
Major Technical Advancements in Apache Hive

Yin Huai1 Ashutosh Chauhan2 Alan Gates2 Gunther Hagleitner2 Eric N. Hanson3

Owen O’Malley2 Jitendra Pandey2 Yuan Yuan1 Rubao Lee1 Xiaodong Zhang1

1The Ohio State University 2Hortonworks Inc. 3Microsoft

1{huai, yuanyu, liru, zhang}@cse.ohio-state.edu
2{ashutosh, gates, ghagleitner, owen, jitendra}@hortonworks.com

3ehans@microsoft.com

ABSTRACT

Apache Hive is a widely used data warehouse system for Apache
Hadoop, and has been adopted by many organizations for various
big data analytics applications. Closely working with many users
and organizations, we have identified several shortcomings of Hive
in its file formats, query planning, and query execution, which are
key factors determining the performance of Hive. In order to make
Hive continuously satisfy the requests and requirements of process-
ing increasingly high volumes data in a scalable and efficient way,
we have set two goals related to storage and runtime performance
in our efforts on advancing Hive. First, we aim to maximize the ef-
fective storage capacity and to accelerate data accesses to the data
warehouse by updating the existing file formats. Second, we aim to
significantly improve cluster resource utilization and runtime per-
formance of Hive by developing a highly optimized query plan-
ner and a highly efficient query execution engine. In this paper,
we present a community-based effort on technical advancements in
Hive. Our performance evaluation shows that these advancements
provide significant improvements on storage efficiency and query
execution performance. This paper also shows how academic re-
search lays a foundation for Hive to improve its daily operations.

Categories and Subject Descriptors

H.2 [Database Management]: Systems

Keywords

Databases; Data Warehouse; Hadoop; Hive; MapReduce

1. INTRODUCTION
Apache Hive is a data warehouse system for Apache Hadoop [1].

It has been widely used in organizations to manage and process
large volumes of data, such as eBay, Facebook, LinkedIn, Spotify,
Taobao, Tencent, and Yahoo!. As an open source project, Hive has
a strong technical development community working with widely
located and diverse users and organizations. In recent years, more

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2595630.

than 100 developers have made technical efforts to improve Hive on
more than 3000 issues. With its rapid development pace, Hive has
been significantly updated by new innovations and research since
the original Hive paper [45] was published four years ago. We will
present its major technical advancements in this paper.

Hive was originally designed as a translation layer on top of
Hadoop MapReduce. It exposes its own dialect of SQL to users
and translates data manipulation statements (queries) to a directed
acyclic graph (DAG) of MapReduce jobs. With an SQL interface,
users do not need to write tedious and sometimes difficult MapRe-
duce programs to manipulate data stored in Hadoop Distributed
Filesystem (HDFS).

This highly abstracted SQL interface significantly improves the
productivity of data management in Hadoop and accelerates the
adoption of Hive. The efficiency and productivity of Hive are largely
affected by how its data warehouse layer is designed, implemented,
and optimized to best utilize the underlying data processing en-
gine (e.g. Hadoop MapReduce) and HDFS. In order to make Hive
continuously satisfy requirements of processing increasingly high
volumes of data in a scalable and efficient way, we must improve
both data storage as well as query execution aspect of Hive. First,
Hive should be able to store datasets managed by it in an efficient
way which guarantees both storage efficiency as well as fast data
access. Second, Hive should be able to generate highly optimized
query plans and execute them using a query execution model that
utilizes hardware resources well.

Closely working with many users and organizations, the Hive
development community has identified several shortcomings in its
file formats, query planning, and query execution, which largely
determine performance of queries submitted to Hive. In this paper,
we present a community-based effort on addressing these several
shortcomings with strong support and scientific basis from several
academic research results. The main contributions of this paper are:

1. A new file format, Optimized Record Columnar File (ORC
File), has been added to Hive which provides high storage
and data access efficiency with low overhead.

2. The query planning component has been updated with in-
sightful analyses in complex queries, significantly reducing
unnecessary operations in query plans.

3. A vectorized query execution model has been introduced to
Hive, which significantly improves the efficiency of query
execution at runtime by better utilizing Modern CPUs.

The rest of this paper is organized as follows. Section 2 provides
an overview of Hive’s Architecture. Section 3 presents shortcom-
ings we have identified and the rationale of the related advance-
ments. Section 4 introduces the advancement on the file format
component. Section 5 introduces the advancement on the query

Data Processing Engine

(e.g. MapReduce)

HDFS

Other Storage Systems

(e.g. HBase)

Driver

Metastore

HiveServer2CLI

Storage Handler

File Format

(ORC File)

Parser

Planner

(No unnecessary Map-

phase optimization and

YSmart integration)

Execution

(Vectorized execution
model)

SerDe

RDBMS

Figure 1: The architecture of Hive. Rounded rectangles are

components in Hive. Shaded rounded rectangles are advanced

components, and they also show major advancements that will

be introduced in this paper.

planning component. Section 6 introduces the advancement on the
query execution component. Section 7 reports results of our evalu-
ation on these advancements. Section 8 surveys related work. Sec-
tion 9 is the conclusion.

2. HIVE ARCHITECTURE
Figure 1 shows the architecture of Hive. Hive exposes two inter-

faces to users to submit their statements. These interfaces are Com-

mand Line Interface (CLI) and HiveServer2 [2]. Through these two
interfaces, a statement will be submitted to the Driver. The Driver
first parses the statement and then passes the Abstract Syntax Tree
(AST) corresponding to this statement to the Planner. The Planner
then chooses a specific planner implementation to analyze differ-
ent types of statements. During the process of analyzing a submit-
ted statement, the Driver needs to contact the Metastore to retrieve
needed metadata from a Relational Database Management System
(RDBMS), e.g. PostgreSQL.

Queries used for data retrieval and processing are analyzed by
the Query Planner. Hive translates queries to executable jobs for an
underlying data processing engine that is currently Hadoop MapRe-
duce 1. For a submitted query, the query planner walks the AST of
this query and assembles the operator tree to represent data opera-
tions of this query. An operator in Hive represents a specific data
operation. For example, a FilterOperator is used to evaluate
predicates on its input records. Because a query submitted to Hive
will be evaluated in a distributed environment, the query planner
will also figure out if an operator requires its input records to be

1Starting from Hive 0.13, a query can also be translated to a job
that is executable in Apache Tez [3]. Without loss of generality, we
will mainly use MapReduce in our paper since it is the original data
processing engine used by Hive.

partitioned in a certain way. If so, it then inserts a boundary repre-
sented by one or multiple ReduceSinkOperators (RSOps) be-
fore this operator to indicate that the child operator of these RSOps
need rows from a re-partitioned dataset. For example, for a group-
by clause GROUP BY key, a RSOp will be used to tell the under-
lying MapReduce engine to group rows having the same value of
key. After an operator tree is generated, the query planner applies
a set of optimizations to the operator tree. Then, the entire operator
tree will be passed to the task compiler, which breaks the operator
tree to multiple stages represented by executable tasks. For exam-
ple, the MapReduce task compiler generates a DAG of Map/Reduce
tasks assembled in MapReduce jobs based on an operator tree. In
the end of query planning, another phase of optimizations are ap-
plied to generated tasks.

After the query planner has generated MapReduce jobs, the Driver
will submit those jobs to the underlying MapReduce engine to eval-
uate the submitted query. In the execution of a Map/Reduce task,
operators inside this task are first initialized and then they will pro-
cess rows fetched by the MapReduce engine in a pipelined fash-
ion. To read/write a table with a specific file format, Hive assigns
the corresponding file reader/writer to tasks reading/writing this ta-
ble. For a file format, a serialization-deserialization library (called
SerDe in the rest of this paper) is used to serialize and deserialize
data. After all MapReduce jobs have finished, the Driver will fetch
the results of the query to the user who submitted the query.

Besides processing data directly stored in HDFS, Hive can also
process data stored in other storage systems, e.g. HBase [4]. For
those systems, a corresponding Storage Handler is needed. For
example, the HBase storage handler is used when a query needs to
read or write data from or to HBase.

3. IDENTIFIED SHORTCOMINGS
For increasingly diverse organizations, Hadoop has become the

de facto place for data storage and processing [46]. Meanwhile,
Hive has become one of primary gateways to manipulate, retrieve,
and process data stored and managed in Hadoop and its supported
systems. With increasing adoption of Hive in production systems,
the data volume managed by Hive has increased many folds. At
the same time, query workloads on Hive have become much more
diverse. From the storage perspective, users expect Hive to effi-
ciently store high volumes of data in a given storage space. This
helps users achieve a cost-effective deployment of HDFS. From the
query execution perspective, Hive already delivers a high through-
put by utilizing Hadoop MapReduce at runtime. However, with
new users coming on board, there is an increasing expectation for
Hive to provide faster response time. Another motivating factor to
deliver a low latency response is a better integration of Hive with
business intelligence tools. Users of such tools expect an interac-
tive response time. To meet these two demands, the storage effi-
ciency and query execution performance of Hive must be further
improved. In the rest of this section, we will revisit those critical
components determining the storage efficiency and query execution
performance, and identify shortcomings in these components.

