
Quickr: Lazily Approximating Complex AdHoc Queries in
BigData Clusters

Srikanth Kandula, Anil Shanbhag, Aleksandar Vitorovic, Matthaios Olma,
Robert Grandl, Surajit Chaudhuri, Bolin Ding

Microsoft
msr-quickr@microsoft.com

ABSTRACT
We present a system that approximates the answer to complex ad-
hoc queries in big-data clusters by injecting samplers on-the-�y and
without requiring pre-existing samples. Improvements can be sub-
stantial when big-data queries take multiple passes over data and
when samplers execute early in the query plan. We present a new
universe sampler which is able to sample multiple join inputs. By
incorporating samplers natively into a cost-based query optimizer,
we automatically generate plans with appropriate samplers at ap-
propriate locations. We devise an accuracy analysis method using
whichwe ensure that query planswith samplerswill notmiss groups
and that aggregate values arewithin a small ratio of their true value.
An implementation on a clusterwith tens of thousands ofmachines
shows that queries in the TPC-DS benchmark use a median of 2×
fewer resources. In contrast, approaches that construct input sam-
ples even when given 10× the size of the input to store samples im-
prove only 22% of the queries, i.e. amedian speed up of 0×.

1. INTRODUCTION
_is paper considers the problem of approximating jobs in big-

data clusters. Jobs speciûed as a mash-up of relational expressions
and user-deûned code increasingly dominate the big-data ecosys-
tem, due in large part to the growth of frameworks such asHive [40],
Pig [37], SCOPE [18], Spark-SQL [12] and Dremel [33].

Queries in big-data clusters are approximatable but are complex
and spread acrossmany datasets. As an example, consider a produc-
tion cluster at Microso� with tens of thousands of machines sup-
porting millions of queries per day for Bing and other services. (1)
_e distribution of queries over inputs is heavy-tailed. We ûnd the
smallest subset of inputs supporting half of the queries is 20PB in
size. _enext 30%queries touch another 40PBof inputs. (2)Queries
are complex. _ey have many joins ({50th, 90th} percentile values
are 3, 11 respectively). _e execution graphs are deep, with the me-
dian graph having 192 operators and a depth of 28. Further, queries
touch many columns from each dataset; the median query uses 8
columns per dataset and 49 at the 90th percentile. However, queries
also have aggregations and their output ismuch smaller than the in-
put indicating the potential for speed-up from approximation.
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Approximating big-data queries, i.e., trading oò degradation
in answer quality to improve performance, has many use cases.
_roughout this paper, we use performance to refer to query re-
sponse time and/or cluster throughput. Since queries process large
volumes of data on expensive clusters, even a modest decrease in
resource usage, say 2×, would reduce the bill from Azure by 2×
and production clusters which are capacity limited can run 2×
more queries. Data scientists can tolerate imprecise answers for ex-
ploratory analysis and the snappier response time is known to in-
crease productivity [17, 25]. Two use cases are especially important:
(a) queries that analyze logs to generate aggregated dashboard re-
ports if sped up would increase the refresh rate of dashboards at no
extra cost and (b) machine learning queries that buildmodels by it-
erating over datasets (e.g., k-means) can tolerate approximations in
their early iterations.

Unfortunately, state-of-art techniques cannot approximate com-
plex queries. Most SQL databases and big-data systems oòer the
uniform sample operator. _e user can sample as desired. But the
systems do not reason about the accuracy of the resulting answer.
A rich vein of prior research [6, 7, 9, 14, 20, 39] builds samples over
input datasets. _ey deliver immense beneût to predictable queries
that touch only one large dataset, i.e., any joins have to bewith small
dimension tables on foreign keys. However, they cannot support
joins over more than one large table, queries that touch less fre-
quently used datasets or query sets that use a diverse set of columns.
As explained above, such queries and datasets dominate in big-data
clusters. For example, on the TPC-DS [4] benchmark, our exper-
iments show that when given 1×(4×) the size of the input to store
samples, a state-of-the-art input sampling system BlinkDB [9] of-
fers a beneût for 11% (17%) of the queries.

Our system,Quickr, has four goals. First, oòer turn-key support
for approximations: that is, given a query, decide whether or not it
can be sampled and output an appropriate query planwith samplers.
Second, support complex queries, i.e., support the large portion of
SQL shown in Table 1. _ird, do not assume that input samples exist
or that future queries are known. Finally, ensure that answerswill be
accurate; that is,withhigh probability (whp), none of the groupswill
bemissed in the answer and that the computed value of aggregations
is within a bounded ratio of their true value (say ±10%). We are
unaware of any system that achieves these goals.
A key observation in Quickr is that big-data queries perform

multiple passes over data. _is is partly due to the queries being
complex and partly due to the nature of parallel plans. For exam-
ple, a pair join requires two passes over data and one shuøe across
the network. If data were sampled in the ûrst pass, all subsequent
computation could be sped up. _e novel advantage of such inline
sampling is that the gains from sampling have zero apriori overhead.
_e disadvantage is that the best case gains are potentially smaller.



Whereas apriori sampling can have very large gains by executing the
query on a very small sample, Quickr reads all data at least once.
In our cluster, the median query has 2.4 eòective1 passes over data
and 6.5 passes at the 90th percentile. Furthermore, the ûrst pass is
o�en embarrassingly parallel. Hence, inline sampling can oòer sub-
stantial performance gains.

We note that Quickr is complementary to building apriori sam-
ples. _e latter is suited for simple predictable queries on popu-
lar datasets whereas Quickr can approximate the more complex
queries over infrequently used datasets with zero overhead.

Quickr introduces a new universe sampler that can sample both
join inputs. It is well known that joining a p probability sample of
inputs is akin to a p2 probability sample of the join output [21, 24].
Hence, sampling the join inputs improves performance at the cost
of substantial degradation in answer quality. Much of the trouble
arises due to the ambiguity in joining rows chosen independently-
at-random from the two sides. Instead, suppose both inputs project
the value of the join keys into some high dimensional universe (e.g.,
using a hash function). And, both inputs pick the same random por-
tion of this universe. _at is, both join inputs, pick all rows whose
value of the join keys falls in the chosen subspace. _is ensures that
a complete and unambiguous join will occur on the restricted sub-
space of the value keys. We show that joining a p probability uni-
verse sample of inputs is statistically equivalent to a p probability
universe sample of the join output. _e universe sampler is applica-
ble for equi-joins and requires the group-by columns and the value
of aggregates to be uncorrelated with the join keys. We ûnd many
such cases in TPC-DS.

Quickr injects samplers into the query plan. To do so, it uses
statistics such as cardinality and distinct value counts per input
dataset which are computed in a single pass by the ûrst query that
touches the dataset. Quickr uses three diòerent samplers. _e
universe sampler is described above. _e uniform sampler mim-
ics a Bernoulli process. _e distinct sampler ensures that no groups
will be missed. All samplers function in one pass over data, with
bounded memory and can be run in parallel. _ese minimal re-
quirements allow Quickr to place samplers at arbitrary locations
in the plan.
A key remaining challenge iswhich sampler to pick andwhere to

place the samplers in the query plan. Sampling the raw inputs oòers
the best performance but can also lead to inaccurate answers (e.g.,
missing groups or high error in aggregate value). Quickr oòers
the ASALQA algorithm, short form for place appropriate samplers at
appropriate locations in the query plan automatically. ASALQA is a
cost-based query optimizer based on the Cascades framework [27].
It supports samplers natively and reasons about both performance
and accuracy. Quickr deals much more extensively with query op-
timization over samplers due to three reasons. First, the space of
possible plans is much larger when any operator can be followed by
a sampler. Second, the choice of sampler types and locations in the
plan involves complex trade-oòs between performance and accu-
racy. _ird, adding samplers can lead todramaticallydiòerent query
plans. For example because a sampler reduces cardinality, joins be-
come implementablemore cheaply and in many cases parallel plans
can be replaced with sequential plans.
ASALQA begins by optimistically placing a sampler before every

aggregation. _en, several transformation rules generate plan al-
ternatives moving samplers closer to the input and before other
database operators such as join, select, and project. Rules encode
the trade-oòs between performance and accuracy. A�er generat-
ing the various alternatives, ASALQA picks the best performing plan

1computed as (∑task t inputt + outputt) / (job input + job output)

Selection Arbitrary (user-deûned) expressions speciûed as
f(col1, col2, . . . ) <=> Constant. Also, composing
several such literals with ∨ or ∧.

Aggregates DISTINCT, COUNT, SUM, AVG and their *IF equiva-
lents. User-deûned aggregates need annotations.

Join All but full-outer join. Includes joins over multiple ta-
bles, outer joins and star queries with foreign key joins.

Others Projects, Order By,Windowed aggregates, . . .
Table 1: Types of parallel SQL queries that are handled by Quickr. In
particular Quickr can deal with arbitrary depth queries.

among those that meet the desired accuracy.
_e plans output by ASALQA o�en havemultiple samplers. Many

plans have samplers deep in the query plan. It is legitimate for
ASALQA to declare a query to be unapproximable. _is happens for
roughly 25% of the TPC-DS queries for various reasons such as the
answer lacking enough support. An illustrative example is in §2.
ASALQA can reason about the accuracy of a sampled expression.

Our method transforms a query expression with arbitrarily many
samplers to an equivalent expression with one sampler at the root.
In particular, we generalize prior work that only considered SUM-
like aggregates [35] to the case where answers can have groups. We
also generalize the method to a broader class of samplers that are
not generalized-uniform-samplers; our universe and distinct sam-
plers arenot uniformly random. Furthermore,we compute the error
metrics for ASALQA plans in one eòective pass over data whereas in
general error bounds require a self-join [35] or bootstrap [10, 44].
We have implemented Quickr in a production query optimizer.

Experimentsover queries in theTPC-DSbenchmark show amedian
reduction of 2× in resources used. _e improvement in job runtime
depends on the available degree of parallelism and can be larger.
For over 90% of queries,Quickr does not miss groups. Most of the
misses are due to LIMIT 100 on the aggregation column. When
considering the full answer, Quickr does not miss groups for 99%
of queries. Aggregations are within ±10% of their true value in 80%
of the queries; 92% of queries arewithin ±20%. We carefully explain
the causes of high error. In contrast, BlinkDB [9] has amedian gain
of 0% even when given 10× the input size to store samples. _at is,
at least half the queries receive no beneût. In a parameter sweep,
we ûnd that the best coverage is 22% of queries and the best median
speed-up among the covered queries is 35%.

To sum up, our key contributions are:
● Quickr oòers a new way to lazily approximate complex ad-

hoc queries with zero apriori overhead.
● _rough careful analysis over queries in a big-data cluster,we
ûnd apriori samples are untenable because query sets make
diverse use of columns and queries are spread across many
datasets. _e large number of passes over data per query
makes the case for lazy approximations.

● We introduce a new sampler operator – universe – that eòec-
tively samples join inputs.

● We consider query optimization over samplesmuchmore ex-
tensively. Our ASALQA algorithm automatically outputs sam-
pled query plans only when appropriate.

● We present implementation results from a production big-
data system.

We believe that this is just the ûrst step towards practical lazy ap-
proximations. Queries can be sped up further by reusing sampled
views [28] and by executing plans with samplers online [29]. _e
rest of the paper is organized as follows. Analysis of queries from
our production cluster is in §3. Samplers are described in §4.1. _e
ASALQA algorithm is in §4.2. Our accuracy analysis is in §4.3. Ex-
perimental results are in §5 and we summarize related work in §6.



Technique How sampled
Input sampling Stratify store_sales on {item_sk, date_sk, customer_sk}
Quickr Universe sample all three fact tables on customer_sk
Figure 1: A simple example that mimics many TPC-DS queries.

2. MOTIVATING EXAMPLE
Consider the query in Figure 1. Per item color and year, the query

computes the total proût from store sales and the number of unique
customers who have purchased and returned from stores and pur-
chased from catalog. Item and date are dimension tables joined on
a foreign key. _e other three are large fact tables joined on shared
keys. Since joining a pair of fact tables requires two reads and one
shuøe, this query incurs many passes over its input data.

Stratiûcation on a column set C ensures that for every dis-
tinct value of C at least some rows will be chosen by the sam-
pler. _e most useful input sample stratiûes store_sales on
{item_sk, date_sk, customer_sk} because store_sales is the
largest table and not stratifying canmiss groups in the answer. How-
ever, such a sample is likely as large as the input since the three
columns have many distinct combinations leading to zero perfor-
mance gains.

