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ABSTRACT
Spark SQL is a new module in Apache Spark that integrates rela-
tional processing with Spark’s functional programming API. Built
on our experience with Shark, Spark SQL lets Spark program-
mers leverage the benefits of relational processing (e.g., declarative
queries and optimized storage), and lets SQL users call complex
analytics libraries in Spark (e.g., machine learning). Compared to
previous systems, Spark SQL makes two main additions. First, it
offers much tighter integration between relational and procedural
processing, through a declarative DataFrame API that integrates
with procedural Spark code. Second, it includes a highly extensible
optimizer, Catalyst, built using features of the Scala programming
language, that makes it easy to add composable rules, control code
generation, and define extension points. Using Catalyst, we have
built a variety of features (e.g., schema inference for JSON, machine
learning types, and query federation to external databases) tailored
for the complex needs of modern data analysis. We see Spark SQL
as an evolution of both SQL-on-Spark and of Spark itself, offering
richer APIs and optimizations while keeping the benefits of the
Spark programming model.
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1 Introduction
Big data applications require a mix of processing techniques, data
sources and storage formats. The earliest systems designed for
these workloads, such as MapReduce, gave users a powerful, but
low-level, procedural programming interface. Programming such
systems was onerous and required manual optimization by the user
to achieve high performance. As a result, multiple new systems
sought to provide a more productive user experience by offering
relational interfaces to big data. Systems like Pig, Hive, Dremel and
Shark [29, 36, 25, 38] all take advantage of declarative queries to
provide richer automatic optimizations.
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While the popularity of relational systems shows that users often
prefer writing declarative queries, the relational approach is insuffi-
cient for many big data applications. First, users want to perform
ETL to and from various data sources that might be semi- or un-
structured, requiring custom code. Second, users want to perform
advanced analytics, such as machine learning and graph processing,
that are challenging to express in relational systems. In practice,
we have observed that most data pipelines would ideally be ex-
pressed with a combination of both relational queries and complex
procedural algorithms. Unfortunately, these two classes of systems—
relational and procedural—have until now remained largely disjoint,
forcing users to choose one paradigm or the other.

This paper describes our effort to combine both models in Spark
SQL, a major new component in Apache Spark [39]. Spark SQL
builds on our earlier SQL-on-Spark effort, called Shark. Rather
than forcing users to pick between a relational or a procedural API,
however, Spark SQL lets users seamlessly intermix the two.

Spark SQL bridges the gap between the two models through two
contributions. First, Spark SQL provides a DataFrame API that
can perform relational operations on both external data sources and
Spark’s built-in distributed collections. This API is similar to the
widely used data frame concept in R [32], but evaluates operations
lazily so that it can perform relational optimizations. Second, to
support the wide range of data sources and algorithms in big data,
Spark SQL introduces a novel extensible optimizer called Catalyst.
Catalyst makes it easy to add data sources, optimization rules, and
data types for domains such as machine learning.

The DataFrame API offers rich relational/procedural integration
within Spark programs. DataFrames are collections of structured
records that can be manipulated using Spark’s procedural API, or
using new relational APIs that allow richer optimizations. They can
be created directly from Spark’s built-in distributed collections of
Java/Python objects, enabling relational processing in existing Spark
programs. Other Spark components, such as the machine learning
library, take and produce DataFrames as well. DataFrames are more
convenient and more efficient than Spark’s procedural API in many
common situations. For example, they make it easy to compute
multiple aggregates in one pass using a SQL statement, something
that is difficult to express in traditional functional APIs. They also
automatically store data in a columnar format that is significantly
more compact than Java/Python objects. Finally, unlike existing
data frame APIs in R and Python, DataFrame operations in Spark
SQL go through a relational optimizer, Catalyst.

To support a wide variety of data sources and analytics workloads
in Spark SQL, we designed an extensible query optimizer called
Catalyst. Catalyst uses features of the Scala programming language,
such as pattern-matching, to express composable rules in a Turing-
complete language. It offers a general framework for transforming
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trees, which we use to perform analysis, planning, and runtime
code generation. Through this framework, Catalyst can also be
extended with new data sources, including semi-structured data
such as JSON and “smart” data stores to which one can push filters
(e.g., HBase); with user-defined functions; and with user-defined
types for domains such as machine learning. Functional languages
are known to be well-suited for building compilers [37], so it is
perhaps no surprise that they made it easy to build an extensible
optimizer. We indeed have found Catalyst effective in enabling us
to quickly add capabilities to Spark SQL, and since its release we
have seen external contributors easily add them as well.

Spark SQL was released in May 2014, and is now one of the
most actively developed components in Spark. As of this writing,
Apache Spark is the most active open source project for big data
processing, with over 400 contributors in the past year. Spark SQL
has already been deployed in very large scale environments. For
example, a large Internet company uses Spark SQL to build data
pipelines and run queries on an 8000-node cluster with over 100
PB of data. Each individual query regularly operates on tens of
terabytes. In addition, many users adopt Spark SQL not just for SQL
queries, but in programs that combine it with procedural processing.
For example, 2/3 of customers of Databricks Cloud, a hosted service
running Spark, use Spark SQL within other programming languages.
Performance-wise, we find that Spark SQL is competitive with
SQL-only systems on Hadoop for relational queries. It is also up
to 10× faster and more memory-efficient than naive Spark code in
computations expressible in SQL.

More generally, we see Spark SQL as an important evolution of
the core Spark API. While Spark’s original functional programming
API was quite general, it offered only limited opportunities for
automatic optimization. Spark SQL simultaneously makes Spark
accessible to more users and improves optimizations for existing
ones. Within Spark, the community is now incorporating Spark SQL
into more APIs: DataFrames are the standard data representation
in a new “ML pipeline” API for machine learning, and we hope to
expand this to other components, such as GraphX and streaming.

We start this paper with a background on Spark and the goals of
Spark SQL (§2). We then describe the DataFrame API (§3), the
Catalyst optimizer (§4), and advanced features we have built on
Catalyst (§5). We evaluate Spark SQL in §6. We describe external
research built on Catalyst in §7. Finally, §8 covers related work.

2 Background and Goals
2.1 Spark Overview

Apache Spark is a general-purpose cluster computing engine with
APIs in Scala, Java and Python and libraries for streaming, graph
processing and machine learning [6]. Released in 2010, it is to our
knowledge one of the most widely-used systems with a “language-
integrated” API similar to DryadLINQ [20], and the most active
open source project for big data processing. Spark had over 400
contributors in 2014, and is packaged by multiple vendors.

Spark offers a functional programming API similar to other recent
systems [20, 11], where users manipulate distributed collections
called Resilient Distributed Datasets (RDDs) [39]. Each RDD is
a collection of Java or Python objects partitioned across a cluster.
RDDs can be manipulated through operations like map, filter,
and reduce, which take functions in the programming language
and ship them to nodes on the cluster. For example, the Scala code
below counts lines starting with “ERROR” in a text file:

lines = spark.textFile("hdfs://...")
errors = lines.filter(s => s.contains("ERROR"))
println(errors.count())

This code creates an RDD of strings called lines by reading an
HDFS file, then transforms it using filter to obtain another RDD,
errors. It then performs a count on this data.

