
Dominant Resource Fairness: Fair Allocation of Multiple Resource Types

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, Ion Stoica
University of California, Berkeley

{alig,matei,benh,andyk,shenker,istoica}@cs.berkeley.edu

Abstract
We consider the problem of fair resource allocation

in a system containing different resource types, where
each user may have different demands for each resource.
To address this problem, we propose Dominant Resource
Fairness (DRF), a generalization of max-min fairness
to multiple resource types. We show that DRF, unlike
other possible policies, satisfies several highly desirable
properties. First, DRF incentivizes users to share re-
sources, by ensuring that no user is better off if resources
are equally partitioned among them. Second, DRF is
strategy-proof, as a user cannot increase her allocation
by lying about her requirements. Third, DRF is envy-
free, as no user would want to trade her allocation with
that of another user. Finally, DRF allocations are Pareto
efficient, as it is not possible to improve the allocation of
a user without decreasing the allocation of another user.
We have implemented DRF in the Mesos cluster resource
manager, and show that it leads to better throughput and
fairness than the slot-based fair sharing schemes in cur-
rent cluster schedulers.

1 Introduction
Resource allocation is a key building block of any shared
computer system. One of the most popular allocation
policies proposed so far has been max-min fairness,
which maximizes the minimum allocation received by a
user in the system. Assuming each user has enough de-
mand, this policy gives each user an equal share of the
resources. Max-min fairness has been generalized to in-
clude the concept of weight, where each user receives a
share of the resources proportional to its weight.

The attractiveness of weighted max-min fairness
stems from its generality and its ability to provide perfor-
mance isolation. The weighted max-min fairness model
can support a variety of other resource allocation poli-
cies, including priority, reservation, and deadline based
allocation [31]. In addition, weighted max-min fairness
ensures isolation, in that a user is guaranteed to receive

her share irrespective of the demand of the other users.
Given these features, it should come as no surprise

that a large number of algorithms have been proposed
to implement (weighted) max-min fairness with various
degrees of accuracy, such as round-robin, proportional
resource sharing [32], and weighted fair queueing [12].
These algorithms have been applied to a variety of re-
sources, including link bandwidth [8, 12, 15, 24, 27, 29],
CPU [11, 28, 31], memory [4, 31], and storage [5].

Despite the vast amount of work on fair allocation, the
focus has so far been primarily on a single resource type.
Even in multi-resource environments, where users have
heterogeneous resource demands, allocation is typically
done using a single resource abstraction. For example,
fair schedulers for Hadoop and Dryad [1, 18, 34], two
widely used cluster computing frameworks, allocate re-
sources at the level of fixed-size partitions of the nodes,
called slots. This is despite the fact that different jobs
in these clusters can have widely different demands for
CPU, memory, and I/O resources.

In this paper, we address the problem of fair alloca-
tion of multiple types of resources to users with heteroge-
neous demands. In particular, we propose Dominant Re-
source Fairness (DRF), a generalization of max-min fair-
ness for multiple resources. The intuition behind DRF is
that in a multi-resource environment, the allocation of a
user should be determined by the user’s dominant share,
which is the maximum share that the user has been allo-
cated of any resource. In a nutshell, DRF seeks to max-
imize the minimum dominant share across all users. For
example, if userA runs CPU-heavy tasks and userB runs
memory-heavy tasks, DRF attempts to equalize user A’s
share of CPUs with user B’s share of memory. In the
single resource case, DRF reduces to max-min fairness
for that resource.

The strength of DRF lies in the properties it satis-
fies. These properties are trivially satisfied by max-min
fairness for a single resource, but are non-trivial in the
case of multiple resources. Four such properties are

1

sharing incentive, strategy-proofness, Pareto efficiency,
and envy-freeness. DRF provides incentives for users to
share resources by guaranteeing that no user is better off
in a system in which resources are statically and equally
partitioned among users. Furthermore, DRF is strategy-
proof, as a user cannot get a better allocation by lying
about her resource demands. DRF is Pareto-efficient as
it allocates all available resources subject to satisfying
the other properties, and without preempting existing al-
locations. Finally, DRF is envy-free, as no user prefers
the allocation of another user. Other solutions violate at
least one of the above properties. For example, the pre-
ferred [3, 22, 33] fair division mechanism in microeco-
nomic theory, Competitive Equilibrium from Equal In-
comes [30], is not strategy-proof.

We have implemented and evaluated DRF in
Mesos [16], a resource manager over which multiple
cluster computing frameworks, such as Hadoop and MPI,
can run. We compare DRF with the slot-based fair shar-
ing scheme used in Hadoop and Dryad and show that
slot-based fair sharing can lead to poorer performance,
unfairly punishing certain workloads, while providing
weaker isolation guarantees.

While this paper focuses on resource allocation in dat-
acenters, we believe that DRF is generally applicable to
other multi-resource environments where users have het-
erogeneous demands, such as in multi-core machines.

The rest of this paper is organized as follows. Sec-
tion 2 motivates the problem of multi-resource fairness.
Section 3 lists fairness properties that we will consider in
this paper. Section 4 introduces DRF. Section 5 presents
alternative notions of fairness, while Section 6 analyzes
the properties of DRF and other policies. Section 7 pro-
vides experimental results based on traces from a Face-
book Hadoop cluster. We survey related work in Sec-
tion 8 and conclude in Section 9.

2 Motivation
While previous work on weighted max-min fairness has
focused on single resources, the advent of cloud com-
puting and multi-core processors has increased the need
for allocation policies for environments with multiple
resources and heterogeneous user demands. By multi-
ple resources we mean resources of different types, in-
stead of multiple instances of the same interchangeable
resource.

To motivate the need for multi-resource allocation, we
plot the resource usage profiles of tasks in a 2000-node
Hadoop cluster at Facebook over one month (October
2010) in Figure 1. The placement of a circle in Figure 1
indicates the memory and CPU resources consumed by
tasks. The size of a circle is logarithmic to the number of
tasks in the region of the circle. Though the majority of
tasks are CPU-heavy, there exist tasks that are memory-

0 1 2 3 4 5 6 7 8 9
Per task memory demand (GB)

0

1

2

3

4

5

6

7

Pe
r t

as
k

CP
U

de
m

an
d

(c
or

es
)

Maps
Reduces

Figure 1: CPU and memory demands of tasks in a 2000-node
Hadoop cluster at Facebook over one month (October 2010).
Each bubble’s size is logarithmic in the number of tasks in its
region.

heavy as well, especially for reduce operations.
Existing fair schedulers for clusters, such as Quincy

[18] and the Hadoop Fair Scheduler [2, 34], ignore the
heterogeneity of user demands, and allocate resources at
the granularity of slots, where a slot is a fixed fraction
of a node. This leads to inefficient allocation as a slot is
more often than not a poor match for the task demands.

Figure 2 quantifies the level of fairness and isola-
tion provided by the Hadoop MapReduce fair sched-
uler [2, 34]. The figure shows the CDFs of the ratio
between the task CPU demand and the slot CPU share,
and of the ratio between the task memory demand and
the slot memory share. We compute the slot memory
and CPU shares by simply dividing the total amount of
memory and CPUs by the number of slots. A ratio of
1 corresponds to a perfect match between the task de-
mands and slot resources, a ratio below 1 corresponds to
tasks underutilizing their slot resources, and a ratio above
1 corresponds to tasks over-utilizing their slot resources,
which may lead to thrashing. Figure 2 shows that most of
the tasks either underutilize or overutilize some of their
slot resources. Modifying the number of slots per ma-
chine will not solve the problem as this may result either
in a lower overall utilization or more tasks experiencing
poor performance due to over-utilization (see Section 7).