In Hive, the storage efficiency is determined by SerDes and file
formats. Hive originally used two simple file formats provided
by Hadoop, which are TextFile and SequenceFile. A file
stored with TextFile contains plain text data. While, a file stored
with SequenceFile is a flat file consisting of binary key/value
pairs. Because these two formats are data-type-agnostic, Hive uses
SerDes to serialize every row into plain text or binary sequences
when writing data to HDFS, and to deserialize files in these two
formats back to rows with their original schema when reading data
from HDFS. Because these two formats store rows in a row-by-

row manner, rows have more entropy, which make them hard to be
densely compressed. In Hive 0.4, Record Columnar File (RCFile)
[27] was introduced. Because RCFile is a columnar file format,
it achieved certain improvement on storage efficiency. However,
RCFile is still data-type-agnostic and its corresponding SerDe se-
rializes a single row at a time. Under this structure, data-type spe-
cific compression schemes cannot be effectively used. Thus, the

first key shortcoming of Hive on storage efficiency is that data-

type-agnostic file formats and one-row-at-a-time serialization

prevent data values being efficiently compressed.
The query execution performance is largely determined by the

file format component, the query planning component (the query
planner), and the query execution component containing imple-
mentation of operators. Although RCFile is a columnar file for-
mat, its SerDe does not decompose a complex data type (e.g. Map).
Thus, when a query needs to access a field of a complex data type,
all fields of this type have to be read, which introduces inefficiency
on data reading. Also, RCFile was mainly designed for sequential
data scan. It does not have any index and it does not take advantages
of semantic information provided by queries to skip unnecessary
data. Thus, the second key shortcoming of the file format com-

ponent is that data reading efficiency is limited by the lack of

indexes and non-decomposed columns with complex data types.
The query planner in the original Hive translates every operation

specified in this query to an operator. When an operation requires
its input datasets to be partitioned in a certain way 2, Hive will in-
sert RSOps as the boundary between a Map phase and a Reduce
phase. Then, the query planner will break the entire operator tree
to MapReduce jobs based on these boundaries. During query plan-
ning and optimization, the planner only focuses on a single data
operation or a single MapReduce job at a time. This query plan-
ning approach can significantly degrade the query execution per-
formance by introducing unnecessary and time consuming opera-
tions. For example, the original query planner was not aware of
correlations between major operations in a query [31]. Thus, the

third key shortcoming of the query planner is that the query

translation approach ignores relationships between data oper-

ations, and thus introduces unnecessary operations hurting the

performance of query execution.
The query execution component of Hive was heavily influenced

by the working model of Hadoop MapReduce. In a Map or a Re-
duce task, the MapReduce engine fetches a key/value pair and then
forwards it to the Map or Reduce function at a time. For example,
in the case of word count, every Map task processes a line of a text
file at a time. Hive inherited this working model and it processes
rows with a one-row-at-a-time way. However, this working model
does not fit the architecture of modern CPUs and introduces high
interpretation overhead, under-utilized parallelism, low cache per-
formance, and high function call overhead [19] [35] [50]. Thus,
the fourth key shortcoming of the query execution component

is that the runtime execution efficiency is limited by the one-

row-at-a-time execution model.

4. FILE FORMAT
To address the shortcoming of the storage and data access effi-

ciency, we have designed and implemented an improved file for-
mat called Optimized Record Columnar File (ORC File) 3 which
2In the rest of this paper, this kind of data operations are called
major operations and an operator evaluating a major operation is
called a major operator.
3In the rest of this paper, we use ORC File to refer to the file format
we introduced and we use an ORC file or ORC files to refer to one
or multiple files stored in HDFS with the format of ORC File.

Index Data

Row Data

Stripe Footer

Index Data

Row Data

Stripe Footer

Index Data

Row Data

Stripe Footer

File Footer

Postscript

�
��
��
�
��

�
��
��
�
�	

�
��
��
�
�

Column 1

Column 2

Column m

…

Column 1

Column 2

Column m

…

Stripe 1

Stripe 2

Stripe n

…

Metadata

Streams

Data Stream

Row index 1

Row index 2

Row index k

…

Figure 2: The structure of an ORC file. Round-dotted lines

represent position pointers.

has several significant improvements over RCFile. In ORC File,
we have de-emphasized its SerDe and made the ORC file writer
data type aware. With this change, we are able to add various
type-specific data encoding schemes to store data efficiently. To
efficiently access data stored with ORC File, we have introduced
different kinds of indexes that do not exist in RCFile. Those in-
dexes are critical to help the ORC reader find needed data and skip
unnecessary data. Also, because the ORC writer is aware of the
data type of a value, it can decompose a column with a complex
data type (e.g. Map) to multiple child columns, which cannot be
done by RCFile. Besides these three major improvements, we also
have introduced several practical improvements in ORC File, e.g.
a larger default stripe size and a memory manager to bound the
memory footprint of an ORC writer, aiming to overcome inconve-
nience and inefficiency we have observed through years’ operation
of RCFile.

In this section, we give an overview of ORC File and its im-
provements over RCFile. First, we introduce the way that ORC
File organizes and stores data values of a table (table placement
method). Then, we introduce indexes and compression schemes in
ORC File. Finally, we introduce the memory manager in ORC File,
which is a critical and yet often ignored component. This memory
manager bounds the total memory footprint of a task writing ORC
files. It can prevent the task from failing caused by running out of
memory. Figure 2 shows the structure of an ORC file. We will use
it to explain the design of ORC File.

4.1 The Table Placement Method
When a table is stored by a file format, the table placement

method of this file format describes the way that data values of this
table are organized and stored in underlying filesystems. Based
on the definition in [28], the table placement method of ORC File
shares the basic structure with that of RCFile. For a table stored in
an ORC file, it is first horizontally partitioned to multiple stripes.
Then, in a stripe, data values are stored in a column by column way.
All columns in a stripe are stored in the same file. Also, to be adap-
tive to different query patterns, especially ad hoc queries, ORC File
does not put columns into column groups.

From the perspective of the table placement method, ORC File
has three improvements over RCFile. First, it provides a larger de-

Table 1: The approach to decomposing a column with a com-

plex data type.

Data type Child columns

Array A single child column containing array elements.
Map Two child columns, the key field and the value field.
Struct Every field is a child column.
Union Every field is a child column.

fault stripe size (256 MB). While, the default stripe size in RCFile
size is 4 MB 4. With a larger stripe, ORC File can achieve more
efficient data reading operations than RCFile because the reader of
ORC File can better utilize the sequential bandwidth of hard disks
and read less unnecessary data from its underlying filesystem.

The second improvement is that for a column with a complex
data type (e.g. Map), unlike RCFile, the writer of ORC File decom-
poses this column to multiple child columns. Table 1 summarizes
complex data types in Hive and how they are decomposed. After
the process of column decomposition, columns in a table form a
tree structure and only leaf nodes (leaf columns) are storing data
values of this table. Actual data of a leaf column are stored in a
data stream. To facilitate the reader of an ORC file, the metadata of
a column are also stored in metadata streams. In the column tree,
internal columns (represented by internal nodes in the tree struc-
ture) are used to record metadata, e.g. the length of an array. So,
those internal columns will not have data streams. Figure 3 shows
an example table (defined in Figure 3(a)) and the column tree of it.
The schema of the table defines a row with a Struct type which
is the root column (Column id is 0). Because col1, col2, col4,
and col9 are four fields of a row, they appear as child columns of
the root columns. With the decomposition shown in Table 1, this
table is decomposed to six leaf columns. When reading a stripe,
those leaf columns are read in a column by column way. With the
help from those internal columns, we can reconstruct a row from
those leaf columns. Also, for a column with a complex data type,
the ORC reader is able to only read needed child columns 5.

The last improvement of ORC File over RCFile from the per-
spective of a table placement method is that users of ORC File can
have the choice to align stripe boundaries in an ORC file with the
HDFS block boundaries. For an ORC file, the stripe is usually
smaller than the HDFS block size used for this ORC file. Without
this alignment, it is possible that a stripe is stored in two HDFS
blocks, which means this stripe may be stored in different ma-
chines. So, reading a stripe stored in two HDFS blocks likely in-
volves remote data reading operations. When this alignment is en-
abled and the remaining space of a HDFS block cannot fit a stripe,
the writer of an ORC file will pad data to the end of this HDFS
block. The next stripe will start at the beginning of next HDFS
block. With this alignment, a stripe will be always stored in a sin-
gle HDFS block.

