
USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 439

STREAMSCOPE: Continuous Reliable Distributed Processing of
Big Data Streams

Wei Lin∗
Microsoft

Haochuan Fan∗
Microsoft

Zhengping Qian∗
Microsoft Research

Junwei Xu
Microsoft

Sen Yang
Microsoft

Jingren Zhou∗
Microsoft

Lidong Zhou
Microsoft Research

Abstract
STREAMSCOPE (or STREAMS) is a reliable distributed
stream computation engine that has been deployed in
shared 20,000-server production clusters at Microsoft.
STREAMS provides a continuous temporal stream model
that allows users to express complex stream processing
logic naturally and declaratively. STREAMS supports
business-critical streaming applications that can process
tens of billions (or tens of terabytes) of input events
per day continuously with complex logic involving tens
of temporal joins, aggregations, and sophisticated user-
defined functions, while maintaining tens of terabytes in-
memory computation states on thousands of machines.

STREAMS introduces two abstractions, rVertex and
rStream, to manage the complexity in distributed stream
computation systems. The abstractions allow efficient
and flexible distributed execution and failure recovery,
make it easy to reason about correctness even with fail-
ures, and facilitate the development, debugging, and de-
ployment of complex multi-stage streaming applications.

1 Introduction

An emerging trend in big data processing is to extract
timely insights from continuous big data streams with
distributed computation running on a large cluster of ma-
chines. Examples of such data streams include those
from sensors, mobile devices, and on-line social media
such as Twitter and Facebook. Such stream computa-
tions process infinite sequences of input events and pro-
duce timely output events continuously. Events are of-
ten processed in multiple stages that are organized into
a directed acyclic graph (DAG), where a vertex corre-
sponds to the continuous and often stateful computation
in a stage and an edge indicates an event stream flow-
ing downstream from the producing vertex to the con-
suming vertex. In contrast to batch processing, also of-
∗Now with Alibaba Group.

ten modeled as a DAG [27], a defining characteristic of
cloud-scale stream computation is its ability to process
potentially infinite input events continuously with delays
in seconds and minutes, rather than processing a static
data set in hours and days. The continuous, transient, and
latency-sensitive nature of stream computation makes it
challenging to cope with failures and variations that are
typical in a large-scale distributed system, and makes
stream applications hard to develop, debug, and deploy.

This paper presents the design and implementation of
STREAMSCOPE (or STREAMS), a cloud-scale reliable
stream computation engine that has been deployed in
shared production clusters, each containing over 20,000
commodity servers. STREAMS adopts a declarative lan-
guage that supports a continuous stream computation
model, extended with the ability to allow user-defined
functions to customize stream computation at each step.

STREAMS has been designed for business-critical
stream applications desiring a strong guarantee that each
event is processed exactly once despite server failures
and message losses. Failure recovery in cloud-scale
stream computation is particularly challenging because
of two types of dependencies: the dependency between
upstream and downstream vertices, and the dependency
introduced by vertex computation states. An upstream
vertex failure affects downstream vertices directly, while
the recovery of a downstream vertex would depend on
the output events from the upstream vertices. Failure
recovery of a vertex would require rebuilding the state
before the vertex can continue processing new events.
STREAMS therefore introduces two new abstractions,
rVertex and rStream, to manage the complexity of cloud-
scale stream computation by addressing the two types of
dependencies through decoupling. rVertex models con-
tinuous computation on each vertex, introduces the no-
tion of snapshots along the time dimension, and allows
the computation to restart from a snapshot. rStream ab-
stracts out the data and communication aspects of dis-
tributed stream computation, provides the illusion of reli-

440 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

able and asynchronous communication channels, and de-
couples upstream and downstream vertices. Combined,
rVertex and rStream offer well-defined semantics to re-
play computation and to rewind streams, as needed dur-
ing failure recovery, thereby making it easy to develop
different failure recovery strategies while ensuring cor-
rectness. The power of this abstraction also comes from
the separation of its properties from its actual implemen-
tation that achieves those properties. That, for example,
allows a different implementation of rStream specifically
for development and debugging.

Our evaluation shows that STREAMS can support
complex production streaming applications deployed on
thousands of machines, processing tens of billions of
events per day with complex computation logic to deliver
business-critical results continuously despite unexpected
failures and planned maintenance, while at the same time
demonstrating good scalability and capability of achiev-
ing 10-millisecond latencies on simple applications.

STREAMS’s key contributions are as follows. First,
STREAMS shows that a cloud-scale distributed fault-
tolerant stream engine can support a continuous stream
computation model without having to converting a
stream computation unnaturally to a series of mini-batch
jobs [42]. Second, STREAMS introduces two new ab-
stractions, rVertex and rStream, to simplify cloud-scale
stream computation engines through separation of con-
cerns, making it easy to understand and reason about
correctness despite failures. The abstractions are also
effective in addressing challenges on debugging and de-
ployment of stream applications in STREAMS. Support
for debugging and deployment is critical in practice from
our experiences, but has not received sufficient attention.
Finally, STREAMS is deployed in production and runs
critical stream applications continuously on thousands of
machines while coping well with failures and variations.

The rest of the paper is organized as follows. Sec-
tion 2 describes STREAMS’s continuous stream model
and declarative language. Section 3 defines STREAMS’s
new abstractions: rVertex and rStream. Section 4 de-
scribes STREAMS’s design and implementation in de-
tail, followed by a discussion of several design choices
in Section 5. Engineering experiences are the topic of
Section 6. Section 7 presents the evaluation results of
STREAMS in a production environment. We survey re-
lated work in Section 8 and conclude in Section 9.

2 Programming Model

In this section, we provide a high-level overview of the
programming model, highlighting the key concepts in-
cluding the data model and query language.
Continuous event streams. In STREAMS, data is rep-
resented as event streams, each describing a potentially

AlertWithUserID =
SELECT Alert.Name AS Name, Process.UserID AS UserID
FROM Process INNER JOIN Alert
ON Process.ProcessID == Alert.ProcessID;

CountAlerts =
SELECT UserID, COUNT(*) AS AlertCount
FROM AlertWithUserID
GROUP BY UserID
WITH HOPPING(5s, 5s);

Figure 1: A simplified STREAMS program.

infinite collection of events that changes over time. Each
event stream has a well-defined schema. In addition,
each event has a time interval [Vs,Ve), describing the start
and end time for which the event is valid.

Like other stream processing engines [9, 19],
STREAMS supports Current Time Increments (CTI)
events that assert the completeness of event delivery up
to start time Vs of the CTI event; that is, there will be no
events with a timestamp lower than Vs in the stream after
this CTI event. Stream operators rely on CTI events to
determine the current processing time in order to make
progress and to retire obsolete state information.
Declarative query language. STREAMS provides a
declarative language for users to program their applica-
tions without having to worry about distributed system
details such as scalability or fault tolerance. Specifically,
we extend the SCOPE [43] query language to support a
full temporal relational algebra [15], extensible through
user-defined functions, aggregators, and operators.

STREAMS supports a comprehensive set of relational
operators including projection, filters, grouping, and
joins, adapted for temporal semantics. For example, a
temporal inner join applies to events with overlapping
time intervals only. Windowing is another key con-
cept in stream processing. A window specification de-
fines time windows and consequently defines a subset of
events in a window, to which aggregations can be ap-
plied. STREAMS supports several types of time-based
windows, such as hopping, tumbling, and snapshot win-
dows. For example, hopping windows are windows (of
size S) that “jump” forward in time by a fixed size H: a
new window of size S is created for every H units of time.
Example. Figure 1 shows an example program that
performs continuous activity diagnosis on Process and
Alert event streams. A STREAMS program consists
of a sequence of declarative queries operating on event
streams. Process events record information about ev-
ery process and its associated user, while Alert events
record information about every alert, including which
process generated the alert. The program first joins the
two streams to attach user information to alerts, and then
calculates for each user the number of alerts every 5 sec-
onds using a hopping window.