RDDs are fault-tolerant, in that the system can recover lost data
using the lineage graph of the RDDs (by rerunning operations such
as the filter above to rebuild missing partitions). They can also
explicitly be cached in memory or on disk to support iteration [39].

One final note about the API is that RDDs are evaluated lazily.
Each RDD represents a “logical plan” to compute a dataset, but
Spark waits until certain output operations, such as count, to launch
a computation. This allows the engine to do some simple query
optimization, such as pipelining operations. For instance, in the
example above, Spark will pipeline reading lines from the HDFS
file with applying the filter and computing a running count, so that
it never needs to materialize the intermediate lines and errors
results. While such optimization is extremely useful, it is also
limited because the engine does not understand the structure of
the data in RDDs (which is arbitrary Java/Python objects) or the
semantics of user functions (which contain arbitrary code).

2.2 Previous Relational Systems on Spark

Our first effort to build a relational interface on Spark was Shark [38],
which modified the Apache Hive system to run on Spark and im-
plemented traditional RDBMS optimizations, such as columnar
processing, over the Spark engine. While Shark showed good perfor-
mance and good opportunities for integration with Spark programs,
it had three important challenges. First, Shark could only be used
to query external data stored in the Hive catalog, and was thus not
useful for relational queries on data inside a Spark program (e.g., on
the errors RDD created manually above). Second, the only way
to call Shark from Spark programs was to put together a SQL string,
which is inconvenient and error-prone to work with in a modular
program. Finally, the Hive optimizer was tailored for MapReduce
and difficult to extend, making it hard to build new features such as
data types for machine learning or support for new data sources.

2.3 Goals for Spark SQL

With the experience from Shark, we wanted to extend relational
processing to cover native RDDs in Spark and a much wider range
of data sources. We set the following goals for Spark SQL:

1. Support relational processing both within Spark programs (on
native RDDs) and on external data sources using a programmer-
friendly API.

2. Provide high performance using established DBMS techniques.

3. Easily support new data sources, including semi-structured data
and external databases amenable to query federation.

4. Enable extension with advanced analytics algorithms such as
graph processing and machine learning.

3 Programming Interface
Spark SQL runs as a library on top of Spark, as shown in Fig-
ure 1. It exposes SQL interfaces, which can be accessed through
JDBC/ODBC or through a command-line console, as well as the
DataFrame API integrated into Spark’s supported programming lan-
guages. We start by covering the DataFrame API, which lets users
intermix procedural and relational code. However, advanced func-
tions can also be exposed in SQL through UDFs, allowing them to
be invoked, for example, by business intelligence tools. We discuss
UDFs in Section 3.7.
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Figure 1: Interfaces to Spark SQL, and interaction with Spark.

3.1 DataFrame API
The main abstraction in Spark SQL’s API is a DataFrame, a dis-
tributed collection of rows with the same schema. A DataFrame
is equivalent to a table in a relational database, and can also be
manipulated in similar ways to the “native” distributed collections
in Spark (RDDs).1 Unlike RDDs, DataFrames keep track of their
schema and support various relational operations that lead to more
optimized execution.

DataFrames can be constructed from tables in a system catalog
(based on external data sources) or from existing RDDs of native
Java/Python objects (Section 3.5). Once constructed, they can be
manipulated with various relational operators, such as where and
groupBy, which take expressions in a domain-specific language
(DSL) similar to data frames in R and Python [32, 30]. Each
DataFrame can also be viewed as an RDD of Row objects, allowing
users to call procedural Spark APIs such as map.2

Finally, unlike traditional data frame APIs, Spark DataFrames
are lazy, in that each DataFrame object represents a logical plan to
compute a dataset, but no execution occurs until the user calls a spe-
cial “output operation” such as save. This enables rich optimization
across all operations that were used to build the DataFrame.

To illustrate, the Scala code below defines a DataFrame from a
table in Hive, derives another based on it, and prints a result:

ctx = new HiveContext()
users = ctx.table("users")
young = users.where(users("age") < 21)
println(young.count())

In this code, users and young are DataFrames. The snippet
users("age") < 21 is an expression in the data frame DSL, which
is captured as an abstract syntax tree rather than representing a Scala
function as in the traditional Spark API. Finally, each DataFrame
simply represents a logical plan (i.e., read the users table and filter
for age < 21). When the user calls count, which is an output opera-
tion, Spark SQL builds a physical plan to compute the final result.
This might include optimizations such as only scanning the “age”
column of the data if its storage format is columnar, or even using
an index in the data source to count the matching rows.

We next cover the details of the DataFrame API.

3.2 Data Model
Spark SQL uses a nested data model based on Hive [19] for tables
and DataFrames. It supports all major SQL data types, including
boolean, integer, double, decimal, string, date, and timestamp, as
1We chose the name DataFrame because it is similar to structured data
libraries in R and Python, and designed our API to resemble those.
2These Row objects are constructed on the fly and do not necessarily repre-
sent the internal storage format of the data, which is typically columnar.

well as complex (i.e., non-atomic) data types: structs, arrays, maps
and unions. Complex data types can also be nested together to
create more powerful types. Unlike many traditional DBMSes,
Spark SQL provides first-class support for complex data types in the
query language and the API. In addition, Spark SQL also supports
user-defined types, as described in Section 4.4.2.

Using this type system, we have been able to accurately model
data from a variety of sources and formats, including Hive, relational
databases, JSON, and native objects in Java/Scala/Python.

3.3 DataFrame Operations
Users can perform relational operations on DataFrames using a
domain-specific language (DSL) similar to R data frames [32] and
Python Pandas [30]. DataFrames support all common relational
operators, including projection (select), filter (where), join, and
aggregations (groupBy). These operators all take expression objects
in a limited DSL that lets Spark capture the structure of the expres-
sion. For example, the following code computes the number of
female employees in each department.

employees
.join(dept, employees("deptId") === dept("id"))
.where(employees("gender") === "female")
.groupBy(dept("id"), dept("name"))
.agg(count("name"))

Here, employees is a DataFrame, and employees("deptId") is
an expression representing the deptId column. Expression objects
have many operators that return new expressions, including the usual
comparison operators (e.g., === for equality test, > for greater than)
and arithmetic ones (+, -, etc). They also support aggregates, such
as count("name"). All of these operators build up an abstract syntax
tree (AST) of the expression, which is then passed to Catalyst for
optimization. This is unlike the native Spark API that takes functions
containing arbitrary Scala/Java/Python code, which are then opaque
to the runtime engine. For a detailed listing of the API, we refer
readers to Spark’s official documentation [6].

Apart from the relational DSL, DataFrames can be registered as
temporary tables in the system catalog and queried using SQL. The
code below shows an example:

users.where(users("age") < 21)
.registerTempTable("young")

ctx.sql("SELECT count(*), avg(age) FROM young")

SQL is sometimes convenient for computing multiple aggregates
concisely, and also allows programs to expose datasets through
JDBC/ODBC. The DataFrames registered in the catalog are still
unmaterialized views, so that optimizations can happen across SQL
and the original DataFrame expressions. However, DataFrames can
also be materialized, as we discuss in Section 3.6.