4.2 Indexes
To efficiently read data from HDFS, we have added indexes to

ORC File. Because the speed of loading data into Hive and storage
efficiency are important to a file format in Hive, in the design of
ORC File, we decided to only use sparse indexes. There are two
kinds of sparse indexes that are data statistics and position pointers.

4To be consistent with ORC File, we use the term stripe at here.
Actually, a stripe in RCFile is called a row group.
5As of Hive 0.13, Hive has not taken advantage of this ORC File
feature. Future releases of Hive will be able to only read needed
child columns of a column with a complex data type.

CREATE TABLE tbl (

col1 Int,

col2 Array<Int>,

col4 Map<String,

Struct<col7:String,

col8:Int>>,

col9 String

)

(a) The schema of the table

Column id: 0
Type: Struct

Column id: 1
Type: Int

Column id: 3
Type: Int

Column id: 2
Type: Array

Column id: 4
Type: Map

Column id: 5
Type: String

Column id: 6
Type: Struct

Column id: 7
Type: String

Column id: 8
Type: Int

Column id: 9
Type: String

(b) The column tree after column decomposition.

Figure 3: An example table and how columns in it are decom-

posed.

Data Statistics.
Data statistics are used by the ORC reader to not read unnec-

essary data from the HDFS. These statistics are created when the
ORC writer is creating an ORC file. Representative statistics are
the number of values, the minimum value, the maximum value, the
sum, and the length (for text types and binary type). For complex
data types, Array, Map, Struct and Union, their child columns
also record data statistics.

In ORC File, data statistics have three levels. First, columns in an
ORC file have file level statistics which are recorded at the end of
this file. These statistics are used in query optimizations, and they
are also used to answer simple aggregation queries. Second, ORC
File stores stripe level statistics for every column. ORC readers use
these statistics to analyze which stripes are needed to evaluate a
query. Those unneeded stripes will not be read from HDFS. Third,
to further reduce the amount of unnecessary data read from HDFS,
besides stripe level statistics, we have fine-grained statistics inside
a stripe, which are called index group level statistics. We logically
break data values of a column to multiple index groups with a fixed
number of values. The default number of values in an index group
is 10000. Data statistics are recorded for every index group. With
data statistics for every index group, the query processing engine
of Hive can push certain predicates to the reader of an ORC file
and an ORC reader will not read unnecessary index groups from
HDFS. The number of values in an index group is configurable.
An index group containing a small number of values can provide
more fine-grained statistics about a column. However, the size of
data statistics will increase. Thus, users should tradeoff the size
and the granularity of data statistic when determining the number
of values in an index group.

Position Pointers.
When reading an ORC file, the reader needs to know two kinds

of positions to perform efficient data reading operations. First, be-
cause a column in a stripe has multiple logical index groups, the
reader of an ORC file needs to know the starting points of every
index group in metadata streams and data streams. In Figure 2,
round-dotted lines pointing to the metadata stream and data stream
represent this kind of position pointers. Second, an ORC file can
contain multiple stripes and a HDFS block of this ORC file can

contain multiple stripes. To efficiently locate the starting point of
a stripe, position pointers of stripes are needed. Those pointers are
stored in the file footer of an ORC file (round-dotted lines pointing
to starting points of stripes in Figure 2).

4.3 Compression
ORC File uses a two-level compression scheme. A stream is first

encoded by a stream type specific data encoding scheme. Then, an
optional general-purpose data compression scheme can be used to
further compress this stream.

For a column, it is stored in one or multiple streams. Based on
the type of a stream, we can divide streams to four primitive types.
Based on its type, a stream has its own data encoding scheme.
These four types of primitive streams are introduced as follows.

• Byte Stream: A byte stream basically stores a sequence of
bytes and it does not encode data.

• Run Length Byte Stream: A run length byte stream stores a
sequence of bytes. For a sequence of identical bytes, it stores
the repeated byte and the occurrences.

• Integer Stream: An integer stream stores a sequence of in-
tegers. It can encode these integers with run length encoding
and delta encoding. The specific encoding schemes used for
a sub-sequence of integers are determined based on the pat-
tern of it.

• Bit Field Stream: A bit field stream is used to store a se-
quence of boolean values. In this stream, a bit represents a
boolean value. Under the cover, a bit field stream is backed
by a run length byte stream.

Due to the page limit, we are unable to explain what streams
are used for every column type. We will present how an Int col-
umn and a String column are stored as two examples. Interested
readers may refer to [5] for details. For an Int column, one bit
field stream and one integer stream are used. The bit field stream
is used to record if a value is null. The integer stream is used to
record integer values of this Int column. For a String column,
the ORC writer will first check if using dictionary encoding can
store data efficiently by evaluating if the ratio of the number of dis-
tinct entries in the dictionary to the number of encoded values is not
greater than a configurable threshold (the default threshold is 0.8).
If so, the ORC writer will use dictionary encoding scheme, and this
column will be stored in one bit field stream, one byte stream, and
two integer streams. Like an Int column, the bit field stream is
used to record if a value is null. The byte stream is used to store the
dictionary. One integer stream is used to store the length of each
entry in the dictionary. The second integer stream is used to store
values of this column. If the ratio of the number of distinct entries
in the dictionary to the number of encoded values is greater than
the threshold, the ORC writer will know that there are many dis-
tinct values and using dictionary encoding cannot efficiently store
the data. Thus, it will automatically store this column without the
dictionary encoding. Instead of storing the dictionary and storing
values as indexes to the dictionary, the ORC writer will use a byte
stream to store values of this String column and use an integer
stream to store the length of each value.

In ORC File, besides those stream type specific schemes, users
can further ask the writer of an ORC file to compress streams with
a general-purpose codec among ZLIB, Snappy and LZO. For a
stream, the general-purpose codec will compress this stream to
multiple small compression units. In the current implementation,
the default size of a compression unit is 256 KB.

4.4 Memory Manager
When the writer of an ORC file writes data, it buffers the entire

stripe in memory. Thus, the memory footprint of an ORC writer
is the size of a stripe. Because the default size of a stripe is large,
when there are lots of writers concurrently writing to multiple ORC
files in a single Map or Reduce task (for example, when a user uses
dynamic partitioning, and partitioning columns have lots of distinct
values), this task can run out of memory. To bound the memory
consumption of those concurrent writers, we add a memory man-
ager in ORC File. In a Map or Reduce task, the memory manager
sets a threshold which bounds the maximum amount of memory
that can be used by writers in this task 6. Then, every new writer
registers to this memory manager with its stripe size (registered
stripe size). When the total amount of memory used by writers
(the total registered stripe sizes) exceeds the memory threshold, the
memory manager will scale down the actual stripe sizes used in
those writers with a ratio of the memory threshold to the total reg-
istered stripe sizes. When a writer is closed, the memory manager
will subtract the registered stripe size of this writer from the total
registered stripe size. If the total registered stripe size is under the
threshold, the actual stripe sizes of all writers will be set back to
their original stripe sizes. With this control mechanism, the mem-
ory footprint of active writers of ORC files in a Map or Reduce task
is bounded.

5. QUERY PLANNING
To address the shortcoming of the query planner, we first have

identified three major issues caused by the the original query trans-
lation approach of Hive, introducing unnecessary operations and
data movements, and significantly degrading the performance of a
query. These issues are summarized as follows.

• Unecessary Map phases. Because a MapReduce job can
only shuffle data once, it is common that a query will be ex-
ecuted by multiple MapReduce jobs. In this case, the Map
phase loading intermediate results is used merely to load data
back from HDFS for data shuffling. Thus, if a MapReduce
job generating intermediate results does not have a Reduce
phase, it introduces an unnecessary Map phase to load its
outputs back from HDFS.

• Unnecessary data loading. For a query, a table can be used
by multiple operations. If these operations are executed in
the same Map phase, Hive can load the table once. However,
if these operations are in different MapReduce jobs, this ta-
ble will be loaded multiple times, which introduce extra I/O
operations to the query evaluation.

• Unnecessary data re-partitioning. Originally, Hive gen-
erates a MapReduce job for every major operation (a data
operation requiring its input datasets to be partitioned in a
certain way). In a complex query, the input datasets of a ma-
jor operation may be already partitioned in a proper way by
its previous major operations. For this case, we call these two
operations are correlated. The original Hive ignores correla-
tions between major operations and thus, can introduce un-
necessary data re-partitioning, which results in unnecessary
MapReduce jobs and poor query evaluation performance.

For unnecessary Map phases, we have analyzed when Hive will
generate Map-only jobs and added an optimization to merge a Map-
only job to its child job (Section 5.1). For unnecessary data loading
and re-partitioning, we have introduced a Correlation Optimizer to
eliminate unnecessary MapReduce jobs (Section 5.1). In this sec-

6The default threshold is half of the total memory allocated to this
task.