2

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 441

CountAlerts Events

Alert LogProcess Log Stages

Extract events;
partition by ProcessID

Merge events

Join events;
partition by UserID

Merge events;
aggregate in windows

(256) (512)

(256)(256)

(256)

(64)

Figure 2: An execution DAG for the example in Figure 1.

o 1

o 1
, o

2,
o 3

t0 t1 t2

s0={<0, 0>, <0>, t0} s1={<1, 0>, <1>, t1} s2={<1, 1>, <3>, t2}

Figure 3: Vertex execution from snapshot s0 to s2.

3 STREAMS Abstractions

The execution of a STREAMS program can be modeled
as a directed acyclic graph (DAG), where each vertex
performs local computation on input streams from its
in-edges and produces output streams as its out-edges.
Each stream is modeled as an infinite sequence of events,
each with a continuously incremented sequence number.
Figure 2 shows an example DAG corresponding to Fig-
ure 1, where each stage of computation is partitioned into
multiple vertices to execute in parallel. STREAMS deter-
mines the degree of parallelism for each stage (marked
in parentheses) based on data rate and computation cost.

A vertex can maintain a local state. Its execution
starts with its initial state and proceeds in steps. In each
step, the vertex consumes the next events from its input
streams, updates its state, and possibly produces events
to its output streams. The execution of a vertex is tracked
through a series of snapshots, where each snapshot is a
triplet containing the current sequence numbers of its in-
put streams, the current sequence numbers of its output
streams, and its current state. Figure 3 illustrates the
progression of a vertex execution from snapshot s0, to
s1 (after processing a1), and then to s2 (after processing
b1). STREAMS introduces two abstractions rStream and
rVertex to implement streams and vertices, respectively.

3.1 The rStream Abstraction
Rather than having vertices communicate directly
through the network, STREAMS introduces an rStream

abstraction to decouple upstream and downstream ver-
tices with properties to facilitate failure recovery.

Conceptually, rStream reliably maintains a sequence
of events with continuous and monotonically increasing
sequence numbers, supporting multiple writers and read-
ers. A writer issues Write(seq,e) to add event e with
sequence number seq. rStream supports multiple writ-
ers mainly to allow two instances of the same vertex,
which is useful when handling failures and stragglers via
duplicated execution, as described in Section 4.

A reader can issue Register(seq) to indicate its in-
terest in receiving events starting from sequence number
seq and start reading from the stream using ReadNext(),
which returns the next batch of events with their se-
quence numbers and advances the reading position ac-
cordingly. In the implementation, events can be pushed
to a registered reader rather than pulled. With rStream
each reader can proceed asynchronously from the same
stream without synchronizing with other readers or writ-
ers. A reader can also rewind a stream by re-registering
with an earlier sequence number (e.g., for failure recov-
ery). rStream also supports GarbageCollect(seq) to
indicate that all events less than sequence number seq
will not be requested any more and therefore can be dis-
carded. rStream maintains the following properties.
Uniqueness. There is a unique value associated with
each sequence number. After the first write for each se-
quence number seq succeeds, any subsequent write that
associates seq will be discarded.
Validity. If a ReadNext() returns an event e
with sequence number seq, there must have been a
Write(seq,e) that has returned successfully.
Reliability. If write(seq,e) succeeds, then, for any
ReadNext() reaching position seq, eventually the read
returns (seq,e).

Uniqueness ensures consistency for each sequence
number, Validity ensures correctness of the event value
returned for each sequence number, while Reliability en-
sures that, all events written to the stream are always
available to readers whenever requested. rStream could
simply be implemented by a reliable pub/sub system
backed by reliable and persistent store. But STREAMS
adopts a more efficient implementation that avoids pay-
ing the latency cost of going to persistent and reliable
store in the critical path, with the additional mechanism
of reconstructing the requested events through recompu-
tation [38, 42], as detailed in Section 4.

3.2 The rVertex Abstraction
The rVertex abstraction supports the following opera-
tions for a vertex. Load(s) starts an instance of the vertex
at snapshot s. Execute() executes a step from the cur-
rent snapshot. GetSnapshot() returns the current snap-

3

442 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

shot. A vertex can then be started with Load(s0), where
s0 is the initial snapshot with an initial state and with
all streams at starting positions. The vertex can then ex-
ecute a series of Execute() operations, which read the
input events, update the state, and produce output events.
At any point, one can issue GetSnapshot() to retrieve
and save the snapshot. When the vertex fails, it can be
restarted with Load(s), where s is a saved snapshot.
Determinism. For a vertex with its given input streams,
running Execute() on the same snapshot will always
cause the vertex to transition into the same new snapshot
and produce the same output events.

Determinism ensures correctness when replaying an
execution during failure recovery. It implies that (i)
the order in which the execution takes the next event
from multiple input streams is deterministic; we ex-
plain how this order determinism is enforced naturally
in STREAMS without introducing unnecessary delay in
Section 4, and (ii) the execution of the processing logic
is deterministic. Determinism greatly simplifies the rea-
soning of correctness in STREAMS and makes streaming
applications easier to develop and debug. In Section 5,
we discuss how to mask non-determinism when needed.

3.3 Failure Recovery
The rStream abstraction decouples upstream and down-
stream vertices to allow individual vertices to recover
from failures separately. When a vertex fails, we can
simply restart its execution by calling Load(s) from a
most recently saved snapshot s to continue executing.
The rVertex abstraction ensures that execution after re-
covery is the same as the continuation of the original ex-
ecution as if no failures occurred. The rStream abstrac-
tion ensures that the restarted vertex is able to (re-)read
the input streams. Section 4 describes how rVertex and
rStream are implemented and how different failure re-
covery strategies can achieve different tradeoffs.

4 Architecture and Implementation

STREAMS is designed and implemented as a streaming
extension of the SCOPE [43] batch-processing system.
As a result, STREAMS heavily leverages the architecture,
compiler, optimizer, and job manager in SCOPE, adapted
or re-designed to support stream processing at scale.
This approach expedites the development of STREAMS;
the integration of batch and stream processing also offers
significant benefits in practice, as elaborated in Section 6.

In STREAMS, a user programs a stream application
declaratively as described in Section 2. The program is
compiled into a streaming DAG for distributed execu-
tion as shown in Figure 4. To generate such a DAG, the
STREAMS compiler performs the following steps: (1)

Job
Manager

Event Sinks

Event Sources
ProgramCompiler/

Optimizer

Reliable
Storage

Figure 4: An overview of a STREAMS program.

the program is first converted into a logical plan (DAG)
of STREAMS runtime operators, which include tempo-
ral joins, window aggregates, and user-defined functions;
(2) the STREAMS optimizer then evaluates various plans,
choosing the one with the lowest estimated cost based on
available resource, data statistics such as the incoming
rate, and an internal cost model; and (3) a physical plan
(DAG) is finally created by mapping a logical vertex into
an appropriate number of physical vertices for parallel
execution and scaling, with code generated for each ver-
tex to be deployed in a cluster and process input events
continuously at runtime. We omit the details of these
steps as they are similar to those for SCOPE [43].

The entire execution is orchestrated by a streaming job
manager that is responsible for: (1) scheduling vertices
to and establishing channels (edges) in the DAG among
different machines; (2) monitoring progress and tracking
snapshots; (3) providing fault tolerance by detecting fail-
ures/stragglers and initiating recovery actions. Unlike a
batch-oriented job manager that schedules vertices at dif-
ferent times on demand, a streaming job manager sched-
ules all vertices in a DAG at the beginning of job execu-
tion. To provide fault tolerance and to cope with runtime
dynamics, rVertex and rStream are used to implement
vertices and channels in a streaming DAG, working in
coordination with the job manager.