3 Allocation Properties
We now turn our attention to designing a max-min fair al-
location policy for multiple resources and heterogeneous
requests. To illustrate the problem, consider a system
consisting of 9 CPUs and 18 GB RAM, and two users:
user A runs tasks that require 〈1 CPUs, 4 GB〉 each, and
user B runs tasks that require 〈3 CPUs, 1 GB〉 each.
What constitutes a fair allocation policy for this case?

2

0.0 0.5 1.0 1.5 2.0 2.5
Ratio of task demand to resource per slot

0.0

0.2

0.4

0.6

0.8

1.0
CD

F
of

 ta
sk

s

Memory demand
CPU demand

Figure 2: CDF of demand to slot ratio in a 2000-node cluster at
Facebook over a one month period (October 2010). A demand
to slot ratio of 2.0 represents a task that requires twice as much
CPU (or memory) than the slot CPU (or memory) size.

One possibility would be to allocate each user half of
every resource. Another possibility would be to equal-
ize the aggregate (i.e., CPU plus memory) allocations of
each user. While it is relatively easy to come up with a
variety of possible “fair” allocations, it is unclear how to
evaluate and compare these allocations.

To address this challenge, we start with a set of de-
sirable properties that we believe any resource alloca-
tion policy for multiple resources and heterogeneous de-
mands should satisfy. We then let these properties guide
the development of a fair allocation policy. We have
found the following four properties to be important:

1. Sharing incentive: Each user should be better off
sharing the cluster, than exclusively using her own
partition of the cluster. Consider a cluster with iden-
tical nodes and n users. Then a user should not be
able to allocate more tasks in a cluster partition con-
sisting of 1

n of all resources.

2. Strategy-proofness: Users should not be able to
benefit by lying about their resource demands. This
provides incentive compatibility, as a user cannot
improve her allocation by lying.

3. Envy-freeness: A user should not prefer the allo-
cation of another user. This property embodies the
notion of fairness [13, 30].

4. Pareto efficiency: It should not be possible to in-
crease the allocation of a user without decreasing
the allocation of at least another user. This prop-
erty is important as it leads to maximizing system
utilization subject to satisfying the other properties.

We briefly comment on the strategy-proofness and
sharing incentive properties, which we believe are of
special importance in datacenter environments. Anec-
dotal evidence from cloud operators that we have talked

with indicates that strategy-proofness is important, as it
is common for users to attempt to manipulate schedulers.
For example, one of Yahoo!’s Hadoop MapReduce dat-
acenters has different numbers of slots for map and re-
duce tasks. A user discovered that the map slots were
contended, and therefore launched all his jobs as long
reduce phases, which would manually do the work that
MapReduce does in its map phase. Another big search
company provided dedicated machines for jobs only if
the users could guarantee high utilization. The company
soon found that users would sprinkle their code with in-
finite loops to artificially inflate utilization levels.

Furthermore, any policy that satisfies the sharing in-
centive property also provides performance isolation, as
it guarantees a minimum allocation to each user (i.e., a
user cannot do worse than owning 1

n of the cluster) irre-
spective of the demands of the other users.

It can be easily shown that in the case of a single re-
source, max-min fairness satisfies all the above proper-
ties. However, achieving these properties in the case
of multiple resources and heterogeneous user demands
is not trivial. For example, the preferred fair division
mechanism in microeconomic theory, Competitive Equi-
librium from Equal Incomes [22, 30, 33], is not strategy-
proof (see Section 6.1.2).

In addition to the above properties, we consider four
other nice-to-have properties:

• Single resource fairness: For a single resource, the
solution should reduce to max-min fairness.

• Bottleneck fairness: If there is one resource that is
percent-wise demanded most of by every user, then
the solution should reduce to max-min fairness for
that resource.

• Population monotonicity: When a user leaves the
system and relinquishes her resources, none of the
allocations of the remaining users should decrease.

• Resource monotonicity: If more resources are added
to the system, none of the allocations of the existing
users should decrease.

4 Dominant Resource Fairness (DRF)
We propose Dominant Resource Fairness (DRF), a new
allocation policy for multiple resources that meets all
four of the required properties in the previous section.
For every user, DRF computes the share of each resource
allocated to that user. The maximum among all shares
of a user is called that user’s dominant share, and the
resource corresponding to the dominant share is called
the dominant resource. Different users may have dif-
ferent dominant resources. For example, the dominant
resource of a user running a computation-bound job is

3

User A User B

CPUs
(9 total)

Memory
(18GB total)

100%

50%

0%

3 CPUs 12 GB

6 CPUs 2 GB

Figure 3: DRF allocation for the example in Section 4.1.

CPU, while the dominant resource of a user running an
I/O-bound job is bandwidth.1 DRF simply applies max-
min fairness across users’ dominant shares. That is, DRF
seeks to maximize the smallest dominant share in the
system, then the second-smallest, and so on.

We start by illustrating DRF with an example (§4.1),
then present an algorithm for DRF (§4.2) and a defini-
tion of weighted DRF (§4.3). In Section 5, we present
two other allocation policies: asset fairness, a straightfor-
ward policy that aims to equalize the aggregate resources
allocated to each user, and competitive equilibrium from
equal incomes (CEEI), a popular fair allocation policy
preferred in the micro-economic domain [22, 30, 33].

In this section, we consider a computation model with
n users andm resources. Each user runs individual tasks,
and each task is characterized by a demand vector, which
specifies the amount of resources required by the task,
e.g., 〈1 CPU, 4 GB〉. In general, tasks (even the ones
belonging to the same user) may have different demands.

4.1 An Example

Consider a system with of 9 CPUs, 18 GB RAM, and two
users, where user A runs tasks with demand vector 〈1
CPU, 4 GB〉, and user B runs tasks with demand vector
〈3 CPUs, 1 GB〉 each.

In the above scenario, each task from userA consumes
1/9 of the total CPUs and 2/9 of the total memory, so
user A’s dominant resource is memory. Each task from
user B consumes 1/3 of the total CPUs and 1/18 of the
total memory, so user B’s dominant resource is CPU.
DRF will equalize users’ dominant shares, giving the al-
location in Figure 3: three tasks for user A, with a total
of 〈3 CPUs, 12 GB〉, and two tasks for user B, with a
total of 〈6 CPUs, 2 GB〉. With this allocation, each user
ends up with the same dominant share, i.e., user A gets
2/3 of RAM, while user B gets 2/3 of the CPUs.

This allocation can be computed mathematically as
follows. Let x and y be the number of tasks allocated

1A user may have the same share on multiple resources, and might
therefore have multiple dominant resources.

Algorithm 1 DRF pseudo-code

R = 〈r1, · · · , rm〉 . total resource capacities
C = 〈c1, · · · , cm〉 . consumed resources, initially 0
si (i = 1..n) . user i’s dominant shares, initially 0
Ui = 〈ui,1, · · · , ui,m〉 (i = 1..n) . resources given to

user i, initially 0

pick user i with lowest dominant share si
Di ← demand of user i’s next task
if C +Di ≤ R then

C = C +Di . update consumed vector
Ui = Ui +Di . update i’s allocation vector
si = maxmj=1{ui,j/rj}

else
return . the cluster is full

end if

by DRF to users A and B, respectively. Then user A
receives 〈x CPU, 4x GB〉, while user B gets 〈3y CPU,
y GB〉. The total amount of resources allocated to both
users is (x+3y) CPUs and (4x+ y) GB. Also, the dom-
inant shares of users A and B are 4x/18 = 2x/9 and
3y/9 = y/3, respectively (their corresponding shares of
memory and CPU). The DRF allocation is then given by
the solution to the following optimization problem:

max (x, y) (Maximize allocations)
subject to
x+ 3y ≤ 9 (CPU constraint)
4x+ y ≤ 18 (Memory constraint)

2x

9
=

y

3
(Equalize dominant shares)

Solving this problem yields2 x = 3 and y = 2. Thus,
user A gets 〈3 CPU, 12 GB〉 and B gets 〈6 CPU, 2 GB〉.

