¢ — s to r — 1. Figure 4
illustrates an SSP execution with a slack of 1.

TUX? executes each iteration on a mini-batch with a
specified size. Each worker first chooses a set of ver-
tices or edges as the current mini-batch to execute on.

After the execution on the mini-batch finishes, TUX? ac-
quires another set of vertices or edges for the next mini-
batch, often by continuing to enumerate contiguous seg-
ments of vertex or edge arrays. TUX? supports SSP in
the mini-batch granularity. It tracks the progress of each
mini-batch iteration to enable computation of clocks. A
worker considers clock ¢ completed if the corresponding
mini-batch is completed on all workers (including syn-
chronizations between masters and mirrors) and if the
resulting update has been applied to and reflected in the
state. A worker can execute a task at clock # only if it
knows that all clocks up to t —s — 1 have completed,
where s is the allowed slack.

3.3 MEGA Model in TUX?

TuX? introduces a new stage-based MEGA model,
where each stage is a computation on a set of vertices
and their edges in a graph. Each stage has user-defined
functions (UDF) to be applied on the vertices or edges
accessed during it. TUX? supports four types of stage:
Mini-batch, Exchange, GlobalSync, and Apply (hence
the name MEGA); it allows users to construct an arbi-
trary sequence of stages. The engine is responsible for
scheduling parallel executions of the UDFs on multiple
cores and/or machines in each stage.

The MEGA model preserves the simplicity of the GAS
model, while introducing additional flexibility to address
deficiencies of the GAS model in supporting machine
learning algorithms. For example, in algorithms such
as MF and LDA, processing an edge involves updating
both vertices. This requires two GAS phases, but can
be accomplished in one Exchange phase in our model.
For LR, the vertex data propagations in both directions
should be followed by an Apply phase, but no Scatter
phases are necessary; this can be avoided in the MEGA
model because MEGA allows an arbitrary sequence of
stages. We elaborate on the different types of stages next.

Exchange: This stage enumerates edges of a set of
vertices, taking a UDF with the following signature:

EXChange (DM s Ay D(u,v) 5 a(u,v) 5 Dv; ay, T)

Exchange () is performed on each enumerated edge.
D, and D, are the data on vertices u and v, respectively.
Dy, is the data associated with the edge (u,v). ay,
ay, and a,) are the corresponding accumulated deltas
of the vertex and edge data, and 7 is a user-defined
shared context associated with each worker thread and
maintained during the execution of the entire computa-
tion. All these parameters are allowed to be updated
in this UDF. Users can use it to generate new accumu-
lated deltas for vertices and edges, or to update their
states directly. Given the vertex-cut graph placement,
Exchange () may only update the mirror version data

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 673

(i.e., the local states) of the vertices. Users can also use T
to compute and store some algorithm-specific non-graph
context data, which may be shared through global aggre-
gation. By default, vertices not specified for enumera-
tion are protected by vertex-level locks, but TUX? also
allows users to implement their own lock-free semantics
for some applications [14, 21, 37]. This stage is more
flexible than the Gather/Scatter phases in the GAS model
in that it does not imply or enforce a direction of vertex
data propagation along an edge, and it can update the
states of both vertices in the same UDF. It thereby im-
proves efficiency for algorithms such as LDA and MF.

Apply: This stage enumerates a set of vertices and
synchronizes their master and mirror versions. For each
vertex, the master accumulates deltas from the mirrors,
invokes Apply(D,,a,,) to update its global state, then
updates the states on the mirrors. To support heterogene-
ity between master and mirror, TUX? allows users to de-
fine a base class VertexDataSync for the global state
of a vertex that needs to be synchronized; masters and
mirrors can define different subclasses, each inheriting
from the base class, to include other information. The en-
gine synchronizes only the data in VertexDataSync
between master and mirror vertices.

GlobalSync: This stage is responsible for synchro-
nizing the contexts 7T across worker threads and/or aggre-
gating the data across a set of vertices. There are three
UDFs associated with this stage:

it Aggregate(D,, ')

1!« Combine(t',7/)

T Apply(th)

Aggregate () aggregates data across vertices into
worker context 7. Combine () aggregates context T
across workers into a special worker, which maintains
multiple versions of context T for different clocks to sup-
port SSP. Apply () finalizes the globally aggregated T
(e.g., for re-scaling). After the execution of Apply (),
the final aggregated 7 is synchronized back to all work-
ers. If the Aggregate () function is not provided, this
stage will aggregate and synchronize the contexts T only
across workers.

Mini-Batch: This is a composite stage containing a
sequence of other stages; it defines the stages to be exe-
cuted iteratively for each mini-batch. MiniBatch de-
fines the mini-batch size in terms of the number of ver-
tices or edges to enumerate in each mini-batch, and, in
the case of bipartite graphs, which type of vertex to enu-
merate (see examples in §4).

void StageSequenceBuilder (ExecStages) {
ExecStages.Add (ExchangeStage) ;
ExecStages.Add (ApplyStage) ;
ExecStages.Add (GlobalSyncStage) ;

(a) MF stage sequence for a batch

void StageSequenceBuilder (ExecStages) {
val mbStage = new MiniBatchStage;
mbStage.SetBatchSize (1000, asEdge);
mbStage.Add (ExchangeStage) ;
mbStage.Add (ApplyStage) ;

ExecStages.Add (mbStage) ;
ExecStages.Add (GlobalSyncStage) ;

(b) MF stage sequence for a mini-batch

//ExchangeStage: :
Exchange (v_user, v_item, edge,
a_user, a_item, context) {
val pred = PredictRating(v_user,v_item);
val loss = pred - edge.rating;
context.loss += loss”2;
(a_user,a_item) +=
Gradient (loss,v_user,v_item);

}

//BpplyStage: :

Apply (ver, accum, ctx){
//Apply accumulated gradient
ver.data += accum;

}

//GlobalSyncStage: :

Combine (ctxl, ctx2){
ctx.loss = ctxl.loss + ctx2.loss;
return ctx;

(c) MF UDFs for each stage

Figure 5: Programming MF with the MEGA model

4 ML Algorithms on TUX?

In this section, we detail how three machine learning al-
gorithms are expressed and implemented in TUX?.

