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Throughput Optimal Switching in
Multi-channel WLANs

Qingsi Wang and Mingyan Liu

Abstract—We observe that in a multi-channel wireless system, an opportunistic channel/spectrum access scheme that solely
focuses on channel quality sensing measured by received SNR may induce users to use channels that, while providing better
signals, are more congested. Ultimately the notion of channel quality should include both the signal quality and the level of
congestion, and a good multi-channel access scheme should take both into account in deciding which channel to use and when.
Motivated by this, we focus on the congestion aspect and examine what type of dynamic channel switching schemes may result
in the best system throughput performance. Specifically we derive the stability region of a multi-user multi-channel WLAN system
and determine the throughput optimal channel switching scheme within a certain class of schemes. We also empirically examine
the impact of considering congestion in addition to signal quality in making channel selection decisions.

Index Terms—Wireless LAN, 802.11 DCF, multi-channel wireless system, channel switching policy, stability region, throughput
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1 INTRODUCTION
Advances in software defined radio in recent years
have motivated numerous studies on building agile,
channel-aware transceivers that are capable of sensing
instantaneous channel quality [1], [2], [3]. With this
opportunity comes the challenge of making effec-
tive opportunistic channel access and transmission
scheduling decisions, as well as designing support-
ing system architectures. There have been extensive
studies on dynamic channel access in a multi-user,
multi-channel wireless system, see e.g., [4], [5]. By
allowing users to dynamically select which channel to
use for transmission, these schemes aim to improve
the system performance, typically measured by the
total (or per user) throughput, the average packet
delay and etc, compared to a system with a single
channel or more static channel allocations. The main
reason behind such improvement lies in temporal,
spatial and spectral diversity. That is, the quality of
a channel perceived by a user is time-varying, user-
dependent, and channel-dependent.

Within this context we make the additional obser-
vation that there is also a congestion diversity in that
a channel with fewer number of competing users
presents better quality for a user. This is particularly
true in a random access setting, where a large number
of competing users can induce large backoff timer
values that in turn lead to longer waiting time and
lower throughput. We note that in a multi-channel
system, an opportunistic access scheme that solely
focuses on channel quality sensing as a result of
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random fading and shadowing, e.g., by measuring
received SNR [6], [5], may induce users to use chan-
nels that, while providing better signals, are more
congested. This can reduce the expected performance
gain, or even turn gain to loss. Ultimately the notion
of “channel quality” should include both the signal
quality and the level of congestion, and a good multi-
channel access scheme should take both into account
in deciding which channel to use and when.

Motivated by the above, in this study we examine
the possibility of utilizing congestion diversity to pro-
mote certain performance measures, e.g., throughput.
As mentioned above, our ultimate goal is to construct
an opportunistic channel access scheme that is aware
of both signal quality and user congestion. However,
in the present paper we will primarily limit our
attention to addressing the congestion aspect only.
We do provide numerical results on the impact of
considering congestion in addition to signal quality
in making channel selection decisions.

Specifically, we ask the question of what type of
dynamic channel switching schemes will give the
best performance in a multi-channel WLAN. This will
be evaluated using the notion of stability region of
a scheme. This is because more effective resource
allocation and sharing can achieve a lower overall
congestion level, thus expanding the range of sustain-
able arrival rates and resulting in a larger stability
region. The scheme with the largest such region is
commonly known as the throughput optimal scheme.
With this objective, we set out to study the stability
region of a multi-channel WLAN system where users
are allowed to dynamically switch between channels.

The main contributions of this paper are as follows.
• A mean-field based model is constructed to char-

acterize the stability region of a multi-channel
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WLAN system. We show that the size of the back-
off window plays a decisive role in shaping the
corresponding stability region: when the backoff
window is sufficiently large, the stability region
is convex; as the window size decreases it evolves
into a concave region.

• Using this mean-field model, we provide an an-
alytical justification of using channel-switching
policies that achieve load balance in systems with
symmetric channels. This is then extended to
systems with asymmetric channels.

• We propose several simple heuristic implementa-
tions of the channel-switching policies presented
in this paper.

802.11 DCF has been very extensively studied in
the literature, ranging from throughput performance
in the saturated regime [7], [8] and the non-saturated
regime [9], [10], to its rate region [11], [12], to channel
assignment in multi-channel WLANs [13], [14], to
name a few. To the best of our knowledge, however,
none has studied multi-channel WLAN in the con-
text of stability region. Works most relevant to ours
include ones on the stability region of slotted Aloha
(e.g., [15]) and the rate region of 802.11 DCF [11], [12].

In the remainder of the paper, we first introduce a
system of equations to characterize the stability region
of a single channel WLAN consisting of multiple
users within a single interference domain (Section 3)
followed by numerical results (Section 4). We then
extend the same method to characterize the stability
region of a multi-channel system and use this result to
determine the throughput optimal channel switching
schemes within a class (Section 5). We also discuss
how such schemes may be implemented in practice
(Section 6). Due to the space limit, some technical
details are omitted and may be found in our technical
report [16].

2 SYSTEM MODEL AND PRELIMINARIES

Consider a multiple access system using the IEEE
802.11 DCF. There are N nodes (or users interchange-
ably), indexed by the set N = {1, 2, . . . , N}, each with
an infinite buffer, one transceiver (i.e., a single wireless
interface) and uses the same parameterization. We
assume the channel is ideal and there is no MAC-level
packet discard, i.e., there is no retransmission limit of
a packet after collision. Throughout the analysis we
also adopt a few other simplifying assumptions to
make the problem tractable; these will be stated in the
context to which they apply. It should be noted that
due to the complexity of the problem, successive sim-
plification in the modeling effort is a rather common
practice and has been used in most if not all previous
works. We later show that these simplifications do
not impact the accuracy of the model under normal
operating parameter values.

The key to our method is to model the queue at
each node with a service process defined by 802.11
DCF as a slotted mean field Markov chain [17].

Definition 1: A virtual backoff timer of the system (or
of a virtual node) is a universal timer for all nodes
in the system: it counts down indefinitely, alternating
between the count-down mode (when nodes in the
system are counting down) and the freezing mode
(when some node in the system is transmitting). The
slot time is thus a random variable.

Remark 1: The above definition provides a univer-
sal slot time for all nodes in the system, and we will
assume that the real backoff timer at each node is syn-
chronized to this virtual timer on slot boundaries. The
motivation behind such a construction originates from
the principal difficulty in modeling a non-saturated
system: the service process at each node runs in
embedded time in terms of a slot, which is a random
variable, whereas the packet arrival process is more
naturally described in real time [17]. This difficulty
does not exist in saturated analysis, see e.g., [7], where
arrival processes do not play a role.

We next introduce three key assumptions in our
model, followed by a discussion on their implications
and limitations.

(A1) The MAC layer arrival process at node i is Pois-
son with rate λi bits per second.

(A2) The service time of a packet, i.e. the time from
the initial backoff to successful transmission, is
(i) exponential with service rate µi at node i, and
(ii) independent of all arrival processes.

(A3) Let S(t) be the counting process of the number of
slots accumulated up to time t. S(t) is assumed
to be (i) independent of Qi(t), and (ii) renewal.