Quickr yields a very diòerent sampled query plan: at extrac-
tion on all fact tables, universe sample on customer_sk. _is
works because Quickr reasons that (a) the universe sample on
customer_sk leads to perfect join (on some subspace) for both of
the fact-fact joins and (b) the group {i_color, d_year} has only
a few distinct values and each fact table has over 109 rows. Hence,
there are many rows per {i_color, d_year} group. Further, the
group columns are independent with the join keys since diòerent
random subsets of customers will have similar likelihood of pur-
chasing diòerent colored items over years. Interestingly, the uni-
verse sample can also estimate the number of unique customers,
which is the same column whose value it sub-samples on. _e
reason is that the number of unique customers in the chosen sub-
space can be projected up by the fraction of subspace that is chosen.
Quickr speeds up this query substantially. _e data in-�ight a�er
the ûrst pass reduces by the sampled probability and there are up to
4 subsequent passes over this dataset.

Note that small changes in the query can lead to very dif-
ferent sampled plans. If some user-deûned operator applies on
store_sales, Quickr could place the universe sampler a�er that
UDO. Indeed, we ûnd in our evaluation that many queries have
samplers in the middle of the query plan. Consider a more sub-
stantial change: if the query only had store_sales i.e., no joins
with the other fact tables, Quickr would prefer a uniform sam-
pler on store_sales. As we show later, the uniform sampler has
smaller variance than the universe sampler. If the answerwere in ad-
dition grouped on i_category and i_name from item, the group
contains many distinct values, and Quickr would distinct sample
the store_sales table on ss_item_sk. _at is, Quickr strat-
iûes on join keys to mimic stratiûcation on aggregation columns
from item. Finally, if the answer has one group per day, that is
group has d_date instead of d_year, then Quickr may declare
the query unapproximable since stratifying store_sales on both
{ss_item_sk, ss_date_sk} will not reduce rowcount. In our
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(a) Usage of inputs is heavy tailed.

Metric Percentile value
25th 50th 75th 90th 95th

# of Passes overData 1.83 2.45 3.63 6.49 9.78
1/ûrstpass duration fract. 1.37 1.61 2.09 6.38 17.34
# operators 143 192 581 1103 1283
depth of operators 21 28 40 51 75
# Aggregation Ops. 2 3 9 37 112
# Joins 2 3 5 11 27
# user-deûned aggs. 0 0 1 3 5
# user-deûned functions 7 27 45 127 260
size ofQCS+QVS 4 8 24 49 104

(b)Characterizing someO(108) queries that ran in aproduction big-data
cluster over a two month span.
Figure 2: Analysis of the queries and datasets used in a large cluster.
Equivalent estimates for publicly available benchmarks are in Table 9.

evaluation,we see that all three samplers are used o�en. Many plans
use more than one sampler. Quickr declares about 25% of the ex-
amined TPC-DS queries to be unapproximable.
A ninja data scientist can probably reason about this large space

of sampled plans quickly and correctly. Early in the project, it took
us about an hour to manually analyze each query. Quickr oòers a
turn-key solution. In practice, Quickr also generates slightly bet-
ter plans since we found that human experts fail to fully explore the
space of possible plans. Also, experts did not have access to auto-
matic derivations of cardinality and the number of distinct values.

3. PRIMER: APPROXIMABILITY OF BIG-
DATA QUERIES

A key departure in Quickr is to inject sampling operators into
the query plan. Suppose query Q over input I has answer Q(I).
Apriori sampling techniques search for the best sample of input I′
such that Q(I′) ≈ Q(I). Instead, Quickr searches over the space
of sampled query plans for the best plan Q′ such that Q′

(I) ≈ Q(I).
In both cases, best can imply best performance subject to the accu-
racyneedsor vice-versa. Clearly the approaches are complementary.
Here, we document aspects of queries observed in a large produc-
tion cluster that lead us to believe that Quickr is necessary.
We analyzed the production queries in Microso�’s Cosmos clus-

ters over a twomonth period. _e clusters have tens of thousands of
servers. Overall, O(108) queries were submitted by O(104

) unique
developers. _e query language is a mash-up of relational (~SQL)
and user-deûned operations [18]. _e query set includes: ad-hoc
queries written by developers and production jobs which cook new
data (e.g., ETL), or mine logs to construct dashboard-style reports.
Figure 2b summarizes our ûndings.
Heavy Tail over Inputs: If most queries touch a small number of
inputs, then it may be worthwhile to store apriori samples for those
inputs. Per Figure 2a however, we ûnd that queries access many dif-
ferent inputs. _e ûgure is generated as follows for a two week pe-
riod: (1) Per input, compute the total cluster hours used by queries
that read the input. (2)When a query hasmultiple inputs, apportion
its cluster hours among the inputs proportional to input size. (3)
Sort inputs in decreasing order of their cluster hours. (4) Travers-
ing in that order, compute the cumulative size of the input and the



cumulative cluster hours. We see that jobs that account for half the
cluster-hours touch 20PBs of distinct ûles. _e last 25% of queries,
the tail, access another 60PBs of ûles.

To store diòerently stratiûed samples, apriori storage techniques
typically use sample storage of 1× to 10× the size of the input (eg.
BlinkDB [9]). We see from Figure 2a that the smallest input set used
by 20% of queries is 3PB. Hence, assuming input popularity can be
predicted perfectly, covering 20% of queries will require between
3PB and 30PB of apriori samples. Such a large sample set is already
a substantial fraction of the total input size (120PB). Quickr targets
the vast majority of other queries and needs no apriori samples.

Recall that no stored samples implies that Quickr has to read all
input data once. Per Figure 2b, themedian query in the cluster takes
2.25 eòective passes over data.2 By sampling on the ûrst pass, we
can estimate that Quickr may speed-up the median job by 2.25×.
10% of queries can speed up by over 6×. _e practical gains can be
less because not all queries are approximable (for reasons below) or
muchmore because the samplers can also speed up the computation
on the ûrst pass (e.g., fewer data to partition and write out).
Query Approximability: Query answers can be aggregates such
as a SUM, COUNT, AVG or aggregations over groups such as
SELECT X, SUM(Y). _e goal of approximation is to avoid processing
all the data, yet still obtain (a) an unbiased estimate of the answer
per group3 that is within a small ratio of the true answer with high
probability (orwhp.), (b) ensure thatno groups aremissedwhp., and
(c) oòer an estimate of the expected error per aggregation. Queries
for which this is possible, we say, are approximable.
A key intuition behind the approximability of a query is the sup-

port per group of the answer. By support we refer to the number
of data rows in the input that contribute to each group. Simple ag-
gregations have support equal to the number of rows in the input.
_e support may vary across groups. In general, queries with large
support receive high performance gains from approximation since
even a small probability sample can produce an answer that is close
to the true answer. If the underlying data value has high variance,
more support is needed (more on this later). We observe that typical
big data queries have large support due in part to their large inputs.

Per Figure 2b, typical queries also have joins, selects, projects and
user-deûned code, all of which further complicate approximability.
We distinguish between row-local operations that take one or more
columns and yield a column such as DayOf(X ∶ date) and aggre-
gation operations that take a collection of rows having a common
value of the group-by columns and yield zero or more rows such as
X, MODE(Y). We call the former user-deûned functions (UDFs) and
the latter user-deûned aggregates (UDAs). _e median query has
tens ofUDFs and a fewUDAs. _emedian query also has a handful
of joins, several of which are not foreign-key joins.

To quantify the complexity of these operations, we co-opt the
phrase Query Column Set (QCS) from BlinkDB [9] to refer to
the subset of the input columns that appear in the answer or im-
pact which rows belong in the answer. For example, the QCS
of SELECT X, SUM(Y) WHERE Z > 30 is {X, Z}. _e corresponding
query value set (QVS) is {Y}, i.e., the columns that appear in ag-
gregates. We recursively replace newly generated columns that ap-
pear in theQCS or QVSwith the columns thatwere used to generate
that column. We see that the size of QCS ∪ QVS is over 8 for 50%
of queries. Further, the size of the median QCS is also 8. Compar-
ing with equivalent estimates for benchmarks in Tables 3 and 9, we
see that queries in the production cluster tend to bemore complex.
BlinkDB [9] constructs stratiûed samples on theQCS sets. Observ-

2computed as (∑task t inputt + outputt) / (job input + job output)
3true sum ≈ 20 ∗ sum for a 5% sample. Also see Table 8.

ing that the value of columns in theQVS can have high skew, Strat-
iûedSampling [20] stratiûes on QCS ∪ QVS.
Armed with the above background, we posit that apriori sam-

pling has poor query coverage even when given storage space that
is many times the size of that dataset. First, the QCSets have many
columns. Since the goal of stratiûcation is to store some rows for ev-
ery distinct value of the columns in QCS, the more columns in the
QCS, the more the distinct values and larger the stratiûed sample
for that QCS. Second, queries have very diverse QCSets. Queries
with diòerent QCS will not beneût from the same stratiûed sample.
Roughly, the smaller the intersection between the two QCSets, the
less useful the samplewill be. In the extreme case,when theQCSets
have no overlap, sharing the sample can have the same error proûle
as a random sample4 or worse if theQCSets have correlated values.
As a result, given a storage budget, apriori sampling techniquesmust
choose very carefully which QCSets to stratify on to help the largest
set of queries [9, 20]. By injecting samplers into the query graph,
Quickr completely avoids this problem.
Further,many queries that appear unapproximable for input sam-

ples can be sped up by Quickr. Consider a query with a large
QCS. A stratiûed sample on that QCS may be as large as the in-
put. However, Quickr can place a sampler a�er selections or joins
whose (complex) predicates contributedmany of the columns in the
QCS. If the selects are pushed down to the ûrst parallel pass on data,
the gains from Quickr will be substantial.
Handling Joins: None of the known approximation systems han-
dle joins well. Note that join between a fact and a dimension table
is eòectively a select since the foreign key relationship ensures that
exactly one row will match out of the dimension table. Most prior
work samples only one of the join inputs; doing so does not speed
up queries where both input relations require a lot of work. To un-
derstand the issue with sampling both inputs, consider a two table
join where T1 has 80 rows with X = 1 and T2 has 1 row with X = 1.
_e join is on column X. To ensure that each tuple appears in the
output with the same probability, a 25% sample on the join output
requires 50% samples of both inputs.5 _at is, the join inputs have to
be sampledwith a quadratically higher probability. Even so, sample-
and-join has a higher variance. For example, the probability that
rows with X = 1 disappear a�er join-then-sample is 10−10 and with
sample-then-join, it is 0.5.6 _e problem arises because the join out-
put depends on the joint distribution over the two inputs but such
joint distribution does not exist apriori. Further, it is expensive to
computewhen these relations are intermediate content generated in
the midst of executing a deep query. A better sampler would have
over-sampled the rowswith X = 1 in T2 since that value occursmore
o�en in T1 . Such correlation-aware samplers exist [6, 7, 21] but they
are cumbersome to implement in parallel (since they build statistics
and indices on one join input and use that to sample the other input)
and are somewhat ineòective because the sampler cannot be pushed
down further on the inputs. Quickr’s universe sampler uniquely
samples both join inputswithout any data exchange between the in-
puts at runtime, thereby allowing Quickr to speed-up many more
queries than prior work.

In summary, our analysis reveals the following:
● Distribution of queries over input datasets is heavy-tailed.

Individual queries use many columns and a diverse set of

4uniform sample = strat sampler with empty QCS.
5since a tuplewill appear in output only if both its constituent tuples
in the inputs are sampled and 0.25 = 0.5 ∗ 0.5
6T1 , T2 andT1&T2 have 80, 1, 80 rowswith X = 1 respectively. Hence,
the probability ofmissing X = 1 in join-then-sample is (1−0.25)80 =
10−10 and in sample-then-join is (1 − .5)80 + 0.5 = 0.5.



(a)Work�ow of Quickr
(b) Apriori sampling

Figure 3: Overview of Quickr and how it diòers from prior methods.

columns such that the additional storage space required to
store samples can be prohibitively large.

● Queries typically have aggregation operators, large support,
and output≪ input, so they are approximable.

● Several factors hinder approximability: queries use a di-
verse set of columns requiring extensive stratiûcation. Many
queries join large input relations.

● Queries are deep, involvingmultiple eòective passes over data
including network shuøes.