4.1 Implementing rVertex

The key to implementing rVertex is to ensure Determin-
ism as defined in Section 3, which requires both function
determinism and input determinism. In STREAMS, all
operators and user-defined functions must be determinis-
tic. We also assume that the input streams for a job are
deterministic, both in terms of order and event values.
The only remaining input-related non-determinism is the
ordering of events across multiple input streams. Be-
cause STREAMS uses CTI events (Section 2) as markers,
we insert a special MERGE operator at the beginning of a

4

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 443

vertex that takes multiple input streams, which produces
a deterministic order of events for subsequent processing
in the vertex. It does so by waiting for the correspond-
ing CTI events across input streams to show up, ordering
them deterministically, and emitting them in that deter-
ministic order. Because the processing logic of vertices
tends to wait for the CTI events in the same way, this
solution does not introduce additional noticeable delay.

STREAMS labels events in each stream with consec-
utive monotonically increasing sequence numbers. A
vertex uses sequence numbers to track the last con-
sumed/produced events from all streams. At each step
of the execution, a vertex consumes the next event(s)
of the input streams, invokes Execute(), which might
change its internal state, and generates new events into
the output streams, thereby reaching a new snapshot.
GetSnapshot() returns such a snapshot, which can be
implemented by pausing the execution after a step or
some copy-on-write data structures so that a consistent
snapshot can be retrieved while running uninterrupted.
Load(c) starts a vertex and loads c as the current snap-
shot before resuming execution. To be able to resume
execution from a snapshot, a vertex can periodically cre-
ate a checkpoint and store it reliably and persistently.

4.2 Implementing rStream

The rStream abstraction provides reliable channels that
allow receivers to read from any written position. One
straightforward implementation is for producing vertices
to write events persistently and reliably into the underly-
ing Cosmos distributed file system. Those synchronous
writes introduce significant latencies in the critical path
of stream processing. STREAMS instead uses a hybrid
scheme that moves those writes out of the critical path
while providing the illusion of reliable channels: the
events being written are first buffered in memory co-
located with the producing vertex and can be transmitted
directly to consuming vertices. The in-memory buffer is
asynchronously flushed to Cosmos to survive server fail-
ures. Events that are only kept in memory might be lost
on a failure, but can be recomputed when requested.

To be able to recompute lost events in case of fail-
ures, STREAMS tracks how each event is computed, sim-
ilar to dependency tracking in TimeStream [38] or lin-
eage in D-Streams [42]. In particular, during execu-
tion, the job manager tracks vertex snapshots (through
GetSnapshot()), which it can use later to infer how to
reproduce events in the output streams. A vertex decides
for itself when to capture a snapshot, save it (e.g., check-
pointing to a reliable persistent store), and report pro-
gress to the job manager. For example, in Figure 5, ver-
tex v4 sends two updates to the job manager. The first
update reports a snapshot s1 = {⟨2,7⟩,⟨12⟩, t1}, which

Job
Manager

Step 1. snapshot tracking
v4: s1={<2, 7>, <12>, t1},

s2={<5, 10>, <20>, t2}, ¬

v1

v2

v4 v5

v7

v6v4

v3

Step 2. resolve snapshot to
reproduce 16

Step 3. start a new instance

Figure 5: Snapshot tracking and recovery for rStream.

C1 C2 C3 C4 C5

R1 R2 R3

W

Reliable VolatileGCOld New

Figure 6: The STREAMS implementation of rStream.

indicates that the vertex consumed up to event 2 in the
first input stream and up to event 7 in the second, and
produced output event 12, while at state t1. The second
update s2 = {⟨5,10⟩,⟨20⟩, t2} reports that it has reached
event 5 in the first input stream, event 10 in the second,
while at state t2. This tracking is completely transparent
to users. Now if event 16 in the output stream needs to be
recomputed, the job manager can simply scan the snap-
shots and find the highest output sequence number that is
lower than 16, which is s1 in this case. It then starts a new
instance of the vertex, loads snapshot s1, and continues
executing until event 16 is produced. The execution of
that new instance would require events 3-5 from the first
input stream and events 8-10 in the second, which might
trigger recomputation in upstream vertices if those events
were no longer available. This process eventually termi-
nates as the original input events are always assumed to
be reliably persisted. Overall, such a design moves the
flush to the reliable persistent store out of the critical path
in normal execution, while at the same time reduces the
number of events that need to be recomputed during fail-
ure recovery. While rStream is conceptually infinite, in
a real implementation, garbage collection is necessary to
remove obsolete events and related tracking information
that are no longer needed for producing output events or
for failure recovery, which we describe in Section 4.3.

Figure 6 illustrates rStream’s implementation. In this
example, there is one writer W (the upstream vertex) and
three readers R1, R2, and R3 (downstream vertices). The
stream grows over time from left to right. The prefix
of the stream (marked as GC) includes events that are

444 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

0

DAG

Final output
Time

Snapshots

t0 t1 t2 t3

Low-water mark

3 7 9

a
…

v1 v2

…
v3.GC(c, 8)

b

c

Persisted up to 8 (exclusive)

0 0 2 3 6 4 7 8

v1.GC(a, 6)
v2.GC(b, 4)

Figure 7: Garbage collection: a recursive view.

obsolete and can be garbage collected, followed by a se-
quence of events that have been reliably persisted. The
tail of the stream (i.e., the most recent events) is volatile
and could get lost when failures happen. Checkpoints
can be created periodically (e.g., C1, C2, C3, C4, and C5)
for snapshots of the upstream vertex. When the volatile
portion of the stream is lost due to failure, it can be re-
computed from snapshot C4. Events in the reliable por-
tion can be served to R1 and R2 without recomputation.
Replaying from a checkpoint in the reliable portion (e.g.,
C4) fully recovers the transient portion; as a result, no
further cascading recomputation is needed for recovery.

4.3 Garbage Collection
STREAMS persists checkpoints of snapshots, streams,
and other tracking information reliably for failure re-
covery, and must determine when such information can
be garbage collected. STREAMS maintains low-water
marks for vertices and streams during the execution of a
streaming application. For a stream, the low-water mark
points to the lowest sequence number of the events that
are needed; for a vertex, the low-water mark points to the
lowest snapshot of the vertex that are needed.

For each vertex, snapshots are totally ordered by the
vector of sequence numbers of its input and output
streams. Because snapshots capture the linear progress
of deterministic vertex execution, all sequence numbers
only move forward. For example, consider a vertex with
two input streams and one output stream, a snapshot s
with a vector of sequence numbers at (⟨7,12⟩,⟨5⟩) will
be lower than a snapshot at (⟨7,20⟩,⟨8⟩). There cannot
be another snapshot at (⟨6,16⟩,⟨4⟩).

Consider a vertex v with I as its set of input streams
and O as its set of output streams. Vertex v maintains
a low-water mark sequence number lmo for each out-
put stream o ∈ O, initialized to 0. Vertex v implements
GC(o,m) to perform garbage collection, indicating that
any sequence number lower than m will no longer be
requested by the downstream vertex consuming output
stream o. For simplicity, we assume that each stream

is consumed by a single downstream vertex, but it is
straightforward to support the general case, where a
stream is shared among multiple downstream vertices.
1. If m≤ lmo, return; // no further GC needed.
2. Set lmo to m. Let s be the highest checkpointed snap-
shot s satisfying the condition that the sequence number
for output stream o in s is no higher than lmo for every
o ∈ O. Discard any snapshot lower than s.
3. For each input stream i ∈ I, let vi be the upstream
vertex producing input stream i and let si be the se-
quence number corresponding to input stream i in s, call
vi.GarbageCollect (si) to discard events lower than si
in input stream i. Recursively call vi.GC(i,si).

Intuitively, GC(o,m) figures out which information is
no longer needed if the downstream vertex (connected to
the output stream o) will not request any events with a
sequence number lower than m. It is called when the fi-
nal output events are persisted or consumed, or when any
output events in a stream is persisted reliably. Figure 7
shows an example of low-water marks. Although the al-
gorithm is specified recursively, it can be implemented
efficiently through a reverse topological order traversal.