Matrix Factorization (MF). MF, commonly used in
recommendation systems, aims to decompose an adja-
cency matrix M|y||;, where U is the set of users, / is the
set of items, and the entry (u, i) is user «’s rating on item
i, into two matrices L and R, making M approximately
equal to L x R. TUX? models training data as a bipartite
graph with users and items being vertices and user-item
ratings being edges, and solves MF using SGD [16].
Figure 5 illustrates how MF is implemented in
the MEGA model. StageSequenceBuilder ()
builds the stage sequence for each MF iteration.
For MF in batch mode (Figure 5a), an iteration is
composed of ExchangeStage, ApplyStage, and
GlobalSyncStage. Exchange () (Figure 5c) com-
putes the gradients of the loss function given a user and
an item, and accumulates the gradients into a_user
and a_item, respectively. In Apply (), the accumu-

674 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

//ExchangeStage: :
Exchange (v_doc, v_word, edge,
a_doc, a_word, context) {
val old_topic = edge.topic
val new_topic GibbsSampling (context,
v_doc, v_word)
edge.topic = new_topic;

//topic accumulator
a_doc[old_topic]l--;
a_doc[new_topic]++;
a_word[old_topic]l--;
a_word[new_topic]++;

//update topic summary
context.topic_sum[old_topic]l--;
context.topic_sum[new_topic]++;

}

//ApplyStage::

Apply (ver, accum, ctx) {
//Bpply accumulated topic changes
ver.topics += accum;

}

//GlobalSyncStage::
Combine (ctxl, ctx2) {
ctx.topic_sum
= ctxl.topic_sum + ctx2.topic_sum;
return ctx;

Figure 6: Programming LDA with the MEGA model

lated gradient is used to update the data of a vertex
(a user or an item). Combine () sums the losses to
evaluate convergence. For the mini-batch version (Fig-
ure 5b), only ExchangeStage and ApplyStage are
performed per mini-batch, while GlobalSyncStage
is conducted per iteration. The mini-batch size is set
as the number of edges because each edge with its con-
nected user and item vertices forms a training sample.

Latent Dirichlet Allocation (LDA). When applied to
topic modeling, LDA trains on a set of documents to
learn document-topic and word-topic distributions and
thereby learn how to deduce any document’s topics.
TuX? implements SparseLDA [45], a widely used al-
gorithm for large-scale distributed LDA training. In our
graph model, vertices represent documents and words,
while each edge between a document and a word means
the document contains the word.

LDA’s stage sequence is the same as MF’s. Figure 6
shows the UDFs of the stages. Each edge is initial-
ized with a randomly assigned topic. Each vertex (docu-
ment or word) maintains a vector to track its distribution
of all topics. The topic distribution of a vertex is the
topic summary of the edges it connects. We also have
a global topic summary maintained in a shared context.
The computation iterates over the graph following the
stage sequence until convergence. Exchange () per-
forms Gibbs sampling [19] on each edge to compute a
new topic for the edge. The new edge topic also changes
the topic distributions of the vertices, as well as the topic

void StageSequenceBuilder (ExecStages) {
val mbStage = new MiniBatchStage;
mbStage.SetBatchSize (1000, asVertex,
"feature");
mbStage.Add (ExchangeStage0) ;
mbStage.Add (ApplyStage) ;
mbStage.Add (ExchangeStagel) ;

ExecStages.Add (mbStage) ;
ExecStages.Add (GlobalSyncStage) ;

(a) BlockPG stage sequence

//ExchangeStage0: :
ExchangeO (v_feature, v_sample, edge,
a_feature, a_sample, ctx){
(a_feature.g, a_feature.u) +=
FeatureGradient (v_feature, v_sample)

}

//ExchangeStagel: :
Exchangel (v_feature, v_sample, edge,
a_feature, a_sample, ctx){
v_sample.dual x=
SampleDual (v_feature, v_sample)

}

//RApplyStage: :
Apply (v_feature, a_feature, ctx){
v_feature.weight +=
SolveProximal (v_feature,a_feature, ctx);

}

//GlobalSyncStage: :

Aggregate (ver, ctx) {
ctx.obj += CalcObj(ver);

}

Combine (ctxl, ctx2) {
ctx.obj = ctxl.obj + ctx2.obj;
return ctx;

(b) BlockPG UDFs for stages

Figure 7: Programming BlockPG with the MEGA model

summary in the shared context; these changes are accu-
mulated. Apply () applies the aggregated topic changes
for each vertex. Combine () synchronizes the global
topic summary among all workers.

Block Proximal Gradient (BlockPG). BlockPG [26,
27, 28] is a state-of-the-art logistic regression algorithm.
It is modeled as a bipartite graph with features and sam-
ples as vertices and an edge between a feature and a sam-
ple vertex indicating that the sample contains the feature.