4. JUST-IN-TIME SAMPLING
Figure 3a shows an overview of Quickr. Quickr uses statistics

of the input datasets to generate at query optimization time an exe-
cution planwith samplers placed at appropriate locations. _e sam-
plers are described in §4.1. _e algorithm that determines how best
to place the samplers is in §4.2. Analysis of the error and properties
of the transformation rules is in §4.3. We brie�y recount our goals:

● Minimal overhead to the administrator: _at is, assume no
apriori samples, indices or views and support ad-hoc queries.

● Support a large fraction of the queries in SQL and big-data
scenarios; including general joins and UDFs.

● Performance gains should be sizable; either reducing the re-
source needs of a query or a faster completion time or both.

● Oòer accurate answers: _at is, with high probability miss
no groups, oòer conûdence intervals, and estimate aggregate
values to within a small ratio of their true values.

4.1 Samplers
Quickr uses three types of samplers. Each sampler passes a sub-

set of the input rows. _e subset is chosen based on the policies
that we describe next. In addition, each sampler appends a meta-
data column representing the weight associated with the row. _e
weight is used to estimate the true value of aggregates and the con-
ûdence intervals. Our samplers are required to run in a streaming
and partitionablemode. _ey have to execute in one pass over data
with a memory footprint well below the size of the input or out-
put. Furthermore,whenmany instances of a sampler run in parallel
on diòerent partitions of the input, the union of their output should
mimic the output of one sampler instance examining all of the input.
_eseminimal assumptions enable placing the samplers at arbitrary
locations in a parallel query plan.

4.1.1 Uniform sampler
Given probability p, the uniform sampler ΓU

p lets a row pass
through with probability p uniformly-at-random. _e weight col-
umn is set to 1/p. In contrast, alternatives that pick a desired num-
ber of input rows uniformly-at-random with or without replace-
ment [24] are neither streaming nor partitionable. If implemented
with reservoir sampling so as to ûnish in one pass over data, their
memory usage grows up to the desired output size and the parallel
instances have to be synchronized and coordinated. _e number of
rows output by ΓU

p is governed by a binomial distribution and each
row can be picked at most once.

4.1.2 Distinct sampler
_e uniform sampler is simple but it has some issues that

limit it from being used widely. Queries with group-by such as
SELECT X, SUM(Y) GROUP BY X can miss groups in the answer, es-
pecially those corresponding to values of X that have low support.
For such queries, Quickr uses a distinct sampler which intuitively
guarantees that at least a certain number of rows pass per distinct
combination of values of a given column set. _e distinct sampler
also helps when aggregates have high skew. To see this problem,
consider a three row input with the values 1, 1, 100 for column Y.
_e true answer for SUM(Y) is 102 but the projected answer changes
dramatically based on whether the value of 100 is sampled or not;
even at 50% sampling, themost likely answers are 2 and 202, each of
which happen with likelihood 1/4.

Given a column set C, a number δ, and probability p, the distinct
sampler ΓD

p ,C ,δ ensures that at least δ rows pass through for every dis-
tinct combination of values of the columns in C.7 Subsequent rows
with the same value are let through with probability p uniformly-
at-random. _e weight of each passed row is set correspondingly;
i.e., 1 if the row passes because of the frequency check and 1/p if it
passes due to the probability check. Quickr picks the parameters
{C , δ, p} as a by-product of query optimization+sampling (§4.2)

To see how the distinct sampler improves over the uniform sam-
pler, consider the following examples. Columns that form the group
and those used in predicates can be added to the column set C. Since
the distinct sampler will pass some rows for every distinct value of
the columns in C, none of the groups will bemissed and some rows
will pass the predicate. Quickr also allows stratifying on functions
over columns. For the skewed aggregates example (input has Y =

{1, 1, 100}) stratifying on ⌈Y/100⌉ ensures that Y = 100 will appear
in the sample.

Since Quickr may employ the distinct sampler on any interme-
diate relation, the sampler must execute in a single pass, have a
bounded resource footprint, and be partitionable. A naive imple-
mentation would maintain the observed frequency count per dis-
tinct value of column set C. _en, it would pass a row while the
frequency seen thus far is below δ with weight 1 and pick subse-
quent rows with probability p and hence a weight of 1/p. _is naive
approach has three problems. _e ûrst problem is bias. _e ûrst
few rows always pass through and are more likely to impact the
answer. Worse, the ûrst few rows picked in the probabilistic mode
have a relatively disproportionate impact on the answer since their
weight 1/p is much larger than the previous rows whose weight is
1. Only themore frequently occurring values of C are free from bias
since enough rowswill be picked for those values in the probabilistic
mode. Second, thememory footprint can be as large as the number
of distinct values in C. Finally,when running in a partitionedmode,
it is not possible to track how many rows with a particular value of
C have been selected by the other (parallel) instances of the sam-
pler. Hence, it is hard to ensure that all instances cumulatively pass
at least δ rows and p probability henceforth.

Quickr solves the problems of the naive approach. To be parti-
tionable, we carefully adjust δ based on the degree-of-parallelism
of the sampler D. _at is, each instance of the distinct sampler takes
amodiûed parameter set {C , ⌈ δD ⌉ + ε, p} wherein ε is carefully cho-
sen to tradeoò between passing too many rows and passing too few
rows by considering these two extreme cases–(1) all rows with the
same value of C are seen by one sampler instance or (2) rows are
uniformly spread across instances. _e total number of rows passed
by all instances is (δ/D)+ ε for case (1) and δ+Dε for case (2). Case
(1) is less frequent, but can happen if the input is ordered by the col-

7Precisely, at least min(δ, number of rows for that distinct value)



umn set C. Quickr uses ε = δ/D since, in practice, the distribution
of rows across instances more closely resembles case (2).
For small memory footprint,Quickr adapts a sketch that iden-

tiûes heavy hitters in one pass over data [32]. Crucially, using this
sketch Quickr maintains approximate frequency estimates for only
the heavy hitters in memory that is logarithmic in the number of
rows. Our key insight is that the distinct sampler’s gains arise from
probabilistically dropping rows that correspond to values of C that
occur very frequently; tracking only the heavy-hitters achievesmost
of these gains. In particular, for an input of sizeN and constants s, τ,
our sketch identiûes values with frequency above sN ± τN and es-
timates their frequency to within ±τN oò their true frequency. _e
memory usage is 1

τ log(τN). Quickr uses τ = 10−4 and s = 10−2 for
amemory footprint of 20MB with N = 1010 input rows.

To reduce bias, Quickr holds in a reservoir rows that are early
in the probabilistic mode and passes them with the correct weight.
In more detail: per distinct value, pass the ûrst δ rows with weight
1. Subsequently, maintain a reservoir of size S. When more than
δ + S/p rows are seen, �ush the rows held in the reservoir with
weight 1/p. From then on, pick rowswith probability p, i.e.,without
a reservoir. When the sampler has seen all rows, �ush the rows in
all non-empty reservoirs with weight (freq − δ)/S where freq is the
number of observed rows. To see this method in action, suppose
δ = 10, p = .1, S = 10. It is easy to see that distinct values of C with
freq in [1, 10]will not use a reservoir. All their rows passwithweight
1. _ose with freq in (δ, δ + S/p] = [11, 110] are more interesting.
For a valuewith freq of 30, its ûrst ten rows pass right away, the next
twenty go into the reservoir and a random subset of ten rows will
be �ushed at the end with a weight of (freq − δ)/S = 2. Notice that
the probability of a row numbered in [11, 30] to be emitted is 1/2.
Finally, values with freq above 110 lose their reservoir once the 111’st
row is seen. At that point, ten rows from the reservoir are passed
with weight of 10. _is method avoids bias because samples passed
by the reservoir receive a correctweight. Further, only a small reser-
voir is kept (no more than S) and only for distinct values that have
observed frequency between δ and δ + S/p. Hence, the memory
footprint is much smaller than straightforward reservoir sampling.

In summary, we are not aware of any other stratiûed sampler that
functions in a streaming and partitionable manner. Furthermore,
we believe that supporting stratiûcation over functions of columns
is novel. _ough we use a column set C in the above description,
this sampler can support a vector of functions whose domain is a
subset of C. _is allows for just enough stratiûcation.

4.1.3 Universe sampler
Universe sampler is a new operator that uniquely allows Quickr

to sample the inputs of joins. Consider this example:

SELECT COUNT(DISTINCT order), SUM(ws.profit)

FROM ws JOIN wr ON ws.order = wr.order

Web-sales (ws) and web-returns (wr) are large fact tables being
joined on a shared key. As discussed in §3, uniform sampling both
the join inputs is not useful. Distinct sampling both the inputs has
limited gains if the join keys have many columns and hence, many
distinct values. Correlation-aware samplers [6, 21, 22, 24] are inef-
ûcient (since they construct histograms or indices on join inputs)
and ineòective (since they require samplers to immediately precede
the join). More details are in §6. Generalizing this example, simi-
lar cases happen with self-joins and set operations such as counting
the number of orders that occur in one table, both tables, or exactly
one table. All such cases are approximable (have aggregations and
output≪ input) but existing samplers do not help.
We now explain the insight behind universe sampler. Much of

the trouble in sampling join inputs arises because the inputs have
to sampled independently and their joint behavior has to be statisti-
callymeaningful. Suppose the value of the join keys is projected into
some high dimensional space (e.g., using a hash function) and sam-
plers on both inputs pick the same random portion of this space.
_at is, on both join inputs pick all rows whose value of join keys
falls in some chosen subspace. For example, pick from the tables
ws and wr rows that have Hash(order)%4 = 2. _is yields a 25%
sample. A join over these samples is statistically meaningful; it is
equivalent to sampling a�er the join (i.e., picking rows belonging
to the chosen subspace). Our implementation uses a cryptographi-
cally strong hash function. Hashing lets us pick a subspace without
apriori knowledge of the range of values andwe can vary the desired
sample size by choosing a corresponding portion of the hash range.

More formally, the universe sampler takes as input a column set
C and a fraction p. It chooses a p fraction of the value space of the
columns in C. And, passes all rows whose value of columns in C
belong to the chosen subspace. Related pairs of samplers will pick
the same subspace. Note that the universe sampler is partitionable
and needs only one pass: whether or not a row passes depends only
on the values of the columns in C, so the sampler keeps no state
across rows. As a corollary, diòerent instances that process diòerent
subsets of the input wouldmake the same decisions.

4.1.4 Limitations and interactions between samplers
We summarize the applicability of each sampler (e.g., guard con-

ditions) and how the samplers complement each other and together
expand the applicability of samplers as a family. All three samplers
are broadly applicable in the sense that we can ensure commutativ-
ity with other database operations; although analyzing the accuracy
of answers generated by universe and distinct samplers requires new
methods because these samplers are not uniformly random (§4.3).
Among the samplers, the uniform sampler is the most general.
Quickr uses the uniform and universe samplers only when the
stratiûcation requirements, if any, can bemet. _at is, either there is
high support per group or the columns that need stratiûcation (e.g.,
group by columns) are independentwith the universe columns. For
some aggregations, such as COUNT and COUNT DISTINCT, we note
that column independence is not needed for the answer to be unbi-
ased (e.g., COUNT DISTINCT order in §4.1.3). _e universe sampler
is applicable for equi-joins over arbitrarily many columns. Further,
the universe sampler can be used for multiple joins in a query as
we saw in Figure 1. More precisely, universe sampling can be used
for exactly one set of columns in any query sub-tree that has an ag-
gregate at the root. _e three samplers together expand the range of
applicability of samplers. _at is, by integratingwith the query opti-
mizer (§4.2),Quickr considers various join orders, choices of strat-
iûcation and/ or universe columns, and choices of sampler locations
to pick an appropriate plan. Consequently, our resultswill show that
many otherwise unapproximable queries beneût from Quickr.

4.2 Samplers + QO (or ASALQA)
Since every operator in the plan can potentially be followed by

a sampler, the search space of possible sampled plans is very large.
Further, for each possible choice of samplers and locations in the
plan, one has to reason about the performance and accuracy of the
corresponding plan. Given an input query, ASALQA outputs an exe-
cution plan with appropriate samplers inserted at appropriate loca-
tions. Our current target is the plan that achieves the best perfor-
mance with accuracy as the constraint.