4.4 Failure Recovery Strategies

STREAMS must recover from failures to keep streaming
applications running. The rVertex and rStream abstrac-
tions decouple downstream vertices in a DAG from their
upstream counterparts, making it easier to reason about
and deal with runtime failures. In addition, they abstract
away underlying implementation details, and allow them
to share a common mechanism for fault tolerance.

Different failure recovery strategies can be developed;
the choice can be decided by a combination of fac-
tors: normal-case cost (in terms of resources required),
normal-case overhead (in terms of latency), recovery cost
(in terms of resources required for recovery), and recov-
ery time. We highlight three strategies that represent dif-
ferent tradeoffs that are appropriate in different scenar-
ios. With rStream and rVertex, each vertex can recover
from failures independently. As a result, those strategies
can be applied at the vertex granularity and even different
vertices in the same job could potentially use different
strategies due to their different characteristics.
Checkpoint-based recovery. In this strategy, a vertex
checkpoints its snapshot periodically into a reliable per-
sistent store. When the vertex fails, it will load the most
recent checkpoint and resume execution. A straightfor-
ward implementation of checkpointing introduces over-
head in normal execution that is not ideal for vertices that
maintain a large internal state. Advanced checkpointing
techniques [33, 34] often require specific data structures,
which introduces complexity and overhead.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 445

Replay-based recovery. Quite often stream computa-
tion is either stateless or has a short-term memory due
to its use of window operators; that is, its current inter-
nal state depends only on the events in the most recent
window of a certain duration (say the last 5 minutes).
In those cases, a vertex can get away with not explic-
itly checkpointing state, and instead reloading that win-
dow of events to rebuild state from an initial one. While
this is a special case, it is common enough to be useful.
Leveraging this property, STREAMS can simply track the
sequence numbers of the input/output streams without
having to store the local states of a vertex. This strategy
might need to reload a possibly large window of input
events during recovery, but it avoids the upfront cost of
checkpointing in the normal case.

This strategy has a subtle implication on garbage col-
lection. Instead of loading a state in a snapshot, a vertex
must recover it from earlier events in the input streams.
Those events must be retained along with the snapshot.
Replication-based recovery. Yet another strategy is to
have multiple instances of the same vertex run at the
same time: they can be connected to the same input
streams and output streams. Our rStream implementa-
tion allows multiple readers and writers, deduplicating
automatically based on sequence numbers. The Deter-
minism property of rVertex also makes replication a vi-
able approach because those instances will behave con-
sistently. With replication, a vertex can have instances
take checkpoints in turn without affecting latency ob-
served by readers because other instances are running at a
normal pace. When one instance fails, it can also get the
current snapshot from another instance directly to speed
up recovery. All those benefits come at the cost of having
multiple instances running at the same time.

5 Discussion

STREAMS makes different choices from existing dis-
tributed stream processing engines on stream model,
non-determinism, and out-of-order event processing.
Mini-batch stream processing with RDD. Instead of
supporting a continuous stream model, D-Streams [42]
models a stream computation as a series of mini-batch
computations in small time intervals and leverages im-
mutable RDDs [41] for failure recovery. Modeling a
stream computation as a series of mini-batches could
be cumbersome because many stream operators, such as
windowing, joins, and aggregations, maintain states to
process event streams efficiently. Breaking such opera-
tions into separate mini-batch computation requires re-
building computation state from the previous batches be-
fore processing new events in the current batch. A good
example is the inner join in Figure 1. The join operator
needs to track all the events that might generate matching

results for the current or future batches in efficient data
structures and can only retire them on CTI events. Re-
gardless of how mini-batches are generated, such a join
state is potentially big for complex join types and needs
to be rebuilt in each batch or passed on between con-
secutive mini-batches. Furthermore, D-Streams unnec-
essarily couples low latency and fault tolerance: a mini-
batch defines the granularity at which vertex computation
is triggered and therefore dictates latency, while an im-
mutable RDD, mainly for failure recovery, is created for
each mini-batch. The low-latency requirements demand
small batch sizes even though there is no need to enable
failure recovery at that granularity.
Non-determinism. Determinism is required in rVer-
tex for correctness and also makes debugging easier.
Non-determinism could introduce inconsistency when
a vertex re-executes during failure recovery. Non-
determinism might cause re-execution to deviate from
the initial execution and lead to a situation where down-
stream vertices use two inconsistent versions of the out-
put event streams from this vertex. STREAMS can be
extended to support non-determinism, but at a cost.

One way to avoid inconsistency due to non-
determinism is to make sure that any output events pro-
duced by a vertex do not need to be recomputed. This can
be achieved, for example, by checkpointing the snapshot
to a reliable and persistent store before making the output
events visible to downstream vertices. This is in essence
the choice that MillWheel [7] makes in its design. This
proposal introduces significant overhead because the ex-
pensive checkpointing is on the critical path. An alterna-
tive approach is to log non-deterministic decisions during
execution for faithful replay [10, 22, 23, 32, 35]. Log-
ging non-deterministic decisions is often less costly than
checkpointing snapshots, but this approach requires that
all sources of non-determinism be identified, appropri-
ately logged, and replayed. STREAMS does not support
such mechanisms in the current implementation.
Out-of-order event ordering. Events could arrive in an
order that does not correspond to their application time-
stamps, for example, when the events come from mul-
tiple sources. To allow out-of-order event processing,
systems such as Storm [3] and MillWheel [7] assign a
unique but unordered ID to each event. A downstream
vertex sends ACKs with those IDs to an upstream vertex to
track progress and handle failures. STREAMS decouples
the logical order of events from their physical delivery
and consumption. It borrows the idea of CTI events as
discussed in Section 2 from stream databases to achieve
out-of-order event processing at the language and opera-
tor level. At the system level, STREAMS assigns unique
and ordered sequence numbers to events, making it easy
to track progress and handle failures, while avoiding ex-
plicit ACKs that could incur performance overhead.

7

446 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

6 Production Experiences

STREAMS has been deployed in production. This section
highlights our experiences with developing STREAMS
and with supporting the life cycle of streaming applica-
tions, from development, debugging, to deployment.
From batch to streaming. STREAMS has been devel-
oped as an extension to an existing large-scale batch pro-
cessing system and benefited greatly from reusing the ex-
isting components, such as the compiler, optimizer, and
DAG/job manager, with adaptation and changes to sup-
port streaming. For example, the compiler is extended
to handle streaming operators and the optimizer has a re-
vised cost function to evaluate streaming plans.

Quite a few streaming applications were migrated
from recurring batch jobs to achieve better efficiency and
low latency. STREAMS provides supports for such mi-
gration in the compiler and allows the use of a batch ver-
sion to validate the results of a streaming counterpart.
Scaling and robustness to fluctuation. STREAMS cre-
ates a physical plan to handle scaling based on estimated
peak input rates and operator costs, ensuring that a suf-
ficient number of vertices in each stage execute in par-
allel to handle the peak load. We find STREAMS’s de-
sign robust to fluctuations caused by load spikes or server
failures thanks to the decoupling between vertices using
rStream. When one vertex falls behind temporarily, the
input events to the vertex are queued in essentially an in-
finite buffer in the underlying distributed storage system.
The queuing also allows effective event batching to al-
low the vertex to catch up quickly. When the peak load
increases over time, STREAMS provides the support to
move to a new configuration with increased degrees of
paralleliem, without any interruption. This is done by
initiating new vertices with derived states from check-
points in the current job, and retires the corresponding
vertices when the new ones catch up. The flexibility of
rStream makes it easy to support such transitions. We
decided not to support dynamic reconfiguration [38] as
the additional complexity was not justified.
Distributed streaming made easy. In STREAMS, the
declarative programming language and the stream data
model makes it easy to program a streaming application
without worrying about the distributed system details.
STREAMS extends the simplicity to development and de-
bugging via a different instantiation of rStream and a
different scheduling policy in the job manager. Specif-
ically, STREAMS introduces an off-line mode, where fi-
nite datasets, usually persistently stored, can be read to
simulate on-line event streams, through a special instan-
tiation of rStream. The job manager also uses a special
off-line mode that favors ease of debugging over latency
by executing one vertex at a time, instead of running
all vertices concurrently, thereby significantly reducing