3.4 DataFrames versus Relational Query Languages
While on the surface, DataFrames provide the same operations as
relational query languages like SQL and Pig [29], we found that
they can be significantly easier for users to work with thanks to their
integration in a full programming language. For example, users
can break up their code into Scala, Java or Python functions that
pass DataFrames between them to build a logical plan, and will still
benefit from optimizations across the whole plan when they run an
output operation. Likewise, developers can use control structures
like if statements and loops to structure their work. One user said
that the DataFrame API is “concise and declarative like SQL, except
I can name intermediate results,” referring to how it is easier to
structure computations and debug intermediate steps.

To simplify programming in DataFrames, we also made API
analyze logical plans eagerly (i.e., to identify whether the column
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names used in expressions exist in the underlying tables, and whether
their data types are appropriate), even though query results are
computed lazily. Thus, Spark SQL reports an error as soon as user
types an invalid line of code instead of waiting until execution. This
is again easier to work with than a large SQL statement.

3.5 Querying Native Datasets

Real-world pipelines often extract data from heterogeneous sources
and run a wide variety of algorithms from different programming
libraries. To interoperate with procedural Spark code, Spark SQL al-
lows users to construct DataFrames directly against RDDs of objects
native to the programming language. Spark SQL can automatically
infer the schema of these objects using reflection. In Scala and Java,
the type information is extracted from the language’s type system
(from JavaBeans and Scala case classes). In Python, Spark SQL
samples the dataset to perform schema inference due to the dynamic
type system.

For example, the Scala code below defines a DataFrame from an
RDD of User objects. Spark SQL automatically detects the names
(“name” and “age”) and data types (string and int) of the columns.

case class User(name: String, age: Int)

// Create an RDD of User objects
usersRDD = spark.parallelize(
List(User("Alice", 22), User("Bob", 19)))

// View the RDD as a DataFrame
usersDF = usersRDD.toDF

Internally, Spark SQL creates a logical data scan operator that
points to the RDD. This is compiled into a physical operator that
accesses fields of the native objects. It is important to note that this
is very different from traditional object-relational mapping (ORM).
ORMs often incur expensive conversions that translate an entire
object into a different format. In contrast, Spark SQL accesses the
native objects in-place, extracting only the fields used in each query.

The ability to query native datasets lets users run optimized re-
lational operations within existing Spark programs. In addition, it
makes it simple to combine RDDs with external structured data. For
example, we could join the users RDD with a table in Hive:

views = ctx.table("pageviews")
usersDF.join(views, usersDF("name") === views("user"))

3.6 In-Memory Caching

Like Shark before it, Spark SQL can materialize (often referred to
as “cache") hot data in memory using columnar storage. Compared
with Spark’s native cache, which simply stores data as JVM objects,
the columnar cache can reduce memory footprint by an order of
magnitude because it applies columnar compression schemes such
as dictionary encoding and run-length encoding. Caching is particu-
larly useful for interactive queries and for the iterative algorithms
common in machine learning. It can be invoked by calling cache()
on a DataFrame.

3.7 User-Defined Functions

User-defined functions (UDFs) have been an important extension
point for database systems. For example, MySQL relies on UDFs to
provide basic support for JSON data. A more advanced example is
MADLib’s use of UDFs to implement machine learning algorithms
for Postgres and other database systems [12]. However, database
systems often require UDFs to be defined in a separate programming
environment that is different from the primary query interfaces.
Spark SQL’s DataFrame API supports inline definition of UDFs,
without the complicated packaging and registration process found

in other database systems. This feature has proven crucial for the
adoption of the API.

In Spark SQL, UDFs can be registered inline by passing Scala,
Java or Python functions, which may use the full Spark API inter-
nally. For example, given a model object for a machine learning
model, we could register its prediction function as a UDF:

val model: LogisticRegressionModel = ...

ctx.udf.register("predict",
(x: Float, y: Float) => model.predict(Vector(x, y)))

ctx.sql("SELECT predict(age, weight) FROM users")

Once registered, the UDF can also be used via the JDBC/ODBC
interface by business intelligence tools. In addition to UDFs that
operate on scalar values like the one here, one can define UDFs that
operate on an entire table by taking its name, as in MADLib [12], and
use the distributed Spark API within them, thus exposing advanced
analytics functions to SQL users. Finally, because UDF definitions
and query execution are expressed using the same general-purpose
language (e.g., Scala or Python), users can debug or profile the entire
program using standard tools.

The example above demonstrates a common use case in many
pipelines, i.e., one that employs both relational operators and ad-
vanced analytics methods that are cumbersome to express in SQL.
The DataFrame API lets developers seamlessly mix these methods.

4 Catalyst Optimizer
To implement Spark SQL, we designed a new extensible optimizer,
Catalyst, based on functional programming constructs in Scala.
Catalyst’s extensible design had two purposes. First, we wanted to
make it easy to add new optimization techniques and features to
Spark SQL, especially to tackle various problems we were seeing
specifically with “big data” (e.g., semistructured data and advanced
analytics). Second, we wanted to enable external developers to
extend the optimizer—for example, by adding data source specific
rules that can push filtering or aggregation into external storage
systems, or support for new data types. Catalyst supports both
rule-based and cost-based optimization.

While extensible optimizers have been proposed in the past, they
have typically required a complex domain specific language to spec-
ify rules, and an “optimizer compiler” to translate the rules into
executable code [17, 16]. This leads to a significant learning curve
and maintenance burden. In contrast, Catalyst uses standard features
of the Scala programming language, such as pattern-matching [14],
to let developers use the full programming language while still mak-
ing rules easy to specify. Functional languages were designed in
part to build compilers, so we found Scala well-suited to this task.
Nonetheless, Catalyst is, to our knowledge, the first production-
quality query optimizer built on such a language.

At its core, Catalyst contains a general library for representing
trees and applying rules to manipulate them.3 On top of this frame-
work, we have built libraries specific to relational query processing
(e.g., expressions, logical query plans), and several sets of rules
that handle different phases of query execution: analysis, logical
optimization, physical planning, and code generation to compile
parts of queries to Java bytecode. For the latter, we use another
Scala feature, quasiquotes [34], that makes it easy to generate code
at runtime from composable expressions. Finally, Catalyst offers
several public extension points, including external data sources and
user-defined types.

3Cost-based optimization is performed by generating multiple plans using
rules, and then computing their costs.
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Figure 2: Catalyst tree for the expression x+(1+2).

4.1 Trees

The main data type in Catalyst is a tree composed of node objects.
Each node has a node type and zero or more children. New node
types are defined in Scala as subclasses of the TreeNode class. These
objects are immutable and can be manipulated using functional
transformations, as discussed in the next subsection.

As a simple example, suppose we have the following three node
classes for a very simple expression language:4

• Literal(value: Int): a constant value

• Attribute(name: String): an attribute from an input row, e.g., “x”

• Add(left: TreeNode, right: TreeNode): sum of two expres-
sions.

These classes can be used to build up trees; for example, the tree
for the expression x+(1+2), shown in Figure 2, would be represented
in Scala code as follows:

Add(Attribute(x), Add(Literal(1), Literal(2)))

4.2 Rules

Trees can be manipulated using rules, which are functions from a
tree to another tree. While a rule can run arbitrary code on its input
tree (given that this tree is just a Scala object), the most common
approach is to use a set of pattern matching functions that find and
replace subtrees with a specific structure.