_ere are at least two choices as to howwe can obtain a good plan
that contains samplers: (a) Insert samplers a posteriori into a plan
that isoutputby a traditional relationalqueryoptimizeror (b) Incor-



Figure 4: Seeding samplers into the query.

porate samplers asûrst-class operators alongwith the otherdatabase
operators and explore the larger combined space of possible plans
within a query optimizer. Notice that option (b) can yield plans that
cannot beobtained fromusing option (a). For example,when a sam-
pler reduces cardinality downstream join operations can be imple-
mented diòerently and more eõciently as a cross join instead of a
pair- or hash-join [8]. As another example, for queries with many
joins and selects, option (a) may oòer a plan onwhich all simple ed-
its to insert samplers appear infeasible (inaccurate). Yet, a diòerent
ordering of the joins or selects may allow samplers to be inserted.
Hence, we chose option (b); we oòer a new ASALQA algorithm that
incorporates samplers asnative operators into aCascades-style cost-
based optimizer [18, 27].

Query optimization in Cascades consists of two main phases. In
the logical plan exploration phase, a set of transformation rules gen-
erate alternative plans. _e physical plan creation phase converts
each logical operation to a physical implementation. ASALQAmodi-
ûes both these phases and proceeds as follows. Samplers are injected
into the query execution tree before every aggregation (§4.2.2). In-
tuitively, this represents the potential to approximate at that loca-
tion. Next, Quickr has a set of new transformation rules that
push samplers closer to the raw input (§4.2.3–§4.2.5). _e alter-
natives generated by a rule have no worse accuracy but can have
better performance. Furthermore, a new rule changes the degree-
of-parallelism (§A) of sampled query sub-expressions which can in
turn trigger other changes to the overall plan. Finally, plan costing
uses data statistics to identify the best plan, both in terms of perfor-
mance and accuracy (§4.2.6,§4.3).

4.2.1 Sampler: logical and physical state
During the logical exploration phase, the requirements on a sam-

pler are encoded in what we call the logical state. _e requirements
of the sampler changewhen the samplers aremoved by the transfor-
mation rules. Furthermore, they may be implementable by one or
more physical samplers. A�er logical exploration, ASALQA picks the
best sampler that meets the requirements (§4.2.6). We denote the
logical state by {S ,U , ds, sfm}. S and U are the columns that the
sampler needs to stratify or universe sample upon respectively. We
also refer to them as strat cols and univ cols respectively. ds and sfm
are short for downstream selectivity (i.e., the cumulative selectivity
of operators between the sampler and the answer) and stratiûcation
frequency multiplier; their use will be described shortly.

4.2.2 Seeding samplers
We seed samplers by replacing each statement that has aggrega-

tionswith three statements–a precursor, a sampler and a successor–
as shown in Figure 4. _is is optimistic; that is, ASALQA replaces
the sampler with a pass-through operation if the error goal can-
not be met. _e precursor mimics the original statement but for
aggregations. In particular, the precursor receives all of the JOIN
clauses,WHERE clauses, UDOs and AS projections from the orig-
inal statement. Aggregations in the precursor are replaced with
their corresponding input columns. _e successor performs these
aggregations by replacing each with (a) an unbiased estimator of
the true value computed over the sampled rows and (b) appends

Figure 5: Pushing sampler past select: See §4.2.3.

Figure 6: Pushing sampler past join: See §4.2.4.

an optional column that oòers a conûdence interval. Table 8 shows
how Quickr rewrites some example aggregation operations. _e
successor also receives the HAVING clause from the original state-
ment. A sampler statement is introduced between the precursor
and successor. Columns that appear in the answer, e.g., A in Fig-
ure 4, are added to the stratiûcation column requirement (S) in
the sampler. Further, columns in the ∗IF clauses, in SUM and in
COUNT(DISTINCT) (e.g., C, E in Figure 4) are optionally added to
the set S (details in §4.2.3). Recall from §4.1 that stratiûcation on
these columns ensures that no groups are missed and corrects for
value skew. Figure 4 also shows the initial values for the rest of the
logical state (U = ∅;ds = 1; sfm = 1).

4.2.3 Pushing sampler past Select
We startwith a simplenon-trivial transformation rule that pushes

samplers past select operators. For the expression on the le� in Fig-
ure 5, ASALQA generates the two alternatives on the right. Here σC
denotes a select that uses columns C in its predicate. Let σ ss be its
selectivity.8 We only show the relevant ûelds in the logical sampler
state. To understand why this rule helps, note the following logic.
Alternative A1 (Figure 5 middle) stratiûes additionally on the

predicate columns C. Doing so guarantees that the error will be no
worse than the expression on the le� since at least some rows pass
the sampler for every distinct value of C. Unfortunately, the perfor-
mance can beworse by a lot. _is is because themore columns in C,
the greater the number of distinct values in the stratiûed column set
S ∪ C, forcing the sampler to pass many more rows. _e second al-
ternative A2 (Figure 5 right) retains perf gain potential at the cost of
additional error. If the sampler were to not stratify on the columns
in C, its performance is no worse than before. But, there will be
fewer rows in the answer by a factor of σ ss. _erefore, this plan is
more likely to miss groups or have a higher variance for aggregates.
It is easy to see when each alternative is preferable: (a) if the select
has many predicate columns but is not very selective, A2 is better;
(b) if the select is highly selective, A1 may be better; (c) otherwise,
neither alternative is better.

Observe also that in both alternatives the sampler reduces the
work for the select since it now operates on fewer rows. If the se-
lect is a conjunctive predicate (“and”), the logic above is applied per
conjunction. When some predicate columns C are already in the
strat cols S, observe that A1 needs no correction. For A2, ASALQA
uses a heuristic to reduce ds by a smaller amount than σ ss.

4.2.4 Pushing sampler past Join
We highlight the transformation rules to push sampler past an

equi-join because it has deep implications on performance and illus-
trates novel aspects of our technical contributions. As shown in Fig-
ure 6, the sampler can be pushed down to one or both inputs. Let
L, R be the input relations andK l ,Kr be the corresponding join keys.
When pushing a sampler past join, two key considerations arise: (i)
continue tomeet the stratiûcation and universe requirements in the
8σ ss = rows in output of σ/rows in input.



Inputs:
S : Sampler state = {S ,U , sfm, ds}

L, R: relational inputs of join with columns Lc , Rc respectively
K l , Kr : Columns used as join keys // assume equi-join

Output: Vector of alternate samplers on one or both inputs of join.

1 Func: NumDV(R,C) ∶ // distinct value count of columns C in R

2 Func: ProjectColSet(S , πC1→C2): // S ,C1 ,C2 are column sets.
∣C1 ∣ = ∣C2 ∣. Replace columns in S ∩ C1 with corresponding ones in C2 .

3 Func: OneSideHelper(S , L, R, K l , Kr ,U l ):
4 A⃗← {} // vector of state of alternative samplers on le� relation
5 S f ← ProjectColSet(S .S , πKr→K l )//Normaliz; these are “full” strat
cols

6 S l ← S f ∩ Lc // strat cols deûned on le�
7 sfm← S .sfm
8 if ∣S f − S l ∣ > 0 and ∣K l − S l ∣ > 0// missing some strat cols then

9 sfm← sfm ∗
min(NumDV(L ,K l−S l ), NumDV(R ,S f −S l ))

NumDV(R ,ProjectColSet(K l−S l ,πKl→Kr ))

10 S l ← S l ∪ K l // append join keys to strat cols
11 Krem ← K l − S l
12 foreach subset S of Krem do
13 Sskip ← Krem − S// will strat on S, these join keys remain.
14 ds← S .ds / NumDV(L, Sskip) ∗ // penalize by increasing ds

min (NumDV(L, Sskip), NumDV(R, ProjectColSet(Sskip , πK l→Kr )))

15 // omitted detail: check for dissonance
16 A⃗← {S l ∪ S , U l , sfm, ds}

17 return A⃗

18 Func: PrepareUnivCol(U , K):
19 if U = ∅ or U = K then return K // Else, cannot do universe ;

20 Func: PushSamplerOnOneSide(S , L, R, K l , Kr):
21 U l ← ProjectColSet(S .U , πKr→K l )
22 if U l − Lc = ∅// can push to one side iò other side has no univ col. then
23 return OneSideHelper(S , L, R, K l , Kr ,U l )

24 return {} // no alternatives

25 Func: PushSamplerOntoBothSides(S , L, R, K l , Kr):
26 U l ← PrepareUnivCol(ProjectColSet(S .U , πKr→K l ), K l )

27 Ur ← PrepareUnivCol(ProjectColSet(S .U , πK l→Kr ), Kr)

28 if U l = ∅ orUr = ∅ then return {}// cannot use univ ;
29 A⃗l ← OneSideHelper(S , L, R, K l , Kr ,U l )

30 A⃗r ← OneSideHelper(S , R, L, Kr , K l ,Ur)

31 return A⃗l × A⃗r // cross product, output is vector of state-pairs

Figure 7: Pseudocode for pushing samplers past join.

sampler’s logical state S and (ii) account for the additional changes
to the answer due to the join following the sampler.

_e PushSamplerOnOneSide function in Figure 7 shows how
ASALQA considers pushing the sampler to the le� input. Its goal is to
ûnd sampler Sl such that ΓSl (L) & R is an alternate for ΓS(L & R).
We ûrst try to satisfy the universe and stratiûcation requirements
in S . If any of the universe columns S .U appear only on the right
relation, then pushing to the le� is not possible; since some univ
cols are unavailable on the le�, picking rows in the desired value
subspace of S .U is not possible. (See the check for U l − Lc = ∅ in
PushSamplerOnOneSide.) If some of the strat cols S .S are miss-
ing on the le�, however, ASALQA stratiûes on the le� join keys. (See
lines 8–10 inOneSideHelper.) In the example in Figure 1, stratifying
store_sales & date on d_year can be approximated by stratify-
ing store_sales on the le� join key sold_date_sk. Intuitively,
stratifying on join key ensures that some rows will appear on the
sampled le� to match every row from the right. Hence, the output
will contain rows for every distinct value of the stratiûed column.
However, the join keys may havemore or fewer distinct values than

row count
Average∗, Variance∗

per interesting† columnNumber of Distinct Values
Heavy-Hitter Values and Freq.
∗ ∶ for columns with numerical values; † ∶ columns that appear in
select ûlters, join clauses or contained in the eventual answer.

Table 2: Statistics used by Quickr to facilitate sampler selection

the columns that they replace. In the above example, the join key has
365×more distinct values thand_year; hence the supportper group
appearsmuch smaller than it is. ASALQA uses sfm (stratiûcation fre-
quency multiplier) to correct for this diòerence. Intuitively, when
replacing a stratiûed columnwith a join key having more (or fewer)
distinct values, the value of sfm goes up (or down) and sfm is used
as amultiplierwhen computing the group support (§4.2.6). We note
that this has been a crucial enabler in pushing samplers onto large
relations while properly accounting for stratiûcation needs. Finally,
accounting for the additional changes to the answer due to the join
is similar to the case of select (see §4.2.3). Either the new sampler
stratiûes on the join keys or gets a smaller downstream selectivity.
Lines 12–16 of OneSideHelper show how ASALQA considers diòer-
ent subsets of Krem to add to strat cols and adjusts ds accordingly.

_e PushSamplerOntoBothSides function in Figure 7 shows
how ASALQA considers pushing a sampler to both join inputs.
Its goal is to ûnd samplers Sl ,Sr such that ΓSl (L) & ΓSr (R) is
an alternate for ΓS(L & R). Note the calls to OneSideHelper to
push on to each side of the input. _e only substantial change
is adding join keys to the corresponding univ cols. As shown
in PrepareUnivCol (line#19), ASALQA adds new universe require-
ments if univ cols do not exist already (U = ∅) or if they are identi-
cal to the join keys (U = K) as in the example query in Figure 1. As
before, ASALQA picks the best option from among these alternatives.
ASALQA checks for dissonance between the stratiûcation and uni-

verse requirements (line#15 in Figure 6). Columns that appear in
both the S and U sets are troublesome because the universe sam-
pler will only pick a subset of the values of such columns whereas
stratiûcation requires all values. ASALQA allows overlap in the re-
quirements only when ∣S ∩U ∣ ≪ min(∣S∣ , ∣U ∣); i.e., if only a few
columns overlap, the column sets can be considered eòectively in-
dependent. Further, overlap is allowed for columns that appear in
S only because of COUNT or COUNT DISTINCT since such aggregates
can be estimated correctly (see Table 8).