the required resources. The off-line mode is completely
transparent to the user code, which behaves the same
way as in the on-line version except for latency.
Traveling back in time. A streaming application typ-
ically progresses forward in time, but we have encoun-
tered cases where traveling back in time is needed. For
example, a user might request to re-examine a segment
of execution in the past in response to an audit request.
As a result of the investigation, the user needs to apply
adjustments to the past results because the learning algo-
rithm used is imperfect and needs correction in this par-
ticular case. To improve the algorithm, the user further
conducts experiments with new algorithms and compares
them with the current one. To handle such requirements,
we maintain all past checkpoints and input channels in a
global repository that implements a retention policy. Our
rVertex and rStream abstractions support time travel to
the past as is the case for failure recovery.
Continuous operation during system maintenance.
Cluster-wide maintenance and updates, e.g., to apply
patches, occur regularly in data centers. For batch jobs,
the maintenance can be done systematically by not as-
signing new tasks to the ones to be patched and waiting
for the existing tasks to finish on those machines. This
is unfortunately not sufficient for streaming applications
as they run continuously. Instead, STREAMS leverages
duplicate execution (as used to handle stragglers) to min-
imize the effect: after receiving a notification that certain
machines are scheduled for maintenance, the job man-
ager replicates the execution of each affected vertex and
schedules another instance in a different safe machine.
Once the new instance catches up in terms of events pro-
cessing, the job manager can safely kill the affected ver-
tex and allow maintenance to proceed.
Straggler handling. Stragglers are vertices that make
progress at a slower rate than other vertices in the same
stage. Preventing and mitigating stragglers is particu-
larly important for streaming applications where strag-
glers can have more severe and long-lasting performance
impact. First, STREAMS continuously monitors machine
health and only considers healthy machines for running
streaming vertices. This significantly reduces the likeli-
hood of introducing stragglers at runtime. Second, for
each vertex, STREAMS tracks its resulting CTI events,
normalized by the number of its input events, to estimate
roughly its progress. If one vertex has a processing speed
that is significantly slower than the others in the same
stage that execute the same query logic, a duplicate copy
is started from the most recent checkpoint. They execute
in parallel until either one catches up with the others, at
which point the slower one is killed.

A streaming application might encounter anomalies
during its execution; for example, when hitting unex-
pected input events. We have encountered cases where

8

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 447

0 %
20 %
40 %
60 %
80 %

100 %

 10 20 30 40

CD
F

Vertex state size(GB)

Figure 8: Distribution of vertex state sizes.

certain rare input events take a lot of time to process.
The vertex hitting such an event is often considered a
straggler, but such a straggler cannot be fixed by dupli-
cate execution as the computation is always expensive.
We extend STREAMS with an alert mechanism to sup-
ply users with various alerts, including event process-
ing speeds and on-line statistics, and provide a flexible
mechanism that allows users to specify a filter to weed
out such events to keep the streaming application run-
ning smoothly (before a new solution is ready to be de-
ployed). To ensure determinism, before a filter is applied,
STREAMS creates a checkpoint for the vertex, flushes the
volatile part of the streams, and records the filter.

7 Evaluation

STREAMS has been deployed since late 2014 in shared
20,000-server production clusters, running concurrently
a few hundred thousand jobs daily, including a variety of
batch, interactive, machine-learning, and streaming ap-
plications. Our evaluation starts with an in-depth study
of a large business-critical production streaming appli-
cation. Next, we perform extensive experiments using
three simple streaming applications to demonstrate the
scalability and performance with STREAMS, as well as
the tradeoff between latency and throughput. Finally, we
evaluate different failure recovery strategies. All the ex-
periments are carried out in our shared production envi-
ronment to perform real and practical evaluation.

7.1 A Production Streaming Application
For our evaluation, we study a production streaming ap-
plication that supports a core on-line advertisement ser-
vice. The application detects fraud clicks of on-line
transactions in near-real time and refunds affected cus-
tomers accordingly. Because the application is related to
accounting, strong guarantees are needed. Latency is im-
portant for the application because lower latency allows
customers to adjust their selling strategies more quickly,
leading to higher revenues for the service. The previous
implementation as a batch job introduced a latency of

 20

 40

 60

 80

 100

La
te

nc
y

(m
in

ut
e)

A D

B

C

 0
 30
 60
 90

 120

Fa

ilu
re

s

 0
 200
 400
 600
 800

1 2 3 4 5 6 7

Se

rv
er

 R
eb

oo
ts

Time (week)

Figure 9: Application performance, failures, and server
reboots over a 7-week period.

around 6 hours: it had to wait for the data to accumulate
(every 3 hours) and to rebuild the state every time it ran.

The application has a complex processing logic that
involves a total of 48 stages, containing 18 joins of 5
different types (specifically, left semi, left anti semi, left
outer, inner, and clip [9]). During the period of evalua-
tion, the application executes on 3,220 vertices, process-
ing tens of billions of input events (around 9.5 TB in size)
and resulting in around 180 TB of I/O per day. Figure 8
shows the distribution of in-memory vertex state sizes
in the application. There are about 25% “heavy” ver-
tices that maintain a huge in-memory state because the
application extracts millions of features from raw events
and maintains a large number of complicated statistics in
memory before feeding them into a sophisticated on-line
prediction engine for fraud detection. The aggregated in-
memory state of all the vertices is around 21.3 TB.

7.2 STREAMS in Production
In a shared production environment, failures, variations,
and system maintenance are the norm. We cover several
key aspects of the production streaming application, in-
cluding performance, failures, variations, and stragglers.
Performance and failure impact. Figure 9 shows the
end-to-end latency of this application over a 7-week pe-
riod (top figure), along with the number of server failures
(middle figure), and the number of servers brought down
for planned maintenance (bottom figure), all aligned on
time. We observed random server failures from time to
time, impacting the application latency in various ways.
We also experienced a major planned system mainte-
nance that systematically rebooted machines.

We highlight four interesting periods, labeled A, B, C,
and D. In case A, although the number of failures was not

9

448 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

0 %
20 %
40 %
60 %
80 %

100 %

 2 4 6 8 10 12 14 16

CD
F

Latency (minute)

Stage W
Stage X
Stage Y
Stage Z

Figure 10: Distribution of vertex latency in four repre-
sentative stages.
high, some of the failed vertices held a relatively large
in-memory state and took a long time to recover, thereby
leading to a significant latency spike. In case B, however,
a majority of failures occurred to vertices with a rela-
tively small state. The recovery was therefore fast and its
latency impact was hardly visible. Case C corresponds to
a “live site” triggered by an unplanned mis-configuration
that caused a significant number of machines to reboot.
The issue led to a significant latency spike, but the appli-
cation survived this massive failure. In Case D, a planned
system maintenance rebooted machines in batches to ap-
ply OS patches and software upgrades. The entire ap-
plication had to be migrated to run on a different set of
machines. STREAMS used duplicate execution for each
affected vertex to migrate gracefully.