Pattern matching is a feature of many functional languages that
allows extracting values from potentially nested structures of al-
gebraic data types. In Catalyst, trees offer a transform method
that applies a pattern matching function recursively on all nodes of
the tree, transforming the ones that match each pattern to a result.
For example, we could implement a rule that folds Add operations
between constants as follows:

tree.transform {
case Add(Literal(c1), Literal(c2)) => Literal(c1+c2)

}

Applying this to the tree for x+(1+2), in Figure 2, would yield
the new tree x+3. The case keyword here is Scala’s standard pattern
matching syntax [14], and can be used to match on the type of an
object as well as give names to extracted values (c1 and c2 here).

The pattern matching expression that is passed to transform is a
partial function, meaning that it only needs to match to a subset of
all possible input trees. Catalyst will tests which parts of a tree a
given rule applies to, automatically skipping over and descending
into subtrees that do not match. This ability means that rules only
need to reason about the trees where a given optimization applies
and not those that do not match. Thus, rules do not need to be
modified as new types of operators are added to the system.

4We use Scala syntax for classes here, where each class’s fields are defined
in parentheses, with their types given using a colon.

Rules (and Scala pattern matching in general) can match multi-
ple patterns in the same transform call, making it very concise to
implement multiple transformations at once:

tree.transform {
case Add(Literal(c1), Literal(c2)) => Literal(c1+c2)
case Add(left, Literal(0)) => left
case Add(Literal(0), right) => right

}

In practice, rules may need to execute multiple times to fully
transform a tree. Catalyst groups rules into batches, and executes
each batch until it reaches a fixed point, that is, until the tree stops
changing after applying its rules. Running rules to fixed point
means that each rule can be simple and self-contained, and yet
still eventually have larger global effects on a tree. In the example
above, repeated application would constant-fold larger trees, such
as (x+0)+(3+3). As another example, a first batch might analyze
an expression to assign types to all of the attributes, while a second
batch might use these types to do constant folding. After each
batch, developers can also run sanity checks on the new tree (e.g., to
see that all attributes were assigned types), often also written via
recursive matching.

Finally, rule conditions and their bodies can contain arbitrary
Scala code. This gives Catalyst more power than domain specific
languages for optimizers, while keeping it concise for simple rules.

In our experience, functional transformations on immutable trees
make the whole optimizer very easy to reason about and debug.
They also enable parallelization in the optimizer, although we do
not yet exploit this.

4.3 Using Catalyst in Spark SQL

We use Catalyst’s general tree transformation framework in four
phases, shown in Figure 3: (1) analyzing a logical plan to resolve
references, (2) logical plan optimization, (3) physical planning, and
(4) code generation to compile parts of the query to Java bytecode.
In the physical planning phase, Catalyst may generate multiple
plans and compare them based on cost. All other phases are purely
rule-based. Each phase uses different types of tree nodes; Catalyst
includes libraries of nodes for expressions, data types, and logical
and physical operators. We now describe each of these phases.

4.3.1 Analysis

Spark SQL begins with a relation to be computed, either from an
abstract syntax tree (AST) returned by a SQL parser, or from a
DataFrame object constructed using the API. In both cases, the
relation may contain unresolved attribute references or relations:
for example, in the SQL query SELECT col FROM sales, the type of
col, or even whether it is a valid column name, is not known until
we look up the table sales. An attribute is called unresolved if we
do not know its type or have not matched it to an input table (or
an alias). Spark SQL uses Catalyst rules and a Catalog object that
tracks the tables in all data sources to resolve these attributes. It
starts by building an “unresolved logical plan” tree with unbound
attributes and data types, then applies rules that do the following:
• Looking up relations by name from the catalog.

• Mapping named attributes, such as col, to the input provided
given operator’s children.

• Determining which attributes refer to the same value to give
them a unique ID (which later allows optimization of expressions
such as col = col).

• Propagating and coercing types through expressions: for exam-
ple, we cannot know the type of 1 + col until we have resolved
col and possibly cast its subexpressions to compatible types.
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Figure 3: Phases of query planning in Spark SQL. Rounded rectangles represent Catalyst trees.

In total, the rules for the analyzer are about 1000 lines of code.

4.3.2 Logical Optimization
The logical optimization phase applies standard rule-based optimiza-
tions to the logical plan. These include constant folding, predicate
pushdown, projection pruning, null propagation, Boolean expres-
sion simplification, and other rules. In general, we have found it
extremely simple to add rules for a wide variety of situations. For
example, when we added the fixed-precision DECIMAL type to Spark
SQL, we wanted to optimize aggregations such as sums and aver-
ages on DECIMALs with small precisions; it took 12 lines of code to
write a rule that finds such decimals in SUM and AVG expressions, and
casts them to unscaled 64-bit LONGs, does the aggregation on that,
then converts the result back. A simplified version of this rule that
only optimizes SUM expressions is reproduced below:

object DecimalAggregates extends Rule[LogicalPlan] {
/** Maximum number of decimal digits in a Long */
val MAX_LONG_DIGITS = 18

def apply(plan: LogicalPlan): LogicalPlan = {
plan transformAllExpressions {
case Sum(e @ DecimalType.Expression(prec, scale))

if prec + 10 <= MAX_LONG_DIGITS =>
MakeDecimal(Sum(LongValue(e)), prec + 10, scale)

}
}

As another example, a 12-line rule optimizes LIKE expressions
with simple regular expressions into String.startsWith or
String.contains calls. The freedom to use arbitrary Scala code in
rules made these kinds of optimizations, which go beyond pattern-
matching the structure of a subtree, easy to express. In total, the
logical optimization rules are 800 lines of code.

4.3.3 Physical Planning
In the physical planning phase, Spark SQL takes a logical plan and
generates one or more physical plans, using physical operators that
match the Spark execution engine. It then selects a plan using a
cost model. At the moment, cost-based optimization is only used to
select join algorithms: for relations that are known to be small, Spark
SQL uses a broadcast join, using a peer-to-peer broadcast facility
available in Spark.5 The framework supports broader use of cost-
based optimization, however, as costs can be estimated recursively
for a whole tree using a rule. We thus intend to implement richer
cost-based optimization in the future.

The physical planner also performs rule-based physical optimiza-
tions, such as pipelining projections or filters into one Spark map
operation. In addition, it can push operations from the logical plan
into data sources that support predicate or projection pushdown. We
will describe the API for these data sources in Section 4.4.1.

In total, the physical planning rules are about 500 lines of code.
5Table sizes are estimated if the table is cached in memory or comes from
an external file, or if it is the result of a subquery with a LIMIT.

4.3.4 Code Generation
The final phase of query optimization involves generating Java
bytecode to run on each machine. Because Spark SQL often operates
on in-memory datasets, where processing is CPU-bound, we wanted
to support code generation to speed up execution. Nonetheless,
code generation engines are often complicated to build, amounting
essentially to a compiler. Catalyst relies on a special feature of the
Scala language, quasiquotes [34], to make code generation simpler.
Quasiquotes allow the programmatic construction of abstract syntax
trees (ASTs) in the Scala language, which can then be fed to the
Scala compiler at runtime to generate bytecode. We use Catalyst to
transform a tree representing an expression in SQL to an AST for
Scala code to evaluate that expression, and then compile and run the
generated code.