SELECT big1.key, small1.value1, small2.value1,

big2.value1, sq1.total

FROM big1

JOIN small1 ON (big1.sKey1 = small1.key)

JOIN small2 ON (big1.sKey2 = small2.key)

JOIN (SELECT key,

avg(big3.value1) AS avg,

sum(big3.value2) AS total

FROM big2 JOIN big3 ON (big2.key = big3.key)

GROUP BY big2.key) sq1 ON (big1.key = sq1.key)

JOIN big2 ON (sq1.key = big2.key)

WHERE big2.value1 > sq1.avg;

(a) Query

big1

R-JoinOp-3

big2

small2

small1

M-JoinOp-1

M-JoinOp-2

RSOp-1 RSOp-2 RSOp-3

GBYOp

RSOp-5

R-JoinOp-4

RSOp-6

big3 big2

RSOp-4

FSOp

(b) Operator tree

Figure 4: The running example used in Section 5. For an arrow

connecting two operators, it starts from the parent operator

and ends at the child operator.

tion, we use a running example shown in Figure 4(a) to illustrate
optimizations that we will introduce in the rest of this section.

5.1 Eliminating Unnecessary Map phases
In Hive, a Map-only job is generated when the query planner

converts a MapReduce job for a Reduce Join to a Map Join. In a
Reduce Join, input tables are shuffled and they are joined in Reduce
tasks. On the other hand, in a Map Join, two tables are joined in
Map tasks. There are several join schemes for a Map Join. One
representative example is, for a two way join, to build a hashtable
for the smaller table and load it in every Map task reading the larger
table for a hash join.

Because we convert a Reduce Join to a Map Join after MapRe-
duce jobs have been assembled, we have a Map-only job for ev-
ery Map Join at first. Consequently, we would introduce unneces-
sary operations and elapsed time to the evaluation of the submit-
ted query. To eliminate those unnecessary Map phases, every time
when we convert a Reduce Join to a Map Join, we try to merge
the generated Map-only job to its child job if the total size of small
tables used to build hash tables in the merged job is under a con-
figurable threshold. This threshold is used to prevent a Map task
loading a partition of the big table running out of memory.

In our example shown in Figure 4, small1 and small2 are
two small tables, and big1 is a large table. At first, Hive generates
regular Reduce Joins for Joins involving small1 and small2.
Then, Hive automatically converts these two Reduce Joins to Map
Joins, which are shown as M-JoinOp-1 and M-JoinOp-2 in
Figure 4(b). With the optimization introduced in this subsection,

these two Map Joins are merged into the same Map phase and will
be executed in a pipelined fashion. The results of these two Map
Joins will be emitted to the shuffling phase for the Reduce Join
R-JoinOp-4.

5.2 Correlation Optimizer
To eliminate unnecessary data loading and re-partitioning, we

have introduced a Correlation Optimizer into Hive. This optimizer
is based on the idea of correlation-aware query optimizations pro-
posed in YSmart [31]. The main idea of this optimizer is to analyze
if a major operation really needs to re-partition its input datasets
and then to eliminate unnecessary MapReduce jobs through remov-
ing boundaries between a Map phase and a Reduce phase. The
optimized plan will have less number of shuffling phases. Also,
in the optimized plan, a table originally used in those MapReduce
jobs are used in the same MapReduce job and Hive can automati-
cally load the common table once instead of multiple times in the
original plan.

In this section, we first introduce correlations exploited by this
optimizer. Then, we introduce how we have implemented this op-
timizer. We will also cover new challenges we have overcome and
how the design of the Correlation Optimizer is different from the
original YSmart.

5.2.1 Correlations

In the implementation of the Correlation Optimizer, we consider
two kinds of correlations in a query, input correlation and job flow
correlation. An input correlation means that a table is used by mul-
tiple operations originally executed in different MapReduce jobs.
A job flow correlation means that when a major operator depends
on another major operator, these two major operators require their
input datasets to be partitioned in the same way. Interested read-
ers may refer to the original paper of YSmart [31] for details about
correlations.

5.2.2 Implementation

During the development of the Correlation Optimizer, we found
that the biggest challenge was not to identify optimization opportu-
nities in a query, but to make the optimized plan executable. Except
for scanning a table once for operations appearing in the same Map
phase, we found that Hive did not have any support for multi-query
optimizations. Moreover, the push-based model inside a Reduce
task requires an intrinsic coordination mechanism between major
operators executed in the same Reduce task to make those major
operations work in the same pace. To make the optimized plan
work, we needed to extend the query execution layer with the de-
velopment of the optimizer.

Correlation Detection.
In Hive, every query has one or multiple terminal operators which

are the last operators in the operator tree. Those terminal opera-
tors are called FileSinkOperators (FSops). To give an easy
explanation, if an operator A is on another operator B’s path to a
FSOp, A is the downstream of B and B is the upstream of A.

For a given operator tree like the one shown in Figure 4(b), the
Correlation Optimizer starts to visit operators in the tree from those
FSOps in a depth-first way. The tree walker stops at every RSOp.
Then, a correlation detector starts to find a correlation from this
RSOp and its siblings by finding the furthest correlated upstream
RSOps in a recursive way. If we can find any correlated upstream
RSOp, we find a correlation. Currently, there are three conditions
to determine if an upstream RSOp and a downstream RSOp are
correlated, which are (1) emitted rows from these two RSOps are

big1

R-JoinOp-3

big2

small2

small1

M-JoinOp-1

M-JoinOp-2

RSOp-1 RSOp-2 RSOp-4

GBYOp

MuxOp-1

R-JoinOp-4

MuxOp-2

big3

RSOp-3

FSOp

DemuxOp

old tag: 0

new tag: 0

old tag: 0

new tag: 1
old tag: 2

new tag: 3

old tag: 1

new tag: 2

Shuffling Phase

!"#$%&'$ ()*$%&'$

+$ +$

,$ +$

-$,$

.$ -$

!"#$%&'$ /01)*$

+$ +2$345678-$

,$,2$98:(1!678.$

-$,2$98:(1!678.$

.$ +2$345678-$

7&;"!%$ ()*$%&'$

+2$<"=4567$ >?$

,2$@AB67$,$

-2$<"=4567$ >?$

Reducer
Driver

Figure 5: The optimized operator tree of the running example

shown in Figure 4.

sorted in the same way; (2) emitted rows from these two RSOps
are partitioned in the same way; and (3) these RSOps do not have
any conflict on the number reducers. Interested readers may refer
to our implementation [6] and design document [7] for details.

For the example shown in Figure 4(b), the Correlation Optimizer
can find one correlation containing six RSOps, which are RSOp-1
to RSOp-6.

Operator Tree Transformation.
After the Correlation Optimizer finds all correlations in an oper-

ator tree, it starts to transform the operator tree.
There are two kinds of RSOps in a correlation. First, we have a

list of bottom layer RSOps which are necessary ones used to emit
rows to the shuffling phase. Originally, because the MapReduce
engine considers the input data of the Reduce phase as a single
data stream, each bottom layer RSOp was assigned a tag which
is used to identify the source of a row at the Reduce phase. For a
correlation, we reassign tags to those bottom layer RSOps and keep
the mapping from new tags to old tags. For example, in Figure 5,
RS1, RS2, RS3 and RS4 are bottom layer RSOps and their old tags
are 0, 0, 1, and 2, respectively. After the transformation, their new
tags are 0, 1, 2, and 3, respectively.

Second, we have a set of unnecessary RSOps which can be re-
moved from the operator tree. Because the Reduce phase of the
optimized plan can have multiple major operators consuming in-
put rows from the shuffling phase, we added DemuxOperator

(DemuxOp) in the beginning of the Reduce phase (after the Re-
ducer Driver, which is the entry point of a Reduce phase) to re-
assign rows to their original tags and dispatch rows to different
major operators based on new tags. For example, two mappings
tables of the DemuxOp in Figure 5 show how DemuxOp reas-
signs tags and dispatches rows. Then, we remove all unneces-
sary RSOps in this correlation inside the Reduce phase. Finally,
for every GroupByOperator (GBYOp) and JoinOp, we add
a MuxOperator (MuxOp) as the single parent. For a GBYOp, its
parent MuxOp is used to inform when this GBYOp should buffer in-
put rows and emit output rows. For a parent MuxOp of a JoinOp,

besides what a MuxOp does for a GBYOp, its also needs to as-
sign original tags to rows passed to this JoinOp. For example,
the MuxOp-2 shown in Figure 5 basically forwards rows from the
DemuxOp and it needs to assign tags for rows from the GBYOp.