Note that DRF need not always equalize users’ domi-
nant shares. When a user’s total demand is met, that user
will not need more tasks, so the excess resources will
be split among the other users, much like in max-min
fairness. In addition, if a resource gets exhausted, users
that do not need that resource can still continue receiv-
ing higher shares of the other resources. We present an
algorithm for DRF allocation in the next section.

4.2 DRF Scheduling Algorithm

Algorithm 1 shows pseudo-code for DRF scheduling.
The algorithm tracks the total resources allocated to each
user as well as the user’s dominant share, si. At each
step, DRF picks the user with the lowest dominant share
among those with tasks ready to run. If that user’s task
demand can be satisfied, i.e., there are enough resources

2Note that given last constraint (i.e., 2x/9 = y/3) allocations x
and y are simultaneously maximized.

4

Schedule
User A User B CPU RAM

res. shares dom. share res. shares dom. share total alloc. total alloc.
User B 〈0, 0〉 0 〈3/9, 1/18〉 1/3 3/9 1/18
User A 〈1/9, 4/18〉 2/9 〈3/9, 1/18〉 1/3 4/9 5/18
User A 〈2/9, 8/18〉 4/9 〈3/9, 1/18〉 1/3 5/9 9/18
User B 〈2/9, 8/18〉 4/9 〈6/9, 2/18〉 2/3 8/9 10/18
User A 〈3/9, 12/18〉 2/3 〈6/9, 2/18〉 2/3 1 14/18

Table 1: Example of DRF allocating resources in a system with 9 CPUs and 18 GB RAM to two users running tasks that require
〈1 CPU, 4 GB〉 and 〈3 CPUs, 1 GB〉, respectively. Each row corresponds to DRF making a scheduling decision. A row shows the
shares of each user for each resource, the user’s dominant share, and the fraction of each resource allocated so far. DRF repeatedly
selects the user with the lowest dominant share (indicated in bold) to launch a task, until no more tasks can be allocated.

available in the system, one of her tasks is launched. We
consider the general case in which a user can have tasks
with different demand vectors, and we use variable Di to
denote the demand vector of the next task user i wants
to launch. For simplicity, the pseudo-code does not cap-
ture the event of a task finishing. In this case, the user
releases the task’s resources and DRF again selects the
user with the smallest dominant share to run her task.

Consider the two-user example in Section 4.1. Table 1
illustrates the DRF allocation process for this example.
DRF first picks B to run a task. As a result, the shares
of B become 〈3/9, 1/18〉, and the dominant share be-
comes max(3/9, 1/18) = 1/3. Next, DRF picks A, as
her dominant share is 0. The process continues until it
is no longer possible to run new tasks. In this case, this
happens as soon as CPU has been saturated.

At the end of the above allocation, userA gets 〈3 CPU,
12 GB〉, while userB gets 〈6 CPU, 2 GB〉, i.e., each user
gets 2/3 of its dominant resource.

Note that in this example the allocation stops as soon
as any resource is saturated. However, in the general
case, it may be possible to continue to allocate tasks even
after some resource has been saturated, as some tasks
might not have any demand on the saturated resource.

The above algorithm can be implemented using a bi-
nary heap that stores each user’s dominant share. Each
scheduling decision then takesO(log n) time for n users.

4.3 Weighted DRF

In practice, there are many cases in which allocating re-
sources equally across users is not the desirable policy.
Instead, we may want to allocate more resources to users
running more important jobs, or to users that have con-
tributed more resources to the cluster. To achieve this
goal, we propose Weighted DRF, a generalization of both
DRF and weighted max-min fairness.

With Weighted DRF, each user i is associated a weight
vector Wi = 〈wi,1, . . . , wi,m〉, where wi,j represents the
weight of user i for resource j. The definition of a dom-
inant share for user i changes to si = maxj{ui,j/wi,j},
where ui,j is user i’s share of resource j. A particular

case of interest is when all the weights of user i are equal,
i.e., wi,j = wi, (1 ≤ j ≤ m). In this case, the ratio be-
tween the dominant shares of users i and j will be simply
wi/wj . If the weights of all users are set to 1, Weighted
DRF reduces trivially to DRF.

5 Alternative Fair Allocation Policies
Defining a fair allocation in a multi-resource system is
not an easy question, as the notion of “fairness” is itself
open to discussion. In our efforts, we considered numer-
ous allocation policies before settling on DRF as the only
one that satisfies all four of the required properties in
Section 3: sharing incentive, strategy-proofness, Pareto
efficiency, and envy-freeness. In this section, we con-
sider two of the alternatives we have investigated: Asset
Fairness, a simple and intuitive policy that aims to equal-
ize the aggregate resources allocated to each user, and
Competitive Equilibrium from Equal Incomes (CEEI),
the policy of choice for fairly allocating resources in the
microeconomic domain [22, 30, 33]. We compare these
policies with DRF in Section 5.3.

5.1 Asset Fairness

The idea behind Asset Fairness is that equal shares of
different resources are worth the same, i.e., that 1% of
all CPUs worth is the same as 1% of memory and 1%
of I/O bandwidth. Asset Fairness then tries to equalize
the aggregate resource value allocated to each user. In
particular, Asset Fairness computes for each user i the
aggregate share xi =

∑
j si,j , where si,j is the share of

resource j given to user i. It then applies max-min across
users’ aggregate shares, i.e., it repeatedly launches tasks
for the user with the minimum aggregate share.

Consider the example in Section 4.1. Since there are
twice as many GB of RAM as CPUs (i.e., 9 CPUs and
18 GB RAM), one CPU is worth twice as much as one
GB of RAM. Supposing that one GB is worth $1 and
one CPU is worth $2, it follows that user A spends $6
for each task, while user B spends $7. Let x and y be
the number of tasks allocated by Asset Fairness to users
A and B, respectively. Then the asset-fair allocation is

5

given by the solution to the following optimization prob-
lem:

max (x, y) (Maximize allocations)
subject to
x+ 3y ≤ 9 (CPU constraint)
4x+ y ≤ 18 (Memory constraint)

6x = 7y (Every user spends the same)

Solving the above problem yields x = 2.52 and y =
2.16. Thus, user A gets 〈2.5 CPUs, 10.1 GB〉, while user
B gets 〈6.5 CPUs, 2.2 GB〉, respectively.

While this allocation policy seems compelling in its
simplicity, it has a significant drawback: it violates the
sharing incentive property. As we show in Section 6.1.1,
asset fairness can result in one user getting less than 1/n
of all resources, where n is the total number of users.

5.2 Competitive Equilibrium from Equal Incomes

In microeconomic theory, the preferred method to fairly
divide resources is Competitive Equilibrium from Equal
Incomes (CEEI) [22, 30, 33]. With CEEI, each user re-
ceives initially 1

n of every resource, and subsequently,
each user trades her resources with other users in a per-
fectly competitive market.3 The outcome of CEEI is both
envy-free and Pareto efficient [30].

More precisely, the CEEI allocation is given by the
Nash bargaining solution4 [22, 23]. The Nash bargain-
ing solution picks the feasible allocation that maximizes∏
i ui(ai), where ui(ai) is the utility that user i gets from

her allocation ai. To simplify the comparison, we assume
that the utility that a user gets from her allocation is sim-
ply her dominant share, si.