Denote by λ = (λ1,λ2, . . . ,λN ), and by {Qi(t)}t
the queueing process at node i (also written as Qi(t)
for simplicity), i.e., the number of packets in node i’s
MAC queue at time t. We now formally define the
stability region of system as follows.

Definition 2: The stability region Λ is the set of all λ ∈
RN

+ such that Qi(t) admits a stationary distribution for
all i with arrival rates λ under the 802.11 DCF scheme.

The above simplifying assumptions are not en-
tirely realistic. Typically, due to congestion control by
upper-layer protocols, e.g., TCP, the arrival process
to the MAC layer is neither Poisson nor independent
of the service process. However, as our objective is
to explore the inherent properties of 802.11 DCF, the
independence assumption is adopted to decouple the
MAC layer from upper layers, while the Poisson
and exponential assumptions are adopted to avoid
technicalities that can obscure the main insight. Note
that under the mean field methodology, each node is
analyzed in isolation from the activities of all other
nodes which are collectively regarded as an aggre-
gate stationary process. Within such a framework the
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packet service time is taken to be stationary (see e.g.,
Bianchi’s well-known mean field Markovian model of
the service process [7]).

With A1 and A2, Qi(t) is then a well-defined
M/M/1 queue, and for a given λ, λ ∈ Λ if and only
if Qi(t) is positive recurrent. Equivalently we may
consider the utilization factor ρi at node i, given by
ρi = min{λi

µi
, 1}: the queue is stable if and only if

ρi < 1. If Qi(t) is positive recurrent, then it is ergodic
and we have limt→∞ P (Qi(t) > 0) = 1 − πi(0) = ρi,
where πi is the stationary distribution of Qi(t). If Qi(t)
is transient or null recurrent, in which case ρi = 1, we
have limt→∞ P (Qi(t) = 0) = 0 = 1 − ρi. Therefore, ρi
is asymptotically given by limt→∞ P (Qi(t) > 0) in all
cases in our model.

For technical reasons we will also consider the em-
bedded queueing process Q̂i(n), n = 1, 2, · · · , defined
as Q̂i(n) := Qi(Tn), where Tn is the time of the nth
slot boundary. Q̂i(n) is thus a discrete-time process
constructed by observing Qi(t) at slot boundaries.

For an arbitrary process S(t), Q̂i(n) is not nec-
essarily Markovian. However, given assumption A3,
durations between slot boundaries are i.i.d., constitut-
ing sampling periods that are independent of Qi(t).
Hence Q̂i(t) is a discrete-time Markov chain under
our assumption. It’s worth noting that A3 does not
exactly hold in reality because the slot length is a
function of a node’s activity, and thus the state of
its queue, even with the mean field simplification of
other nodes’ behavior (this is more precisely shown
in the appendix). However, this dependence weakens
when the number of nodes or the backoff window
size is sufficiently large. We empirically show that this
assumption does not impact the accuracy of predic-
tion even with a small node population and backoff
window size.

Let ρ̂i denote the utilization factor under the
discrete-time system Q̂i(n). In general ρ̂i #= ρi. Indeed
we show in Appendix A that ρ̂i ≤ ρi where equality
holds if and only if ρi = 1 or ρi = 0, i.e., node i is
either saturated or idle. Similar to ρi, ρ̂i is asymptot-
ically given by limn→∞ P (Q̂i(n) > 0).

We will adopt Bianchi’s decoupling approximation
[7] as another key assumption, stated as follows.
Define Ci(j) := 1 if the jth attempt by node i results
in a collision, and Ci(j) := 0 if it results in a success.

(A4) [Bianchi’s Decoupling Approximation] For each
node i ∈ N , the collision sequence {Ci(j)} is i.i.d.
with P (Ci(j) = 1) = pi for some constant pi.

In reality successive attempts by the same node may
occur if it repeatedly selects timer value 0 while other
nodes’ timers remain frozen. In such cases the above
assumption ceases to hold. This phenomenon can be
prominent when the window size is small, and has
been taken into account in some recent work [18]. In
this study we will ignore the possibility of successive
attempts for simplicity of presentation and adopt

(A4). (A more precise model is possible by imposing
independence not on all attempts but only the first
attempt in each such sequence.) This is reasonable
when the initial window size is sufficiently large.
Our empirical results are fairly close between with
and without consideration of successive attempts for
large backoff windows. For small backoff windows,
the discrepancy between the two will be illustrated in
the numerical results.

We will use the term backoff length to mean the
total number of slots that a node spends between two
successive timer renewals during the service process,
which is the selected timer value plus 1. Define Ns

i

and N tx
i , respectively, as the numbers of slots and

transmission attempts that node i takes in serving
one packet. W i :=

E[Ns
i ]

E[Ntx
i ] is referred to as the average

backoff length of node i.
Using Bianchi’s approximation, we have

E[Ns
i ] =

∞∑

k=0

k∑

j=0

2min{j,m}W + 1

2
(pi)

k(1− pi)

=
∞∑

j=0

2min{j,m}W + 1

2

( ∞∑

k=j

(pi)
k(1− pi)

)

=
∞∑

j=0

2min{j,m}W + 1

2
(pi)

j

where W is the size of the initial backoff window and
m is the value of the maximum backoff stage. Also
note E[N tx

i ] = 1
1−pi

. Therefore, W i is given by

W i =
1

2

[
W

(
(1− pi)

m−1∑

j=0

(2pi)
j + (2pi)

m

)
+ 1

]
.

We next derive a relationship between the trans-
mission attempt probability and ρ̂i. Let τi(n) be the
probability that node i initiates a transmission attempt
in the nth slot.

Lemma 1: τi := limn→∞ τi(n) exists and is given by
τi = ρ̂i/W i.

Proof: Let TX(n) denote the event that node i
initiates an attempt in the nth slot. Then

τi(n) = P (TX(n)|Q̂i(n) > 0) · P (Q̂i(n) > 0)+

+ P (TX(n)|Q̂i(n) = 0) · P (Q̂i(n) = 0).

Consider now the sequence of slots in which node i
has a packet in service. Given the decoupling among
nodes, the occurrences of slots in which node i starts
the service for a packet thus form renewal events. Re-
garding each transmission attempt as one-unit reward
and using the renewal reward theory, we then obtain

lim
n→∞

P (TX(n)|Q̂i(n) > 0) =
E[N tx

i ]

E[Ns
i ]

=
1

W i
.1

1. We note that [19] used a similar technique in computing the
conditional transmission probability defined therein.



4

Since limn→∞ P (Q̂i(n) > 0) = ρ̂i, and
P (TX(n)|Q̂i(n) = 0) = 0, the result follows.

To put the above result in context, one easily verifies
that in the extreme case where all nodes are saturated
and identical, we have ρ̂i = ρi = ρ = 1 and pi = p for
all i. Consequently,

τi = τ =
2

W
(
(1− p)

∑m−1
j=0 (2p)j + (2p)m

)
+ 1

=
2(1− 2p)

(1− 2p)(W + 1) + pW (1− (2p)m)
,

which is exactly the same as obtained in [7] Eqn (7).