Operator Coordination.
Hive inherits the push-based data processing model in a Map and

a Reduce task from the MapReduce engine. Because of this exe-
cution model, simply removing unnecessary RSOps does not make
the plan executable. For example, an operator in a Reduce phase
generated by the Correlation Optimizer can have two JoinOps
and one is at the upstream of another one. By simply removing
the downstream RSOp, this JoinOp will not know when to start
buffer its input rows and when to generate output rows. To make
the optimized plan work, an operator coordination mechanism is
needed.

Currently, this coordination mechanism is implemented in the
DemuxOp and MuxOp. When a new row is sent to the Reducer
Driver, it checks if it needs to start a new group of rows by check-
ing values of those key columns. If a new group of rows is com-
ing, it first sends the signal of ending the existing row group to the
DemuxOp. Then, the DemuxOp will propagate this signal to the
operator tree. When a MuxOp gets this ending group signal, it will
check if all of its parent operators have sent this signal to it. If so, it
will ask its child to generate results and send this signal to its child.
After the signal of ending group has been propagated through the
entire operator tree in the Reduce phase, the Reducer Driver then
will send a signal of starting a new row group to the DemuxOp.
This signal will also be propagated through the entire operator tree.
Finally, the Reducer Driver will forward the new row to DemuxOp.
Interested readers may refer to our design document [7] for more
details.

6. QUERY EXECUTION
To address the shortcoming of the runtime execution efficiency,

we need to design a new execution model that takes advantage of
characteristics of modern CPUs. The original Hive heavily relies on
using lazy deserialization to reduce the amount of data being dese-
rialized. The data is read as byte arrays and the column values are
deserialized only when being accessed. Lazy deserialization does
help in saving some deserialization costs, but introduces virtual-
ized calls to deserialization routines in the inner loop of execution,
which slows down the execution pipelines.

As demonstrated in [19], the effective execution speed of modern
CPUs greatly depends on parallelism. Modern CPUs have multi-
staged pipelines with large number of stages, and superscalar archi-
tectures contain more than one such pipelines. To fully utilize the
parallelism in such a pipelined architecture, it is important to avoid
unnecessary branches in the instructions. Also, the higher the data
independence among the instructions being executed at different
stages of a pipeline, the more parallelism can be achieved. More-
over, processing rows in a one-row-at-a-time model also causes
poor cache performance [35] [50]. To address all of these issues,
we have designed and implemented the vectorized execution model
in Hive. In this section, we provide an overview of the vectorized
query execution model in Hive. Interested readers can also refer to
[8] [9] for details.

6.1 Vectorized Query Execution
In the vectorized execution model, a dataset is represented as

batches of rows. In a row batch, data values of a column are rep-
resented as a column vector. The number of rows in the batch is
configurable and should be chosen to fit the entire batch in the pro-

class VectorizedRowBatch {

boolean selecetedInUse;

int[] selected;

int size;

ColumnVector[] columns;

}

Figure 6: A snippet of a row batch.

class LongColumnVector extends ColumnVector {

long[] vector

}

Figure 7: A column vector for long encapsulates an array of

longs. LongColumnVector is used to represent all varieties

of integers, boolean and timestamp data types..

class LongColumnAddLongScalarExpression {

int inputColumn;

int outputColumn;

long scalar;

void evaluate(VectorizedRowBatch batch) {

long [] inVector = ((LongColumnVector)

batch.columns[inputColumn]).vector;

long [] outVector = ((LongColumnVector)

batch.columns[outputColumn]).vector;

if (batch.selectedInUse) {

for (int j = 0; j < batch.size; j++) {

int i = batch.selected[j];

outVector[i] = inVector[i] + scalar;

}

} else {

for (int i = 0; i < batch.size; i++) {

outVector[i] = inVector[i] + scalar;

}

}

}

}

Figure 8: Expression to add a long column with a constant. The

array selected[] in the batch is used to keep track of valid

rows without a branch instruction.

cessor cache. By default, this number is set to 1024, which was
carefully chosen to minimize overhead and typically allows one
row batch to fit in the processor cache. The query execution pro-
gresses by applying each expression on the entire column vector.
Figure 6 shows a snippet of a row batch and Figure 7 shows a snip-
pet of a column vector.

In row mode of execution (one-row-at-a-time), each row tra-
verses the whole operator tree before the next row is processed.
While, in vectorized execution, a whole row batch is processed
through the operator tree. The expressions have been re-implemented
as vectorized expressions that work directly on column vectors and
produce output in column vectors.

Vectorized query execution doesn’t support lazy deserialization
and assumes that data reader will provide deserialized data. This
will not introduce much overhead that lazy deserialization wanted
to avoid because filters and projections are pushed down to the data
reader, which will read only relevant data.

6.2 Vectorized Expressions
The biggest chunk of this work has been to implement vectorized

expressions for each row mode expression. Vectorized expressions
process column vectors in a tight loop and minimize branching and
method calls from within the loop. Specialized expressions are im-
plemented for each data type. For example, there are different ex-
pressions for adding two long columns or a long column plus a
double column. Similarly, different expressions have been imple-
mented that add a column to a constant. Figure 8 shows the snippet
of a vector expression that adds a long column to a constant.

The inner loop in Figure 8 is a very tight loop with no branches
or method calls. The iterations are completely independent of each
other and can be parallelized in the superscalar instruction pipelines
of modern CPUs. If the batch fits into the L1 cache, cache misses

will be minimal. Additionally, there is a strong locality of reference
in the instruction cache.

There are more optimizations that have been implemented into
the expressions. The column vectors contain a no-null flag that is
set, by the data reader, to true if it is known that the column doesn’t
contain any null in the batch. The expressions avoid a null check in
the inner loop if the no-null flag is set. If this flag is not set, a null
check is necessary. There is also an is-repeating flag to indicate if
all values of the column are the same. The expressions further opti-
mize for this case by doing computation in constant time if possible
for the whole column vector, rather than time proportional to the
vector size. This can allow the benefits of run-length encoding to
extend to faster query execution.

Vectorized expressions for AND, OR and comparison expressions
have two sets of implementations, one that produces a boolean out-
put column, and other that does not produce an output but achieves
in-place filtering by manipulating the selected array. The ar-
ray of selected is populated with the index of the rows that are
passed by the expression. Subsequent expressions only work on
rows that are selected by the previous expressions.

6.3 Vectorized Expression Templates
Many vectorized expressions have similar code for different data

types. These expressions are generated from pre-defined templates
by variable substitution. For example, there is a template for all
comparison operations among numeric types that generate a boolean
output column. The expressions are generated at build time and
compiled into the Hive jar. There is no dynamic code generation.
Dynamic code generation can achieve more optimized code but that
work has been left for the future.

6.4 Vectorization Optimizer
Vectorization has been added as a rule based optimization in the

query planner. The planner first generates a non-vectorized plan
and then vectorization optimization is invoked if configured. The
vectorization optimization first validates the plan to ensure vector-
ization is applicable to the operators and expressions used in the
plan. If validation succeeds, the optimizer iterates through all the
operators and expressions, and replaces each expression tree with
corresponding vectorized expressions, as applicable.

6.5 Vectorized Reader
Vectorized query execution works with any file format that can

provide data input as vectorized row batch (Figure 6). The colum-
nar file formats fit more naturally with vectorized query execution
because column vectors in the row batch can be more efficiently
read from the underlying data layout. The reader must deserialize
the data and should also populate various flags (e.g. no-null flag) to
enable optimizations as mentioned in Section 6.2.

7. PERFORMANCE EVALUATION
To show the effectiveness of those advancements introduced in

Section 4, Section 5, and Section 6, we report results of our ex-
periments in this section. Our experiments were designed to show
benefits from each advancement separately. We will first introduce
the setup of our experiments and then report results.

7.1 Setup
We conducted our experiments in a cluster with 11 nodes launched

in Amazon EC2 . The instance type was m1.xlarge which has 4
cores, 15 GB memory, and 4 disks. The operating system used for
these nodes was Ubuntu Server 12.04.3 LTS 64-bit. The Hadoop
version was 1.2.1. The Hive version was 0.13-SNAPSHOT built on

Table 2: Sizes of datasets (GB) stored by Text, RCFile, RC-

File with Snappy compression, ORC File, and ORC File with

Snappy compression.

SS-DB TPC-H TPC-DS

Text 248.35 323.84 279.87
RCFile 128.23 269.00 159.69

RCFile Snappy 55.15 118.33 105.28
ORC File 53.51 168.96 102.24

ORC File Snappy 39.20 86.67 94.05

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

&#!!"

''()*" +,-(." +,-()'"

!
"
#"
$%
&
"
'
()
*
$+
,
-
$.
/0
$

/-0123" /-0123"'45667" 8/-"0123" 8/-"0123"'45667"

Figure 9: Elapsed times of loading datasets to file formats of

RCFile, RCFile with Snappy compression, ORC File, and ORC

File with Snappy compression.