Figure 7b shows the pseudocode of BlockPG’s UDFs.
BlockPG randomly divides features into blocks and enu-
merates each block as a mini-batch. Each mini-batch
involves two Exchangex () stages with an Apply ()
stage in between. ExchangeO () calculates and ac-
cumulates for each edge both the gradient and the di-
agonal part of the second derivative for the correspond-
ing feature vertex. Apply () then synchronizes the ver-
tices’ accumulated values into the master feature vertices
to update their weights using a proximal operator [34].
Then, Exchangel () uses the new weights of features

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 675

to compute new states of samples. Note that BlockPG
does not need Apply () for sample vertices. TUX?
therefore optimizes Apply () by setting the mini-batch
size in terms of the number of feature vertices (as shown
in Figure 7a) and partitioning the graph to not cut the
sample vertices. Also, only the weight value needs to
be synchronized between master and mirror feature ver-
tices. TUX? allows a master vertex to maintain private
data that does not get synchronized to mirrors, e.g., in-
formation for the proximal operator.

S Implementation and Evaluation

We implemented TuX? in about 12,000 lines of C++
code. It can be built and deployed on both Linux and
Windows clusters with each machine running one TUX?
process. The system is entirely symmetric: All the pro-
cesses participating in the computation are peers execut-
ing the same binary. TUX? takes graph data in a collec-
tion of text files as input. Each process picks a separate
subset of those files and performs bipartite-graph-aware
algorithms [7, 8] to partition the graph in a distributed
way. Each partition is assigned to, and stored locally
with, a process. The data in each partition are placed
as they are loaded and used in computation. For inter-
process communication, TUX? uses a network library
that supports both RDMA and TCP.

In the rest of this section, we present detailed eval-
uation results to support our design choices and to
demonstrate the benefits of supporting machine learn-
ing on graph engines. We compare TUX? with state-
of-the-art graph systems PowerGraph [17, 4] and Power-
Lyra [7] and ML systems Petuum [20, 3] and Parameter
Server [26, 2].

Experimental setup. We conduct most of our exper-
iments on a commodity cluster with 32 servers. Each
server is equipped with dual 2.6 GHz Intel Xeon E5-2650
processors (16 physical cores), 256 GB of memory, and
a Mellanox ConnectX-3 InfiniBand NIC with 54 Gbps
bandwidth. TUX? uses RDMA by default, but uses TCP
when comparing to other systems for fairness.

To evaluate TUX?, we have fully implemented the MF,
LDA, and BlockPG algorithms introduced in §4, setting
the feature dimension of MF to 50 and the topic count of
LDA to 100 in all experiments. The algorithms are se-
lected to be representative and cover a spectrum, ranging
from computation-bound (e.g., LDA) to communication-
bound (e.g., BlockPG). Table 1 lists the datasets that we
use for evaluation. NewsData and AdsData are two real
datasets used in production by Microsoft for news and
advertisement. Netflix [6] is the largest public dataset
that is available for MF. We also generate a larger synthe-

of users/ # of items/
Dataset name ‘ docs/samples ‘ words/features | # of edges
NewsData (LDA) 7.3M 418.4K 14B
AdsData (BlockPG) 924.8M 209.3M 64.9B
Netflix (MF) 480.2K 17.8K 100.5M
Synthesized (MF) 30M IM 6.3B

Table 1: Datasets (K: thousand, M: million, B: billion).

Algorithm ‘ ML systems ‘ TuX? ‘ LOC reduction
MF (Petuum) > 300 50 83%
LDA (Petuum) > 950 252 73%
BlockPG (PS) > 350 79 77%

Table 2: Algorithm implementations in lines of code, ML
systems Vvs. TuX2. (PS: Parameter Server)

sized dataset, which is the default dataset for MF experi-
ments. All performance numbers in our experiments are
calculated by averaging over 100 iterations; in all cases
we observed very little variation.

5.1 Programmability

By providing a high-level MEGA graph model, TUX?
makes it significantly easier to write distributed machine
learning algorithms, relieving developers from handling
the details of data organization, enumeration, partition-
ing, parallelism, and thread management. As one indi-
cation, Table 2 shows the significant reduction (73-83%)
in lines of code (LOC) to implement the three algorithms
in TUX?, compared to the C++ implementations of the
same algorithms on Petuum or Parameter Server. The
lines of code are comparable to those written in the GAS
model.

5.2 Managing ML Data as a Graph

Data layout. Data layout matters greatly in the perfor-
mance of machine learning algorithms. Figure 8 com-
pares the performance of BlockPG, MF, and LDA with
two different layouts: one an array-based graph data
layout in TUX? and the other a hash-table-based lay-

350 |~ HashTable 772

300 - Array 1]
Z 250
)
£ 200
5 150 -

100 -

50 - §‘

0
MF LDA BlockPG

Figure 8: Effect of data layout (32 servers)

676 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

136
140
120 120 114 97

Time per iteration (s)
o0
[«

e &

/YO]?)O\V '{'{O\Sa ea’% S%S[el'/]f
Cry: 2 RY) “z;
’bces Dy e “ro,.

Figure 9: Effect of heterogeneity (BlockPG, 32 servers)

out often used in parameter-server-based systems (but
implemented in TUX? for comparison). The y-axis is
the average running time of one iteration for BlockPG,
and of 10 iterations for MF and LDA to show the num-
bers on a similar scale. These results show that the
graph layout improves performance by up to 2.4Xx over
the hash-table-based layout. We observe smaller im-
provement in LDA because LDA involves more CPU-
intensive floating-point computation, making data access
contribute a smaller portion of overall run time.