4.2.5 Other transformation rules, Parallel plans and
Global constraints

We conclude the discussion of transformation rules bynoting that
ASALQA pushes samplers past many other operators including pro-
jections, union-alls and outer joins. In some cases, it is strictly better
to push down the sampler. In other cases, ASALQA uses the costing
that will be described in §4.2.6 to decide whether pushing down a
sampler is better and to pick among the various choices. We men-
tion two important issues here, the details of which are in §A. First,
for the universe sampling property to hold, both input relations of
a join should have an identical universe sampler (same column sets
and probability). We ensure that this and other such global require-
ments are satisûed on the bottom-up pass of the query optimiza-
tion. Next, parallel plan performance can improve further if sam-
plers are followed by exchanges since the cardinality reduction due
to the sampler can translate into a degree-of-parallelism reduction
leading to more eõcient serial sub-plans or better implementation
choices. More details are in §A.

4.2.6 Costing Sampled Expressions
In this section, we describe how to cost sampled expressions.



Costing helps pick between alternatives and determines how best
to implement a sampler whilemeeting all of its requirements.
A key input to costing is the cardinality estimates per relational

expression (how many rows) and the number of distinct values in
each column subset. Table 2 shows the statistics that Quickr col-
lects for each input table. If not already available, the statistics
are computed by the ûrst query that reads the table [8]. Using
these input statistics, ASALQA derives the corresponding statistics
for each query sub-expression. _e derivation improves upon prior
work [16] by using heavy hitter identity and frequency.
Armed with the above stats, we reason about how best to imple-

ment a sampler so as tomeet the requirements encoded in its logical
state S = {S ,U , sfm, ds}. We use two high level simpliûcations. To
ensure that the performance gains are high, we disallow sampling
with probability above 0.1. Next,we use a ûxed error goal: with high
probability, do not miss groups in answer and keep aggregate value
within ±10% of the true value. We defer a more graceful trade-oò
between speed-up and accuracy to future work.

Meeting these goals translates to the following sequence of
checks: (C1) Is stratiûed column requirement S empty or can some
sample probability p ∈ [0, 0.1] ensure that, with high probability,
each distinct value of the columns in S receives at least k rows? (C2)
Is univ col requirement U empty? Answering C1 requires the car-
dinality and distinct value derivations described above for the input
relation. Further, these numbers aremultiplied by ds ∗ sfm. Recall
that downstream selectivity ds is the probability that a row passed
by this sampler will make its way to the answer (a�er downstream
selections or joins). And, sfm is a multiplier to correct the eòect
of replacing strat cols with join keys (§4.2.4). If the answer to both
C1 and C2 is true, the sampler is implemented using the uniform
sampler (§4.1.1). If only C1 is true, a universe sampler is chosen. If
onlyC2 is true, a distinct sampler may be chosen;we checkwhether
there will be any data reduction, i.e., at least k l rows exist per dis-
tinct value of columns in S. We choose k l = 3. _e default option is
to not-sample i.e., implement sampler as a pass-through operator.

Intuitively, the reasoning is that if S and U are empty or if there
is substantial support, a uniform sampler suõces. Universe sam-
pler has higher variance and is chosen only when needed (U ≠ ∅)
and stratiûcation needs are met (S = ∅, or enough support, or
∣S ∩ U ∣ ≪ min(∣S∣, ∣U ∣)). Finally, a query plan without samplers
is chosen and is the desired option when (a) the per-group sup-
port is small or (b) downstream selectivity ds is so small or strat-
iûcation requirements are so restrictive that the number of rows per
distinct value of S is below k l . Physical sampler parameters (e.g.,
sample probability p, δ for distinct) are chosen as the smallest val-
ues that satisfy (C1). We use k = 30 because anecdotally 30 samples
are needed by central-limit-theorem which we use to estimate con-
ûdence intervals. In our evaluation, a parameter sweep shows that
the plans output by ASALQA are similar for k ∈ [5, 100].

4.3 Accuracy analysis
Given a query plan E , with many samplers at arbitrary locations,

Quickr oòers unbiased estimators of aggregate values aswell as the
probability of missing groups and the conûdence intervals for ag-
gregates. We brie�y describe how to do this. First, suppose that a
sampler immediately precedes the aggregation and group by opera-
tor. We use the well-known Horvitz-_ompson (HT) estimator [24]
to calculate unbiased estimators of the true aggregate values and the
variance of these estimators. _e details are in §B.1. _en,we canuse
central-limit-theorem to compute conûdence intervals. _is does
not suõce, however, because the samplers in E can be arbitrarily far
away from the aggregates. In fact, Quickr pushes samplers further
away to improve performance.

Next, to analyze the casewhen samplers are at arbitrary locations
we introduce a novel notion of dominance between query expres-
sions whose output is identical when samplers are removed from
both: E2 is said to dominate E1 denoted as E1

∗

⇒ E2 , iò the accuracy
of E2 is noworse than that of E1 . _is deûnition mathematically dis-
tills the necessary and suõcient conditions to ensure that E2 has no
worse variance of estimators and no higher probability of missing
groups than E1 . _e details are in §B.2, Proof of Proposition 5.
We then show that dominance transitively holds across database

operators. Suppose that π, σ ,& denote a project, select and join.
Proposition 1 (DominanceTransitivity). For pairs of expressions E1,
E2 and F1, F2 that are equivalent if all samplers were removed:

i) E1
∗

⇒ E2 implies π(E1)
∗

⇒ π(E2);
ii) E1

∗

⇒ E2 implies σ(E1)
∗

⇒ σ(E2);
iii) E1

∗

⇒ E2 andF1
∗

⇒ F2 implies E1&F1
∗

⇒ E2&F2, if samplers
in Ei are independent on samplers in Fi or Ei and Fi share the same
universe sampler.

_e proof is in §B.2 Proposition 1.
To analyze the accuracy of a plan, we use the dominance rules to

inductively unroll ASALQA. _at is, just for the sake of analysis, we
ûnd an equivalent query expression E ′ which has only one sampler
just below the aggregation such that E ′ ∗

⇒ E . We use the above HT
estimators on E ′. By dominance, the accuracy of E is no worse. An
illustration of this process for the query in Figure 1 is in Figure 9.
Finally, we can prove that the analysis above requires only one

scan of the sample; the details are in §B.1 Proposition 2.
Proposition 2 (Complexity). For each group G in the query out-
put, Quickr needs O(∣E(G)∣) time to compute the unbiased estima-
tor of all aggregations and their estimated variance where ∣E(G)∣ is
the number of sample rows from G output by expression E .

In summary, we colloquially mention three novel aspects of our
accuracy analysis; the details are in the Appendix. Note that prior
work [35] applies for SUM-like aggregates, uniformly-random sam-
plers and uses self-joins to compute variance. In contrast, ASALQA
handles diòerent aggregate types including the case when the an-
swer has multiple aggregates. Next, we compute all relevant error
measures in one eòective pass over data. Finally, to analyze a more
general class of samplers, we use two ideas. Any sampler that is
strictly more likely to pass a row relative to some uniformly ran-
dom sampler is analyzable. Further, any sampler that has equivalent
errorwhen convolvedwith all database operators is also analyzable.
Our distinct and universe samplers fall into each category respec-
tively. We believe that other samplers exist in each category. _ese
intuitions lead to our deûnition of sampler dominance.

5. EVALUATION
We have implemented Quickr’s samplers and query optimiza-

tion and deployed it in our production clusters. Here, we present
results to answer the following questions:

● Howmuch do queries speed-up? Our evaluation is relative to
a version of theQO that is identical in all respects to Quickr
except for samplers. We also compare with a state-of-the-art
input sampling technique–BlinkDB [9].

● How o�en are the output plans correct? Every query that re-
ceives a sampled plan should meet its error guarantee (with
high probability, no groups are missed in the answer and all
aggregates arewithin a small ratio of true value). Further, un-
approximable queries should receive a planwith no samplers.

● Where do the gains come from? And, how will these results
translate to other queries?
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Figure 8: Comparing Quickr with Baseline– the production QO in our cluster that is identical to Quickr except for samplers

Metric Percentile value
10th 25th 50th 75th 90th 95th

# of passes 1.12 1.18 1.3 1.53 1.92 2.61
Total/First pass time 1.26 1.44 1.67 2 2.63 3.42
# Aggregation Ops. 1 1 3 4 8 16
# Joins 2 3 4 7 9 10
depth of operators 17 18 20 23 26 27
# operators 20 23 32 44 52 86
size of QCS + QVS 2 4 5 7 12 17
size of QCS 0 1 3 5 9 11
# user-defined func. 1 2 4 9 14 24
Table 3: Characteristics of the TPC-DS queries used in evaluation.

5.1 Methodology
Comparables: Both of the systems that we compare Quickr
against are state-of-the-art. We refer to the production QO with-
out samplers as Baseline. _ousands of man-years have gone into
developing Baseline, and it is hardened from several years of pro-
duction use. Baseline supports almost the entirety of T-SQL, has
extensive support for UDOs, generates parallel plans and has care-
fully tunedparallel implementationsofmanyoperators. _e authors
of BlinkDB shared their MILP algorithm to choose which samples
to construct. BlinkDB’s logic to match a query to available input
samples requires queries to recur in order to build the error-latency-
proûle. We give BlinkDB the beneût of perfectmatching by running
each query on all of the input samples and use the “best” sample.
Query sets: To share results publicly,we use the queries and datasets
from theTPC-DS benchmark [4]. _e results here are from a 500GB
dataset (scale factor: 500). Results for the 2TB dataset were simi-
lar. Table 3 shows some query characteristics. Comparing with Fig-
ure 2b we see that TPC-DS queries are simpler than the queries
in our cluster– they have fewer passes over data, fewer joins, and
smaller QCS. Table 9 reports similar measures for queries from a
variety of benchmarks (these queries were run on a Hive cluster)
and shows that queries in other benchmarks are even simpler. We
chose TPC-DS because it is closest to the workload on our cluster.
PerformanceMetrics: To compare performance,wemeasure query
runtime as well as the usages of various resources. Machine-hours
is the sum of the runtime of all tasks. _is translates to cluster oc-
cupancy and is ameasure of throughput. Intermediate Data is the
sum of the output of all tasks less the job output, i.e., corresponds
to the intermediate data written. Shuøed Data is the sum of data
that moves along the network across racks. Together, the last two
measure the excess IO footprint of the query.
ErrorMetrics: ByMissedGroups,we refer to the fraction of groups
in the answer that aremissed. Aggregation Error denotes the aver-
age error between the estimated and true value of all aggregations in
a query. We compute thesemetrics by analyzing the query output.
Cluster:We evaluate Quickr on the same cluster that ran the pro-
duction queries that were analyzed in Figure 2b. _e servers in this
cluster are datacenter-standard. _at is, each has about ten cores,
roughly 100GB ofmemory, a couple of high RPM disks, some SSDs

and a couple of 10Gbps NICs.

5.2 Performance gains
Figure 8a plots a CDF of the various performance metrics. _e

x axis is a ratio between the values of Baseline and Quickr. An
x-value of 2 represents 2× improvement whereas those below 1 rep-
resent a regression. We see from the linewith star points (“machine-
hours”) that Quickr lowers resource usage of themedian query by
over 2×. _e improvements in runtime, the line with x points, can
be more or less than that of the resource usage due to two factors.
(1) Queries that process a small amount of data such as TPC-DS q22
are critical-path limited. _at is, since our cluster oòers much more
degree-of-parallelism than needed by some queries, their runtime
equals the sum of duration of tasks on the critical path. (2) Other
queries gain in runtime by more than expected. When the work
to be done reduces, as it does with sampled plans, schedulers can
marshall their tasks better. Overall, we ûnd that query runtime im-
proves by a median 1.6×. Roughly 20% of the queries speed up by
over 3×. A handful speed up by over 6×. Please note however that
roughly 20%of the queries have slightly longer runtimes. _is is pri-
marily because (a) query runtime is in�uenced by task failures and
outliers [11, 41] and (b) our cluster scheduler uses fair-sharing and
hence the resources oòered to queries vary substantially from one
execution to another [8, 26]. Regression in machine-hours happens
less o�en and to a smaller degree; this is mostly because our sam-
plers are inC#, but the rest of the query executes inC++which leads
to needless overhead in converting rows from one language format
to another. In general, we ûnd runtime to be a noisy metric on our
cluster and believemachine-hourswhich is akin to jobmakespan to
be amore stablemetric to compare plan eõciency.