Nov. 28th, 2013 for experiments of file formats and query execution
and Hive 0.14-SNAPSHOT built on Mar. 7th, 2014 for experiments
of query planning. This Hadoop cluster had 1 master node running
NameNode and JobTracker, and 10 slave nodes running DataNode
and TaskTracker.

In our experiments, we used queries from three benchmarks,
which are SS-DB [22], TPC-H [10], and TPC-DS [11]. SS-DB is
a standard science DBMS benchmark and it is used to simulate ap-
plications that manipulate array-oriented data. We used a large
scale factor to generate the SS-DB dataset. This dataset contains
1000 images which are divided to 50 cycles (20 images in each cy-
cle). In our experiments, we only used one cycle of images. TPC-H
and TPC-DS are two standard decision support benchmarks. We
used the scale factor of 300 for both of them. In our experiments,
all tables in TPC-H and TPC-DS were loaded into Hive. For every
query used in our experiments, we tested it five times. For elapsed
times, we will report medians, and 25% and 50% percentiles will
be reported as error bars. To eliminate the impact from OS buffer
caches, before every run of a query, we freed all cached objects,
and then freed OS page cache, dentries and inodes.

For Hadoop, we set that the Reduce phase starts after the entire
Map phase has finished. For a slave node, it can run three concur-
rent Map tasks or Reduce tasks. The HDFS block size was set to
512 MB. Due to the page limit, we cannot introduce all configu-
ration properties used in Hadoop and Hive, and show queries used
in our experiments. Interested readers may refer to https://github.
com/yhuai/hive-benchmarks for details.

7.2 File Format
In this section, we show the storage efficiency and data reading

efficiency of ORC File. To show the storage efficiency, we com-
pared the sizes of datasets of SS-DB, TPC-H and TPC-DS stored
by RCFile and ORC. For each file format, we also stored datasets
with and without using Snappy compression (referred to as RCFile
Snappy and ORC File Snappy). Table 2 shows the sizes of those
datasets stored with RCFile, RCFile Snappy, ORC File, and ORC
File Snappy. The sizes of datasets stored in plain text are also pro-
vided in Table 2 (referred to as Text) as references. As we can seen,

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'()*" +,-./0" 1(2-"

!
"#
$
%&
'
()
*
&
(+
%,
(

345.6,"789"::;<" =34"5.6,"789"::;<" =34"5.6,"7::;<"

(a) Elapsed times

!"#$%&

'(#$'&

'#%"&

)#!%&

'(#$*&

%&

'%&

+%&

!%&

)%&

,-./& 012345& 6-72&

!
"#
$
%&
'
(
)%

89:3;1&<=>&??@A& B89&:3;1&<=>&??@A& B89&:3;1&<??@A&

(b) Amounts of data read from HDFS

Figure 10: Elapsed times and sizes of data read from HDFS

of SS-DB query 1.easy, 1.medium, and 1.hard. No PPD means

that predicates were not pushed down to the ORC reader level.

While, PPD means that predicates were pushed down to the

ORC reader level and ORC File used indexes to determine

what data to read.

without Snappy compression, datasets of SS-DB and TPC-DS have
already had smaller sizes than RCFile with Snappy, which shows
the effectiveness of data type specific encoding schemes in ORC
File. With Snappy compression, sizes of datasets stored with ORC
File were further reduced. For datasets of SS-DB and TPC-DS, this
further reduction on sizes is not as significant as that shown in the
dataset of TPC-H. It is because every table in TPC-H has a column
of comment, which contains random strings. The cardinality of
such a column is high and the dictionary encoding scheme is not ef-
fective. Thus, the size of the dataset of TPC-H can be significantly
reduced by using a general-purpose data compression technique,
such as Snappy.

Besides sizes of datasets, we also report data loading times at
here. Figure 9 shows the times taken to load the plain text datasets
to RCFile, RCFile Snappy, ORC File, and ORC File Snappy. For
datasets of SS-DB and TPC-DS, the time taken to load a dataset
to ORC File was about the same with RCFile. However, the data
loading time taken to store the TPC-H dataset in ORC File was
around two times as long as that taken to store the dataset in RCFile.
We believe that it was caused by those columns with random strings
mentioned above. Because the dictionary encoding scheme was not
effective for those columns, operations for the dictionary encoding
scheme were basically useless work which contributed to the longer
time on loading the TPC-H dataset.

To show the data reading efficiency of ORC File, we used three
variations of SS-DB query 1. The query template is shown below.

SELECT SUM(v1), COUNT(*) FROM cycle

WHERE x BETWEEN 0 and var AND

y BETWEEN 0 and var;

These variations are referred to as query 1.easy, query 1.medium,
and query 1.hard. The value of var corresponds to these queries
are 3750, 7500, and 15000, respectively. With the increase of the
difficulty (e.g. from easy to medium), the number of rows satis-
fying predicates in the query increases, and all rows will satisfy

https://github.com/yhuai/hive-benchmarks
https://github.com/yhuai/hive-benchmarks

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'(")*" '(+")*"

!
"#
$
%&
'
()
*
&
(+
%,
(

(a) TPC-DS query 27

!"

#!!"

$!!!"

$#!!"

%&"'("

)*+,-"

%&"'("

)*+,."

%&,"'("

)*+,."

!
"#
$
%&
'
()
*
&
(+
%,
(

(b) TPC-DS query 95

Figure 11: Elapsed times of TPC-DS query 27 and query 95.

w/ UM means that the plan had all unnecessary map phases.

w/o UMmeans that the plan did not have any unnecessary map

phase. CO=off and CO=on means that the Correlation Opti-

mizer was disabled and enabled, respectively.

predicates in query 1.hard. This three queries are suitable for eval-
uating the data reading efficiency of ORC File and the effective-
ness of indexes provided by ORC File. Figure 10 shows elapsed
times of these queries and the amounts of data read from HDFS.
For ORC File, it can use its indexes to evaluate predicates at the
ORC reader level. If there is no row in a stripe satisfying predi-
cates, the ORC reader does not read this stripe. If an index group
does not satisfy predicates, ORC File does not read rows in it from
HDFS. From Figure 10, we have three observations. First, without
using indexes, ORC File’s large default stripe size (i.e. 256 MB)
can provide better data reading efficiency which is shown by a less
query elapsed time and a less amount of data read from HDFS than
a smaller default stripe size provided in RCFile (i.e. 4 MB). This
observation confirms the study in [28]. Second, with indexes, ORC
File is able to significantly further reduce the amount of unneces-
sary data read from HDFS. For query 1.easy, with the help from
indexes, the amount of data read from HDFS was 1.07 GB compar-
ing to 16.91 GB data without using indexes. Third, the overhead
of using indexes is low. For query 1.hard, because all rows satisfy
predicates, indexes are useless for this query. In this case, with
using indexes, ORC File read around 40 MB extra data (storing in-
dexes) and introduced around 2 extra seconds than without using
indexes.

7.3 Query Planning
To show the effectiveness of optimizations introduced in Section

5, we show performance of TPC-DS query 27 and query 95. The
TPC-DS query 27 first has a five-table star join. Then, the result
of this star join is aggregated and sorted. For the star join in this
query, it involves a large fact table and four small dimension tables.
Without the optimization introduced in Section 5.1, the plan of this
query has four Map-only jobs and one MapReduce job. Each Map-
only job corresponds to a join between the large table and a small
dimension table. The last MapReduce job is used to generate the
final result. This plan yields poor query evaluation performance be-
cause it has four unnecessary Map phases. After eliminating these
unnecessary Map phases, the optimized plan has a single MapRe-
duce job. Those Map Joins are executed in the Map phase. Figure
11(a) shows the performance of these two plans. The speedup of
the optimized plan is around 2.34x.

The TPC-DS query 95 is a very complex query. Because the
limitation of Hive on supporting sub-queries in the WHERE clause,
we flatten sub-queries in this query for this experiment. This query
can be optimized by eliminating unnecessary Map phases and ex-
ploiting correlations. Without these two optimizations, the plan of
this query has three Map-only jobs and five MapReduce jobs. By

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'!!"

()*+,"-$" ()*+,"-."

!
"#
$
%&
'
()
*
&
(+
%,
(

/*0123"456"73896:;" </*"456"73896:;" </*"473896:;"

(a) Total elapsed times

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!!"

()*+,"-'" ()*+,"-%"

!
"
#
"
$%
&
'
(
)!
*
+
)&
#
(
),
-.
)

.*/012"345"627859:" ;.*"345"627859:" ;.*"3627859:"

(b) Cumulative CPU times

Figure 12: Elapsed times and cumulative CPU times of TPC-H

query 1 and TPC-H query 6. No Vector and Vector means

that the vectorized query execution engine was disabled and

enabled, respectively.

exploiting correlations with the Correlation Optimizer, the plan has
three Map-only jobs and two MapReduce jobs. By further elimi-
nating unnecessary Map phases, the optimized plan has only two
MapReduce jobs. Figure 11(b) shows the performance of these
three plans. With the Correlation Optimizer, we can achieve a
speedup of 2.57x. Then, after further eliminating unnecessary Map
phases, we can achieve a combined speedup of 2.92x.