Consider again the two-user example in Section 4.1.
Recall that the dominant share of user A is 4x/18 =
2x/9 while the dominant share of user B is 3y/9 = y/3,
where x is the number of tasks given to A and y is the
number of tasks given to B. Maximizing the product
of the dominant shares is equivalent to maximizing the
product x · y. Thus, CEEI aims to solve the following
optimization problem:

max (x · y) (maximize Nash product)
subject to
x+ 3y ≤ 9 (CPU constraint)
4x+ y ≤ 18 (Memory constraint)

Solving the above problem yields x = 45/11 and y =
18/11. Thus, user A gets 〈4.1 CPUs, 16.4 GB〉, while
user B gets 〈4.9 CPUs, 1.6 GB〉.

3A perfect market satisfies the price-taking (i.e., no single user af-
fects prices) and market-clearance (i.e., matching supply and demand
via price adjustment) assumptions.

4For this to hold, utilities have to be homogeneous, i.e., u(αx) =
αu(x) for α > 0, which is true in our case.

User A User B

a) DRF b) Asset Fairness

CPU Mem CPU Mem CPU Mem

100%

50%

0%

100%

50%

0%

100%

50%

0%

c) CEEI
Figure 4: Allocations given by DRF, Asset Fairness and CEEI
in the example scenario in Section 4.1.

Unfortunately, while CEEI is envy-free and Pareto ef-
ficient, it turns out that it is not strategy-proof, as we will
show in Section 6.1.2. Thus, users can increase their al-
locations by lying about their resource demands.

5.3 Comparison with DRF

To give the reader an intuitive understanding of Asset
Fairness and CEEI, we compare their allocations for the
example in Section 4.1 to that of DRF in Figure 4.

We see that DRF equalizes the dominant shares of the
users, i.e., user A’s memory share and user B’s CPU
share. In contrast, Asset Fairness equalizes the total frac-
tion of resources allocated to each user, i.e., the areas of
the rectangles for each user in the figure. Finally, be-
cause CEEI assumes a perfectly competitive market, it
finds a solution satisfying market clearance, where ev-
ery resource has been allocated. Unfortunately, this ex-
act property makes it possible to cheat CEEI: a user can
claim she needs more of some underutilized resource
even when she does not, leading CEEI to give more tasks
overall to this user to achieve market clearance.

6 Analysis
In this section, we discuss which of the properties pre-
sented in Section 3 are satisfied by Asset Fairness, CEEI,
and DRF. We also evaluate the accuracy of DRF when
task sizes do not match the available resources exactly.

6.1 Fairness Properties

Table 2 summarizes the fairness properties that are sat-
isfied by Asset Fairness, CEEI, and DRF. The Appendix
contains the proofs of the main properties of DRF, while
our technical report [14] contains a more complete list of
results for DRF and CEEI. In the remainder of this sec-
tion, we discuss some of the interesting missing entries
in the table, i.e., properties violated by each of these dis-
ciplines. In particular, we show through examples why
Asset Fairness and CEEI lack the properties that they

6

Allocation Policy
Property Asset CEEI DRF
Sharing Incentive X X
Strategy-proofness X X
Envy-freeness X X X
Pareto efficiency X X X

Single Resource Fairness X X X
Bottleneck Fairness X X
Population Monotonicity X X
Resource Monotonicity

Table 2: Properties of Asset Fairness, CEEI and DRF.

do, and we prove that no policy can provide resource
monotonicity without violating either sharing incentive
or Pareto efficiency to explain why DRF lacks resource
monotonicity.

6.1.1 Properties Violated by Asset Fairness

While being the simplest policy, Asset Fairness violates
several important properties: sharing incentive, bottle-
neck fairness, and resource monotonicity. Next, we use
examples to show the violation of these properties.

Theorem 1 Asset Fairness violates the sharing incen-
tive property.

Proof Consider the following example, illustrated in
Figure 5: two users in a system with 〈30, 30〉 total re-
sources have demand vectors D1 = 〈1, 3〉, and D2 =
〈1, 1〉. Asset fairness will allocate the first user 6 tasks
and the second user 12 tasks. The first user will receive
〈6, 18〉 resources, while the second will use 〈12, 12〉.
While each user gets an equal aggregate share of 24

60 , the
second user gets less than half (15) of both resources.
This violates the sharing incentive property, as the sec-
ond user would be better off to statically partition the
cluster and own half of the nodes. �

Theorem 2 Asset Fairness violates the bottleneck fair-
ness property.

Proof Consider a scenario with a total resource vector of
〈21, 21〉 and two users with demand vectors D1 = 〈3, 2〉
and D2 = 〈4, 1〉, making resource 1 the bottleneck re-
source. Asset fairness will give each user 3 tasks, equal-
izing their aggregate usage to 15. However, this only
gives the first user 3

7 of resource 1 (the contended bottle-
neck resource), violating bottleneck fairness. �

Theorem 3 Asset fairness does not satisfy resource
monotonicity.

 Resource 1 Resource 2

User 1 User 2
100%

50%

0%

Figure 5: Example showing that Asset Fairness can fail to meet
the sharing incentive property. Asset Fairness gives user 2 less
than half of both resources.

User 1 User 2

a) With truthful
demands

b) With user 1
lying

Res. 1

100%

50%

0%

100%

50%

0%
Res. 2 Res. 1 Res. 2

Figure 6: Example showing how CEEI violates strategy proof-
ness. User 1 can increase her share by claiming that she needs
more of resource 2 than she actually does.

Proof Consider two users A and B with demands 〈4, 2〉
and 〈1, 1〉 and 77 units of two resources. Asset fairness
allocates A a total of 〈44, 22〉 and B 〈33, 33〉 equalizing
their sum of shares to 66

77 . If resource two is doubled, both
users’ share of the second resource is halved, while the
first resource is saturated. Asset fairness now decreases
A’s allocation to 〈42, 21〉 and increases B’s to 〈35, 35〉,
equalizing their shares to 42

77 + 21
154 = 35

77 + 35
154 = 105

154 .
Thus resource monotonicity is violated. �

6.1.2 Properties Violated by CEEI

While CEEI is envy-free and Pareto efficient, it turns
out that it is not strategy proof. Intuitively, this is be-
cause CEEI assumes a perfectly competitive market that
achieves market clearance, i.e., matching of supply and
demand and allocation of all the available resources.
This can lead to CEEI giving much higher shares to users
that use more of a less-contended resource in order to
fully utilize that resource. Thus, a user can claim that she
needs more of some underutilized resource to increase
her overall share of resources. We illustrate this below.

Theorem 4 CEEI is not strategy-proof.

7

User 1 User 2 User 3

a) With 3 users b) After user 3
leaves

Res. 1

100%

50%

0%

100%

50%

0%
Res. 2 Res. 1 Res. 2

Figure 7: Example showing that CEEI violates population
monotonicity. When user 3 leaves, CEEI changes the alloca-
tion from a) to b), lowering the share of user 2.

Proof Consider the following example, shown in Figure
6. Assume a total resource vector of 〈100, 100〉, and two
users with demands 〈16, 1〉 and 〈1, 2〉. In this case, CEEI
allocates 100

31 and 1500
31 tasks to each user respectively

(approximately 3.2 and 48.8 tasks). If user 1 changes her
demand vector to 〈16, 8〉, asking for more of resource
2 than she actually needs, CEEI gives the the users 25

6
and 100

3 tasks respectively (approximately 4.2 and 33.3
tasks). Thus, user 1 improves her number of tasks from
3.2 to 4.2 by lying about her demand vector. User 2 suf-
fers because of this, as her task allocation decreases. �

In addition, for the same intuitive reason (market
clearance), we have the following result:

Theorem 5 CEEI violates population monotonicity.