3 SINGLE CHANNEL STABILITY REGION
3.1 The stability region equation Σ

Our first main result is the following theorem on the
quantitative description of Λ. Let E[Si,Q,Tx

] denote
the conditional average length of a slot given that
the queue at node i is non-empty but i does not
transmit in this slot. Ts and Tc denote the lengths of
a successful transmission and a collision, respectively.

Theorem 1: λ ∈ Λ if and only if there exists at
least one solution τ = (τ1, τ2, . . . , τN ) to the following
constrained system of equations (Σ,C,λ):

Σ :






τi =
ρ̂i
W i

, ∀i (a)

pi = 1−
∏

j $=i

(1− τj), ∀i (b)

ρi = min

{
λi

P

(
W i − 1

1− pi
E[Si,Q,Tx

] +

+ Tc
pi

1− pi
+ Ts

)
, 1

}
, ∀i (c)

subject to

C :

{
0 ≤ τi ≤ 1, ∀i (i)
0 ≤ ρi < 1, ∀i (ii)

where P is the packet payload size.
Proof: Σ(a) is the result of Lemma 1, and Σ(b) is

an immediate consequence of the definition of pi. Let
the average service time at node i be Xi seconds per
bit; the average service time per packet is thus PXi.
Define Y i(j) as

Y i(j) = Tc +

(
2min{j,m}W + 1

2
− 1

)
E[Si,Q,Tx

].

Physically, Y i(j) is the average time between the be-
ginning of the jth transmission attempt, which results
in a collision, and the beginning of the (j + 1)th
attempt, given that node i encounters at least j col-
lisions before completing the service of some packet.
Since the collision sequence is geometric, we have

PXi =
∞∑

k=0

[(
W + 1

2
− 1

)
E[Si,Q,Tx

] +
k∑

j=1

Y i(j)+

+ Ts

]
× (pi)

k(1− pi)

=
∞∑

j=1

∞∑

k=j

Y i(j)(pi)
k(1− pi) +

(
W + 1

2
− 1

)
×

× E[Si,Q,Tx
] + Ts

=
∞∑

j=1

(pi)
jY i(j) +

(
W + 1

2
− 1

)
E[Si,Q,Tx

] + Ts.

Therefore,

PXi =
∞∑

j=1

[
(pi)

j

(
Tc +

(
2min{j,m}W + 1

2
− 1

)
×

× E[Si,Q,Tx
]

)]
+

(
W + 1

2
− 1

)
E[Si,Q,Tx

] + Ts

=
∞∑

j=0

[
2min{j,m}W − 1

2
(pi)

j

]
E[Si,Q,Tx

]+

+ Tc

∞∑

j=1

(pi)
j + Ts

=
W i − 1

1− pi
E[Si,Q,Tx

] + Tc
pi

1− pi
+ Ts.

Note that τi < 1 for all i, and we have pi < 1 for all i
as a result. In addition, E[Si,Q,Tx

] is finite (computed
in the appendix). Hence we conclude that the packet
service time is finite. Thus, the utilization factor of
node i is given by ρi = min{λiXi, 1} and Σ(c) follows.
C(i) is for the validity of τ as a probability measure.
(Σ, C(i), λ) then constitutes a full description on the
system utilization. C(ii) is the necessary and sufficient
condition for stability as commented in the previous
section.

For a given set of system parameter values, two
sets of quantities are needed to compute Σ: E[Si,Q,Tx

]
and ρ̂i, ∀i ∈ N . These are computed in Appendix B
and C, respectively. In particular, in Appendix C we
show that though it is analytically intractable, ρ̂i is
well approximated by

ρ̂i ≈
ρiE[Si,Q]

ρiE[Si,Q] + (1− ρi)E[Si,Q]
,

where E[Si,Q] (resp. E[Si,Q]) is the conditional average
length of a slot given that the queue at node i is non-
empty (resp. empty) at the beginning of this slot.

3.2 Characterizing the solutions to Σ

Without the stability constraint C(ii), (Σ, C(i), λ) can
be rewritten as a vector equation in [0, 1]N , τ = Γ(τ ),
where τ = (τ1, τ2, . . . , τN ) ∈ [0, 1]N , and the existence
of solutions can be shown by Brouwer’s fixed point
theorem. However, the uniqueness of its solution is
in general difficult to prove; nevertheless, under the
condition of a sufficiently large initial backoff window
W , we have the following result on the uniqueness of
its solution.
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With a large initial backoff window W , the proba-
bility of collision is small, so we have W i ≈ W+1

2 . We
also observe that E[Si,Q] ≈ E[Si,Q] when W is large
(cf. Appendix B). Consequently, we can approximate
ρ̂i by ρi. Also, using the first-order Taylor approxi-
mation, we have

∏
j $=i

1
1−τj

≈ 1+
∑

j $=i τj for small τ .
Note that the minimization operator in Σ is redundant
when combined with C(ii). Hence, let Ts = Tc = T for
simplicity of presentation, and (Σ,C,λ) can be then
approximated by the following constrained system of
equations,

Σ̃ :






τi =
ρi

W+1
2

, ∀i (a)

ρi =
λi

P

[
W − 1

2

(
σ + T

∑

j $=i

τi

)
+

+ T

(
1 +

∑

j $=i

τi

)]
, ∀i (b)

subject to the same set of constraints.
Proposition 1: (Σ̃,λ) admits a unique solution.

Proof: See Appendix D.
Remark 2: 1) The above result suggests that Σ has a

unique solution when W , the initial window size, is
sufficient large. As an approximation we will take this
condition to be equivalent to a large average backoff
window. This is because the probability of a (first-
attempt) collision decays inverse-linearly in W , and
thus W i is dominated by W when W is sufficiently
large.

2) As we will see numerically in the next section,
multiple fixed point solutions may arise when W is
small; this will be referred to as multi-equilibrium
(as opposed to “multistable” or “metastable” [17] to
avoid confusion).

In the proof of Proposition 1, we in fact obtained
the approximated unique solution to (Σ,λ). Therefore,
by imposing feasibility constraints C, we can induce
a simplified version of (Σ,C,λ) which is an approxi-
mation to Λ and is easier to compute.

Corollary 1: When W is sufficiently large, Λ is ap-
proximated by

Λ̃ =

{
λ ∈ RN

+

∣∣∣∣ 0 <
γ1
i (λi)

∑
j γ

2
j (λi)

1−
∑

i γ
1
j (λi)

+γ2
i (λi) <

2
W + 1

, ∀i
}

where γ1
i (λi) = λiT

P

/(
1 + λiT

P

)
, and γ2

i (λi) =
λi((W−1)σ+2T )

P (W+1)

/(
1 + λiT

P

)
.

Within the context of a unique solution to (Σ,C,λ),
consider λ as input parameters and rewrite Σ as
F(τ ,λ) = 0, with (n+n) unknowns (τi’s and λi’s). We
can then inspect the existence of an implicit function
of τ in terms of λ, and for this we need to examine
the invertibility of the corresponding Jacobian matrix.
Note also that the correspondence between ρi and
(λ, τ ) given by Σ(c) is a continuous function. If the

Jacobian is invertible on the boundary of the stability
region Λ in the space RN

+ , then the continuity of
ρi = ρi(λ) is established. Hence, on the boundary
of Λ, denoted by ∂Λ, there exists at least one node i
such that ρi = 1. Unfortunately, the invertibility of the
Jacobian on ∂Λ is highly non-trivial to determine and
in general analytically intractable when the number
of nodes is large. In the next section we numerically
evaluate (Σ,C,λ) and more is discussed.