As a simple example, consider the Add, Attribute and Literal tree
nodes introduced in Section 4.2, which allowed us to write expres-
sions such as (x+y)+1. Without code generation, such expressions
would have to be interpreted for each row of data, by walking down
a tree of Add, Attribute and Literal nodes. This introduces large
amounts of branches and virtual function calls that slow down exe-
cution. With code generation, we can write a function to translate a
specific expression tree to a Scala AST as follows:

def compile(node: Node): AST = node match {
case Literal(value) => q"$value"
case Attribute(name) => q"row.get($name)"
case Add(left, right) =>
q"${compile(left)} + ${compile(right)}"

}

The strings beginning with q are quasiquotes, meaning that al-
though they look like strings, they are parsed by the Scala compiler
at compile time and represent ASTs for the code within. Quasiquotes
can have variables or other ASTs spliced into them, indicated using
$ notation. For example, Literal(1) would become the Scala AST
for 1, while Attribute("x") becomes row.get("x"). In the end, a
tree like Add(Literal(1), Attribute("x")) becomes an AST for
a Scala expression like 1+row.get("x").

Quasiquotes are type-checked at compile time to ensure that only
appropriate ASTs or literals are substituted in, making them sig-
nificantly more useable than string concatenation, and they result
directly in a Scala AST instead of running the Scala parser at runtime.
Moreover, they are highly composable, as the code generation rule
for each node does not need to know how the trees returned by its
children were built. Finally, the resulting code is further optimized
by the Scala compiler in case there are expression-level optimiza-
tions that Catalyst missed. Figure 4 shows that quasiquotes let us
generate code with performance similar to hand-tuned programs.

We have found quasiquotes very straightforward to use for code
generation, and we observed that even new contributors to Spark
SQL could quickly add rules for new types of expressions. Qua-
siquotes also work well with our goal of running on native Java
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Figure 4: A comparision of the performance evaluating the ex-
presion x+x+x, where x is an integer, 1 billion times.

objects: when accessing fields from these objects, we can code-
generate a direct access to the required field, instead of having to
copy the object into a Spark SQL Row and use the Row’s accessor
methods. Finally, it was straightforward to combine code-generated
evaluation with interpreted evaluation for expressions we do not yet
generate code for, since the Scala code we compile can directly call
into our expression interpreter.

In total, Catalyst’s code generator is about 700 lines of code.

4.4 Extension Points

Catalyst’s design around composable rules makes it easy for users
and third-party libraries to extend. Developers can add batches
of rules to each phase of query optimization at runtime, as long
as they adhere to the contract of each phase (e.g., ensuring that
analysis resolves all attributes). However, to make it even simpler to
add some types of extensions without understanding Catalyst rules,
we have also defined two narrower public extension points: data
sources and user-defined types. These still rely on facilities in the
core engine to interact with the rest of the rest of the optimizer.

4.4.1 Data Sources

Developers can define a new data source for Spark SQL using several
APIs, which expose varying degrees of possible optimization. All
data sources must implement a createRelation function that takes
a set of key-value parameters and returns a BaseRelation object for
that relation, if one can be successfully loaded. Each BaseRelation
contains a schema and an optional estimated size in bytes.6 For
instance, a data source representing MySQL may take a table name
as a parameter, and ask MySQL for an estimate of the table size.

To let Spark SQL read the data, a BaseRelation can implement
one of several interfaces that let them expose varying degrees of
sophistication. The simplest, TableScan, requires the relation to
return an RDD of Row objects for all of the data in the table. A more
advanced PrunedScan takes an array of column names to read, and
should return Rows containing only those columns. A third interface,
PrunedFilteredScan, takes both desired column names and an array
of Filter objects, which are a subset of Catalyst’s expression syntax,
allowing predicate pushdown.7 The filters are advisory, i.e., the data
source should attempt to return only rows passing each filter, but it
is allowed to return false positives in the case of filters that it cannot
evaluate. Finally, a CatalystScan interface is given a complete
sequence of Catalyst expression trees to use in predicate pushdown,
though they are again advisory.

These interfaces allow data sources to implement various degrees
of optimization, while still making it easy for developers to add
6Unstructured data sources can also take a desired schema as a parameter;
for example, there is a CSV file data source that lets users specify column
names and types.
7At the moment, Filters include equality, comparisons against a constant,
and IN clauses, each on one attribute.

simple data sources of virtually any type. We and others have used
the interface to implement the following data sources:
• CSV files, which simply scan the whole file, but allow users to

specify a schema.

• Avro [4], a self-describing binary format for nested data.

• Parquet [5], a columnar file format for which we support column
pruning as well as filters.

• A JDBC data source that scans ranges of a table from an RDBMS
in parallel and pushes filters into the RDBMS to minimize com-
munication.

To use these data sources, programmers specify their package
names in SQL statements, passing key-value pairs for configuration
options. For example, the Avro data source takes a path to the file:

CREATE TEMPORARY TABLE messages
USING com.databricks.spark.avro
OPTIONS (path "messages.avro")

All data sources can also expose network locality information,
i.e., which machines each partition of the data is most efficient to
read from. This is exposed through the RDD objects they return, as
RDDs have a built-in API for data locality [39].

Finally, similar interfaces exist for writing data to an existing or
new table. These are simpler because Spark SQL just provides an
RDD of Row objects to be written.

4.4.2 User-Defined Types (UDTs)
One feature we wanted to allow advanced analytics in Spark SQL
was user-defined types. For example, machine learning applications
may need a vector type, and graph algorithms may need types for
representing a graph, which is possible over relational tables [15].
Adding new types can be challenging, however, as data types per-
vade all aspects of the execution engine. For example, in Spark SQL,
the built-in data types are stored in a columnar, compressed format
for in-memory caching (Section 3.6), and in the data source API
from the previous section, we need to expose all possible data types
to data source authors.

In Catalyst, we solve this issue by mapping user-defined types
to structures composed of Catalyst’s built-in types, described in
Section 3.2. To register a Scala type as a UDT, users provide a
mapping from an object of their class to a Catalyst Row of built-in
types, and an inverse mapping back. In user code, they can now use
the Scala type in objects that they query with Spark SQL, and it will
be converted to built-in types under the hood. Likewise, they can
register UDFs (see Section 3.7) that operate directly on their type.