Proof Consider the total resource vector 〈100, 100〉 and
three users with the following demand vectors D1 =
〈4, 1〉, D2 = 〈1, 16〉, and D3 = 〈16, 1〉 (see Figure 7).
CEEI will yield the allocation A1 = 〈11.3, 5.4, 3.1〉,
where the numbers in parenthesis represent the number
of tasks allocated to each user. If user 3 leaves the system
and relinquishes her resource, CEEI gives the new allo-
cation A2 = 〈23.8, 4.8〉, which has made user 2 worse
off than in A1. �

6.1.3 Resource Monotonicity vs. Sharing Incentives
and Pareto efficiency

As shown in Table 2, DRF achieves all the properties ex-
cept resource monotonicity. Rather than being a limita-
tion of DRF, this is a consequence of the fact that sharing
incentive, Pareto efficiency, and resource monotonicity
cannot be achieved simultaneously. Since we consider
the first two of these properties to be more important (see
Section 3) and since adding new resources to a system is
a relatively rare event, we chose to satisfy sharing incen-
tive and Pareto efficiency, and give up resource mono-
tonicity. In particular, we have the following result.

Theorem 6 No allocation policy that satisfies the shar-
ing incentive and Pareto efficiency properties can also
satisfy resource monotonicity.

Proof We use a simple example to prove this prop-
erty. Consider two users A and B with symmetric de-
mands 〈2, 1〉, and 〈1, 2〉, respectively, and assume equal
amounts of both resources. Sharing incentive requires
that user A gets at least half of resource 1 and user B
gets half of resource 2. By Pareto efficiency, we know
that at least one of the two users must be allocated more
resources. Without loss of generality, assume that user A
is given more than half of resource 1 (a symmetric argu-
ment holds if user B is given more than half of resource
2). If the total amount of resource 2 is now increased by
a factor of 4, user B is no longer getting its guaranteed
share of half of resource 2. Now, the only feasible allo-
cation that satisfies the sharing incentive is to give both
users half of resource 1, which would require decreas-
ing user 1’s share of resource 1, thus violating resource
monotonicity. �

This theorem explains why both DRF and CEEI vio-
late resource monotonicity.

6.2 Discrete Resource Allocation

So far, we have implicitly assumed one big resource
pool whose resources can be allocated in arbitrarily small
amounts. Of course, this is often not the case in prac-
tice. For example, clusters consist of many small ma-
chines, where resources are allocated to tasks in discrete
amounts. In the reminder of this section, we refer to
these two scenarios as the continuous, and the discrete
scenario, respectively. We now turn our attention to how
fairness is affected in the discrete scenario.

Assume a cluster consisting of K machines.
Let max-task denote the maximum demand vec-
tor across all demand vectors, i.e., max-task =
〈maxi{di,1},maxi{di,2}, · · · ,maxi{di,m}〉. Assume
further that any task can be scheduled on every machine,
i.e., the total amount of resources on each machine
is at least max-task. We only consider the case when
each user has strictly positive demands. Given these
assumptions, we have the following result.

Theorem 7 In the discrete scenario, it is possible to al-
locate resources such that the difference between the al-
locations of any two users is bounded by one max-task
compared to the continuous allocation scenario.

Proof Assume we start allocating resources on one ma-
chine at a time, and that we always allocate a task to the
user with the lowest dominant share. As long as there
is at least a max-task available on the first machine, we

8

0 50 100 150 200 250 300
(a)

0.0
0.2
0.4
0.6
0.8
1.0

Jo
b

1
Sh

ar
e Job 1 CPU

Job 1 Memory

0 50 100 150 200 250 300
(b)

0.0
0.2
0.4
0.6
0.8
1.0

Jo
b

2
Sh

ar
e

Job 2 CPU
Job 2 Memory

0 50 100 150 200 250 300
Time (s)

(c)

0.0
0.2
0.4
0.6
0.8
1.0

Do
m

in
an

t S
ha

re

Job 1
Job 2

Figure 8: CPU, memory and dominant share for two jobs.

continue to allocate a task to the next user with least dom-
inant share. Once the available resources on the first ma-
chine become less than a max-task size, we move to the
next machine and repeat the process. When the alloca-
tion completes, the difference between two user’s alloca-
tions of their dominant resources compared to the con-
tinuous scenario is at most max-task. If this were not the
case, then some user A would have more than max-task
discrepancy w.r.t. to another user B. However, this can-
not be the case, because the last time A was allocated a
task, B should have been allocated a task instead. �

7 Experimental Results
This section evaluates DRF through micro- and macro-
benchmarks. The former is done through experiments
running an implementation of DRF in the Mesos cluster
resource manager [16]. The latter is done using trace-
driven simulations.

We start by showing how DRF dynamically adjusts the
shares of jobs with different resource demands in Section
7.1. In Section 7.2, we compare DRF against slot-level
fair sharing (as implemented by Hadoop Fair Scheduler
[34] and Quincy [18]), and CPU-only fair sharing. Fi-
nally, in Section 7.3, we use Facebook traces to compare
DRF and the Hadoop’s Fair Scheduler in terms of utiliza-

tion and job completion time.

7.1 Dynamic Resource Sharing

In our first experiment, we show how DRF dynamically
shares resources between jobs with different demands.
We ran two jobs on a 48-node Mesos cluster on Amazon
EC2, using “extra large” instances with 4 CPU cores and
15 GB of RAM. We configured Mesos to allocate up to
4 CPUs and 14 GB of RAM on each node, leaving 1 GB
for the OS. We submitted two jobs that launched tasks
with different resource demands at different times during
a 6-minute interval.

Figures 8 (a) and 8 (b) show the CPU and memory al-
locations given to each job as a function of time, while
Figure 8 (c) shows their dominant shares. In the first 2
minutes, job 1 uses 〈1 CPU, 10 GB RAM〉 per task and
job 2 uses 〈1 CPU, 1 GB RAM〉 per task. Job 1’s dom-
inant resource is RAM, while job 2’s dominant resource
is CPU. Note that DRF equalizes the jobs’ shares of their
dominant resources. In addition, because jobs have dif-
ferent dominant resources, their dominant shares exceed
50%, i.e., job 1 uses around 70% of the RAM while job
2 uses around 75% of the CPUs. Thus, the jobs benefit
from running in a shared cluster as opposed to taking half
the nodes each. This captures the essence of the sharing
incentive property.

After 2 minutes, the task sizes of both jobs change, to
〈2 CPUs, 4 GB〉 for job 1 and 〈1 CPU, 3 GB〉 for job
2. Now, both jobs’ dominant resource is CPU, so DRF
equalizes their CPU shares. Note that DRF switches allo-
cations dynamically by having Mesos offer resources to
the job with the smallest dominant share as tasks finish.

Finally, after 2 more minutes, the task sizes of both
jobs change again: 〈1 CPU, 7 GB〉 for job 1 and 〈1 CPU,
4 GB〉 for job 2. Both jobs’ dominant resource is now
memory, so DRF tries to equalize their memory shares.
The reason the shares are not exactly equal is due to re-
source fragmentation (see Section 6.2).

7.2 DRF vs. Alternative Allocation Policies

We next evaluate DRF with respect to two alternative
schemes: slot-based fair scheduling (a common policy in
current systems, such as the Hadoop Fair Scheduler [34]
and Quincy [18]) and (max-min) fair sharing applied
only to a single resource (CPU). For the experiment, we
ran a 48-node Mesos cluster on EC2 instances with 8
CPU cores and 7 GB RAM each. We configured Mesos
to allocate 8 CPUs and 6 GB RAM on each node, leav-
ing 1 GB free for the OS. We implemented these three
scheduling policies as Mesos allocation modules.

We ran a workload with two classes of users, repre-
senting two organizational entities with different work-
loads. One of the entities had four users submitting small
jobs with task demands 〈1 CPU, 0.5 GB〉. The other en-

9

DRF 3 slots 4 slots 5 slots 6 slots CPU-fair0
5

10
15
20
25
30
35
40 35 33 30

17
8

13

Figure 9: Number of large jobs completed for each allocation
scheme in our comparison of DRF against slot-based fair shar-
ing and CPU-only fair sharing.