4 NUMERICAL RESULTS: SINGLE CHANNEL

Using (Σ,C,λ), we can quantitatively describe the
stability region of a single channel system, and some
numerical results for the two-user case are illustrated
in this section. The parameters used in both the nu-
merical computation and the simulation are reported
in Table 1 in Appendix F. Under the basic access
mechanism of DCF we have
{
Ts =

P
Tx. Rate + Header + ACK + DIFS + SIFS + 2δ

Tc =
P

Tx. Rate + Header + DIFS + δ

where δ is the propagation delay.

4.1 Multi-equilibrium and discontinuity in ρ

We first illustrate the existence of multi-equilibrium
solutions and discontinuity of ρi(λ) in λ; this is shown
in Figure 1. We fix the value of λ2 and increase λ1 from
0 to 4.5 Mbps. For each pair λ = (λ1,λ2), we solve
for the fixed point(s) of Σ with the same set of initial
values of τi and ρ̂i for i ∈ N to which we refer as a set
of initial conditions (ICs). We then convert the results
to ρ = (ρi, i ∈ N ) using Eqn. Σ(c). The collection of the
pairs (λ,ρ(λ)) then constitutes a solution component for
this set of ICs. Note that this is obtained by solving (Σ,
C(i), λ) without considering the stability constraint
C(ii). We repeat the above computation for different
sets of ICs under the same system parameters includ-
ing W and m. The entire process is then repeated
for different pairs (W , m). For each pair (W , m), the
resulting solution components constitute an overall
correspondence between the vectors λ and ρ(λ), and
this is plotted for ρ1 vs. λ1 in Figure 1.

In the first scenario as shown in Figure 1(a), where
the initial window is of the smallest possible size
for two users and window expansion is disallowed
(m = 0), three different zones of the correspondence
ρ1(λ1) are present, labeled as A, A′ and B in the figure.
In zones A and A′, a single fixed point is admitted
and ρ1(λ1) reduces to a function, while in zone B
we see two solutions. Along each solution component,
there is a jump in ρ1 in zone B as λ1 increases; this is
essentially a phase transition from stable to unstable
regions. What this result illustrates is that depending
on the initial condition, certain input rates may or may
not lead to a feasible solution (a point in the stability
region). Thus when such multi-equilibrium exists, we
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Fig. 1. Solution components for various scenarios: an illustration.

may have a collection of stability region Λ’s given
different initial conditions, and this phenomenon is
illustrated in Figure 3 and discussed in the next
subsection in detail. Recall that under our definition
of stability region and Theorem 1, an arrival rate
vector is considered within the stability region as long
as there exists such an initial condition that induces
so; the stability region thus defined is therefore the
supremum of this collection when multiple equilibria
exist. The advantage of the “stability region” A is
that the points within are stable independent of the
initial condition. With a slight abuse of terminology,
we would later refer to this region as the stability
region with multi-equilibrium.

Intuitively, initial conditions with large values sug-
gest a pessimistic prediction on the system stability
under λ, and it may thus result in a small Λ; by
contrast, ICs with small values render an optimistic
one and a larger Λ. Empirically, we find that the set
of ICs with τi = ρi ≈ 1 for i ∈ N results in the earliest
jump in ρ1 and the one with τi = ρi = 0 for i ∈ N
gives the latest. Consequently, solution components
resulting from these two sets of ICs define the bound-
ary of zone B and the corresponding stability regions,
forming the empirical supremum and infimum of the
collection of Λ’s.

Inspecting the set of figures Fig. 1(a)-1(d), we
see that as the initial window increases, the multi-
equilibrium gradually vanishes and the gap in ρ1
caused by the jump discontinuity closes.

4.2 Numerical and empirical stability regions
We numerically solve (Σ,C,λ) with two nodes to
obtain the corresponding Λ, and then compare it with
the simulated boundary. In simulation, for each fixed
λ2, we increase λ1 with a step size ∆λ, and compute
the empirical throughput of node i obtained under
λ, denoted as Sλ

i , and the number of backlogged
packets at node i by the end of simulation, denoted
as Bλ

i . The simulator declares a point λ unstable
if there exists at least one i such that Sλ

i < λi

and Bλ
i P/(λiTf ) > βi, by the simulation time Tf ,

where βi is an instability threshold, 0 < βi < 1. In

the experiment we set ∆λ = 0.1 Mbps (100 Kbps),
Tf = 10 sec and βi = β = 1%. The stable point
(λ1,λ2) such that (λ1+∆λ,λ2) is unstable is declared
a point on the simulated boundary; the experiment
is repeated for each λ2 and the empirical mean value
of λ1 is recorded. Due to symmetry, only half of the
boundary points are evaluated. The results are shown
in Figure 2.

Our main observation is that when the initial (or
average) backoff window is large, the stability region
is convex (Figure 2(a)). The convexity gradually dis-
appears as the window size decreases and the region
is given by a near-linear boundary in Figure 2(b). It
becomes clearly concave when the window size is
small (Figure 2(c)). Interestingly, the case of W = 32
is the most frequently studied in the literature, and
a linear boundary of the capacity region has been
observed in [11]. As shown here, this linear boundary
is only a special case in a spectrum of convex-concave
boundaries. It is worth noting that in [12], Leith et
al. established the general log-convexity of the rate
region of 802.11 WLANs. This implies that the rate
region could be either convex or concave, though [12]
did not associate this with the window size as we
have explicitly done here. It also suggests that the rate
region and the stability region may be quite similar
in nature; this however is not a formally proven
statement, nor are we aware of such in the case of
802.11.

The change in the shape of the stability region as
W changes may be explained as follows. Small W
represents a highly aggressive configuration. This is
much more beneficial when there is a high degree of
asymmetry between the users’ arrival rates. This is
reflected in the concave shape of the region. When
W is large, users are non-aggressive, which is more
beneficial when arrival rates are similar, resulting in
the convex shape. Numerically, the W = 8 case gives
the largest stability region. This seems to suggest that
the largest stability region is given by the smallest
choice of W such that a unique feasible solution to
(Σ,C,λ) exists. It would be very interesting to see if
this could be established rigorously.
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(c) W = 8,m = 5

Fig. 2. The stability regions in various scenarios - part I.
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Fig. 3. The stability regions in various scenarios - part II: W = 2 and m = 0.

In Figure 3, we compute the stability regions of the
case where W = 2 and m = 0 for two different sets
of ICs. As discussed earlier, when multi-equilibrium
exists we may have a collection of stability regions.
This is clearly seen in Figure 3: three different zones
A, A′ and B in the correspondence ρ1(λ1) are mapped
accordingly onto Λ. From these results, we may in-
terpret that in zones A (A′), the system is uniformly
stable (resp. unstable) regardless of the IC, while in
zone B the stability of system depends on the IC. As
noted in [17], the simulated boundary reflects time-
averages of multiple equilibria.