We now focus on some reasons behind these gains. _e line with
circular points (“interm. data”) shows that the total amount of inter-
mediate datawritten by sampled plans ismuch smaller. Almost 40%
of the queries have reductions larger than 4×. For about 50% of the
queries, the intermediate data written is about the same and some
plans write even more data. _e line with triangle points (“shuøed
data”) shows that the shuøed volume does not decrease as much as
intermediate data. Two facts explain these ûndings. (1)Quickr trig-
gers parallel plan improvements that build upon the reduced cardi-
nality due to samplers (§A)._at is,when the data in �ight becomes
small, Quickr decreases degree-of-parallelism (DOP) so that pair
joins are replaced with cheaper hash joins etc. _e beneût is faster
completion time. _e cost, however, is thatmore data has to be shuf-
�ed and written to adjust the DOP (§A). (2) Quickr outputs plans
without samplers for roughly 25% of the queries. _ese queries still
receive a limited beneût (an average of 25%) because Quickr trig-
gers parallel plan improvements when cardinality reduces due to
other aspects such as ûlters. Such queries will shuøemore data.

To summarize, Quickr oòers substantial performance gains to
a large fraction of the complex queries in the TPC-DS benchmark.
Since production queries havemany more passes over data, we ob-



Metric Percentile value
10th 25th 50th 75th 90th 95th

Baseline QO time 0.38 0.49 0.51 0.54 0.56 0.57
Quickr QO time 0.48 0.5 0.52 0.55 0.57 0.58

Table 4: QueryOptimization (QO) times (sec.)

Metric Value
0 1 2 3 4 9

Samplers per query 25% 51% 9% 11% 2% 2%
Sampler-Source dist. 60% 12% 10% 17% 0% 0%
Table 5: Number of samplers per query and their locations

serve larger gains overall but defer those results for future work.

5.3 Quantifying error
Figure 8b plots a CDF of the error metrics over all the exam-

ined TPC-DS queries. _e line with star points (“Missed Groups”)
shows that up to 20% of queries have missing groups. Upon care-
ful examination, we ûnd that every one of these cases is due to ap-
plying LIMIT 100 on the answer a�er sorting over the aggregation
column. Errors in aggregates change the rank of groups and hence
the approximate answer picks a diòerent top 100. We acknowledge
that Quickr should more carefully consider this case. To the best
of our knowledge, none of the prior AQP schemes handle this sce-
nario either. Wemake one change to the queries: output the answer
before LIMIT 100 and call that the full answer. _e line with tri-
angle points (“Missed Groups: Full”) shows that Quickr misses no
groups in full answers (line is a point on the top le�). _is is indeed
the desired behavior.

In Figure 8b, the lines with circle and x points (“Agg. Error” and
“Agg. Error: Full”) depict the error for aggregates. We see that
80% of the queries have error within ±10% and over 90% are within
±20%. _is is quite good. Careful examination of the outliers reveals
two prevalent causes. (a) Support is skewed across groups. Since
Quickr assumes an even distribution except for heavy hitters, some
groups receive fewer rows than desired and have high error. (b) SUMs
that are computed over values with high skew have high error. As
discussed in §4.1.1, the ûx is to stratify on such columns. However, a
complication is that value skew changeswhenpassing through pred-
icates. For example, WHERE X > 106 ∨ X < 10−3 increases skew and
WHERE X ∈ [10, 11] decreases it. We are working towards deriving
the value skew statistic. If both of these causes are ûxed, and we
believe they can be, over 95% of the TPC-DS queries will have ag-
gregates within ±10% of true answer.

5.4 Characterizing what Quickr does
Figure 8c correlates the performance gains with query character-

istics. It shows the averagemetric value for a range in themachine-
hours gains. _e line with circle points (“Sampler-Source dist.”)
shows that the gains increase when the samplers are closer to the
sources. We next compare some query aspects between the baseline
plans and Quickr. _e line with x points (“Total/First pass time”)
and the one with star points (“# of passes”) show that the gains due
to Quickr are larger for deeper queries. Finally, the line with tri-
angle points (“Interm. Data/10”) shows that queries that gain most
by Quickr have substantial reductions in intermediate data (up to
19×, since the graph shows values divided by 10).

Table 4 shows the query optimization time for Quickr and Base-
line. We expect longer QO times for Quickr since it considers sam-
plers natively and hence explores more alternatives. We ran each
query three times and pick the median QO time. _e table shows
that the increase in QO latency is below 0.1 seconds.

Table 5 shows that 51% of the queries have exactly one sampler.
Many have multiple samplers. Further, 25% of the queries are un-
approximable. _e table also shows where the samplers are in the
query plan. “Sampler-Source distance” is the number of IO passes

Storage
Budget

Coverage Median
Perf. gain:
All

Median
Perf. gain:
Covered

Median
Error

Default parameters (speciûcally, K=M=105).
0.5× 0/64 0% – –
1× 0/64 0% – –
4× 9/64 0% 27% 6%
10× 14/64 0% 24% 5%

Tuned for small group size (K=M=101).
0.5× 8/64 0% 35% 6%
1× 7/64 0% 35% 6%
4× 11/64 0% 32% 6%
10× 12/64 0% 24% 6%

Table 6: BlinkDB’s performance on TPC-DS.

between the extraction stage and the sampler. We see that 60% of
the samplers are on the ûrst pass on data. Recall that sampling on
the ûrst pass is likely to improve performance the most. We also
see that Quickr places samplers in themiddle of the plan in many
queries; moving such samplers past the next database operator does
not yield a better performance vs error tradeoò.

Table 7 shows how o�en various samplers are used. Overall, uni-
form sampler is used roughly twice as frequently as the distinct and
universe samplers. _e distinct sampler is o�en replaced by the
uniform because when there is enough support for groups, the lat-
ter is accurate enough but has better performance. Analogously,
the universe sampler is o�en optimized away because it is domi-
nated by both the uniform and the distinct samplers (see Proposi-
tion 6 in §B.3). Quickr uses the universe sampler only for queries
that join two large relations. _is happens more o�en in our pro-
duction queries. We note that even complex queries with multiple
joins receive plans with only a few samplers. A key reason is that
Quickr converts stratiûcation requirements on columns from the
smaller relations to stratiûcation over join keys in the larger rela-
tions (see discussion on sfm in §4.2.4). Without our sampling+QO
logic (§4.2), evaluating the accuracy and performance of the many
possible sampled plans requires complex reasoning and is time-
consuming even for an experienced data scientist.

5.5 Quickr vs. Apriori samples
_e fundamental problem with apriori samples is the poor cov-

erage for any feasible storage budget. _at is, when queries are
rich, tables have many columns and a dataset has many tables, any
choice of diòerently stratiûed samples of the inputs has poor cover-
age for feasible storage budgets. To illustrate this aspect, we evalu-
ate BlinkDB [9], the best exemplar system of this approach, on the
TPC-DS benchmark. BlinkDB’s MILP to decide which samples to
obtain works only for one table and extending to multiple tables is
non-trivial due to reasons described below. We use theMILP to gen-
erate samples for the store_sales table because (a) it is the largest
table in the TPC-DS benchmark and (b) it has the highest poten-
tial to improve query performance; out of the 64 queries that we
consider, 40 use the store_sales table. Next, we run each query
on all of the samples chosen by theMILP and pick the sample with
the best possible performance that meets the error constraint (no
groups missed and less than ±10% error for aggregates). We vetted
both our methodology and the results with the authors of BlinkDB.

Table 6 shows our ûndings when using the same parameter val-
ues as in the BlinkDB paper. We ran the queries in Hive [40] atop
Tez [2]. _e samples are not explicitly stored in memory but the
ûle-system cache does help since no other queries ran on the cluster
during our experiment. We see that very few queries beneût. For
most queries, none of the constructed input samples yield an an-
swer with zero missed rows and within ±10% error on aggregates.
For sample-set sizes equal to or smaller than the input, the best cov-



eragewas 13%. A parameter sweep onBlinkDB’s internal parameters
reveals that the best coverage overall was 22%, obtained at 10× the
size of the input. Of the 14 queries that beneûted, themedian speed-
up was 24%. It is more feasible to store the entire input in memory
than such large sample-sets.
Digging a bit further,we ûnd that BlinkDB’sMILP generates over

20 diòerently stratiûed samples on store_sales. Most are on one
column but several are on column pairs. Many TPC-DS queries
have a large QCS (see Table 3); large QCSets have a large sample
size and hence samples on column-pairs were picked by the MILP
only at high storage budgets.

We take care to point out that apriori samples can be useful. Pre-
dictable aggregation queries that touch only one large dataset will
greatly beneût. Especially if the data distribution is sparse, i.e. the
number of distinct values per group is much smaller than the row
count. _en, each stratiûed sample will be small and many dif-
ferent stratiûed samples can be feasibly stored per popular dataset.
However, this does not happen in TPC-DS or in our production
clusters. Further complications include: keeping samples consistent
when datasets churn continuously and choosing which among the
available samples (if any) would help an ad-hoc query that diòers
from the queries used when constructing samples. Storing apriori
samples for queries that join more than one large table is problem-
atic because the same tables can be joined on multiple columns and
the samples constructed for a particular join-of-tables do not help
queries that join in a diòerent manner (for example, nine queries
join store_sales and store_returns in TPC-DS with four dif-
ferent options for join columns).

6. RELATED WORK
Many big data systems support relational queries [12, 18, 33, 37,

40]. Several oòer a (uniform) sampler operator. But none automat-
ically decide which queries can be sampled, place appropriate sam-
plers at appropriate locations or oòer guarantees on answer quality.
A rich vein of literature samples input datasets. See [24] for an

excellent overview. Some update the samples as datasets evolve [6].
Most assume knowledge of the queries and the datasets. Congres-
sional sampling [7] keeps both uniform and stratiûed samples on
the group-by columns used by queries. STRAT [20] computes the
optimal sample-set to store given a budget. Chaudhuri et.al. [19]
maintains an outlier index to better support skew. Babcock et.
al. [14] stores themore uncommon values explicitly. SciBORQ [39]
stores multiple layers of impressions where each layer can have a
diòerent focus and level of detail. Similar to STRAT, BlinkDB [9]
also optimally chooses stratiûed samples. Uniquely, it stores sam-
ples in memory and computes an error-latency-proûle for repetitive
queries to meet error or performance targets. For complex ad-hoc
queries with a heavy-tailed distribution on inputs, apriori sampling
has substantial shortcomings (see §5.5).

Online aggregation (OLA) [29, 30, 43] progressively processes
more of the input and keeps updating the answer. _e use-case is
exciting since the user can run the query until the answer is satis-
factory. Quickr looks at all tuples once (early in the plan) and re-
tains a small subset for the remainder of the query. Hence, Quickr
can oòer good error bounds without any assumptions on physical
layout (e.g., input being randomly ordered) and with less computa-
tional overhead (e.g., does not need bootstrap). Further, OLA re-
quires specialized join operators and in-memory data-structures in
order to eõciently update the answers of a complex query [23, 38].

When sampling, Quickr does not use existing indices on tables
aswell as some others do [24, 36]. While this choicemakes Quickr
more widely applicable, for example on unstructured data or when
no index exists, leveraging such metadata can make Quickr more

eòective. For example, by sampling blocks or sub-trees of a B-tree
instead of examining every tuple. _is is key future work.

Our accuracy analysis technique (§4.3) improves in three ways
over the closest related technique [35]. First, the previous tech-
nique [35] only applies for generalized uniform samplers (GUS).
Neither our universe nor our distinct sampler belong to the class of
GUS. We oòer a new notion of sampler dominance that is a signiû-
cant generalization. Second, we also analyze the likelihood ofmiss-
ing groups and consider aggregates beyond SUM (see §B,§C). Fi-
nally,while [35] requires self-joins to compute the variance,Quickr
computes variance and other error metrics in one pass (§4.3).

Recently, there has been some excellent work in using bootstrap
over apriori samples. Agarwal et. al. [10] use bootstrap to determine
which apriori sample is suited for a query. Zeng et. al. [44] oòer a
novel method to symbolically execute bootstrap (by using probabil-
ity annotations and new relational operators that convolve random
variables). _is helps because bootstrap can need thousands of tri-
als, each of which resample from a sample[44]. However, neither
oòset the shortcomings of apriori samples. Since Quickr builds a
sample inline, our accuracy analysis is simpler, faster and has good
guarantees.