The average end-to-end latency for the application is
around 20 minutes. The original timestamps of the input
events are included in the final output events and are used
to compute end-to-end latency. The input delay, which
is the interval between when events are generated/times-
tamped and when they appear in the input streams of the
application, is also included. Window aggregations se-
mantically introduce delay in latency and are the domi-
nant factor in the overall latency for this application.
Variations. Performance variations are common in dis-
tributed computation, even among vertices in the same
stage. Figure 10 shows the latency distribution of all the
vertices in four representative stages, respectively. Stage
W is responsible for extracting input events from raw
event logs: the latency observed at that stage is mostly
due to input delay. The variations observed in that stage
are also consistently observed in later stages. Stage X
contains window aggregations, which intrinsically intro-
duce delays that are comparable to those of the window
sizes to the downstream stage Y . Stage Z represents
the application’s final computation stage. Variations are
the result of various factors: load fluctuation and inter-
ference on servers, or changing data characteristics and
their impact on computation complexity and efficiency.
Concurrent channels. Interestingly, noticeable perfor-
mance variations are observed on vertices that process
the same data from the same upstream vertex. We ex-
amine a vertex whose output events are broadcast to 150

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8

Pr
oc

es
se

d
Ev

en
ts

 (K
)

Time (minute)
(a) Processing speed variations

V1
V2
V3
V4

 0
 5

 10
 15
 20
 25
 30
 35
 40

 200 400 600 800

Pr
oc

es
se

d
Ev

en
ts

 (M
)

Time (minute)
(b) Synchronized v.s.
concurrent channels

concurrent
synchronized

Figure 11: Benefits of concurrent channels.

 0
 1
 2
 3
 4
 5

1 2 3 4 5 6 7

St
ra

gg
le

rs

Time (week)

Figure 12: Stragglers in production.

downstream vertices in the application we study. Fig-
ure 11(a) shows a detailed 8-minute view of processing
speed variations on four selected vertices. A difference
of several thousand events in processing speeds shows up
from time to time, mainly due to computation variations
in individual vertices: one vertex might outperform oth-
ers for a period of time and then lag behind in the next.
This observation argues against a naive synchronized de-
sign (e.g., using TCP directly) that forces all downstream
vertices to proceed in lock steps, causing the slowest ver-
tex to dictate in each step. STREAMS employs a con-
current design, allowing individual downstream vertices
to advance at different speeds. Figure 11(b) compares
the projected progress of such a synchronized design
with the actual execution that uses a concurrent chan-
nel. The performance of using concurrent channels no-
ticeably outperforms that of using synchronized ones.

Stragglers. Stragglers do appear in production even with
mechanisms to prevent them. A straggler cannot recover
by itself, unlike performance variation, and actions such
as duplicate execution might be needed to resolve it. Fig-
ure 12 shows the number of stragglers we detected and
successfully recovered during the 7-week period. We are
conservative in classifying a vertex as a straggler because
we observe that in most cases a vertex that falls behind
temporarily can catch up by processing at large batches.
The detected ones are those with persistent issues.

10

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 449

 0
 5

 10
 15
 20
 25
 30
 35
 40

100 400 700 1000

Th
ro

ug
hp

ut
 (G

B/
s)

Degree of parallelism

Join
Grep

WordCount

Figure 13: Scalability.

7.3 Scalability
To evaluate scalability and study performance tradeoff,
we run three simple streaming applications in produc-
tion. (1) Grep scans input events (strings) for a matching
pattern; (2) WordCount counts the number of words in
an input stream over 1-minute hopping windows, and (3)
Join joins two input streams to return matching pairs.
Each event in the first input stream has a 2-min win-
dow [t, t +2], while a matching event with the same join
key appears in the second stream in a 1-min window
[t + 0.5, t + 1.5], so that each event appears in the join
result, allowing the application to produce a steady out-
put stream. In all cases, each event is 100 bytes.

To evaluate scalability, we run each application with
different numbers of vertices (degrees of parallelism) up
to 1,000. We constrain each vertex to use one CPU core
and limit I/O bandwidth to avoid significantly impact-
ing production activities. Figure 13 reports the maxi-
mum throughput that STREAMS can sustain under a 1-
second latency bound for each application with different
numbers of vertices. STREAMS scales linearly to 1000
vertices, achieving a throughput of up to 35 GB/s. We
also repeat the same experiments on a small dedicated
20-machine test cluster without any vertex resource con-
straint. STREAMS is able to saturate the network and the
maximum throughput is bounded by network bandwidth.

7.4 Tradeoff: Latency vs. Throughput
We further study the tradeoff between latency and
throughput by varying event buffer size using Grep with
100 vertices. We choose Grep because it has no win-
dow or join constructs that could introduce application-
level delays. We repeat each experiment 3 times and re-
port the average, minimum, and maximum values. As
shown in Figure 14(a), STREAMS achieves a latency
around 10 msec using a small buffer size at the cost of
lower throughput. As the buffer size grows, the through-
put improves but the latency also increases. STREAMS
achieves a stable maximum throughout when buffering
every 16K events, where the latency is around 280 msec.
Our default production setting triggers computation ei-
ther when accumulated events fill a 2MB buffer or every

 0
 200
 400

 600
 800

 1000
 1200

1 4 16 64 256 1K 4K 16K 64K 256K
 0

 0.5

 1

 1.5

 2

 2.5

La
te

nc
y

(m
s)

Th
ro

ug
hp

ut
 (G

B/
s)

Buffer size

Latency
Throughput

(a) STREAMS (Asynchronous writes)

 0
 200
 400

 600
 800

 1000
 1200

1 4 16 64 256 1K 4K 16K 64K 256K
 0

 0.5

 1

 1.5

 2

 2.5

La
te

nc
y

(m
s)

Th
ro

ug
hp

ut
 (G

B/
s)

Buffer size

Latency
Throughput

(b) Synchronous writes

Figure 14: Latency and throughput tradeoff using Grep
with 100 vertices.

 0
 20
 40
 60
 80

 100
 120
 140
 160

A1 A2A3 A4

B1 B2B3 B4

La
te

nc
y

(s
ec

on
d)

Time

Checkpoint
Replay

Replicate

Figure 15: Comparing failure recovery strategies.

500 msec, but it is configurable for each application.
In STREAMS, events are first buffered in memory be-

fore asynchronously flushed to a reliable persistent store.
To compare, we repeat the same Grep experiment by
synchronously storing every event persistently, as done
in MillWheel [7]. Figure 14(b) shows a similar trade-
off. However, its latency is always worse than that of
STREAMS, while its throughput is worse when the buffer
size is smaller than 1KB and is comparable otherwise.

7.5 Failure Recovery Strategies
We compare three failure recovery strategies using Join
in Figure 15. The experiment is conducted in a produc-
tion environment, where we inject a vertex failure manu-
ally, apply different recovery strategies, and observe the
latency impact during failure and recovery. We align the
time lines of the executions for ease of comparison.

11

450 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

The replication-based strategy has no impact on the la-
tency because it always has at least two instances of the
same vertex running. For the checkpoint-based strategy,
each checkpointing introduces a small latency spike. Af-
ter a failure, a new instance of the failed vertex reloads
the latest checkpoint and continues executing. From A1
to A2, the checkpointed snapshot is reloaded. From A2
to A3, the vertex re-produces events that were already
generated before failure. Those are discarded. After A3,
the vertex starts to produce new output events. The la-
tency is high at this point because input events have been
buffered during failure/recovery. The vertex catches up
at A4. Replay-based recovery does not have checkpoint-
ing overhead. The last snapshot is reconstructed by re-
playing the input events, which corresponds to the period
between B1 to B2. There is a longer delay in replay-based
recovery because the state in checkpoint is more con-
densed than the input events (a common case). Once the
state is reconstructed, it follows the same steps as in the
checkpoint-based recovery: it reproduces some duplicate
output from B2 to B3 and then catches up at B4. The ac-
tual shape of the curves depends on many factors, such
as the sizes of the states, the number of events that must
be replayed, the replay speed, and the catch-up speed.

As a rule of thumb, the checkpoint-based strategy is
preferable if the checkpointing cost is low. The replay-
based strategy is favored if the checkpointing cost is
high, but the replay cost is comparable to that of recov-
ery from a checkpoint. In our production application,
25% of the vertices use replay-based recovery (manu-
ally configured) to avoid the normal-case latency penalty,
while the remaining use checkpoint-based recovery for
fast fail-over. Replication is used for duplicate execution
to handle stragglers or to enable migration.