DRF 3 slots 4 slots 5 slots 6 slots CPU-fair0
20
40
60
80

100 91

37
61 66

35

94

Figure 10: Number of small jobs completed for each alloca-
tion scheme in our comparison of DRF against slot-based fair
sharing and CPU-only fair sharing.

tity had four users submitting large jobs with task de-
mands 〈2 CPUs, 2 GB〉. Each job consisted of 80 tasks.
As soon as a job finished, the user would launch another
job with similar demands. Each experiment ran for ten
minutes. At the end, we computed the number of com-
pleted jobs of each type, as well as their response times.

For the slot-based allocation scheme, we varied the
number of slots per machine from 3 to 6 to see how it
affected performance. Figures 9 through 12 show our re-
sults. In Figures 9 and 10, we compare the number of
jobs of each type completed for each scheduling scheme
in ten minutes. In Figures 11 and 12, we compare aver-
age response times.

Several trends are apparent from the data. First, with
slot-based scheduling, both the throughput and job re-
sponse times are worse than with DRF, regardless of the
number of slots. This is because with a low slot count,
the scheduler can undersubscribe nodes (e.g.,, launch
only 3 small tasks on a node), while with a large slot
count, it can oversubscribe them (e.g., launch 4 large
tasks on a node and cause swapping because each task
needs 2 GB and the node only has 6 GB). Second, with
fair sharing at the level of CPUs, the number of small
jobs executed is similar to DRF, but there are much fewer
large jobs executed, because memory is overcommitted
on some machines and leads to poor performance for all
the high-memory tasks running there. Overall, the DRF-
based scheduler that is aware of both resources has the
lowest response times and highest overall throughput.

7.3 Simulations using Facebook Traces

Next we use log traces from a 2000-node cluster at Face-
book, containing data for a one week period (October

DRF 3 slots 4 slots 5 slots 6 slots CPU-fair0
50

100
150
200

65 69 72
123

196
173

Figure 11: Average response time (in seconds) of large jobs
for each allocation scheme in our comparison of DRF against
slot-based fair sharing and CPU-only fair sharing.

DRF 3 slots 4 slots 5 slots 6 slots CPU-fair0
10
20
30
40
50
60
70

25

61

39 35

56

25

Figure 12: Average response time (in seconds) of small jobs
for each allocation scheme in our comparison of DRF against
slot-based fair sharing and CPU-only fair sharing.

2010). The data consists of Hadoop MapReduce jobs.
We assume task duration, CPU usage, and memory con-
sumption is identical as in the original trace. The traces
are simulated on a smaller cluster of 400 nodes to reach
higher utilization levels, such that fairness becomes rel-
evant. Each node in the cluster consists of 12 slots, 16
cores, and 32 GB memory. Figure 13 shows a short 300
second sub-sample to visualize how CPU and memory
utilization looks for the same workload when using DRF
compared to Hadoop’s fair scheduler (slot). As shown in
the figure, DRF provides higher utilization, as it is able
to better match resource allocations with task demands.

Figure 14 shows the reduction of the average job com-
pletion times for DRF as compared to the Hadoop fair
scheduler. The workload is quite heavy on small jobs,
which experience no improvements (i.e., −3%). This is
because small jobs typically consist of a single execu-
tion phase, and the completion time is dominated by the
longest task. Thus completion time is hard to improve
for such small jobs. In contrast, the completion times of
the larger jobs reduce by as much as 66%. This is be-
cause these jobs consists of many phases, and thus they
can benefit from the higher utilization achieved by DRF.

8 Related Work
We briefly review related work in computer science and
economics.

While many papers in computer science focus on
multi-resource fairness, they are only considering multi-
ple instances of the same interchangeable resource, e.g.,
CPU [6, 7, 35], and bandwidth [10, 20, 21]. Unlike these
approaches, we focus on the allocation of resources of
different types.

10

0 500 1000 1500 2000 25000.0
0.2
0.4
0.6
0.8
1.0

CP
U

Ut
ili

za
tio

n

DRF
Slots

0 500 1000 1500 2000 2500
Time (s)

0.0
0.2
0.4
0.6
0.8
1.0

M
em

or
y

Ut
ili

za
tio

n

Figure 13: CPU and memory utilization for DRF and slot fair-
ness for a trace from a Facebook Hadoop cluster.

1-500

501-1000

1001-1500

1501-2000

2501-3000

2501-3000
3001-∞

Job Size (tasks)

0
10
20
30
40
50
60
70

Co
m

pl
et

io
n

Ti
m

e
Re

du
ct

io
n

-3%

35%

51% 48%
55%

66%
53%

Figure 14: Average reduction of the completion times for dif-
ferent job sizes for a trace from a Facebook Hadoop cluster.

Quincy [18] is a scheduler developed in the context
of the Dryad cluster computing framework [17]. Quincy
achieves fairness by modeling the fair scheduling prob-
lem as a min-cost flow problem. Quincy does not cur-
rently support multi-resource fairness. In fact, as men-
tioned in the discussion section of the paper [18, pg. 17],
it appears difficult to incorporate multi-resource require-
ments into the min-cost flow formulation.

Hadoop currently provides two fair sharing sched-
ulers [1, 2, 34]. Both these schedulers allocate resources
at the slot granularity, where a slot is a fixed fraction of
the resources on a machine. As a result, these sched-
ulers cannot always match the resource allocations with
the tasks’ demands, especially when these demands are
widely heterogeneous. As we have shown in Section 7,
this mismatch may lead to either low cluster utilization
or poor performance due to resource oversubscription.

In the microeconomic literature, the problem of equity
has been studied within and outside of the framework of
game theory. The books by Young [33] and Moulin [22]
are entirely dedicated to these topics and provide good
introductions. The preferred method of fair division in
microeconomics is CEEI [3, 33, 22], as introduced by
Varian [30]. We have therefore devoted considerable at-
tention to it in Section 5.2. CEEI’s main drawback com-

pared to DRF is that it is not strategy-proof. As a result,
users can manipulate the scheduler by lying about their
demands.

Many of the fair division policies proposed in the mi-
croeconomics literature are based on the notion of utility
and, hence, focus on the single metric of utility. In the
economics literature, max-min fairness is known as the
lexicographic ordering [26, 25] (leximin) of utilities.

The question is what the user utilities are in the multi-
resource setting, and how to compare such utilities. One
natural way is to define utility as the number of tasks al-
located to a user. But modeling utilities this way, together
with leximin, violates many of the fairness properties we
proposed. Viewed in this light, DRF makes two contri-
butions. First, it suggests using the dominant share as a
proxy for utility, which is equalized using the standard
leximin ordering. Second, we prove that this scheme is
strategy-proof for such utility functions. Note that the
leximin ordering is a lexicographic version of the Kalai-
Smorodinsky (KS) solution [19]. Thus, our result shows
that KS is strategy-proof for such utilities.

9 Conclusion and Future Work
We have introduced Dominant Resource Fairness (DRF),
a fair sharing model that generalizes max-min fairness to
multiple resource types. DRF allows cluster schedulers
to take into account the heterogeneous demands of dat-
acenter applications, leading to both fairer allocation of
resources and higher utilization than existing solutions
that allocate identical resource slices (slots) to all tasks.
DRF satisfies a number of desirable properties. In par-
ticular, DRF is strategy-proof, so that users are incen-
tivized to report their demands accurately. DRF also in-
centivizes users to share resources by ensuring that users
perform at least as well in a shared cluster as they would
in smaller, separate clusters. Other schedulers that we in-
vestigated, as well as alternative notions of fairness from
the microeconomic literature, fail to satisfy all of these
properties.