Our uniform sampler (§4.1.1) is the standardPoisson sampler [24]
used by several prior works. _e novelty in our distinct sam-
pler (§4.1.2) derives largely from its execution in a streaming and
partitionedmanner: speciûcally in thewaywe lower bias and reduce
memory footprint. To the best of our knowledge, the universe sam-
pler (§4.1.3) is novel. Prior eòorts on sampling both inputs of a join
aremuchmore complex [6, 21, 22, 24]. _ey use detailed statistics or
indices on one or more of the input relations of the join (e.g., Strat-
egy Stream Sample [21]). Since the join inputs in big data queries are
intermediate data that is generated on the �y, obtaining such statis-
tics has substantial overhead. It requires an additional pass over data
and aòects parallelism since the sampler on one input has towait for
the stat collector on the other. Worse, prior work requires samplers
to immediately precede the join. _at is, they cannot be pushed down
past other database operations sincemaintaining the required statis-
tics becomes evenmore complex. Our universe sampler requires no
data exchange between the join inputs at execution time (the hash
function and the portion of hash space to be picked are parameters
from the query plan). Finally, we are aware of no prior work that
reasons about samplers natively in the context of a query optimizer.

7. FINAL THOUGHTS
We oòer a newway to approximate complex ad-hoc queries. Our

insight is to leverage the many passes over data that such queries
perform to sample lazily on the ûrst pass. _e ability to sample
both join inputs precisely and reasoning about samplers natively
in a query optimizer allowed us to oòer a turn-key solution where
the user need only submit his query and the system would auto-
matically determine if and how best that query can be approxi-
mated. Initial results are very promising. In regimes where previ-
ously known techniques deliver no gains,Quickr oòers substantial
speedup. _e speed-up o�en translates to lower cost (e.g., when us-
ing public clouds), faster results or the ability to supportmanymore
queries without increasing cluster size by up to 2×. We also extend
the state-of-art in analyzing the error of sampled expressions.
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APPENDIX
A. FURTHER DETAILS OF ASALQA

In §4.2.6, we see how Quickr translates each logical sampler
to a physical implementation. Next, the QO costs sampled sub-
expressions. To enable this, wemake the following changes: (1) As-
sign the correct cardinality for the samplers based on their sample
probability p except for the distinct sampler which will leak more
rows due to the requirement to pass at least δ rows for each distinct
value of strat cols. (2)Assign the correct processing costs to the sam-
plers per input and output row. _e uniform sampler is the most
eõcient since it only tosses a coin per row. _e universe sampler
comes next since it uses a cryptographic hash. _e distinct sampler
has the highest processing cost because it invokes the heavy-hitter
sketch andusesmorememory for both the sketch and the reservoirs.
Sampler→{Sampler, Exchange}: Reducing the degree-of-
parallelism (DOP) is necessary to get more gains from samplers.
To see why, say a sampler reduces the number of rows in a rela-
tion by 10×, the work does become 1

10 ’th now but start-up costs and
other overheads remain the same. Reducing theDOP amortizes this
overhead and triggers further improvements later in the plan. For
example, pair joins can be replaced with cross joins, re-partitions
can be avoided and parallel plans can be replaced with a serial plan
when data in �ight is small [8]. Quickr introduces exchange oper-
ators to reduce the DOP. However, since an exchange shuøes data it
increases the cost (in terms of latency and resources to shuøe) and
hence ASALQA places an exchange onlywhen the cost is smaller than
the gains in subsequent portions of the execution plan.
Global requirements and Caveats: To ensure that both sides of a
join are implementedwith the same universe sampler parameters (if
at all), on the bottom-up pass of the query optimization, ASALQA re-

http://bit.ly/1uyuBE8
http://tez.apache.org/
http://bit.ly/1HlFRH0
http://bit.ly/1J6uDap
http://bit.ly/1KRK5gl
http://bit.ly/1b4RKoZ


Metric Sampler Type
Uniform Distinct Universe

Distribution across samplers 54% 26% 20%
Queries that use at least 1 sam-
pler of a certain type

49% 24% 9%

Table 7: Frequency of use of various samplers.

True value Estimate rewritten by Quickr
SUM(X) COUNT(*) SUM(w⋅ X) SUM(w)
AVG(X) SUM(w ⋅ X)/SUM(w)
SUM(IF(F(X)? Y: Z)) SUM(IF(F(X)? w⋅ Y: w⋅ Z))‡
COUNT(DISTINCT X) COUNT(DISTINCT X)⋅(univ(X)? w:1)
‡ ∶ COUNTIF and COUNT(X) are rewritten analogous to SUMIF.

Table 8: How Quickr rewrites aggregation operations.

Figure 9: For the example in Figure 1, the query plan computed by
ASALQA. _e dashed arrows show how our error analysis unrolls ASALQA
and the dominance rules (§B.3) used at each step. _e result is an expres-
sion with a single sampler just below the aggregation.

Metric Percentile values
50th 90th

Total/First pass time 1.2 1.4 1.3 2.8 4.3 2
# of Passes over Data 3.1 1.1 1.0 4.0 1.2 1.3
# Aggregation Ops. 3 1 2 8 3 5
# Joins 4 2 2 9 5 7
depth of operators 20 18 16 26 24 27
size of QCS+QVS 5 5 5 12 9 4
size of QCS 3 3 4 9 8 3

Table 9: Analyzing query attributes from diòerent workloads: TPC-
DS [4], TPC-H [5] andOther (BigBench [3] ∪ BigData [1] ∪ . . .). Queries
are written in Hive and executed with Tez as the AM in Yarn.

jects plans that do not satisfy such global requirements. It then falls
back to the next best choice. Further,Quickr does not allow nested
samplers. Because the performance gains from sampling a relation
that has been sampled already is not worth the added potential for
error. _is too is implemented during the bottom-up pass. Finally,
we admit that a few aspects of Quickr are as yet unimplemented.
Quickr does not push samplers past spools and full outer joins.
Heavy hitter information is not used as well as it should be. And,
thoughwe obtain column value variance at the inputs,we do not yet
derive the value variance past other operations. In our evaluation,
we point out the eòect of these caveats. _e ûrst two lower Quickr’s
coverage and performance gains– fewer queries beneût and by less
than they should– and the last adds to error when computing SUM
over skewed columns. Our results are already quite good, however.

B. ANALYZING SAMPLED PLANS
We formally analyze our samplers and push-down rules. We

focus here on queries that perform SUM-like aggregations over
groups; other aggregates are covered in §C. Let group G denote all
the tuples that have the same value in group-by columns of the out-
put. _e answer contains for each group G the aggregate w(G) =

∑t∈G w(t), where w(t) is the value associated with tuple t. Given a
query E, Quickr’s ASALQA algorithm outputs a query plan E with
samplers at various locations. Our goal is to compare the answer
of E (unsampled query) with that of E on two aspects: the expected
squared error of group values (i.e., variance of w(G)) and the group

coverage probability (i.e., likelihood of not missing a group).
For all three samplers used by Quickr, we ûrst oòer closed-form

expressions upon immediate use. _at is, when the samplers are
placednear at the root of the query plan just before group-by and ag-
gregation (see §B.1). To compute similar expressionswhen samplers
are at arbitrary locations in the query tree, intuitively,we address the
following issue: when pushing a sampler past another database op-
erator, how do the error expressions change? (See §B.2.) We intro-
duce the concept of sampling dominance between query expressions
which ensures that the error is no worse. Using this, we establish in
§B.3 a collection of sampler transformation rules. which guide our
exploration of alternatives as well as our accuracy analysis.

B.1 Estimating Sampler Accuracy
Quickr uses the Horvitz-_ompson (HT) estimator [24] to relate

the answers on sampled query plans to their true values and to esti-
mate the expected squared error. For each group G in the answer of
an unsampled query E, the sampled plan E outputs a subset of the
rows in G, E(G) ⊆ G. We estimate w(G) as:

ŵE(G) = ∑
t∈E(G)

w(t)
Pr [t ∈ E(G)]

. (1)

It is easy to see that the above (HT) estimator is unbiased, i.e.,
E [ŵE(G)] = w(G). Hence, its variance is expected squared error:

Var [ŵE(G)] = ∑
i , j∈G

(
Pr [i , j ∈ E(G)]

Pr [i ∈ E(G)]Pr [ j ∈ E(G)]
− 1)⋅w(i)w( j).

From the sample E(G), Var [ŵE(G)] can be estimated as:

V̂ar [ŵE(G)] = (2)

∑
i , j∈E(G)

(
Pr [i , j ∈ E(G)]

Pr [i ∈ E(G)]Pr [ j ∈ E(G)]
− 1) ⋅ w(i)w( j)

Pr [i , j ∈ E(G)]
.

Recall our three samplers: uniform sampler ΓU
p (uniform sampling

probability p), distinct sampler ΓD
p ,C ,δ (each value of column set C has

support at least δ in the sample), and universe sampler ΓV
p ,C (sam-

pling values of column set C with probability p). It could help to
think of the universe sampler as a predicate that passes only the rows
whose values of C belong to the chosen subspace.

We apply the HT estimator to compute variance for all the
samplers. To do so, we compute the terms Pr [i ∈ E(G)] and
Pr [i , j ∈ E(G)] for each sampler as follows:

Proposition 3 (To ComputeHT Estimator and the Variance).
● For ΓU

p , for any tuples i , j ∈ G, we have Pr [i ∈ E(G)] = p, and,
if i ≠ j, Pr [i , j ∈ E(G)] = p2.

● For ΓD
p ,C ,δ , let g(i) be the set of tuples with the same values on C

as tuple i in the input relation. We have

Pr [i ∈ E(G)] = {
1 ∣g(i)∣ ≤ δ
max(δ/∣g(i)∣, p) ∣g(i)∣ > δ

;

if i ≠ j, Pr [i , j ∈ E(G)] = Pr [i ∈ E(G)]Pr [ j ∈ E(G)] .
● For ΓV

p ,C , let g(i) be the set of tuples with the same values on C
as i in the input relation. We have Pr [i ∈ E(G)] = p, and

Pr [i , j ∈ E(G)] = {
p g(i) = g( j)
p2 g(i) ≠ g( j)

, if i ≠ j.

A few imprecisions are worth mentioning. _e universe sampler
does choose its subspace at random. So while the formula above is
technically accurate, tuples that belong to the subspacewill be in the



sample and those outside the subspace would not. Our implemen-
tation of the distinct sampler, because of its requirements to ûnish
in one pass and with a small memory footprint, introduces some
correlation between tuples and a slight bias as noted already.

Complexity of Computing Estimate and Error.
Proposition 2 posits that the computation requires only one scan
of the sample. _e proof follows from Proposition 3 and Equa-
tions(1)-(2). Since each tuple i in the sample E(G) also con-
tains the probability Pr [i ∈ E(G)] in its weight column, ŵE(G)

can be computed in one scan using Equation(1). A naive way to
compute V̂ar [ŵE(G)] using (2) requires a self-join and can take
quadratic time since it checks all pairs of tuples in the sample. We
do better by observing that only the pairs having Pr [i , j ∈ E(G)] ≠

Pr [i ∈ E(G)]Pr [ j ∈ E(G)]need to be considered. For theuniform
anddistinct samplers, the summation in (2) goes to zero for i ≠ j and
so their variance can be computed in linear time. For the universe
sampler, there are two types of pairs: i) (i , j) with g(i) = g( j), and
ii) (i , j) with g(i) ≠ g( j). Per Proposition 3, the summation term
is zero for pairs of the latter type. For the former type, wemaintain
per-group values in parallel and use a shuøe to put them back into
(2). Since the number of groups can be no larger than the number of
tuples, the computation is linear. Further the shuøe o�en hasmuch
less work to do (per group) than the ûrst pass (per sampled tuple)
leading to our one-eòective-pass claim.
Group Coverage Probability.
A groupG will miss from the answer if all the tuples inG aremissed
in the sample E(G). We show how Quickr makes this unlikely.

Proposition 4 (Group Coverage Probability). When samplers im-
mediately precede the aggregate, the probability that a group G ap-
pears in the answer is:
● For ΓU

p , Pr [G] = 1 − (1 − p)∣G∣.
● For ΓD

p ,C ,δ ,

Pr [G] {
= 1, if C contains the group-by dimensions
≥ 1 − (1 − p)∣G∣ , otherwise

.