8 Related Work

The key concepts in STREAMS, such as declarative SQL-
like language, temporal relational algebra, compilation
and optimization to streaming DAG, and scheduling,
have been inherited from the design of stream database
systems [6, 13, 20, 5, 19], which extensively studied
stream semantics [29, 18, 15, 28] and distributed pro-
cessing [11, 25, 17, 14, 26]. STREAMS’s novelty is in the
new rStream and rVertex abstractions designed for high
scalability and fault tolerance through decoupling, rep-
resenting a different and increasingly important design
point that favors scalability at the expense of somewhat
loosened latency requirements. MapReduce Online [21],
S4 [37], and Storm [3, 31] extend a DAG model in batch
processing systems like Hadoop [1] to streaming.

STREAMS is designed to achieve the exactly-once se-
mantics despite failures; such strong consistency is re-
quired by many production streaming applications and

makes it easy to reason about correctness. Other sys-
tems such as Trident [4] (over Storm), MillWheel [7, 8],
TimeStream [38], D-Streams [42], and Samza [2] also
embrace strong consistency, but make different design
choices. The abstractions in STREAMS separate the
key requirements of fault tolerant streaming process-
ing from the different approaches in satisfying those re-
quirements. For example, state management and track-
ing in Trident, MillWheel, and Samza can be consid-
ered a way to realize rVertex. TimeStream’s depen-
dency tracking and D-Streams’ lineage tracking can be
used to implement rStream with on-demand recomputa-
tion, while Kafka [30]-based channel implementation in
Samza implements rStream with all events persisted re-
liably. STREAMS’s rStream implementation moves the
cost of reliable persistence out of the critical path (unlike
MillWheel [7] and Samza [2]), while keeping the prob-
ability of on-demand recomputation low and avoiding
cascading recovery in practice. Other noteworthy techni-
cal differences, such as continuous vs. mini-batch mod-
els, non-determinism, and out-of-order event processing,
have been discussed in Section 5.

Several other systems focus on other design dimen-
sions. For example, Photon [12] and JetStream [39] ad-
dress the geo-distribution aspect of streaming to achieve
consistency and efficiency over a wide area network.
Naiad [36] and Flink [16] handle dataflows with cycles
for incremental computation. SEEP [24] and ChronoS-
tream [40] address the resource elasticity for stream-
ing by dynamically adjusting the degree of parallelism.
Heron [31] improves on Storm to run in shared produc-
tion cluster efficiently and introduces backpressure.

9 Conclusion

STREAMS takes a principled approach to distributed
fault-tolerant cloud scale stream computation with new
abstractions rVertex and rStream. Its implementation
and deployment in production not only provide the in-
sights that validate the design choices, but also offer
valuable engineering experiences that are key to the suc-
cess of such a cloud scale stream computation system.

10 Acknowledgments

We would like to thank the anomymous reviewers, as
well as our shepherd Hari Balakrishnan, for their valu-
able comments and suggestions. We are grateful to
Michael Levin, Andrew Baumann, Geoff Voelker, and
Jay Lorch for providing insightful feedback on our early
draft. We would also like to thank Microsoft Big Data
team members for their support and collaboration.

12

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 451

References

[1] Apache Hadoop. http://hadoop.apache.org/.

[2] Apache Samza. http://samza.apache.org/.

[3] Apache Storm. http://storm.incubator.apache.org/.

[4] Trident. https://storm.apache.org/documentation/trident-
tutorial.html.

[5] ABADI, D. J., AHMAD, Y., BALAZINSKA, M.,
ÇETINTEMEL, U., CHERNIACK, M., HWANG, J.,
LINDNER, W., MASKEY, A., RASIN, A., RYVK-
INA, E., TATBUL, N., XING, Y., AND ZDONIK,
S. B. The design of the Borealis stream processing
engine. In CIDR (2005), pp. 277–289.

[6] ABADI, D. J., CARNEY, D., ÇETINTEMEL, U.,
CHERNIACK, M., CONVEY, C., LEE, S., STONE-
BRAKER, M., TATBUL, N., AND ZDONIK, S. B.
Aurora: A new model and architecture for data
stream management. VLDB J. 12, 2 (2003), 120–
139.

[7] AKIDAU, T., BALIKOV, A., BEKIROGLU, K.,
CHERNYAK, S., HABERMAN, J., LAX, R.,
MCVEETY, S., MILLS, D., NORDSTROM, P.,
AND WHITTLE, S. MillWheel: Fault-tolerant
stream processing at Internet scale. PVLDB 6, 11
(2013), 1033–1044.

[8] AKIDAU, T., BRADSHAW, R., CHAMBERS,
C., CHERNYAK, S., FERNÁNDEZ-MOCTEZUMA,
R. J., LAX, R., MCVEETY, S., MILLS, D.,
PERRY, F., SCHMIDT, E., ET AL. The dataflow
model: A practical approach to balancing cor-
rectness, latency, and cost in massive-scale, un-
bounded, out-of-order data processing. Proceed-
ings of the VLDB Endowment 8, 12 (2015), 1792–
1803.

[9] ALI, M. H., CHANDRAMOULI, B., GOLDSTEIN,
J., AND SCHINDLAUER, R. The extensibility
framework in Microsoft StreamInsight. In ICDE
(2011), pp. 1242–1253.

[10] ALTEKAR, G., AND STOICA, I. ODR: Output-
deterministic replay for multicore debugging. In
Proceedings of the 22nd ACM Symposium on Op-
erating Systems Principles 2009, SOSP 2009, Big
Sky, Montana, USA, October 11-14, 2009 (2009),
pp. 193–206.

[11] AMINI, L., ANDRADE, H., BHAGWAN, R., ES-
KESEN, F., KING, R., SELO, P., PARK, Y., AND
VENKATRAMANI, C. SPC: A distributed, scalable
platform for data mining. In Proceedings of the 4th

international workshop on Data mining standards,
services and platforms (2006), ACM, pp. 27–37.

[12] ANANTHANARAYANAN, R., BASKER, V.,
DAS, S., GUPTA, A., JIANG, H., QIU, T.,
REZNICHENKO, A., RYABKOV, D., SINGH, M.,
AND VENKATARAMAN, S. Photon: Fault-tolerant
and scalable joining of continuous data streams. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD
2013, New York, NY, USA, June 22-27, 2013
(2013), pp. 577–588.

[13] ARASU, A., BABCOCK, B., BABU, S., DATAR,
M., ITO, K., NISHIZAWA, I., ROSENSTEIN, J.,
AND WIDOM, J. STREAM: The Stanford stream
data manager. In Proceedings of the 2003 ACM
SIGMOD International Conference on Manage-
ment of Data, San Diego, California, USA, June
9-12, 2003 (2003), p. 665.

[14] BALAZINSKA, M., BALAKRISHNAN, H., MAD-
DEN, S., AND STONEBRAKER, M. Fault-
Tolerance in the Borealis Distributed Stream Pro-
cessing System. In ACM SIGMOD Conf. (Balti-
more, MD, June 2005).

[15] BARGA, R. S., GOLDSTEIN, J., ALI, M. H., AND
HONG, M. Consistent streaming through time: A
vision for event stream processing. In CIDR 2007,
Third Biennial Conference on Innovative Data Sys-
tems Research, Asilomar, CA, USA, January 7-10,
2007, Online Proceedings (2007), pp. 363–374.

[16] CARBONE, P., FÓRA, G., EWEN, S., HARIDI,
S., AND TZOUMAS, K. Lightweight asynchronous
snapshots for distributed dataflows. arXiv preprint
arXiv:1506.08603 (2015).

[17] CETINTEMEL, U. The Aurora and Medusa
projects. Data Engineering 51, 3 (2003).

[18] CHAKRAVARTHY, S., KRISHNAPRASAD, V., AN-
WAR, E., AND KIM, S. Composite events for active
databases: Semantics, contexts and detection. In
VLDB’94, Proceedings of 20th International Con-
ference on Very Large Data Bases, September 12-
15, 1994, Santiago de Chile, Chile (1994), pp. 606–
617.