As mentioned earlier, for small backoff windows
the occurrence of successive attempts is non-trivial,
which our model has ignored. The first-attempt de-
coupling approximation mentioned after A4 captures
the nodal behavior more accurately, and the adapta-
tion of Σ using this alternative assumption is detailed
in our technical report [16]. In Figure 3(b), we plot the
counterpart of Figure 3(a) using the first-attempt de-
coupling approximation, and the discrepancy between
results obtained using these two assumptions does
exists. This is most notably shown in the numerical
boundary A. The fact that the simulated boundary is
now in between the two numerical boundaries verifies
that this alternative assumption is more accurate. We
do note however that for large windows this gap di-
minishes judging from numerical observation, which

is to be expected.

4.3 Discussion: from 802.11 DCF back to Aloha
We next recall results on the stability region of slotted
Aloha, the natural prototype of modern 802.11 DCF,
and provide an intuitive argument on why the qual-
itative properties of the stability region shown in the
previous section are to be expected.

In [20], Massey and Mathys studied an information
theoretical model of multiaccess channel which shares
several fundamental features with slotted Aloha. They
investigated the Shannon capacity region of this chan-
nel with n users, which is shown to be the following
subset of Rn

+:

C =

{
vect

(
τi
∏

j $=i

(1− τj)

) ∣∣∣∣ 0 ≤ τi ≤ 1, 1 ≤ i ≤ n

}
,

where vect(vi) = (v1, v2, . . . , vn), and τi is the trans-
mission attempt rate of user i. In [15], Anantharam
showed that the closure of the stability region of slot-
ted Aloha is also given by C, under a geometrically
distributed aggregate arrival process with parameter
1/(

∑
i λi) and probability λi/

∑
j λj that such an ar-

rival is at node i.
The above result on slotted Aloha can be used

to explain the stability region of 802.11 DCF. Note
that the main difference between the two lies in the
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Fig. 4. The stability region of slotted ALOHA and
induced subsets.

collision avoidance mechanism. Instead of attempting
transmission with probability 0 ≤ p ≤ 1 in a slot under
slotted Aloha, under DCF each user randomly chooses
a backoff timer value within a window. The effect the
average backoff length W has on transmission under
DCF is akin to that of restricting the attempt rate
p within an upper bound 1

W
under slotted Aloha.

Hence, the stability region of 802.11 DCF may be
viewed as a subset of C provided that we properly
scale a slot to real time.

To verify this intuition, let CW be the subset of C
when 0 ≤ pi ≤ 1

W
for all i. In Figure 4, we plot C

and CW with different values of W . We see that as
W grows, CW evolves from a concave set to a convex
set, consistent with what we observed of 802.11 DCF
in the previous subsection. It must be pointed out
that this connection, while intuitive, is not a precise
one technically. For instance, this connection might
suggest that the stability region of 802.11 DCF will
reduce to C when the average backoff length is 1. This
is however not true. In this trivial case, the stability
region of 802.11 DCF is reduced to one dimension,
i.e., the system is unstable for n ≥ 2. This is because
the retransmission probability of DCF is also lower
bounded by the reciprocal of the window size at its
backoff stage, and in the case when the backoff length
is one another collision occurs with certainty.

5 MULTI-CHANNEL ANALYSIS
Using a similar, mean-field Markovian model as we
did in the single channel case, we can show that the
stability region of a multi-channel system under a
certain switching policy g is given by another system
of equations denoted as (Σg,C,λ), under the arrival
rates λ = (λ1,λ2, . . . ,λN ), and subject to the feasibility
constraints C; this is given later in the section. In
addition to the same set of assumptions made in the
single channel model, we assume that the system has
K channels, indexed by the set C = {1, 2, . . . ,K}.

The fundamental conceptual issue accompanying
channelization is the notion of a channel switching

policy, either centralized or distributed, that intro-
duces channel occupancy and packet assignment dis-
tributions for each node. An additional technical issue
induced by channelization is the heterogeneity of
embedded time units among different channels. Since
the slot length in a channel is by nature a random
variable that depends on random packet arrivals,
channels are in general strongly asynchronous in the
embedded time units. Thus, as nodes switch among
channels, we may need to switch the corresponding
reference of embedded time in the slot based analysis.
We therefore define the notion of a slot in different
contexts as follows.

Definition 3: Consider the virtual backoff timer de-
fined earlier separately for a single channel. A channel-
slot (c-slot) is defined as the time interval between
two consecutive decrements on this virtual timer for
a given channel.

Definition 4: Consider a virtual backoff timer at each
node that counts down indefinitely according to the
node’s backoff state, and is synchronized to the virtual
timer of the channel in which the node resides and is
done upon switching. A node-slot (n-slot) is defined as
the time interval between two consecutive decrements
on a given node’s virtual backoff timer.

Remark 3: There is no inherent difference between
the two types of slots. However, this differentiation
of time references becomes crucial when we define
quantities based on the random embedded time. This
observation will be made more concrete in the anal-
ysis. We will also omit the explicit association of a
channel (node) index with a slot whenever it does not
cause ambiguity.

A channel switching or scheduling policy g induces
a number of distributions related to Σg. Denote by
Qn

i (j) = {q(k)i (j), k ∈ C}, where q(k)i (j) is the proba-
bility that node i is in channel k at the beginning of its
jth n-slot, t−j . Qn

i (j) is referred to as the the channel
occupancy distribution in n-slots of node i in the jth
n-slot.

Denote by Qc
i (j) = {q̂(k)i (j), k ∈ C}, where q̂(k)i (j)

is the probability that node i is in channel k at the
beginning of its jth c-slot, t̂−j . Qc

i (j) is referred to as
the channel occupancy profile of node i at the jth c-
slot. Note that Qc

i (j) is not necessarily a distribution
and

∑
k∈C q̂

(k)
i (j) need not be 1 for a given j.

Denote by Qp
i (l) = {q̃(k)i (l), k ∈ C}, where q̃(k)i (l) is

the probability that the lth packet of node i is served
in channel k, and Qp

i (l) is referred to as the packet
assignment distribution of node i.

We have the following assumptions on policy g.
(A5) Under g, Bianchi’s approximation is still satisfied.
(A6) g is independent of the binary state of the queue

at any node (empty vs. non-empty).
(A7) g is nonpreemptive in a channel for the entire

service process of a packet; that is, a channel-
switching decision is only made before or after
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the service process of a packet.
(A8) The limits of Qn

i (j), Qc
i (j) and Qp

i (l) exist under g
as their respective arguments tend to infinity, and
are denoted by Qn

i , Qc
i and Qp

i , respectively.2

Similar as in single channel analysis, we impose the
Markovian assumption on the discrete-time queue-
ing process Q̂(k)

i (n), which is the embedded pro-
cess of Qi(t) (queue state of node i) sampled at
the boundaries of c-slots of channel k, and define
ρ̂(k)i = limn→∞ P (Q̂(k)

i (n) > 0). Also, let τ (k)i (n) be
the probability that node i initiates a transmission
attempt in the nth c-slot of channel k. Then we have
the following lemma; its proof is similar to that of
Lemma 1 (based on A6 and A8) and omitted.