Heterogeneity. Supporting heterogeneity in TUX? is
critical to the performance of machine learning algo-
rithms. We evaluate the benefits of supporting different
dimensions of vertex heterogeneity using BlockPG on 32
servers. As shown in Figure 9, if we model all vertices as
the same vertex type, each iteration takes 136 s (Homo-
Vertices in the figure). For BlockPG, because only fea-
ture vertices have mirrors, we can specify to enumerate
only feature vertices in each mini-batch and not track
whether sample vertices are updated because they do not
have mirrors to synchronize (see §3.1). This setup leads
to a reduction of 16 s per iteration (Skip-Sample in the
figure). Next, if we define different vertex data types for
features and samples for a more compact representation,
each iteration can save an additional 6 s (Feature-Sample
in the figure). Finally, as discussed in §3.3, we can al-
low masters and mirrors to have different types and can
indicate which data need to be synchronized. Doing this
makes each iteration take only 97 s (Master-Mirror in the
figure), a total performance improvement of 40% over
the original homogeneous setting.

5.3 Extensions for Machine Learning

SSP slack and mini-batch size can be configured in
TuX? to tune algorithm convergence.

Stale Synchronous Parallel. TUX? supports the con-
figuration of slack as a staleness bound for SSP, to al-
low users to tune the parameter for desirable conver-
gence. The effect of slack varies by algorithm. For MF,

1600 -
1400 - Computing /771
1200 - Waiting 1

ol S
L 070
S A7 07 7

Figure 10: Run time, with breakdown, to converge to the
same point under different slack (MF, 32 servers)

Run time (s)

3500
3000 -
2500
2000 -
1500
1000 - |
500 -

0

Computing 2771
Waiting

Run time (s)

NN

0 1 2 4 8 16
Slack

Figure 11: Run time, with breakdown ,to converge to the
same point under different slack (BlockPG, 32 servers)

as shown in Figure 10, the overall convergence accel-
erates as the slack increases. The breakdown confirms
that increasing slack reduces waiting time, while increas-
ing computing time only slightly, indicating that it takes
about the same (or a slightly larger) number of iterations
to reach the same convergence point. For BlockPG, how-
ever, as shown in Figure 11, computing time increases
significantly as slack increases to 8 and 16, indicating
that it is taking many more iterations for BlockPG to
converge when slack is larger. A slack value of 4 is the
optimal point in terms of overall execution time.

Mini-Batch. Mini-batch size is another important pa-
rameter that TUX? lets users tune, since it also affects
convergence, as we show in this experiment for MF and
BlockPG. (LDA is inherently a batch algorithm and does
not support mini-batches.) Figure 12 shows the conver-
gence (to objective values) over time with slack set to 16
on 32 servers. We show each iteration as a point on the
corresponding curve to demonstrate the effect of mini-
batch size on the execution time of each iteration.

For MF, as shown in Figure 12a, we see that con-
vergence with a smaller mini-batch size (e.g., 1,000) is
much faster than that with a larger one (e.g., 10,000).
However, a smaller mini-batch size could introduce more
frequent communication, slowing down the computa-
tion in each iteration significantly, as confirmed by more

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 677

10.5

=R 10 By batch size=1,000 —&—
2 95|t batch size=10,000 ---+--
E 9 L% batch size=50,000 -
S 85r
2 8F
8 15F
s 1
6.5 ‘

0 200 400 600 800 1000 1200 1400

Run time (s)

(a) MF, 32 servers

90
£ 8o’ batch size=50,000 —s—
= 70 - batch size=150,000 ---*--
g 60 batch size=500,000 4
T; 50
g 40 s ‘B, N
Z 30k taaa A
5] LR, A A A AL LN
2% E\é\sﬁ
o 10 s -
0 | I 1 i 1 T B-X- X
0 200 400 600 800 10001200 140016001800
Run time (s)

(b) BlockPG, 32 servers

Figure 12: Convergence with varying mini-batch size

sparse iteration points on the curve for mini-batch size
1,000. This is why we also observe that convergence
with mini-batch size 1,000 is worse than that with 10,000
during the first 180 s. Similar results can be observed
for BlockPG in Figure 12b. For BlockPG, an improper
batch size could even make it non-convergent, as is the
case when batch size is 500,000.

5.4 System Performance

TuX? vs. PowerGraph and PowerLyra. We first
compare TUX? with PowerGraph and its successor Pow-
erLyra, which support a GAS-based MF implementation.
Because PowerGraph and PowerLyra do not support SSP
or mini-batch, for fairness we configure TuX? to use
a batched MF implementation with no slack. We run
MF on the Netflix dataset, and Figure 13 shows the per-
formance comparison of TUX?, PowerGraph, and Pow-
erLyra with different numbers of servers (each with 16
threads).

The figure shows that, consistent with the results re-
ported in PowerLyra [7], PowerLyra outperforms Pow-
erGraph in the multi-server cases (by 1.6x) due to a
better partitioning algorithm that leads to a lower ver-
tex replication factor. TUX? outperforms both Power-
Graph and PowerLyra by more than an order of magni-
tude. The huge performance gap is largely due to our
flexible MEGA model. Specifically, in PowerGraph and
PowerLyra, the computation per iteration for MF is com-
posed of two GAS phases, one for updating the user ver-

100 PowerGraph —&—

o PowerLyra --X--
g 7 TuX?
g 10 ¢ B
E- 1 i +
£ +
= r

0.1 I I I

1 2) 8
of servers

Figure 13: TUX? vs. PowerGraph/PowerLyra (MF, Net-
flix, log scale)

tices and the other for the item vertices. This introduces
significant synchronization overhead and some unneces-
sary stages due to the constraints of the GAS model. In
contrast, TUX? needs only an ExchangeStage and an
ApplyStage for each iteration in the MEGA model.
Our detailed profiling on one iteration in the 8-server ex-
periment further shows that, while the Exchange phase
(which calculates the gradients) in TUX? takes only
0.5 s, the corresponding Gather phase takes 1.6 s in the
GAS model. The difference is mainly due to TUX?’s het-
erogeneous data layout. Furthermore, the extra phases
(i.e., the two Scatter phases) needed in the GAS model
take an additional 7.4 s.