7.4 Query Execution
To show the effectiveness of the vectorized query execution en-

gine in Hive, we conducted experiments with TPC-H query 1 and
TPC-H query 6. These two queries use the largest table in the TPC-
H benchmark, i.e. lineitem. The TPC-H query 1 has one pred-
icate and eight aggregations. The TPC-H query 6 has four predi-
cates and one aggregation. Both of these two queries were executed
in a single MapReduce job. Figure 12(a) shows the elapsed times
of these two queries with and without the vectorized query execu-
tion engine. The elapsed times based on RCFile with the origi-
nal Hive execution engine are also reported at here as references.
As we can seen, with the vectorized query execution engine, the
elapsed times of these query were significantly reduced. We also
report cumulative CPU times in Figure 12(b). For the TPC-H query
1, the cumulative CPU time of the original Hive execution engine
is around five times as long as that with the vectorized execution
engine. For the TPC-H query 6, the cumulative CPU time of the
original Hive execution engine is around three times as long as that
with the vectorized execution engine.

8. RELATED WORK
The advancements we introduced in this paper come from a com-

bined result of years’ operating experience on Hive, and the foun-
dation of both traditional database research and recent research ef-
forts on Hadoop-based data management systems. In this section,
we summarize related work to file formats, query planning, and
query execution.

8.1 File Formats
File formats (or storage models in traditional database research)

are one of the most important and long-lasting topics. There were
several research projects on this topic, e.g. [21] [18] [49]. As shown
in [44] and [30], columnar file formats are most suitable for data
warehouse workloads. In the ecosystem of Hadoop, there has been
several work on file formats. RCFile [27] was the first widely used
columnar file format. It has triggered several projects targeting on
this topic, including [23] [24] [33] [29] [12].

To introduce columnar file formats into Hive, characteristics of
Hive, HDFS and MapReduce need to be considered. First, every
HDFS block of every file takes a certain space in the memory of a
HDFS master node, which requires that a file format should occupy

as less space as possible in the HDFS master node. Thus, in the de-
sign of ORC File, we store all columns of a stripe in a single file
instead of storing columns of a stripe to multiple files. This design
also significantly simplifies the integration with Hive. Moreover,
based on [28], it is not necessary to store a stripe to multiple files
when the stripe size is large (e.g. 256 MB default stripe size used
in ORC File). Second, the task scheduler in MapReduce tries to
co-locate a task with its input data. Thus, ORC File stores meta-
data and indexes with their corresponding data. Third, because ad
hoc queries are an important workload of Hive, the adaptivity of a
columnar file format to different query patterns is critical. Thus, in
ORC File, columns will not be grouped. Also, a recent study has
shown that grouping columns has insignificant performance bene-
fits on I/O when the stripe size is large enough [28].

Another related work is Parquet [13]. Based on the definition of
table placement methods provided in [28], ORC File and Parquet
share the same basic structure. They both first partition a table to
multiple stripes 7 and then store columns in a stripe in a column-
by-column fashion. The main difference between them is that they
store values of a column in different ways. Parquet stores values of
a column in a way based on the nested columnar storage introduced
in Dremel [34].

8.2 Query Planning
Planning a query based on its semantics and data properties can

be traced back to System R which cooperates ordering information
of intermediate results in a query when choosing the join method
[40]. There are several projects that aim to infer and exploit inter-
mediate data properties for optimizing the plan of a query. Repre-
sentatives are [42] on sorting operations; [26] on partitioning oper-
ations; [36] on both sorting and grouping operations; and [48] on
partitioning, sorting and grouping operations. To increase effec-
tive disk bandwidth and reduce unnecessary operations, both data
sharing and work sharing are also exploited in [41] [25] [51] [20].

In the ecosystem of Hadoop, there have been several recent re-
search projects exploiting sharing opportunities and eliminating un-
necessary data movements, e.g. [31] [37] [47] [32]. The Correla-
tion Optimizer in Hive is a YSmart-based design. YSmart [31]
looks at a single query. It exploits shared data scan opportunities
and eliminates unnecessary data shuffling operations by merging
multiple MapReduce jobs into a single one. The main difference
between Correlation Optimizer and other related work (including
YSmart) is that Correlation Optimizer is specifically designed for
the push-based data processing model used by Hive. Existing work
mainly focuses on generating optimized query plans. While, Cor-
relation Optimizer also considers how to execute optimized plans
under the push-based model.

8.3 Query Execution
Early work discussed processing a block of rows organized with

the N-ary Storage Model in memory [38] and using a special buffer
operator to create blocks without modifying regular operators to
offer a better instruction cache locality [50]. The vectorized execu-
tion design for Hive was motivated by the work on MonetDB/X100
[19]. This work shows the inefficiency of the one-row-at-a-time ex-
ecution model and shares their experience on building a vectorized
query execution system. A recent paper proposed to dynamically
generate code to further improve query processing performance
[35]. Other recent work argues that for highest query execution
performance, vectorization is essential, and it must be judiciously
combined with compilation techniques [43].
7A stripe in Parquet is called a row group, which is the same term
used in RCFile.

In the ecosystem of Hadoop, Apache Drill [14] and Impala [15]
also attempt to improve runtime query execution efficiency. Drill
uses a vectorized execution model [16] and Impala processes a row
batch at a time instead of a single row at a time.

9. CONCLUSION
In this paper, we have presented major advancements in Hive.

Specifically, we introduced (1) a highly efficient file format, ORC
File; (2) an updated query planner that effectively reduces unnec-
essary data operations and movements by eliminating unnecessary
Map phases and exploiting correlations in a query; and (3) a new
vectorized query execution engine that significantly improves the
performance of query execution through better utilizing modern
CPUs. The performance and resource utilization efficiency of the
updated Hive have been demonstrated by our experiments. We
have also received positive feedbacks from the Hive-based data pro-
cessing community. For example, the storage efficiency in Face-
book’s Hive production system has been significantly improved af-
ter adopting ORC File [39].

These major technical advancements come from strong collab-
orative efforts from both research and development communities.
Some academic research projects have directly influenced the new
developments of Hive with strong technical and analytical basis.
On the other hand, the engineering efforts in systems implementa-
tion have addressed several challenges in order to make Hive gain
substantial benefits in practice.

Recently, several new features have been added into Hive or un-
der development. Interested readers may refer to [17] for details.
From the perspective of functionalities, we have been working on
expending Hive’s SQL capabilities, such as advanced analytic func-
tions, new data types, extending the sub-queries support, common
table expressions, and improved support for join syntax. Hive has
introduced limited form of support for transactions. Language level
support for transaction is under development and is expected to
be released later this year. Also, Hive now supports SQL stan-
dard based authorization model. HiveServer2 has been enhanced to
support different protocols and Kerberos authentication. From the
perspective of performance, we have been integrating Hive with
Apache Tez [3] for its support on more general query execution
plans and better performance. Except eliminating unnecessary Map
phases (it is a MapReduce-specific issue), all of advancements in-
troduced in this paper are still applicable and important to Hive
running on Tez. Hive has introduced cost based optimizer. Cur-
rently, its used to do join ordering. Work is in progress to use cost
based optimizer for wider range of queries.

10. ACKNOWLEDGMENTS
We would like to thank the Hive development community. In

recent years, more than 100 developers have made technical efforts
to improve Hive on more than 3000 issues. We thank those individ-
uals who have operated, tested, supported and documented Hive in
various platforms and applications. We are grateful to the Hive user
community who has provided us with numerous valuable feedbacks
that drive the development and advancements of Hive. We thank
anonymous reviewers for their constructive comments. This work
has been partially supported by the National Science Foundation
under grants CCF-0913050, OCI-1147522, and CNS-1162165.

11. REFERENCES
[1] https://hadoop.apache.org/.
[2] https://cwiki.apache.org/confluence/display/Hive/

Setting+up+HiveServer2.

https://hadoop.apache.org/
https://cwiki.apache.org/confluence/display/Hive/Setting+up+HiveServer2
https://cwiki.apache.org/confluence/display/Hive/Setting+up+HiveServer2

[3] https://tez.incubator.apache.org/.
[4] https://hbase.apache.org/.
[5] https://svn.apache.org/viewvc/hive/trunk/ql/src/java/org/

apache/hadoop/hive/ql/io/orc/WriterImpl.java?view=log.
[6] https://svn.apache.org/viewvc/hive/trunk/ql/src/java/org/

apache/hadoop/hive/ql/optimizer/correlation/
CorrelationOptimizer.java?view=log.

[7] https://cwiki.apache.org/confluence/display/Hive/
Correlation+Optimizer.