Lemma 2: τ (k)i := limn→∞ τ (k)i (n) exists and is given
by τ (k)i = q̂(k)i ρ̂(k)i /W

(k)
i , where W

(k)
i :=

E[Ns,(k)
i ]

E[Ntx,(k)
i ]

is the
average backoff length of node i in channel k, with
Ns,(k)

i and N tx,(k)
i defined in parallel as in the single

channel case.
Remark 4: Under A7, W (k)

i is given by

W
(k)
i =

1

2

[
W

(
(1− p(k)i )

m−1∑

j=0

(2p(k)i )j + (2p(k)i )m
)
+ 1

]
,

where p(k)i is the probability of collision in channel
k given a transmission attempt and W is the initial
backoff window size.

Given any scheduling policy g, let Λg be the corre-
sponding stability region, and we have the following
theorem characterizing Λg.

Theorem 2: λ ∈ Λg if and only if there exists at least
one solution τ = (τ (k), k ∈ C) where τ (k) = (τ (k)i , i ∈
N ) to the following constrained system of equations
(Σg,C,λ),

Σg :






τ (k)i =
q̂(k)i ρ̂(k)i

W
(k)
i

, ∀i, k (a)

p(k)i = 1−
∏

j $=i

(1− τ (k)j ), ∀i, k (b)

ρi = min

{
λi

P

∑

k∈C

[
q̃(k)i

(
W

(k)
i − 1

1− p(k)i

E[S(k)

i,Q,Tx
] +

+ T (k)
c

p(k)i

1− p(k)i

+ T (k)
s

)]
, 1

}
, ∀i, k (c)

subject to

C :

{
0 ≤ τ (k)i ≤ 1, ∀i, k (i)
0 ≤ ρi < 1, ∀i (ii)

where i ∈ N and k ∈ C; P is the packet payload size;
E[S(k)

i,Q,Tx
] is the conditional average length of a c-slot

2. These limiting quantities are related by well-define corre-
spondences, which are detailed in our technical report [16], and
those relations are used to numerically evaluate the stability region
equation for a multi-channel system presented in this section.

in channel k given that the queue at node i is non-
empty but i does not transmit in this slot.

Proof: The proof is an immediate extension of the
proof of Theorem 1, given assumptions on g.

The existence of a solution to Σg can be simi-
larly established using Brouwer’s fixed point theorem.
We next study its uniqueness and the throughput
optimality of a switching policy by resorting to an
approximation given below, due to the complexity
of Σg. For the rest of this section, we will limit our
discussion to the symmetric case where the channels
have the same bandwidth and the system uses the
same parameterization in all channels. We extend our
discussion to more generic settings in the next section.

Definition 5: A scheduling policy is unbiased if the
stationary channel occupancy distribution induced by
such a policy is identical for every node, i.e., q(k)i =
q(k) for all i ∈ N and k ∈ C. It is denoted by gU , and
the space of unbiased policies is GU .

We can obtain an approximation to (ΣgU
,C,λ) sim-

ilarly as we did for Σ, using q̂(k) ≈ q̃(k) ≈ q(k):

Σ̃gU

:






τ (k)i =
q(k)ρi
W+1

2

(a)

ρi =
λi

P

∑

k∈C

{
q(k)

[
W − 1

2

(
σ + T

∑

j $=i

τ (k)j

)

+ T

(
1 +

∑

j $=i

τ (k)j

)]}
(b)

and we have the following result.
Theorem 3: Consider a system modeled by Σ̃gU

and
the associated stability region ΛgU

. For all sufficiently
large initial window sizes W , (i) the system of equa-
tions (ΣgU

,λ) admits a unique solution, and (ii) gU is
throughput optimal within the class GU if q(k) = 1

K for
all k. These are referred to as equi-occupancy policies.

Proof: We omit the proof on uniqueness, which is
similar to the single-channel case; see Appendix E for
the proof on throughput optimality.

The above results provide the following insights
in addition to what we have observed in the single-
channel case. Firstly, it’s worth noting that Σg reduces
to Σ in the single-channel case by properly config-
uring related parameters, and Σg thus constitutes a
unified framework in describing the stability region
of 802.11 DCF.

Secondly, the uniqueness of the solution to (ΣgU

,λ)
is in fact true for even small windows. As an example,
in Figure 5, we plot the numerical boundaries of
stability regions for various window settings with
equal channel occupancy. Compared to results in the
single-channel case, convexity of the stability region is
observed even with small backoff windows in the bi-
channel case. Also, the numerical multi-equilibrium
phenomenon disappears in this case. One way to
explain this is by considering the discounting effect of
channelization on the attempt rate. The attempt rate
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of each node in a channel is discounted by the occu-
pancy probability in that channel. As discussed in the
single-channel case, the attempt rate is roughly upper
bounded by the reciprocal of the average backoff
window size. Hence channelization has the effect of
window expansion. The same explanation also applies
to the observation that the stability region in a multi-
channel system is nearly always convex.
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Fig. 5. The stability region of bi-channel 802.11 DCF
under the equi-occupancy policy.
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Fig. 6. Throughput optimality of equi-occupancy distri-
bution.

Thirdly, given symmetric channelization, equal oc-
cupancy time is equivalent to equal packet assignment
in each channel. The optimality of equi-occupancy
policies therefore confirms the intuitive notion that
load balancing (either in the number of active nodes
or in the amount of date flow) optimizes the system
performance in terms of expanding the stability re-
gion. In Figure 6, we plot the analytical boundaries of
stability regions corresponding to different unbiased
policies in two scenarios. As can been seen, the equi-
occupancy policy results in a stability region that is
the superset of those of the other unbiased policies.
It is also worth noting that as the backoff window
increases, the gap between the superset region and
other inferior regions decreases, as the reciprocal of
the window size becomes the dominant factor in
upper bounding the attempt rate.

6 APPLICABILITY AND IMPLEMENTATION OF
UNBIASED POLICIES IN BOTH SYMMETRIC
AND ASYMMETRIC SYSTEMS
In this section we discuss the applicability of the
class of unbiased policies. We then present a number
of practical implementations and their use in both
symmetric and asymmetric systems.

6.1 Unbiased policies
We have so far restricted our policy space to unbi-
ased policies that induce a node-independent channel
occupancy or packet assignment distribution. Note
that while nodes in the same system are typically
programmed with the same protocol stack, the same
protocol may not necessarily yield the same statis-
tical behavior among different nodes. Nevertheless,
there are a number of circumstances in which node-
independent behaviors are induced, which justifies
our focus on unbiased policies. Firstly, if the pro-
tocol explicitly prescribes packet allocation to each
channel, the resulting packet assignment distributions
are identical for all nodes. Secondly, if nodes have
identical arrival processes, they then have unbiased
behavior as well. Unbiasedness can also be observed
in a saturated network (however, such a system is
unstable).