TuX? vs. machine learning systems. We compare
TuX? with two state-of-the-art distributed machine
learning systems: Petuum and Parameter Server (PS).
We compare with Petuum using MF and LDA and we
compare with PS using BlockPG. We have validated the
results of our experiments to confirm that the algorithms
in TUX? are the same as those in Petuum and in PS, re-
spectively. We set slack to 0 as it produces a determinis-
tic result every iteration, leading to the same convergence
curve. We use time per iteration as our metric for com-
parison because the convergence per iteration is the same
in this configuration. We evaluate on other configura-
tions (not shown due to space constraints) and the results
are similar. Compared with these systems, TUX?, as a
graph engine, inherits a series of graph-related optimiza-
tions for machine learning, such as efficient graph lay-
out and balanced parallelism from vertex-cut partition-
ing. The following experiments evaluate these benefits
of TUX?.

Petuum: We compare Petuum and TUX? using MF
and LDA because these two algorithms have been imple-
mented in both Petuum and TUX?. All the experiments
are conducted on 32 servers with 16 threads per server.
Figures 14a and 14b show the average execution time per

678 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

2 1000 F Petuum —B—
g = TuX? --%--
= 100
g i
o 10 F
5 £
o e
.é 1e o TR R4
= L BRRRRRS S X

0.1 L L L L |

1 2 4 8 16 32
of servers
(a) MF, Netflix
1000

o Petuum —H—
=1
2
g
£ 100
3
(=9
o
E
H

of servers

(b) LDA, NewsData

Figure 14: TUX? vs. Petuum (log scale)

iteration of MF and LDA in Petuum and TUX? with dif-
ferent numbers of servers.

For MF, TuX? outperforms Petuum by two orders of
magnitude, due to two main reasons. First, Petuum’s dis-
tributed shared memory table, implemented in a multi-
layer hash structure, introduces significant overhead,
even compared with our hash-table baseline used in §5.2.
Petuum also does fine-grained row-level version track-
ing, causing a staleness check to be triggered for every
read/write operation. In contrast, TUX? uses a worker-
level staleness check when an iteration/mini-batch starts,
as described in §3.2. Second, in Petuum, both user data
and item data contain model parameters and are stored
in the parameter server. Updating either type involves
communication with the parameter server. It is worth
pointing out that this is not a fundamental problem with
Petuum’s design and can be fixed by moving user data off
the parameter server. (Based on our communication with
the Petuum authors, this issue has already been fixed in
the new version [42], but the fixed version is not yet pub-
licly available.) TUX? partitions the bipartite graph in
such a way that only item vertices have mirrors, making
the updates on user vertices efficient without unneces-
sary communication. This is a natural configuration in
TuX? that users can enable effortlessly, easily avoiding
the problem we observe in this version of Petuum. Note
that TUX? does not scale well from 16 to 32 servers for
MF. This is because Netflix data is small when divided
among 32 servers X 16 threads (only around 3 MB per

g

o 60

£

Eo 40

é 20

g 0

O 0 100 200 300 400

Worker ID

(a) Imbalance in ParameterServer, 32 servers

0 100 200 300 400 500
Worker ID

Computing time (ms.)

(b) Balance in TUX2, 32 servers

Figure 15: Mini-batch time across workers (BlockPG)

thread), so communication cost starts to dominate, limit-
ing further scaling.

For LDA, the graph layout benefit is smaller compared
to that for MF. Figure 14b shows that TUX? outperforms
Petuum in LDA by 27% (1 server) to 61% (32 servers).
This is consistent with the layout experiment in §5.2,
which was also affected by the CPU-intensive nature of
the floating-point computation in LDA.

Parameter Server (PS): We compare PS with TuX?
using BlockPG, as it is implemented in both systems. We
set mini-batch size to 300,000 for both. For PS, based
on our experimentation on different thread-pool config-
urations, we find the best configuration uses 14 worker
threads and 2 server threads per machine. We therefore
use this configuration in our experiments. Due to the
large data size (64B edges) involved, the experiment is
performed only on 32 servers. When operating on the
AdsData dataset, BlockPG takes 125 s on average per
iteration on TUX?2, compared to 186 s on PS, which is
48% longer.

Unlike with Petuum, data layout is not the main rea-
son that TUX? outperforms PS: PS carefully customizes
its data structure for BlockPG, which is largely on par
with TUX?’s general graph layout. Handling the imbal-
ance caused by data skew (e.g., where some features ex-
ist in a large number of samples) makes the most differ-
ence in this case. Figure 15a shows the execution time
of one representative mini-batch for all worker threads

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation 679

in PS. A few threads are shown to work longer than the
others, forcing those others to wait at synchronization
points. In contrast, TUX? employs vertex-cut even for
threads inside the same process, a built-in feature of the
graph engine, to alleviate imbalance. Figure 15b shows
that TUX? achieves balanced execution for all threads.
While SSP slack could also help alleviate the effect of
imbalance, it usually leads to slower convergence. Our
vertex-cut optimization does not affect convergence and
is strictly better.