[8] https://issues.apache.org/jira/browse/HIVE-4160.
[9] https://issues.apache.org/jira/secure/attachment/12603710/

Hive-Vectorized-Query-Execution-Design-rev11.pdf.
[10] http://www.tpc.org/tpch/.
[11] http://www.tpc.org/tpcds/.
[12] http://avro.apache.org/docs/current/trevni/spec.html.
[13] https://github.com/Parquet/parquet-format.
[14] https://incubator.apache.org/drill/.
[15] https://github.com/cloudera/impala.
[16] http://www.slideshare.net/ApacheDrill/

oscon-2013-apache-drill-workshop-part-2.
[17] https://hive.apache.org/.
[18] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis.

Weaving Relations for Cache Performance. In VLDB, 2001.
[19] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:

Hyper-Pipelining Query Execution. In CIDR, 2005.
[20] Y. Cao, G. C. Das, C.-Y. Chan, and K.-L. Tan. Optimizing

Complex Queries with Multiple Relation Instances. In
SIGMOD, 2008.

[21] G. P. Copeland and S. N. Khoshafian. A Decomposition
Storage Model. In SIGMOD, 1985.

[22] P. Cudre-Mauroux, H. Kimura, K.-T. Lim, J. Rogers,
S. Madden, M. Stonebraker, S. B. Zdonik, and P. G. Brown.
SS-DB: A Standard Science DBMS Benchmark. http://
www-conf.slac.stanford.edu/xldb10/docs/ssdb_benchmark.
pdf.

[23] A. Floratou, J. M. Patel, E. J. Shekita, and S. Tata.
Column-Oriented Storage Techniques for MapReduce. In
VLDB, 2011.

[24] S. Guo, J. Xiong, W. Wang, and R. Lee. Mastiff: A
Mapreduce-based System for Time-Based Big Data
Analytics. In CLUSTER, 2012.

[25] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. QPipe: A
Simultaneously Pipelined Relational Query Engine. In
SIGMOD, 2005.

[26] W. Hasan and R. Motwani. Coloring Away Communication
in Parallel Query Optimization. In VLDB, 1995.

[27] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and
Z. Xu. RCFile: A Fast and Space-efficient Data Placement
Structure in MapReduce-based Warehouse Systems. In
ICDE, 2011.

[28] Y. Huai, S. Ma, R. Lee, O. O’Malley, and X. Zhang.
Understanding Insights into the Basic Structure and Essential
Issues of Table Placement Methods in Clusters. In VLDB,
2013.

[29] A. Jindal, J.-A. Quiané-Ruiz, and J. Dittrich. Trojan Data
Layouts: Right Shoes for a Running Elephant. In SOCC,
2011.

[30] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandier,
L. Doshi, and C. Bear. The Vertica Analytic Database:
C-Store 7 Years Later. In VLDB, 2012.

[31] R. Lee, T. Luo, Y. Huai, F. Wang, Y. He, and X. Zhang.
YSmart: Yet Another SQL-to-MapReduce Translator. In
ICDCS, 2011.

[32] H. Lim, H. Herodotou, and S. Babu. Stubby: A
Transformation-based Optimizer for Mapreduce Workflows.
In VLDB, 2012.

[33] Y. Lin, D. Agrawal, C. Chen, B. C. Ooi, and S. Wu. Llama:
Leveraging Columnar Storage for Scalable Join Processing
in the Mapreduce Framework. In SIGMOD, 2011.

[34] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel: Interactive Analysis of
Web-Scale Datasets. In VLDB, 2010.

[35] T. Neumann. Efficiently Compiling Efficient Query Plans for
Modern Hardware. In VLDB, 2011.

[36] T. Neumann and G. Moerkotte. A Combined Framework for
Grouping and Order Optimization. In VLDB, 2004.

[37] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and
N. Koudas. MRShare: Sharing Across Multiple Queries in
Mapreduce. In VLDB, 2010.

[38] S. Padmanabhan, T. Malkemus, R. C. Agarwal, and
A. Jhingran. Block Oriented Processing of Relational
Database Operations in Modern Computer Architectures. In
ICDE, 2001.

[39] J. Parikh. Data Infrastructure at Web Scale. http://www.vldb.
org/2013/video/keynote1.flv.

[40] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access Path Selection in a Relational
Database Management System. In SIGMOD, 1979.

[41] T. K. Sellis. Multiple-Query Optimization. ACM Trans.

Database Syst., 13(1):23–52, Mar. 1988.
[42] D. Simmen, E. Shekita, and T. Malkemus. Fundamental

Techniques for Order Optimization. In SIGMOD, 1996.
[43] J. Sompolski, M. Zukowski, and P. A. Boncz. Vectorization

vs. Compilation in Query Execution. In DaMoN, 2011.
[44] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,

M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik.
C-Store: A Column-oriented DBMS. In VLDB, 2005.

[45] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Anthony, H. Liu, and R. Murthy. Hive - A
Petabyte Scale Data Warehouse Using Hadoop. In ICDE,
2010.

[46] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and
E. Baldeschwieler. Apache Hadoop YARN: Yet Another
Resource Negotiator. In SoCC, 2013.

[47] X. Wang, C. Olston, A. D. Sarma, and R. Burns. CoScan:
Cooperative Scan Sharing in the Cloud. In SoCC, 2011.

[48] J. Zhou, P.-Å. Larson, and R. Chaiken. Incorporating
Partitioning and Parallel Plans into the SCOPE Optimizer. In
ICDE, 2010.

[49] J. Zhou and K. A. Ross. A Multi-resolution Block Storage
Model for Database Design. In IDEAS, 2003.

[50] J. Zhou and K. A. Ross. Buffering Database Operations for
Enhanced Instruction Cache Performance. In SIGMOD,
2004.

[51] M. Zukowski, S. Héman, N. Nes, and P. Boncz. Cooperative
Scans: Dynamic Bandwidth Sharing in a DBMS. In VLDB,
2007.

https://tez.incubator.apache.org/
https://hbase.apache.org/
https://svn.apache.org/viewvc/hive/trunk/ql/src/java/org/apache/hadoop/hive/ql/io/orc/WriterImpl.java?view=log
https://svn.apache.org/viewvc/hive/trunk/ql/src/java/org/apache/hadoop/hive/ql/io/orc/WriterImpl.java?view=log
https://svn.apache.org/viewvc/hive/trunk/ql/src/java/org/apache/hadoop/hive/ql/optimizer/correlation/CorrelationOptimizer.java?view=log
https://svn.apache.org/viewvc/hive/trunk/ql/src/java/org/apache/hadoop/hive/ql/optimizer/correlation/CorrelationOptimizer.java?view=log
https://svn.apache.org/viewvc/hive/trunk/ql/src/java/org/apache/hadoop/hive/ql/optimizer/correlation/CorrelationOptimizer.java?view=log
https://cwiki.apache.org/confluence/display/Hive/Correlation+Optimizer
https://cwiki.apache.org/confluence/display/Hive/Correlation+Optimizer
https://issues.apache.org/jira/browse/HIVE-4160
 https://issues.apache.org/jira/secure/attachment/12603710/Hive-Vectorized-Query-Execution-Design-rev11.pdf
 https://issues.apache.org/jira/secure/attachment/12603710/Hive-Vectorized-Query-Execution-Design-rev11.pdf
http://www.tpc.org/tpch/
http://www.tpc.org/tpcds/
http://avro.apache.org/docs/current/trevni/spec.html
https://github.com/Parquet/parquet-format
https://incubator.apache.org/drill/
https://github.com/cloudera/impala
http://www.slideshare.net/ApacheDrill/oscon-2013-apache-drill-workshop-part-2
http://www.slideshare.net/ApacheDrill/oscon-2013-apache-drill-workshop-part-2
https://hive.apache.org/
http://www-conf.slac.stanford.edu/xldb10/docs/ssdb_benchmark.pdf
http://www-conf.slac.stanford.edu/xldb10/docs/ssdb_benchmark.pdf
http://www-conf.slac.stanford.edu/xldb10/docs/ssdb_benchmark.pdf
http://www.vldb.org/2013/video/keynote1.flv
http://www.vldb.org/2013/video/keynote1.flv

	Introduction
	Hive Architecture
	Identified Shortcomings
	File Format
	The Table Placement Method
	Indexes
	Compression
	Memory Manager

	Query Planning
	Eliminating Unnecessary Map phases
	Correlation Optimizer
	Correlations
	Implementation

	Query Execution
	Vectorized Query Execution
	Vectorized Expressions
	Vectorized Expression Templates
	Vectorization Optimizer
	Vectorized Reader

	Performance Evaluation
	Setup
	File Format
	Query Planning
	Query Execution

	Related Work
	File Formats
	Query Planning
	Query Execution

	Conclusion
	Acknowledgments
	References