[19] CHANDRAMOULI, B., GOLDSTEIN, J., BAR-
NETT, M., DELINE, R., PLATT, J. C., TER-
WILLIGER, J. F., AND WERNSING, J. Trill: A
high-performance incremental query processor for
diverse analytics. PVLDB 8, 4 (2014), 401–412.

13

452 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[20] CHANDRASEKARAN, S., COOPER, O., DESH-
PANDE, A., FRANKLIN, M. J., HELLERSTEIN,
J. M., HONG, W., KRISHNAMURTHY, S., MAD-
DEN, S. R., REISS, F., AND SHAH, M. A. Tele-
graphCQ: Continuous dataflow processing. In Pro-
ceedings of the 2003 ACM SIGMOD international
conference on Management of data (2003), ACM,
pp. 668–668.

[21] CONDIE, T., CONWAY, N., ALVARO, P., HELLER-
STEIN, J. M., ELMELEEGY, K., AND SEARS,
R. Mapreduce online. In Proceedings of the 7th
USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2010, April 28-30,
2010, San Jose, CA, USA (2010), pp. 313–328.

[22] DUNLAP, G. W., KING, S. T., CINAR, S., BAS-
RAI, M. A., AND CHEN, P. M. Revirt: Enabling
intrusion analysis through virtual-machine logging
and replay.

[23] DUNLAP, G. W., LUCCHETTI, D. G., FETTER-
MAN, M. A., AND CHEN, P. M. Execution replay
of multiprocessor virtual machines. In Proceedings
of the 4th International Conference on Virtual Exe-
cution Environments, VEE 2008, Seattle, WA, USA,
March 5-7, 2008 (2008), pp. 121–130.

[24] FERNANDEZ, R. C., MIGLIAVACCA, M., KALY-
VIANAKI, E., AND PIETZUCH, P. Integrating scale
out and fault tolerance in stream processing using
operator state management. In Proceedings of the
ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2013, New York, NY,
USA, June 22-27, 2013 (2013), pp. 725–736.

[25] FRANKLIN, M. J., JEFFERY, S. R., KRISHNA-
MURTHY, S., REISS, F., RIZVI, S., WU, E.,
COOPER, O., EDAKKUNNI, A., AND HONG, W.
Design considerations for high fan-in systems: The
HiFi approach. In CIDR (2005), pp. 290–304.

[26] HWANG, J.-H., BALAZINSKA, M., RASIN, A.,
CETINTEMEL, U., STONEBRAKER, M., AND
ZDONIK, S. High-Availability Algorithms for Dis-
tributed Stream Processing. In The 21st Inter-
national Conference on Data Engineering (ICDE
2005) (Tokyo, Japan, April 2005).

[27] ISARD, M., BUDIU, M., YU, Y., BIRRELL,
A., AND FETTERLY, D. Dryad: distributed
data-parallel programs from sequential building
blocks. In Proceedings of the 2007 EuroSys Confer-
ence, Lisbon, Portugal, March 21-23, 2007 (2007),
pp. 59–72.

[28] JAIN, N., MISHRA, S., SRINIVASAN, A.,
GEHRKE, J., WIDOM, J., BALAKRISHNAN, H.,
ÇETINTEMEL, U., CHERNIACK, M., TIBBETTS,
R., AND ZDONIK, S. Towards a streaming SQL
standard. Proceedings of the VLDB Endowment 1,
2 (2008), 1379–1390.

[29] JENSEN, C. S., AND SNODGRASS, R. T. Temporal
specialization. In Proceedings of the Eighth Inter-
national Conference on Data Engineering, Febru-
ary 3-7, 1992, Tempe, Arizona (1992), pp. 594–
603.

[30] KREPS, J., NARKHEDE, N., AND RAO, J. Kafka:
A distributed messaging system for log process-
ing. In Proceedings of 6th International Workshop
on Networking Meets Databases (NetDB), Athens,
Greece (2011).

[31] KULKARNI, S., BHAGAT, N., FU, M., KEDIGE-
HALLI, V., KELLOGG, C., MITTAL, S., PATEL,
J. M., RAMASAMY, K., AND TANEJA, S. Twit-
ter Heron: Stream processing at scale. In Pro-
ceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (2015), ACM,
pp. 239–250.

[32] LAADAN, O., VIENNOT, N., AND NIEH, J. Trans-
parent, lightweight application execution replay on
commodity multiprocessor operating systems. In
SIGMETRICS 2010, Proceedings of the 2010 ACM
SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems, New
York, New York, USA, 14-18 June 2010 (2010),
pp. 155–166.

[33] LI, K., NAUGHTON, J. F., AND PLANK, J. S.
Real-time, concurrent checkpoint for parallel pro-
grams, vol. 25. ACM, 1990.

[34] LI, K., NAUGHTON, J. F., AND PLANK, J. S.
Low-latency, concurrent checkpointing for parallel
programs. Parallel and Distributed Systems, IEEE
Transactions on 5, 8 (1994), 874–879.

[35] MONTESINOS, P., HICKS, M., KING, S. T., AND
TORRELLAS, J. Capo: A software-hardware inter-
face for practical deterministic multiprocessor re-
play. In Proceedings of the 14th International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2009,
Washington, DC, USA, March 7-11, 2009 (2009),
pp. 73–84.

[36] MURRAY, D. G., MCSHERRY, F., ISAACS, R.,
ISARD, M., BARHAM, P., AND ABADI, M. Na-
iad: A timely dataflow system. In ACM SIGOPS

14

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 453

24th Symposium on Operating Systems Principles,
SOSP ’13, Farmington, PA, USA, November 3-6,
2013 (2013), pp. 439–455.

[37] NEUMEYER, L., ROBBINS, B., NAIR, A., AND
KESARI, A. S4: Distributed stream computing
platform. In ICDMW 2010, The 10th IEEE Interna-
tional Conference on Data Mining Workshops, Syd-
ney, Australia, 13 December 2010 (2010), pp. 170–
177.

[38] QIAN, Z., HE, Y., SU, C., WU, Z., ZHU, H.,
ZHANG, T., ZHOU, L., YU, Y., AND ZHANG, Z.
TimeStream: Reliable stream computation in the
cloud. In Eighth Eurosys Conference 2013, Eu-
roSys ’13, Prague, Czech Republic, April 14-17,
2013 (2013), pp. 1–14.

[39] RABKIN, A., ARYE, M., SEN, S., PAI, V. S.,
AND FREEDMAN, M. J. Aggregation and degrada-
tion in JetStream: Streaming analytics in the wide
area. In Proceedings of the 11th USENIX Sympo-
sium on Networked Systems Design and Implemen-
tation, NSDI 2014, Seattle, WA, USA, April 2-4,
2014 (2014), pp. 275–288.

[40] WU, Y., AND TAN, K.-L. ChronoStream: Elastic
stateful stream computation in the cloud. In Data
Engineering (ICDE), 2015 IEEE 31th International
Conference on (2015), IEEE.

[41] ZAHARIA, M., CHOWDHURY, M., DAS, T.,
DAVE, A., MA, J., MCCAULY, M., FRANKLIN,
M. J., SHENKER, S., AND STOICA, I. Resilient
Distributed Datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings
of the 9th USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI 2012, San
Jose, CA, USA, April 25-27, 2012 (2012), pp. 15–
28.

[42] ZAHARIA, M., DAS, T., LI, H., HUNTER, T.,
SHENKER, S., AND STOICA, I. Discretized
Streams: Fault-tolerant streaming computation at
scale. In ACM SIGOPS 24th Symposium on Op-
erating Systems Principles, SOSP ’13, Farmington,
PA, USA, November 3-6, 2013 (2013), pp. 423–438.

[43] ZHOU, J., BRUNO, N., WU, M.-C., LARSON, P.-
Å., CHAIKEN, R., AND SHAKIB, D. SCOPE: Par-
allel databases meet MapReduce. VLDB J. 21, 5
(2012), 611–636.

15