We have evaluated DRF by implementing it in the
Mesos resource manager, and shown that it can lead to
better overall performance than the slot-based fair sched-
ulers that are commonly in use today.

9.1 Future Work

There are several interesting directions for future re-
search. First, in cluster environments with discrete tasks,
one interesting problem is to minimize resource frag-
mentation without compromising fairness. This prob-
lem is similar to bin-packing, but where one must pack
as many items (tasks) as possible subject to meeting
DRF. A second direction involves defining fairness when
tasks have placement constraints, such as machine pref-
erences. Given the current trend of multi-core machines,

11

a third interesting research direction is to explore the use
of DRF as an operating system scheduler. Finally, from
a microeconomic perspective, a natural direction is to
investigate whether DRF is the only possible strategy-
proof policy for multi-resource fairness, given other de-
sirable properties such Pareto efficiency.

10 Acknowledgements
We thank Eric J. Friedman, Hervé Moulin, John Wilkes,
and the anonymous reviewers for their invaluable feed-
back. We thank Facebook for making available their
traces. This research was supported by California MI-
CRO, California Discovery, the Swedish Research Coun-
cil, the Natural Sciences and Engineering Research
Council of Canada, a National Science Foundation Grad-
uate Research Fellowship,5 and the RAD Lab spon-
sors: Google, Microsoft, Oracle, Amazon, Cisco, Cloud-
era, eBay, Facebook, Fujitsu, HP, Intel, NetApp, SAP,
VMware, and Yahoo!.

References
[1] Hadoop Capacity Scheduler.

http://hadoop.apache.org/common/docs/r0.

20.2/capacity_scheduler.html.
[2] Hadoop Fair Scheduler.

http://hadoop.apache.org/common/docs/r0.

20.2/fair_scheduler.html.
[3] Personal communication with Hervé Moulin.
[4] A. K. Agrawala and R. M. Bryant. Models of memory

scheduling. In SOSP ’75, 1975.
[5] J. Axboe. Linux Block IO – Present and Future

(Completely Fair Queueing). In Ottawa Linux
Symposium 2004, pages 51–61, 2004.

[6] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A.
Varvel. Proportionate progress: A notion of fairness in
resource allocation. Algorithmica, 15(6):600–625, 1996.

[7] S. K. Baruah, J. Gehrke, and C. G. Plaxton. Fast
scheduling of periodic tasks on multiple resources. In
IPPS ’95, 1995.

[8] J. Bennett and H. Zhang. WF2Q: Worst-case fair
weighted fair queueing. In INFOCOM, 1996.

[9] D. Bertsekas and R. Gallager. Data Networks. Prentice
Hall, second edition, 1992.

[10] J. M. Blanquer and B. Özden. Fair queuing for
aggregated multiple links. SIGCOMM ’01,
31(4):189–197, 2001.

[11] B. Caprita, W. C. Chan, J. Nieh, C. Stein, and H. Zheng.
Group ratio round-robin: O(1) proportional share
scheduling for uniprocessor and multiprocessor systems.
In USENIX Annual Technical Conference, 2005.

[12] A. Demers, S. Keshav, and S. Shenker. Analysis and
simulation of a fair queueing algorithm. In SIGCOMM
’89, pages 1–12, New York, NY, USA, 1989. ACM.

5Any opinions, findings, conclusions, or recommendations ex-
pressed in this publication are those of the authors and do not nec-
essarily reflect the views of the NSF.

[13] D. Foley. Resource allocation and the public sector. Yale
Economic Essays, 7(1):73–76, 1967.

[14] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant resource fairness:
Fair allocation of multiple resource types. Technical
Report UCB/EECS-2011-18, EECS Department,
University of California, Berkeley, Mar 2011.

[15] P. Goyal, H. Vin, and H. Cheng. Start-time fair queuing:
A scheduling algorithm for integrated services packet
switching networks. IEEE/ACM Transactions on
Networking, 5(5):690–704, Oct. 1997.

[16] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. H. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource sharing in
the data center. In NSDI, 2011.

[17] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. In EuroSys 07, 2007.

[18] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,
K. Talwar, and A. Goldberg. Quincy: Fair scheduling for
distributed computing clusters. In SOSP ’09, 2009.

[19] E. Kalai and M. Smorodinsky. Other Solutions to Nash’s
Bargaining Problem. Econometrica, 43(3):513–518,
1975.

[20] J. M. Kleinberg, Y. Rabani, and É. Tardos. Fairness in
routing and load balancing. J. Comput. Syst. Sci.,
63(1):2–20, 2001.

[21] Y. Liu and E. W. Knightly. Opportunistic fair scheduling
over multiple wireless channels. In INFOCOM, 2003.

[22] H. Moulin. Fair Division and Collective Welfare. The
MIT Press, 2004.

[23] J. Nash. The Bargaining Problem. Econometrica,
18(2):155–162, April 1950.

[24] A. Parekh and R. Gallager. A generalized processor
sharing approach to flow control - the single node case.
ACM/IEEE Transactions on Networking, 1(3):344–357,
June 1993.

[25] E. A. Pazner and D. Schmeidler. Egalitarian equivalent
allocations: A new concept of economic equity.
Quarterly Journal of Economics, 92:671–687, 1978.

[26] A. Sen. Rawls Versus Bentham: An Axiomatic
Examination of the Pure Distribution Problem. Theory
and Decision, 4(1):301–309, 1974.

[27] M. Shreedhar and G. Varghese. Efficient fair queuing
using deficit round robin. IEEE Trans. Net, 1996.

[28] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah,
J. Gehrke, and G. Plaxton. A proportional share resource
allocation algorithm for real-time, time-shared systems.
In IEEE RTSS 96, 1996.

[29] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair
queueing: Achieving approximately fair bandwidth
allocations in high speed networks. In SIGCOMM, 1998.

[30] H. Varian. Equity, envy, and efficiency. Journal of
Economic Theory, 9(1):63–91, 1974.

[31] C. A. Waldspurger. Lottery and Stride Scheduling:
Flexible Proportional Share Resource Management.
PhD thesis, MIT, Laboratory of Computer Science, Sept.
1995. MIT/LCS/TR-667.

[32] C. A. Waldspurger and W. E. Weihl. Lottery scheduling:

12

flexible proportional-share resource management. In
OSDI ’94, 1994.

[33] H. P. Young. Equity: in theory and practice. Princeton
University Press, 1994.

[34] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Delay Scheduling: A Simple
Technique for Achieving Locality and Fairness in
Cluster Scheduling. In EuroSys 10, 2010.

[35] D. Zhu, D. Mossé, and R. G. Melhem.
Multiple-Resource Periodic Scheduling Problem: how
much fairness is necessary? In IEEE RTSS, 2003.

A Appendix: DRF Properties
In this appendix, we present the main properties of DRF.
The technical report [14] contains a more complete list
of results for DRF and CEEI. For context, the following
table summarizes the properties satisfied by Asset Fair-
ness, CEEI, and DRF, respectively.

In this section, we assume that all users have an un-
bounded number of tasks. In addition, we assume that
all tasks of a user have the same demand vector, and we
will refer to this vector as the user’s demand vector.

Next, we present progressive filling [9], a simple tech-
nique to achieve DRF allocation when all resources are
arbitrary divisible. This technique is instrumental in
proving our results.

A.1 Progressive Filling for DRF

Progressive filling is an idealized algorithm to achieve
max-min fairness in a system in which resources can
be allocated in arbitrary small amounts [9, pg 450]. It
was originally used in a networking context, but we now
adapt it to our problem domain. In the case of DRF, pro-
gressive filling increases all users’ dominant shares at the
same rate, while increasing their other resource alloca-
tions proportionally to their task demand vectors, until at
least one resource is saturated. At this point, the alloca-
tions of all users using the saturated resource are frozen,
and progressive filling continues recursively after elim-
inating these users. In this case, progressive filling ter-
minates when there are no longer users whose dominant
shares can be increased.