6 Related Work

TuX? builds upon a large body of research on iterative
graph computation and distributed machine learning sys-
tems. Pregel [30] proposes the vertex-program model,
which has been adopted and extended in subsequent
work, such as GraphLab [29] and PowerGraph [17].
TUX? uses the vertex-cut model proposed in Power-
Graph and applies it also to partitioning within the pro-
cess for balanced thread parallelism. It also incorpo-
rates bipartite-graph-specific partitioning schemes pro-
posed in PowerLyra [7] and BiGraph [8] with further op-
timizations of computation. By connecting graph models
to machine learning, our work makes advances in graph
computation relevant to machine learning. This includes
optimizations on graph layout, sequential data access,
and secondary storage (e.g., GraphChi [24], Grace [36],
XStream [39], Chaos [38], and FlashGraph [47]), dis-
tributed shared memory and RDMA (e.g., Grappa [32]
and GraM [43]), and NUMA-awareness, scheduling, and
load balancing (e.g., Galois [33], Mizan [22], and Poly-
mer [46]).

TUuX?’s design is influenced by parameter-server-
based distributed machine learning, which was initially
proposed and evolved to scale specific machine learning
applications such as LDA [40, 5] and deep learning [15].
Petuum [13, 20, 42, 44] and Parameter Server [26] move
towards general platforms, incorporate flexible consis-
tency models, and improve scalability and efficiency.
Petuum and its subsequent work on STRADS [23, 25]
further propose to incorporate optimizations such as
model parallelism, uneven convergence, and error toler-
ance. Many of these can be integrated into a graph engine
like TUX?, allowing users to benefit from both graph and
machine learning optimizations, a future direction that
we plan to explore further. We also see a trend where
some of the design and benefits in graph systems have
found their way into these machine learning systems
(e.g., optimized layout in Parameter Server’s BlockPG
implementation and a high-level graph-model-like ab-
straction in STRADS), further supporting our theme of
the convergence of the two. Parameter servers have also
been proposed to support deep learning [9, 12, 15] and

have been enhanced with GPU-specific optimizations in
GeePS [12].

There is a large body of work on general distributed
big-data computing platforms, including for example
Mahout [1] on Hadoop and MLI [41] on Spark for ma-
chine learning on MapReduce-type frameworks. Pic-
colo [35] enables parallel in-memory computation on
shared distributed, mutable state in a parameter-server-
like interface. Another interesting research direction,
pursued in GraphX [18] for example, explores how to
support graph computation using a general data-flow en-
gine. Naiad [31] introduces a new data-parallel dataflow
model specifically for low-latency streaming and cyclic
computations, which has also been shown to express
graph computation and machine learning. Both have
built known graph models, such as GAS, on top of their
dataflow abstractions, while TUX? proposes a new graph
model with important extensions for machine learning
algorithms.

7 Conclusion

Through TUX?, we advocate the convergence of graph
computation and distributed machine learning. TUX?
represents a critical step in this direction by showing not
only the feasibility, but also the potential, of such con-
vergence. We accomplish this by introducing important
machine learning concepts to graph computation; defin-
ing a new, flexible graph model to express machine learn-
ing algorithms efficiently; and demonstrating the benefits
through extensive evaluation on representative machine
learning algorithms. Going forward, we hope that TUX?
will provide a common foundation for further research in
both graph computation and distributed machine learn-
ing, allowing more machine learning algorithms and op-
timizations to be expressed and implemented easily and
efficiently at scale.

Acknowledgments

We thank our shepherd Adam Wierman and the anony-
mous reviewers for their valuable comments and sugges-
tions. We are grateful to our colleague Jay Lorch, who
carefully went through the paper and helped improve the
quality of writing greatly. Jilong Xue was partially sup-
ported by NSF of China (No. 61472009).

References

[1] Apache foundation. mahout project.
apache.org.

http://mahout.

[2] ParameterServer.
parameter_server.

https://github.com/dmlc/

680 14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

http://mahout.apache.org.
http://mahout.apache.org.
https://github.com/dmlc/parameter_server
https://github.com/dmlc/parameter_server

[3]

[4]

[5]

[6]

[7]

[8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

Petuum v0.93. https://github.com/petuum/bosen/
tree/release_0.93.

PowerGraph v2.2. https://github.com/dato-code/

PowerGraph.

AHMED, A., ALY, M., GONZALEZ, J., NARAYANAMURTHY,
S., AND SMOLA, A. J. Scalable inference in latent variable mod-
els. In Proceedings of the Fifth ACM International Conference on
Web Search and Data Mining (2012), WSDM’12, ACM.

BENNETT, J., AND LANNING, S. The Netflix Prize. In Proceed-
ings of KDD cup and workshop (2007), vol. 2007.

CHEN, R., SHI, J., CHEN, Y., AND CHEN, H. PowerLyra: Dif-
ferentiated graph computation and partitioning on skewed graphs.
In Proceedings of the Tenth European Conference on Computer
Systems (2015), EuroSys’15, ACM.

CHEN, R., SHI, J., ZANG, B., AND GUAN, H. Bipartite-
oriented distributed graph partitioning for big learning. In Pro-
ceedings of 5th Asia-Pacific Workshop on Systems (2014), AP-
Sys’14, ACM.

CHILIMBI, T., SUZUE, Y., APACIBLE, J., AND KALYANARA-
MAN, K. Project Adam: Building an efficient and scalable deep
learning training system. In //th USENIX Symposium on Op-
erating Systems Design and Implementation (2014), OSDI’14,
USENIX.