More generally, we note that when a node is ac-
tive (i.e., its queue is non-empty and it is in the
service process), from a mean-field point of view the
channel conditions observed by this node is fully
characterized by p(k)i for each k (as a result of the
decoupling assumption), which is a function of τ (k)j
for all j #= i. Therefore, the set of attempt rates
{τ (k)i ; ∀i, ∀k} characterizes the contention condition in
the system. If nodes are asymptotically symmetric,
that is, limN→∞ τ (k)i /τ (k)j = 1, for all i #= j and k,
then we have

lim
N→∞

p(k)i

p(k)j

= lim
N→∞

1−
∏

l $=i(1− τ (k)l )

1−
∏

l $=j(1− τ (k)l )

= 1 + lim
N→∞

A(τ (k)j − τ (k)i )

Aτ (k)i + (1−A)
= 1,

where A =
∏

l $=i,j(1− τ (k)l ). In this case we may con-
sider the behavior induced by the underlying protocol
on each node identical, and the corresponding policy
unbiased. Note that the decoupling assumption is
regarded as asymptotically true for a large number of
nodes, so we may consider the asymptotic symmetry
as an adjoint condition if we impose the decoupling
approximation in modeling.

6.2 Practical implementation of throughput opti-
mal unbiased policies: symmetric channels
We have shown that when channels are symmetric the
optimal switching policy within the class of unbiased
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policies is the equi-occupancy policy that balances
load precisely. When channels are asymmetric, i.e.,
have different bandwidths, it is natural to expect that
a load balancing policy yields throughput optimal
performance, and to interpret a balanced load as
having a packet assignment distribution proportional
to the channel bandwidths. We will see that this
interpretation is reasonable though not precise.

We begin by commenting on how such policies may
be realized in a symmetric system.

We describe two very simple heuristics that imple-
ment an unbiased policy, and in particular, the equi-
occupancy policy when channels are symmetric. The
description is given in the bi-channel case for simplic-
ity. The first is called SAS (switching after success),
and the second SAC (switching after collision). In
both schemes, a switching probability is assigned to
each backoff stage. Under SAS (resp. SAC), a node
switches to the other channel with probability α(k)

l
upon a successful transmission (resp. collision) if it
is at the lth backoff stage in channel k when this
success (resp. collision) occurs. In addition, in SAC,
after switching to the other channel, a node does
not reset its backoff stage; instead, it continues the
exponential backoff due to the last collision. Note that
SAS can be used to implement any arbitrary packet
assignment distribution (and thus load distribution),
which is a useful feature when we proceed to the
implementation under asymmetric channels. This is
because with the assumption of nonpreemptiveness
of the policy, i.e., A7, switching after each successful
transmission is equivalent to assigning packets.

These two schemes heuristically implement the
equi-occupancy policy in the following sense, when
the switching probability profiles are identical in all
channels and the channels are symmetric. Consider
the two-dimensional Markov chains for a bi-channel
system in the form of Bianchi’s model [7], where
each state in one channel has a mirror state in the
other. Since for both SAS and SAC, the corresponding
Markov chain is irreducible with a finite number of
states, using the argument of symmetry, the symmet-
ric solution is the unique stationary distribution that
reflects equi-occupancy. It should be noted however
that neither of the above is a perfect solution and
the key may be a proper combination of the two.
The problem with SAS is that it can result in empty
channels (the node that succeeded in the transmission
happens to be the only node in that channel). When
this happens nodes can tend to cluster in the non-
empty channel for significant periods of time due to
collision and backoff, while our mean field Markov
analysis implicitly assumes no channels are empty for
long. On the other hand, the problem with SAC (SAC
rarely results in empty channels and avoids clustering
in one channel) is that it interrupts the service process
of a packet in a given channel, thus violating the
nonpreemptive assumption about the policy.

It is also worth noting that when SAS or SAC imple-
ments the equi-occupancy policy, or more generally
known occupancy (or packet assignment) distribu-
tions, our model and assumptions admit an M/M/1
type of delay analysis. For instance, the average
packet delay of a stable node i is given by ρi

λi(1−ρi)
and

can be numerically evaluated through the stability
equations.

6.3 Practical implementation of throughput opti-
mal unbiased policies: asymmetric channels
We next proceed to asymmetric channels and examine
how these two heuristics perform in this setting, and
in doing so also empirically examine when the sta-
bility region is maximized. In particular, we focus on
the performance of a policy when the majority of the
nodes have similar arrival rates, and we examine the
advantage of load balancing in improving stability. In
our experiment, we fix 10 nodes with an arrival rate
0.5Mbps that creates a mean-field background in a bi-
channel network while inspecting the stability region
of another two nodes, which is the projection of the
aggregate stability region onto a plane of these two
nodes’ arrival rates. All nodes use the same policy in
a single experiment.

In Figure 7, we plot the empirical boundary of
stability regions under different packet assignment
distributions (implemented using SAS). As shown,
policies with packet assignment ratio close to the
bandwidth ratio indeed result in larger stability re-
gions. However, while it seems safe to claim that
properly balancing active time among channels ac-
cording to their bandwidths improves the system
performance, it remains unknown whether an exact
match in load assignment is the optimal policy due
to the nonlinearity of slot length in each channel w.r.t.
active nodes. In addition, in practice we may not even
know the effective bandwidth of each channel when
channel conditions are imperfect.
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Fig. 7. The projection of simulated stability region
onto a plane of arrival rates of the two nodes under
inspection.

It is therefore highly desirable to have an adaptive
mechanism that dynamically adjusts the load distribu-
tion in practical implementation. Below we show that
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SAC to a large extent can achieve this goal, with the
reason being that collision rate reflects the contention
level and bandwidth information. Figure 7 also shows
the empirical stability region obtained using SAC
with a switching probability at the lth backoff stage
α(k)
l = l

m for all k, where m is the maximum backoff
stage. SAC is clearly not optimal, but it maintains
good performance under different bandwidth ratios.

We further highlight the adaptiveness of SAC in
comparison to SAS. Assume that the active node
population in each channel is the same and static,
given then the same period of time, faster channels
experience more transmission successes than slower
ones. Therefore, if a SAS-like switching policy is
adopted for a relatively congested network, nodes
would cluster in the slower channels and the through-
put performance degrades significantly. However, if
the congestion is due to bandwidth asymmetry, then
this is reflected in the collision rate of transmission,
which in turns triggers channel reallocation under
SAC. We illustrate this point using the following ex-
periment. Consider a bi-channel system with strongly
asymmetric channels, where the bandwidth of chan-
nel 1 (2) is 1Mbps (10Mbps). The system consists of
60 nodes each with an arrival rate 0.1Mbps, and this
aggregate arrival rate (6Mbps) is slightly below the
empirical saturation throughput under this setting. In
the first test, we compare the resulting distribution of
number of nodes in channel 1 between SAC and SAS
with the switching probability α(k)

l = 0.5 for all stages
in both channels, and we repeat the inspection with
the switching probability α(k)

l = l
m at stage l in the

second test; the duration of simulation is 180 seconds.
The switching probability profile in the first test can
be regarded as a blind configuration, while the second
profile can be taken as an adaptive configuration that
partially incorporates collision history into switching
decisions. In Figure 8, we plot the histograms of
the number of nodes in channel 1, as well as the
empirical throughput obtained. As can be seen, the
blindly configured SAS drives nodes to cluster in the
slower channel, while SAC avoids this problem. In-
terestingly, SAS has comparable performance as SAC
if we adjust the switching probabilities as we did in
the second test, which reflects the congestion level in
the residing channel, and both distributions “match”
the bandwidth ratio. It suggests that while SAS is
not as adaptive as SAC, it remains a valid alternative
implementation and could achieve comparable perfor-
mance when configured appropriately, as did above.