Progressive filling for DRF is equivalent to the
scheduling algorithm presented in Figure 1 after appro-
priately scaling the users’ demand vectors. In particular,
each user’s demand vector is scaled such that allocating
resources to a user according to her scaled demand vec-
tor will increase her dominant share by a fixed ε, which
is the same for all users. Let Di = 〈di,1, di,2, . . . , di,m〉
be the demand vector of user i, let rk be her domi-
nant share6, and let si =

di,k
rk

be her dominant share.
We then scale the demand vector of user i by ε

si
, i.e.,

D′
i =

ε
si
Di =

ε
si
〈di,1, di,2, . . . , di,m〉. Thus, every time

6Recall that in this section we assume that all tasks of a user have
the same demand vector.

a task of user i is selected, she is allocated an amount
ε
si
di,k = ε ·rk of the dominant resource. This means that

the share of the dominant resource of user i increases by
(ε · rk)/rk = ε, as expected.

A.2 Allocation Properties

We start with a preliminary result.

Lemma 8 Every user in a DRF allocation has at least
one saturated resource.

Proof Assume this is not the case, i.e., none of the re-
sources used by user i is saturated. However, this con-
tradicts the assumption that progressive filling has com-
pleted the computation of the DRF allocation. Indeed,
as long as none of the resources of user i are saturated,
progressive filling will continue to increase the alloca-
tions of user i (and of all the other users sharing only
non-saturated resources). �

Recall that progressive filling always allocates the re-
sources to a user proportionally to the user’s demand
vector. More precisely, let Di = 〈di,1, di,2, . . . , di,m〉
be the demand vector of user i. Then, at any time t dur-
ing the progressive filling process, the allocation of user
i is proportional to the demand vector,

Ai(t) = αi(t) ·Di = αi(t) · 〈di,1, di,2, . . . , di,m〉 (1)

where αi(t) is a positive scalar.
Now, we are in position to prove the DRF properties.

Theorem 9 DRF is Pareto efficient.

Proof Assume user i can increase her dominant share,
si, without decreasing the dominant share of anyone else.
According to Lemma 8, user i has at least one saturated
resource. If no other user is using the saturated resource,
then we are done as it would be impossible to increase i’s
share of the saturated resource. If other users are using
the saturated resource, then increasing the allocation of
i would result in decreasing the allocation of at least an-
other user j sharing the same saturated resource. Since
under progressive filling, the resources allocated by any
user are proportional to her demand vector (see Eq. 1),
decreasing the allocation of any resource used by user i
will also decrease i’s dominant share. This contradicts
our hypothesis, and therefore proves the result. �

Theorem 10 DRF satisfies the sharing incentive and
bottleneck fairness properties.

Proof Consider a system consisting of n users. Assume
resource k is the first one being saturated by using pro-
gressive filling. Let i be the user allocating the largest
share on resource k, and let ti,k denote her share of k.
Since resource k is saturated, we have trivially ti,k ≥ 1

n .

13

Furthermore, by the definition of the dominant share, we
have si ≥ ti,k ≥ 1

n . Since progressive filling increases
the allocation of each user’s dominant resource at the
same rate, it follows that each user gets at least 1

n of her
dominant resource. Thus, DRF satisfies the sharing in-
centive property. If all users have the same dominant
resource, each user gets exactly 1

n of that resource. As a
result, DRF satisfies the bottleneck fairness property as
well. �

Theorem 11 Every DRF allocation is envy-free.

Proof Assume by contradiction that user i envies an-
other user j. For user i to envy another user j, user j
must have a strictly higher share of every resource that i
wants; otherwise i cannot run more tasks under j’s allo-
cation. This means that user j’s dominant share is strictly
larger than user i’s dominant share. Since every resource
allocated to user i is also allocated to user j, this means
that user j cannot reach its saturated resource after user i,
i.e., tj ≤ ti, where tk is the time that user k’s allocation
gets frozen due to saturation. However, if tj ≤ ti, under
progressive filling, the dominant shares of users j and i
will be equal at time tj , after which the dominant share
of user i can only increase, violating the hypothesis. �

Theorem 12 (Strategy-proofness) A user cannot in-
crease her dominant share in DRF by altering her true
demand vector.

Proof Assume user i can increase her dominant share by
using a demand vector d̂i 6= di. Let ai,j and âi,j denote
the amount of resource j user i is allocated using pro-
gressive filling when the user uses the vector di and d̂i,
respectively. For user i to be better off using d̂i, we need
that âi,k > ai,k for every resource k where di,k > 0.
Let r denote the first resource that becomes saturated for
user i when she uses the demand vector di. If no other
user is allocated resource r (aj,r = 0 for all j 6= i),
this contradicts the hypothesis as user i is already allo-
cated the entire resource r, and thus cannot increase her
allocation of r using another demand vector d̂i. Thus,
assume there are other users that have been allocated r
(aj,r > 0 for some j 6= i). In this case, progressive fill-
ing will eventually saturate r at time twhen using di, and
at time t′ when using demand d̂i. Recall that the domi-
nant share is the maximum of a user’s shares, thus i must
have a higher dominant share in the allocation â than in
a. Thus, t′ > t, as progressive filling increases the dom-
inant share at a constant rate. This implies that i—when
using d̂—does not saturate any resource before time t′,
and hence does not affect other user’s allocation before
time t′. Thus, when i uses d̂, any user m using resource
r has allocation am,r at time t. Therefore, at time t, there
is only ai,r amount of r left for user i, which contradicts
the assumption that âi,r > ai,r. �

The strategy-proofness of DRF shows that a user will
not be better off by demanding resources that she does
not need. The following example shows that excess de-
mand can in fact hurt user’s allocation, leading to a lower
dominant share. Consider a cluster with two resources,
and 10 users, the first with demand vector 〈1, 0〉 and the
rest with demand vectors 〈0, 1〉. The first user gets the
entire first resource, while the rest of the users each get
1
9 of the second resource. If user 1 instead changes her
demand vector to 〈1, 1〉, she can only be allocated 1

10 of
each resource and the rest of the users get 1

10 of the sec-
ond resource.

In practice, the situation can be exacerbated as re-
sources in datacenters are typically partitioned across
different physical machines, leading to fragmentation.
Increasing one’s demand artificially might lead to a situ-
ation in which, while there are enough resources on the
whole, there are not enough on any single machine to
satisfy the new demand. See Section 6.2 for more infor-
mation.

Next, for simplicity we assume strictly positive de-
mand vectors, i.e., the demand of every user for every
resource is non-zero.

Theorem 13 Given strictly positive demand vectors,
DRF guarantees that every user gets the same dominant
share, i.e., every DRF allocation ensures si = sj , for all
users i and j.

Proof Progressive filling will start increasing every
users’ dominant resource allocation at the same rate until
one of the resources becomes saturated. At this point, no
more resources can be allocated to any user as every user
demands a positive amount of the saturated resource. �

Theorem 14 Given strictly positive demands, DRF sat-
isfies population monotonicity.

Proof Consider any DRF allocation. Non-zero demands
imply that all users have the same saturated resource(s).
Consider removing a user and relinquishing her currently
allocated resources, which is some amount of every re-
source. Since all users have the same dominant share α,
any new allocation which decreases any user i’s domi-
nant share below α would, due to Pareto efficiency, have
to allocate another user j a dominant share of more than
α. The resulting allocation would violate max-min fair-
ness, as it would be possible to increase i’s dominant
share by decreasing the allocation of j, who already has
a higher dominant share than i. �

However, we note that in the absence of strictly posi-
tive demand vectors, DRF no longer satisfies the popula-
tion monotonicity property [14].

14