CHING, A., EDUNOV, S., KABILJO, M., LOGOTHETIS, D.,
AND MUTHUKRISHNAN, S. One trillion edges: Graph process-
ing at Facebook-scale. Proc. VLDB Endow. 8, 12 (Aug. 2015).

Cul, H., CIPAR, J., Ho, Q., Kim, J. K., LEE, S., KUMAR,
A., WEL J., DAL, W., GANGER, G. R., GIBBONS, P. B., GIB-
SON, G. A., AND XING, E. P. Exploiting bounded staleness to
speed up big data analytics. In 2074 USENIX Annual Technical
Conference (2014), USENIX ATC’14, USENIX.

Cul, H., ZHANG, H., GANGER, G. R., GIBBONS, P. B., AND
XING, E. P. GeePS: Scalable deep learning on distributed GPUs
with a GPU-specialized parameter server. In Proceedings of the
Eleventh European Conference on Computer Systems (2016), Eu-
roSys’ 16, ACM.

DAL, W., KUMAR, A., WEI, J., HO, Q., GIBSON, G., AND
XING, E. P. High-performance distributed ML at scale through
parameter server consistency models. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence (2015),
AAATI’15, AAAI Press.

DE SA, C. M., ZHANG, C., OLUKOTUN, K., RE, C., AND RE,
C. Taming the wild: A unified analysis of hogwild-style algo-
rithms. In Advances in Neural Information Processing Systems
28 (2015), NIPS’ 15, Curran Associates, Inc.

DEAN, J., CORRADO, G., MONGA, R., CHEN, K., DEVIN, M.,
MAO, M., AURELIO RANZATO, M., SENIOR, A., TUCKER, P.,
YANG, K., LE, Q. V., AND NG, A. Y. Large scale distributed
deep networks. In Advances in Neural Information Processing
Systems 25, NIPS’12. Curran Associates, Inc., 2012.

GEMULLA, R., NUKAMP, E., HAAS, P. J., AND SISMANIS, Y.
Large-scale matrix factorization with distributed stochastic gra-
dient descent. In Proceedings of the 17th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining
(2011), KDD’11, ACM.

GONZALEZ, J. E., Low, Y., GuU, H., BICKSON, D., AND
GUESTRIN, C. PowerGraph: Distributed graph-parallel compu-
tation on natural graphs. In Presented as part of the 10th USENIX
Symposium on Operating Systems Design and Implementation
(2012), OSDI’'12, USENIX.

GONZALEZ, J. E., XIN, R. S., DAVE, A., CRANKSHAW, D.,
FRANKLIN, M. J., AND STOICA, I. GraphX: Graph processing
in a distributed dataflow framework. In /1th USENIX Sympo-

sium on Operating Systems Design and Implementation (2014),
OSDI’ 14, USENIX.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

GRIFFITHS, T. L., AND STEYVERS, M. Finding scientific topics.
Proceedings of the National Academy of Sciences 101, suppl 1
(2004).

Ho, Q., CIPAR, J., Cul, H., LEE, S., KiM, J. K., GIBBONS,
P. B., GIBSON, G. A., GANGER, G., AND XING, E. P. More
effective distributed ML via a stale synchronous parallel parame-
ter server. In Advances in Neural Information Processing Systems
26, NIPS’13. Curran Associates, Inc., 2013.

JOHNSON, M., SAUNDERSON, J., AND WILLSKY, A. Analyz-
ing Hogwild parallel Gaussian Gibbs sampling. In Advances in
Neural Information Processing Systems 26, NIPS’13. Curran As-
sociates, Inc., 2013.

KHAYYAT, Z., AWARA, K., ALONAZI, A., JAMJOOM, H.,
WILLIAMS, D., AND KALNIS, P. Mizan: A system for dynamic
load balancing in large-scale graph processing. In Proceedings of
the 8th ACM European Conference on Computer Systems (2013),
EuroSys’13, ACM.

Kim, J. K., Ho, Q., LEE, S., ZHENG, X., DAI, W., GIBSON,
G. A., AND XING, E. P. STRADS: A distributed framework for
scheduled model parallel machine learning. In Proceedings of
the Eleventh European Conference on Computer Systems (2016),
EuroSys’16, ACM.

KYROLA, A., BLELLOCH, G., AND GUESTRIN, C. GraphChi:
Large-scale graph computation on just a PC. In Presented as part
of the 10th USENIX Symposium on Operating Systems Design
and Implementation (2012), OSDI’12, USENIX.

LEE, S., KiMm, J. K., ZHENG, X., HO, Q., GIBSON, G. A., AND
XING, E. P. On model parallelization and scheduling strategies
for distributed machine learning. In Advances in Neural Informa-
tion Processing Systems 27 (2014), NIPS’ 14, Curran Associates,
Inc.

L1, M., ANDERSEN, D. G., PARK, J. W., SMOLA, A.],
AHMED, A., JOSIFOVSKI, V., LONG, J., SHEKITA, E. J., AND
Su, B.-Y. Scaling distributed machine learning with the param-
eter server. In 71/th USENIX Symposium on Operating Systems
Design and Implementation (2014), OSDI’ 14, USENIX.

L1, M., ANDERSEN, D. G., AND SMOLA, A. J. Distributed
delayed proximal gradient methods. In NIPS Workshop on Opti-
mization for Machine Learning (2013).

L1, M., ANDERSEN, D. G., SMOLA, A. J., AND YU, K. Com-
munication efficient distributed machine learning with the param-
eter server. In Advances in Neural Information Processing Sys-
tems 27 (2014), NIPS’ 14, Curran Associates, Inc.