As a short example, suppose we want to register two-dimensional
points (x, y) as a UDT. We can represent such vectors as two DOUBLE
values. To register the UDT, we write the following:
class PointUDT extends UserDefinedType[Point] {
def dataType = StructType(Seq( // Our native structure
StructField("x", DoubleType),
StructField("y", DoubleType)

))
def serialize(p: Point) = Row(p.x, p.y)
def deserialize(r: Row) =
Point(r.getDouble(0), r.getDouble(1))

}

After registering this type, Points will be recognized within native
objects that Spark SQL is asked to convert to DataFrames, and will
be passed to UDFs defined on Points. In addition, Spark SQL will
store Points in a columnar format when caching data (compressing
x and y as separate columns), and Points will be writable to all of
Spark SQL’s data sources, which will see them as pairs of DOUBLEs.
We use this capability in Spark’s machine learning library, as we
describe in Section 5.2.
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{
"text": "This is a tweet about #Spark",
"tags": ["#Spark"],
"loc": {"lat": 45.1, "long": 90}

}

{
"text": "This is another tweet",
"tags": [],
"loc": {"lat": 39, "long": 88.5}

}

{
"text": "A #tweet without #location",
"tags": ["#tweet", "#location"]

}

Figure 5: A sample set of JSON records, representing tweets.

text STRING NOT NULL,
tags ARRAY<STRING NOT NULL> NOT NULL,
loc STRUCT<lat FLOAT NOT NULL, long FLOAT NOT NULL>

Figure 6: Schema inferred for the tweets in Figure 5.

5 Advanced Analytics Features
In this section, we describe three features we added to Spark SQL
specifically to handle challenges in “big data" environments. First,
in these environments, data is often unstructured or semistructured.
While parsing such data procedurally is possible, it leads to lengthy
boilerplate code. To let users query the data right away, Spark
SQL includes a schema inference algorithm for JSON and other
semistructured data. Second, large-scale processing often goes
beyond aggregation and joins to machine learning on the data. We
describe how Spark SQL is being incorporated into a new high-level
API for Spark’s machine learning library [26]. Last, data pipelines
often combine data from disparate storage systems. Building on
the data sources API in Section 4.4.1, Spark SQL supports query
federation, allowing a single program to efficiently query disparate
sources. These features all build on the Catalyst framework.

5.1 Schema Inference for Semistructured Data
Semistructured data is common in large-scale environments be-
cause it is easy to produce and to add fields to over time. Among
Spark users, we have seen very high usage of JSON for input data.
Unfortunately, JSON is cumbersome to work with in a procedu-
ral environment like Spark or MapReduce: most users resorted to
ORM-like libraries (e.g., Jackson [21]) to map JSON structures to
Java objects, or some tried parsing each input record directly with
lower-level libraries.

In Spark SQL, we added a JSON data source that automatically
infers a schema from a set of records. For example, given the JSON
objects in Figure 5, the library infers the schema shown in Figure 6.
Users can simply register a JSON file as a table and query it with
syntax that accesses fields by their path, such as:

SELECT loc.lat, loc.long FROM tweets
WHERE text LIKE ’%Spark%’ AND tags IS NOT NULL

Our schema inference algorithm works in one pass over the data,
and can also be run on a sample of the data if desired. It is related to
prior work on schema inference for XML and object databases [9,
18, 27], but simpler because it only infers a static tree structure,
without allowing recursive nesting of elements at arbitrary depths.

Specifically, the algorithm attempts to infer a tree of STRUCT types,
each of which may contain atoms, arrays, or other STRUCTs. For

each field defined by a distinct path from the root JSON object
(e.g., tweet.loc.latitude), the algorithm finds the most specific
Spark SQL data type that matches observed instances of the field.
For example, if all occurrences of that field are integers that fit into
32 bits, it will infer INT; if they are larger, it will use LONG (64-bit)
or DECIMAL (arbitrary precision); if there are also fractional values,
it will use FLOAT. For fields that display multiple types, Spark SQL
uses STRING as the most generic type, preserving the original JSON
representation. And for fields that contain arrays, it uses the same
“most specific supertype" logic to determine an element type from all
the observed elements. We implement this algorithm using a single
reduce operation over the data, which starts with schemata (i.e., trees
of types) from each individual record and merges them using an
associative “most specific supertype" function that generalizes the
types of each field. This makes the algorithm both single-pass and
communication-efficient, as a high degree of reduction happens
locally on each node.

As a short example, note how in Figures 5 and 6, the algorithm
generalized the types of loc.lat and loc.long. Each field appears
as an integer in one record and a floating-point number in another,
so the algorithm returns FLOAT. Note also how for the tags field, the
algorithm inferred an array of strings that cannot be null.

In practice, we have found this algorithm to work well with
real-world JSON datasets. For example, it correctly identifies a
usable schema for JSON tweets from Twitter’s firehose, which
contain around 100 distinct fields and a high degree of nesting.
Multiple Databricks customers have also successfully applied it to
their internal JSON formats.

In Spark SQL, we also use the same algorithm for inferring
schemas of RDDs of Python objects (see Section 3), as Python is
not statically typed so an RDD can contain multiple object types. In
the future, we plan to add similar inference for CSV files and XML.
Developers have found the ability to view these types of datasets
as tables and immediately query them or join them with other data
extremely valuable for their productivity.

5.2 Integration with Spark’s Machine Learning Library

As an example of Spark SQL’s utility in other Spark modules, ML-
lib, Spark’s machine learning library, introduced a new high-level
API that uses DataFrames [26]. This new API is based on the
concept of machine learning pipelines, an abstraction in other high-
level ML libraries like SciKit-Learn [33]. A pipeline is a graph
of transformations on data, such as feature extraction, normaliza-
tion, dimensionality reduction, and model training, each of which
exchange datasets. Pipelines are a useful abstraction because ML
workflows have many steps; representing these steps as composable
elements makes it easy to change parts of the pipeline or to search
for tuning parameters at the level of the whole workflow.

To exchange data between pipeline stages, MLlib’s developers
needed a format that was compact (as datasets can be large) yet
flexible, allowing multiple types of fields to be stored for each
record. For example, a user may start with records that contain text
fields as well as numeric ones, then run a featurization algorithm
such as TF-IDF on the text to turn it into a vector, normalize one of
the other fields, perform dimensionality reduction on the whole set
of features, etc. To represent datasets, the new API uses DataFrames,
where each column represents a feature of the data. All algorithms
that can be called in pipelines take a name for the input column(s)
and output column(s), and can thus be called on any subset of the
fields and produce new ones. This makes it easy for developers to
build complex pipelines while retaining the original data for each
record. To illustrate the API, Figure 7 shows a short pipeline and
the schemas of DataFrames created.
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tokenizer tf lr 

(text, label) (text, label, 
words) 

(text, label, 
words, features) 

model 

data = <DataFrame of (text, label) records>

tokenizer = Tokenizer()
.setInputCol("text").setOutputCol("words")

tf = HashingTF()
.setInputCol("words").setOutputCol("features")

lr = LogisticRegression()
.setInputCol("features")

pipeline = Pipeline().setStages([tokenizer , tf, lr])
model = pipeline.fit(data)

Figure 7: A short MLlib pipeline and the Python code to run it.
We start with a DataFrame of (text, label) records, tokenize the
text into words, run a term frequency featurizer (HashingTF) to
get a feature vector, then train logistic regression.

The main piece of work MLlib had to do to use Spark SQL was
to create a user-defined type for vectors. This vector UDT can store
both sparse and dense vectors, and represents them as four primi-
tive fields: a boolean for the type (dense or sparse), a size for the
vector, an array of indices (for sparse coordinates), and an array of
double values (either the non-zero coordinates for sparse vectors
or all coordinates otherwise). Apart from DataFrames’ utility for
tracking and manipulating columns, we also found them useful for
another reason: they made it much easier to expose MLlib’s new
API in all of Spark’s supported programming languages. Previously,
each algorithm in MLlib took objects for domain-specific concepts
(e.g., a labeled point for classification, or a (user, product) rating for
recommendation), and each of these classes had to be implemented
in the various languages (e.g., copied from Scala to Python). Using
DataFrames everywhere made it much simpler to expose all algo-
rithms in all languages, as we only need data conversions in Spark
SQL, where they already exist. This is especially important as Spark
adds bindings for new programming languages.