6.4 Fairness under throughput-optimal policies
The general philosophy of SAS is that a node immedi-
ately vacates a channel in which it just had a success
so other nodes can have a chance, while that of SAC is
to keep using that channel until it gets inferior. While
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Fig. 8. Histogram of node population in the slower
channel: (a)

(
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)
SAC (SAS) with αl = 0.5; (c)
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SAC (SAS) with αl =
l
m .

at opposite ends of the spectrum, this altruism and
egoism respectively achieves the same system level
fairness when universally adopted by all nodes in the
network due to symmetry3.

To illustrate further, consider a possibly asymmetric
bi-channel system with a mixture of saturated and un-
saturated nodes, and consider two notions of fairness.
Under the first notion, fairness is measured by the
individual throughput achieved by a node, compared
to other similarly loaded nodes. For stable nodes, their
throughput is simply their arrival rates. For saturated
nodes, their attempt rates become essentially the same
after queues have built up. This together with the
fact that the implementation of SAS and SAC are
not user-specific suggests the individual throughput
is identical among saturated nodes.

Under the second notion, we measure fairness by
the portion of a user’s packets served in the better
channel. Recall that SAS can be used to implement
any arbitrary packet assignment distribution by tun-
ing the conditional switching probabilities at each
backoff stage after a successful transmission. For in-
stance, if the switching probabilities are set to 1 in
the worse channel at all stages while 1/2 in the better
one, each node should then have on average 2/3 of its
packets served in the better channel in the long term.
This is independent of the arrival process or attempt
rate of any node, and hence this type of fairness is
also achieved.

3. Strategic behavior could lead to unfair advantage if users
deviate from the preset rule. Consider for instance a bi-channel
example where all but one node adopt SAS thus clustering in an
inferior channel, while one node persists in the good channel using
SAC.
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7 SIGNAL QUALITY PLUS CONGESTION
LEVEL IN CHANNEL SELECTION

Our primary intention is to study how congestion
should be factored into switching decisions in a multi-
channel system, and have so far assumed a perfect
channel condition in terms of signal quality. In this
section we consider the impact of considering con-
gestion in addition to signal quality in making channel
switching decisions. Below we first consider extend-
ing the current model to include packet loss due
to poor channel/signal quality, and then empirically
study how SAS and SAC perform under imperfect
channel conditions compared to a switching policy
that solely relies on signal quality estimates.

Different signal quality can be captured by a prob-
ability of packet failure loss for each transmission
attempt, independent from losses due to collision,
denoted by π(k) for channel k. We consider two cases
depending on whether we will assume that a node
can distinguish a collision loss from a packet failure
loss due to poor signal quality. In the first case when
a node is able to distinguish the two, then Automatic
Repeat reQuest (ARQ) can be applied upon a failed
transmission within the same channel reservation (i.e.,
a node does not release the channel upon a packet
failure but will continue to retransmit). For simplicity
we will assume there is no re-try limit, and thus the
introduction of packet failure losses only affects the
duration of a data session after a successful channel
reservation, which was denoted by T (k)

s in the origin
model for a successful transmission. This effectively
leads to asymmetric channels even if they have the
same amount of bandwidth. Since the duration of a
single data session is generally much greater than the
channel coherence time, we will assume that packet
failures occur independently in each re-transmission
attempt with probability π(k). The number of retrans-
missions then follows a geometric distribution, and
the expected duration of a data session after a success-
ful reservation of channel k is given by T (k)

q

1−π(k) + T (k)
s ,

where T (k)
q is the duration of a transmission that

resulted in packet failure.
In the second case, when a node is not able to

distinguish a packet failure loss from collision, it will
simply regard each unsuccessful transmission attempt
as being involved in a collision. As a result the
conditional collision probability given a transmission
attempt in Σg(b) is updated as

p(k)i = 1− (1− π(k))
∏

j $=i

(1− τ (k)j ).

In both cases, the original model can be extended to
compute the corresponding stability regions.

We now numerically compare the proposed
congestion-aware switching algorithm to a method
that uses only signal quality. Consider three channels

with equal bandwidth (a third of 11Mbps) but differ-
ent signal qualities modeled as packet loss probabili-
ties for a given transmission attempt (0.1, 0.2 and 0.3
for the three channels, respectively). Assume nodes
can tell collision loss from failure loss. We fix 20 nodes
each with an arrival rate 0.1Mbps that creates a mean-
field background as in the previous section, while
tuning the arrival rates of two additional nodes. We
then inspect the stability region projected onto the
plane where these two nodes’ arrival rates reside.

In one scenario, all nodes use SAC together with
ARQ within each data session until success. In the
other scenario, all nodes use a signal-based (SB)
switching method that essentially performs an on-
line estimate of the packet failure loss rate in each
channel, by tracking the total number of successful
transmissions and the total number of transmission
attempts within each data session (after successful
channel reservation), and switches to (or remains in)
the channel with the lowest current estimate upon
each successful packet transmission. In the long run
one expects nodes to cluster in the best channel even
while it gets more congested. This is indeed observed
in our simulation; the resulting stability regions are
depicted in Figure 94. We also report the average
number of nodes in each channel at near-saturated
points during a simulation of 30 seconds in Table 1,
which confirms our intuition.

In this study we have used a rather simple signal-
based algorithm. Nevertheless it validates our obser-
vation that considering only signal quality can be a
very detrimental thing to do when there is significant
congestion in the system.
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Fig. 9. Congestion-based vs. signal-based: stability
region.

TABLE 1
Congestion-based vs. signal-based: node distribution.

Channel 1 2 3
Node

Distr’n
SAC 6.69 7.21 8.10 (λ1,λ2) = (1, 1)
SB 14.22 5.30 2.48 (λ1,λ2) = (.6, .6)

4. Note that only a limited number of boundary points are
identified to sketch the stability regions; the connecting lines are
hence not necessarily the exact boundary.
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8 CONCLUSION

Using the characterization of the stability region of
a multi-channel multi-user WLAN system, we in-
vestigated the throughput optimal channel switching
schemes in such systems. In particular, we showed
that a balanced load distribution (channel occupancy
time, packet assignment) in general improves the sys-
tem performance in terms of the stability region, and
we proposed simple and adaptive online switching
algorithms to achieve load balance in a general system
with asymmetric channels. While the modeling effort
primarily focused on the congestion aspect assuming
perfect signal quality, we also presented extensions of
the basic model to incorporate noisy channels, which
in essence can be considered as asymmetric channels
in bandwidth. We also performed an empirical com-
parison between our channel switching method and
one that is solely based on signal quality; the latter
induces nodes to cluster in one channel. Our ultimate
intention is to promote a definition of channel quality
that reflects both signal quality and congestion levels
in a multi-channel wireless network. This work can
be extended in the following directions: 1) the effect
of asymmetric channels on the characterization of sta-
bility region; 2) throughput optimal switching when
considering the larger space of biased policies.
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