Low, Y., BICKSON, D., GONZALEZ, J., GUESTRIN, C., Ky-
ROLA, A., AND HELLERSTEIN, J. M. Distributed GraphLab:
A framework for machine learning and data mining in the cloud.
Proc. VLDB Endow. 5, 8 (Apr. 2012).

MALEWICZ, G., AUSTERN, M. H., BIK, A. J., DEHNERT,
J. C., HORN, 1., LEISER, N., AND CZAJKOWSKI, G. Pregel:
A system for large-scale graph processing. In Proceedings of the
2010 ACM SIGMOD International Conference on Management
of Data (2010), SIGMOD’ 10, ACM.

MURRAY, D. G., MCSHERRY, F., IsAACS, R., ISARD, M.,
BARHAM, P., AND ABADI, M. Naiad: A timely dataflow sys-
tem. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (2013), SOSP’13, ACM.

NELSON, J., HoLT, B., MYERS, B., BRIGGS, P., CEZE, L.,
KAHAN, S., AND OSKIN, M. Latency-tolerant software dis-
tributed shared memory. In 2015 USENIX Annual Technical Con-
ference (2015), USENIX ATC’ 15, USENIX.

USENIX Association

14th USENIX Symposium on Networked Systems Design and Implementation

681

https://github.com/petuum/bosen/tree/release_0.93
https://github.com/petuum/bosen/tree/release_0.93
https://github.com/dato-code/PowerGraph
https://github.com/dato-code/PowerGraph

[33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

NGUYEN, D., LENHARTH, A., AND PINGALLI, K. A lightweight
infrastructure for graph analytics. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles (2013),
SOSP’13, ACM.

PARIKH, N., AND BOYD, S. Proximal algorithms. Found. Trends
Optim. 1,3 (Jan. 2014).

POWER, R., AND LI, J. Piccolo: Building fast, distributed pro-
grams with partitioned tables. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation
(2010), OSDI’ 10, USENIX.

PRABHAKARAN, V., WU, M., WENG, X., MCSHERRY, F.,
ZHOU, L., AND HARADASAN, M. Managing large graphs on
multi-cores with graph awareness. In 2012 USENIX Annual Tech-
nical Conference (2012), USENIX ATC’12, USENIX.

RECHT, B., RE, C., WRIGHT, S., AND NIu, F. Hogwild:
A lock-free approach to parallelizing stochastic gradient de-
scent. In Advances in Neural Information Processing Systems
24, NIPS’11. Curran Associates, Inc., 2011.

Roy, A., BINDSCHAEDLER, L., MALICEVIC, J., AND
ZWAENEPOEL, W. Chaos: Scale-out graph processing from sec-
ondary storage. In Proceedings of the 25th Symposium on Oper-
ating Systems Principles (2015), SOSP’15, ACM.

ROY, A., MIHAILOVIC, 1., AND ZWAENEPOEL, W. X-Stream:
Edge-centric graph processing using streaming partitions. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (2013), SOSP’13, ACM.

SMOLA, A., AND NARAYANAMURTHY, S. An architecture for
parallel topic models. Proc. VLDB Endow. 3, 1-2 (Sept. 2010).

SPARKS, E. R., TALWALKAR, A., SMITH, V., KOTTALAM, J.,
PAN, X., GONZALEZ, J., FRANKLIN, M. J., JORDAN, M. 1.,

[42]

[43]

[44]

[45]

[40]

[47]

AND KRASKA, T. MLI: An API for Distributed Machine Learn-
ing. In 2013 IEEE 13th International Conference on Data Mining
(2013), ICDM’13, IEEE.

WEI, J., DAL, W., QI1AO, A., HO, Q., Cul, H., GANGER, G.R.,
GIBBONS, P. B., GIBSON, G. A., AND XING, E. P. Managed
communication and consistency for fast data-parallel iterative an-
alytics. In Proceedings of the Sixth ACM Symposium on Cloud
Computing (2015), SoCC’15, ACM.

Wu, M., YANG, F., XUE, J., X1A0, W., MiAo, Y., WEI, L.,
LIN, H., DAL Y., AND ZHOU, L. GraM: Scaling graph computa-
tion to the trillions. In Proceedings of the Sixth ACM Symposium
on Cloud Computing (2015), SoCC’15, ACM.

XING, E. P., Ho, Q., DA1, W., Kim, J.-K., WEL, J., LEE, S.,
ZHENG, X., XIE, P., KUMAR, A., AND YU, Y. Petuum: A new
platform for distributed machine learning on big data. In Pro-
ceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2015), KDD’15, ACM.

Yao, L., MIMNO, D., AND McCALLUM, A. Efficient meth-
ods for topic model inference on streaming document collec-
tions. In Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2009),
KDD’09, ACM.

ZHANG, K., CHEN, R., AND CHEN, H. NUMA-aware graph-
structured analytics. In Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming
(2015), PPoPP’15, ACM.

ZHENG, D., MHEMBERE, D., BURNS, R., VOGELSTEIN, I.,
PRIEBE, C. E., AND SZALAY, A. S. FlashGraph: Processing
billion-node graphs on an array of commodity SSDs. In /3th
USENIX Conference on File and Storage Technologies (2015),
FAST’15, USENIX.

682

14th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

	Introduction
	Graphs for Machine Learning
	TuX2 Design
	Heterogeneous Data Layout
	Scheduling with SSP
	MEGA Model in TuX2

	ML Algorithms on TuX2
	Implementation and Evaluation
	Programmability
	Managing ML Data as a Graph
	Extensions for Machine Learning
	System Performance

	Related Work
	Conclusion