Finally, using DataFrames for storage in MLlib also makes it very
easy to expose all its algorithms in SQL. We can simply define a
MADlib-style UDF, as described in Section 3.7, which will inter-
nally call the algorithm on a table. We are also exploring APIs to
expose pipeline construction in SQL.

5.3 Query Federation to External Databases

Data pipelines often combine data from heterogeneous sources. For
example, a recommendation pipeline might combine traffic logs
with a user profile database and users’ social media streams. As
these data sources often reside in different machines or geographic
locations, naively querying them can be prohibitively expensive.
Spark SQL data sources leverage Catalyst to push predicates down
into the data sources whenever possible.

For example, the following uses the JDBC data source and the
JSON data source to join two tables together to find the traffic log for
the most recently registered users. Conveniently, both data sources
can automatically infer the schema without users having to define it.
The JDBC data source will also push the filter predicate down into
MySQL to reduce the amount of data transferred.

CREATE TEMPORARY TABLE users USING jdbc
OPTIONS(driver "mysql" url "jdbc:mysql://userDB/users")

CREATE TEMPORARY TABLE logs
USING json OPTIONS (path "logs.json")

SELECT users.id, users.name, logs.message
FROM users JOIN logs WHERE users.id = logs.userId
AND users.registrationDate > "2015-01-01"

Under the hood, the JDBC data source uses the PrunedFiltered-
Scan interface in Section 4.4.1, which gives it both the names of the
columns requested and simple predicates (equality, comparison and
IN clauses) on these columns. In this case, the JDBC data source
will run the following query on MySQL:8

SELECT users.id, users.name FROM users
WHERE users.registrationDate > "2015-01-01"

In future Spark SQL releases, we are also looking to add predicate
pushdown for key-value stores such as HBase and Cassandra, which
support limited forms of filtering.

6 Evaluation
We evaluate the performance of Spark SQL on two dimensions: SQL
query processing performance and Spark program performance. In
particular, we demonstrate that Spark SQL’s extensible architecture
not only enables a richer set of functionalities, but brings substantial
performance improvements over previous Spark-based SQL engines.
In addition, for Spark application developers, the DataFrame API
can bring substantial speedups over the native Spark API while
making Spark programs more concise and easier to understand.
Finally, applications that combine relational and procedural queries
run faster on the integrated Spark SQL engine than by running SQL
and procedural code as separate parallel jobs.

6.1 SQL Performance

We compared the performance of Spark SQL against Shark and
Impala [23] using the AMPLab big data benchmark [3], which
uses a web analytics workload developed by Pavlo et al. [31]. The
benchmark contains four types of queries with different parameters
performing scans, aggregation, joins and a UDF-based MapReduce
job. We used a cluster of six EC2 i2.xlarge machines (one master,
five workers) each with 4 cores, 30 GB memory and an 800 GB SSD,
running HDFS 2.4, Spark 1.3, Shark 0.9.1 and Impala 2.1.1. The
dataset was 110 GB of data after compression using the columnar
Parquet format [5].

Figure 8 shows the results for each query, grouping by the query
type. Queries 1–3 have different parameters varying their selectivity,
with 1a, 2a, etc being the most selective and 1c, 2c, etc being the
least selective and processing more data. Query 4 uses a Python-
based Hive UDF that was not directly supported in Impala, but was
largely bound by the CPU cost of the UDF.

We see that in all queries, Spark SQL is substantially faster than
Shark and generally competitive with Impala. The main reason
for the difference with Shark is code generation in Catalyst (Sec-
tion 4.3.4), which reduces CPU overhead. This feature makes Spark
SQL competitive with the C++ and LLVM based Impala engine in
many of these queries. The largest gap from Impala is in query 3a
where Impala chooses a better join plan because the selectivity of
the queries makes one of the tables very small.

6.2 DataFrames vs. Native Spark Code

In addition to running SQL queries, Spark SQL can also help
non-SQL developers write simpler and more efficient Spark code
through the DataFrame API. Catalyst can perform optimizations on

8The JDBC data source also supports “sharding” a source table by a particu-
lar column and reading different ranges of it in parallel.
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Figure 8: Performance of Shark, Impala and Spark SQL on the big data benchmark queries [31].

DataFrame operations that are hard to do with hand written code,
such as predicate pushdown, pipelining, and automatic join selec-
tion. Even without these optimizations, the DataFrame API can
result in more efficient execution due to code generation. This is
especially true for Python applications, as Python is typically slower
than the JVM.

For this evaluation, we compared two implementations of a Spark
program that does a distributed aggregation. The dataset consists of
1 billion integer pairs, (a, b) with 100,000 distinct values of a, on
the same five-worker i2.xlarge cluster as in the previous section.
We measure the time taken to compute the average of b for each
value of a. First, we look at a version that computes the average
using the map and reduce functions in the Python API for Spark:
sum_and_count = \
data.map(lambda x: (x.a, (x.b, 1))) \

.reduceByKey(lambda x, y: (x[0]+y[0], x[1]+y[1])) \

.collect()
[(x[0], x[1][0] / x[1][1]) for x in sum_and_count]

In contrast, the same program can written as a simple manipula-
tion using the DataFrame API:
df.groupBy("a").avg("b")

Figure 9, shows that the DataFrame version of the code outper-
forms the hand written Python version by 12×, in addition to being
much more concise. This is because in the DataFrame API, only the
logical plan is constructed in Python, and all physical execution is
compiled down into native Spark code as JVM bytecode, resulting
in more efficient execution. In fact, the DataFrame version also
outperforms a Scala version of the Spark code above by 2×. This
is mainly due to code generation: the code in the DataFrame ver-
sion avoids expensive allocation of key-value pairs that occurs in
hand-written Scala code.

6.3 Pipeline Performance
The DataFrame API can also improve performance in applications
that combine relational and procedural processing, by letting de-
velopers write all operations in a single program and pipelining
computation across relational and procedural code. As a simple
example, we consider a two-stage pipeline that selects a subset of
text messages from a corpus and computes the most frequent words.
Although very simple, this can model some real-world pipelines,
e.g., computing the most popular words used in tweets by a specific
demographic.

In this experiment, we generated a synthetic dataset of 10 billion
messages in HDFS. Each message contained on average 10 words
drawn from an English dictionary. The first stage of the pipeline
uses a relational filter to select roughly 90% of the messages. The
second stage computes the word count.
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Figure 9: Performance of an aggregation written using the na-
tive Spark Python and Scala APIs versus the DataFrame API.
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Figure 10: Performance of a two-stage pipeline written as a
separate Spark SQL query and Spark job (above) and an inte-
grated DataFrame job (below).