● For ΓV
p ,C , Pr [G] = 1 − (1 − p)∣G(C)∣, where G(C) is the set of

distinct values of tuples in G on dimensions C.
Using Proposition 4, we see that both uniform and distinct sam-

plers rarely miss groups. Recall that Quickr checks before in-
troducing samplers that there is enough support, i.e. p ∗ ∣G∣ ≥

k (§4.2.6). For example, when k = 30 and p = 0.1, the likelihood
of missing G is below 10−14 . For the universe sampler, note that
∣G(C)∣ ∈ [1, ∣G∣]. However, recall that Quickr uses the universe
sampler only when the stratiûcation requirements can bemet. _at
is, the overlap between universe columns and those deûning the
group is small. Hence, ∣G(C)∣ ∼ ∣G∣ and groups aremissed rarely.
Sampling from Join.
_e advantage of universe sampler ΓV

p ,C lies in sampling from join.
To draw a p fraction of tuples from the join of two relations, the
universe sampler only needs a p fraction from input relations. But,
both the uniform and distinct samplers need to draw a√p fraction
of tuples. Not only is the √p sample more expensive to compute
but both the variance and the group coverage probability become
worse (when p is replaced with √p in Propositions 3 and 4).

B.2 Sampling Dominance
We now formalize our notion of sampling dominance between

query expressions. Suppose E is an expression on database relations
possibly with samplers. _e core Λ(E) denotes the expression gen-
erated by removing all samplers from E . We say an expression E1 is

dominated by another expression E2 if and only if the expressions
have the same core and E2 has a no higher variance and a no higher
probability ofmissing groups than E1 . More formally, we have:

Deûnition 1 (Sampling Dominance). Given two expressions E1 and
E2 with Λ(E1) = Λ(E2) and havingR1 andR2 as the respective out-
put relations, we say E2 dominates E1, or E1

∗

⇒ E2, iò

(v-dominance E1
v
⇒ E2) ∀i , j ∶ (3)

Pr [i ∈R1 , j ∈R1]

Pr [i ∈R1]Pr [ j ∈R1]
≥

Pr [i ∈R2 , j ∈R2]

Pr [i ∈R2]Pr [ j ∈R2]
, and

(c-dominance E1
c
⇒ E2) ∀t ∶ Pr [t ∈R1] ≤ Pr [t ∈R2] . (4)

Note that sampler dominance subsumes the SOA-equivalence def-
inition from [35]. Two expressions E1 , E2 are SOA equivalent iò
E1

∗

⇒ E2 and E2
∗

⇒ E1 . Intuitively c-dominance says that all tu-
ples are strictlymore likely to appear in the output and v-dominance
helps relate the variance. By using (3) and (4) in (1) and the above
propositions, it is not hard to see that if E2 dominates E1 , ŵE2(G) is
better than ŵE1(G) in terms of variance and group coverage proba-
bility. We formally state this result below.

Proposition 5 (Dominance and Accuracy). For any group G in the
output of a SUM-like aggregate query, consider two execution plans E1
and E2 with independent (uniform, distinct, universe) samplers, with
the same core plan Λ(E1) = Λ(E2). If E1

v
⇒ E2, we have

Var [ŵE1(G)] ≥ Var [ŵE2(G)] .

And if E1
c
⇒ E2 and the values on the join dimension and the grouping

dimension (if any) are sampled independently, we have

Pr [G is missed in E1] ≥ Pr [G is missed in E2] .

Hence, E1
∗

⇒ E2 , implies that the latter has a strictly better answer.
Dominance Transitivity acrossDatabaseOperators.
Eventually, we want the dominance relationship to hold at the root
of a plan so that we can bound the variance and the group-missing
probability in the answer according to Proposition 5. We show that
dominance is transitive across database operators, from the root to
leaves in the plan. We focus on three operators: πC (projection on a
subset of columns C), σC (selection on C), and &C (join on C).

_is leads us to Proposition 1 which states the conditions under
which the dominance relationship is transitive. _e proof follows.

Proof. Note that projection holds by deûnition. We focus on se-
lect (ii) and join (iii) below.

Let Ri be the set of rows output by Ei , and R be the set of rows
output by Λ(Ei). For a row i ∈ σC(R), we have

Pr [i ∈ σC(Ri)] = {
Pr [i ∈Ri] i ∈ σC(R)
0 i ∉ σC(R)

. (5)

ii) can be proved by putting (5) into (3) and (4).
To prove E1 &C F1

∗

⇒ E2 &C F2 , it suõces to prove E1 × F1
∗

⇒

E2 × F2 (i.e. cross product) since &C is equivalent to composing ×
with selection σC andwe can apply ii) for the latter. SupposeSi is the
set of rows output by Fi , and S is the set of rows output by Λ(Fi).
For E1 ×F1

∗

⇒ E2 ×F2 to hold, we need to show that

Pr [(r, s) ∈R1 × S1 , (r′ , s′) ∈R1 × S1]

Pr [(r, s) ∈R1 × S1]Pr [(r′ , s′) ∈R1 × S1]

≥
Pr [(r, s) ∈R2 × S2 , (r′ , s′) ∈R2 × S2]

Pr [(r, s) ∈R2 × S2]Pr [(r′ , s′) ∈R2 × S2]
. (6)



To this end, we consider two cases in the following part.
Case a) Ei and Fi share a universe sampler ΓV

p ,D . Let rD be the
value of a row r on dimensions D. In this case, the event “(r, s) ∈

Ri×Si” is equivalent to that r and s have the same values on dimen-
sions D, i.e., rD = sD , and the value rD is picked by the universe
sampler. Because, when rD ≠ sD or r′

D
≠ s′
D
, we have both sides of

(6) equal to 0; when rD = sD and r′
D
= s′
D
, we have

Pr [(r, s) ∈Ri × Si , (r′ , s′) ∈Ri × Si] = Pr [r ∈Ri , r′ ∈Ri]

and Pr [(r, s) ∈Ri × Si] = Pr [r ∈Ri] . (7)

From (7) and E1
∗

⇒ E2 , F1
∗

⇒ F2 we have E1 ×F1
∗

⇒ E2 ×F2 .
Case b) Ei and Fi do not share a universe sampler. In this case,

we know that samplers on the two sides of the join operator (or ×)
are independent, i.e., rows fromRi and the ones form Si are drawn
independently. So based on this independence condition, we have

Pr [(r, s) ∈Ri × Si , (r′ , s′) ∈Ri × Si]

=Pr [r ∈Ri , r′ ∈Ri] ⋅ Pr [s ∈ Si , s′ ∈ Si] , and (8)

Pr [(r, s) ∈Ri × Si] = Pr [r ∈Ri] ⋅ Pr [s ∈ Si] . (9)

Putting (8) and (9) into (6), we can see that E1
∗

⇒ E2 and F1
∗

⇒ F2

suõce for E1 ×F1
∗

⇒ E2 ×F2 .

B.3 Sampler Switching and Pushing Rules
For the same sampling rate p, we have the following ranking

among samplers in the order of accuracy from lower to higher.

Proposition 6 (Switching Rule). For any relation R, we have
ΓV
p ,C(R)

∗

⇒ ΓU
p (R)

∗

⇒ ΓD
p ,C ,δ(R).

_e proof follows from observing the terms for variance and
group coverage of each sampler. Since the distinct sampler has lower
performance gain, it is used only when needed for accuracy.

We now list a few useful transformation rules based on our dom-
inance deûnition and transitivity proofs.

Proposition 7 (Pushing past Projection). For any relation R and a
projection πC where C is a subset of columns of R, we have
Rule-U1: ΓU

p (πC(R))
∗

⇒ πC(ΓU
p (R));

Rule-D1: ΓD
p ,D ,δ(πC(R))

∗

⇒ πC(ΓD
p ,D ,δ(R)), ifD ⊆ C;

Rule-V1: ΓV
p ,D(πC(R))

∗

⇒ πC(ΓV
p ,D(R)), ifD ⊆ C .

_e rules show that it is strictly better to push samplers below
projects. Indeed, the sampler column setD is always a subset of the
columns returned by the project C.

Pushing samplers past selections is complicated by one aspect. If
the columns used in the select are not explicitly stratiûed, the group
sizes vary before and a�er pushing. Hence, we introduce the weak
dominance relationship, denoted as ∼

⇒. With weak dominance, v-
and c- dominance only hold for large groups in a probabilistic way.

Proposition 8 (Pushing past Selection). For any relation R and a
selection σC with selection formula on a subset C of columns of R,
Rule-U2: ΓU

p (σC(R))
∗

⇒ σC(ΓU
p (R));

Rule-D2a: ΓD
p ,D ,δ(σC(R))

∗

⇒ σC(ΓD
p ,D∪C ,δ(R));

Rule-D2b: ΓD
p ,D ,δ(σC(R))

∼

⇒ σC(ΓD
p ,D ,δ/σss(R));

Rule-D2c: ΓD
p ,D ,δ(σC(R))

∼

⇒ σC(ΓD
p ,D ,δ(R));

Rule-V2: ΓV
p ,D(σC(R))

∗

⇒ σC(ΓV
p ,D(R)), if ∣D∩C∣ ≪ min(∣D∣, ∣C∣).

_e selectivity of σC on R, denoted as σss, is ∣σC(R)∣/∣R∣.

Finally, we list the rules for pushing samplers past joins.

Proposition 9 (Pushing past Join). For relations R1 and R2, with
columns Ci respectively and an equi-join &C on columns C, we have
Rule-U3: ΓU

p (R1 &C R2)
c
⇒ ΓU

p1(R1) &C ΓU
p2(R2), if p = p1 ⋅ p2 ;

Rule-D3a: ΓD
p ,D ,δ(R1 &C R2)

∗

⇒ ΓD
p ,D∪C ,δ(R1) &C R2 ;

Rule-D3b: ΓD
p ,D ,δ(R1 &C R2)

∼

⇒ ΓD
p ,D ,δ(R1) &C R2 , if D ⊆ C1 ;

Rule-V3a: ΓV
p ,D(R1 &C R2)

∗

⇒ ΓV
p ,D(R1)&C ΓV

p ,D(R2), if D ⊆ C1 , C2 ;
Rule-V3b: ΓV

p ,D(R1 &C R2)
∗

⇒ ΓV
p ,D(R1) &C R2 , if D ⊆ C1 .

Note that Rule-U3 includes the cases when uniform sampler is
pushed to only one side, i.e., set p1 = 1 or p2 = 1. Observe that for
rules D3a, D3b and V3b, wherein the sampler is only pushed to R1 ,
there are analogous rules that push the sampler only to R2 .

C. GENERAL AGGREGATIONS
So far, we have considered only groups with SUM-like aggre-

gates. Here, we extend our analysis to other aggregation operations
such as COUNT and to the case where a result has multiple aggrega-
tions such as SELECT x, SUM(y), COUNT(z). Quickr allows users to
annotate their user-deûned aggregates with functional expressions
that it then uses to obtain various accuracymeasures; details are le�
for future work.
Other aggregations: Analyzing COUNT directly follows from SUM

by setting w(t) = 1 ∀t. AVG translates to SUM
COUNT

but its variance
is harder to analyze due to the division [24]. In implementa-
tion, Quickr substitutes AVG by SUM/COUNT and divides the cor-
responding estimators. Quickr also supports DISTINCT, which
translates to a group with no aggregations and COUNT(DISTINCT).
Error for the former is akin to missing groups analysis. For
COUNT(DISTINCT), the value estimator varieswith the sampler– by
default it is the value computed over samples. Only when universe
sampling is on the same columns, the value over samples isweighted
up by the probability. Further, distinct sampler oòers unbiased error
and zero variance. With uniform sampler, the variance is small but
there is some negative bias since though unlikely due to Quickr’s
requirement for suõcient support, some rare valuesmay not appear.
We defer analyzing the error for other aggregations to future work.
Multiple aggregation ops: Quickr naturally extends to the case
when multiple aggregations are computed over the same sampled
input relation. _e key observation is that the estimators of true
values for each aggregation only require the value in the sampled
tuple, the corresponding weight which describes the probability
with which the tuple was passed and in rare cases the type of the
sample (e.g., for COUNT DISTINCT). _e ûrst two are available as
columns in the sampled relation. _e third we implement as a cor-
rective rewriting a�er ASALQA chooses the samplers.

D. ADDITIONAL RELATED WORK
We mention a few relevant threads of substantial research: syn-

opses and sketches [15, 20, 42], view matching [28] and data
streams [13, 31, 34]. Sketches and synopses on input datasets can of-
fermore speed-up than samples. However, they are generally harder
to reason with for ad-hoc queries and hence Quickr prefers sam-
pling. However, we do use the heavy-hitter sketch in our distinct
sampler. Sampling in data streams has some similar constraints to
what we pose on our samplers such as bounded memory footprint
and streaming execution. However, Quickr deals with large par-
titioned ad-hoc queries. In contrast, stream management systems
focus on known queries that eòectively execute forever. Reusing
sampled sub-expressions generated byprevious queries can improve
Quickr and hence view matching is an area of future work for us.
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