First, we implemented the pipeline using a separate SQL query
followed by a Scala-based Spark job, as might occur in environ-
ments that run separate relational and procedural engines (e.g., Hive
and Spark). We then implemented a combined pipeline using the
DataFrame API, i.e., using DataFrame’s relational operators to per-
form the filter, and using the RDD API to perform a word count
on the result. Compared with the first pipeline, the second pipeline
avoids the cost of saving the whole result of the SQL query to an
HDFS file as an intermediate dataset before passing it into the Spark
job, because SparkSQL pipelines the map for the word count with
the relational operators for the filtering. Figure 10 compares the
runtime performance of the two approaches. In addition to being
easier to understand and operate, the DataFrame-based pipeline also
improves performance by 2×.

7 Research Applications
In addition to the immediately practical production use cases of
Spark SQL, we have also seen significant interest from researchers
working on more experimental projects. We outline two research
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projects that leverage the extensibility of Catalyst: one in approxi-
mate query processing and one in genomics.

7.1 Generalized Online Aggregation

Zeng et al. have used Catalyst in their work on improving the gener-
ality of online aggregation [40]. This work generalizes the execution
of online aggregation to support arbitrarily nested aggregate queries.
It allows users to view the progress of executing queries by seeing
results computed over a fraction of the total data. These partial re-
sults also include accuracy measures, letting the user stop the query
when sufficient accuracy has been reached.

In order to implement this system inside of Spark SQL, the au-
thors add a new operator to represent a relation that has been broken
up into sampled batches. During query planning a call to transform
is used to replace the original full query with several queries, each
of which operates on a successive sample of the data.

However, simply replacing the full dataset with samples is not
sufficient to compute the correct answer in an online fashion. Oper-
ations such as standard aggregation must be replaced with stateful
counterparts that take into account both the current sample and the
results of previous batches. Furthermore, operations that might filter
out tuples based on approximate answers must be replaced with
versions that can take into account the current estimated errors.

Each of these transformations can be expressed as Catalyst rules
that modify the operator tree until it produces correct online answers.
Tree fragments that are not based on sampled data are ignored by
these rules and can execute using the standard code path. By using
Spark SQL as a basis, the authors were able to implement a fairly
complete prototype in approximately 2000 lines of code.

7.2 Computational Genomics

A common operation in computational genomics involves inspecting
overlapping regions based on a numerical offsets. This problem can
be represented as a join with inequality predicates. Consider two
datasets, a and b, with a schema of (start LONG, end LONG). The
range join operation can be expressed in SQL as follows:

SELECT * FROM a JOIN b
WHERE a.start < a.end
AND b.start < b.end
AND a.start < b.start
AND b.start < a.end

Without special optimization, the preceding query would be ex-
ecuted by many systems using an inefficient algorithm such as a
nested loop join. In contrast, a specialized system could compute
the answer to this join using an interval tree. Researchers in the
ADAM project [28] were able to build a special planning rule into
a version of Spark SQL to perform such computations efficiently,
allowing them to leverage the standard data manipulation abilities
alongside specialized processing code. The changes required were
approximately 100 lines of code.

8 Related Work
Programming Model Several systems have sought to combine re-
lational processing with the procedural processing engines initially
used for large clusters. Of these, Shark [38] is the closest to Spark
SQL, running on the same engine and offering the same combi-
nation of relational queries and advanced analytics. Spark SQL
improves on Shark through a richer and more programmer-friendly
API, DataFrames, where queries can be combined in a modular way
using constructs in the host programming language (see Section 3.4).
It also allows running relational queries directly on native RDDs,
and supports a wide range of data sources beyond Hive.

One system that inspired Spark SQL’s design was DryadLINQ [20],
which compiles language-integrated queries in C# to a distributed
DAG execution engine. LINQ queries are also relational but can
operate directly on C# objects. Spark SQL goes beyond DryadLINQ
by also providing a DataFrame interface similar to common data
science libraries [32, 30], an API for data sources and types, and
support for iterative algorithms through execution on Spark.

Other systems use only a relational data model internally and
relegate procedural code to UDFs. For example, Hive and Pig [36,
29] offer relational query languages but have widely used UDF in-
terfaces. ASTERIX [8] has a semi-structured data model internally.
Stratosphere [2] also has a semi-structured model, but offers APIs
in Scala and Java that let users easily call UDFs. PIQL [7] likewise
provides a Scala DSL. Compared to these systems, Spark SQL in-
tegrates more closely with native Spark applications by being able
to directly query data in user-defined classes (native Java/Python
objects), and lets developers mix procedural and relational APIs
in the same language. In addition, through the Catalyst optimizer,
Spark SQL implements both optimizations (e.g., code generation)
and other functionality (e.g., schema inference for JSON and ma-
chine learning data types) that are not present in most large-scale
computing frameworks. We believe that these features are essential
to offering an integrated, easy-to-use environment for big data.

Finally, data frame APIs have been built both for single ma-
chines [32, 30] and clusters [13, 10]. Unlike previous APIs, Spark
SQL optimizes DataFrame computations with a relational optimizer.

Extensible Optimizers The Catalyst optimizer shares similar goals
with extensible optimizer frameworks such as EXODUS [17] and
Cascades [16]. Traditionally, however, optimizer frameworks have
required a domain-specific language to write rules in, as well as an
“optimizer compiler” to translate them to runnable code. Our major
improvement here is to build our optimizer using standard features
of a functional programming language, which provide the same (and
often greater) expressivity while decreasing the maintenance burden
and learning curve. Advanced language features helped with many
areas of Catalyst—for example, our approach to code generation
using quasiquotes (Section 4.3.4) is one of the simplest and most
composable approaches to this task that we know. While extensi-
bility is hard to measure quantitatively, one promising indication
is that Spark SQL had over 50 external contributors in the first 8
months after its release.

For code generation, LegoBase [22] recently proposed an ap-
proach using generative programming in Scala, which would be
possible to use instead of quasiquotes in Catalyst.

Advanced Analytics Spark SQL builds on recent work to run ad-
vanced analytics algorithms on large clusters, including platforms
for iterative algorithms [39] and graph analytics [15, 24]. The de-
sire to expose analytics functions is also shared with MADlib [12],
though the approach there is different, as MADlib had to use the
limited interface of Postgres UDFs, while Spark SQL’s UDFs can
be full-fledged Spark programs. Finally, techniques including Sinew
and Invisible Loading [35, 1] have sought to provide and optimize
queries over semi-structured data such as JSON. We hope to apply
some of these techniques in our JSON data source.

9 Conclusion
We have presented Spark SQL, a new module in Apache Spark
providing rich integration with relational processing. Spark SQL
extends Spark with a declarative DataFrame API to allow relational
processing, offering benefits such as automatic optimization, and
letting users write complex pipelines that mix relational and complex
analytics. It supports a wide range of features tailored to large-scale
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data analysis, including semi-structured data, query federation, and
data types for machine learning. To enable these features, Spark
SQL is based on an extensible optimizer called Catalyst that makes
it easy to add optimization rules, data sources and data types by
embedding into the Scala programming language. User feedback
and benchmarks show that Spark SQL makes it significantly simpler
and more efficient to write data pipelines that mix relational and
procedural processing, while offering substantial speedups over
previous SQL-on-Spark engines.

Spark SQL is open source at http://spark.apache.org.
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