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Abstract

Dynamic spectrum access has been a hot topic for extensidg &t recent years. The increas-
ing volumes of literatures calls for a deeper understandinthe characteristics of current spectrum
utilization. In this paper we present a detailed spectrurasueement study, with data collected in the
20MHz to 3GHz spectrum band and at four locations concugrémtGuangdong province of China.
We examine the statistics of the collected data, includimgnoel vacancy statistics, channel utilization
within each individual wireless service, and the spectrad apatial correlation of these measures.
Main findings include that the channel vacancy durationk¥olan exponential-like distribution, but
are not independently distributed over time, and that figant spectral and spatial correlations are
found between channels of the same service. We then expiolit spectrum correlation to develop
a 2-dimensional frequent pattern mining algorithm that paedict channel availability based on past
observations with considerable accuracy.

Index Terms

Spectrum Measurement, Channel Vacancy Duration, Servaregé€stion Rate, Spectrum Usage
Prediction, Frequent Pattern Mining, FPM-2D, Spectralr€lation, Spatial Correlation

I. INTRODUCTION

Recent advances in software defined radio (SDR) [10] anditegmadio (CR) [6], [19]
combined with ever-increasing demand for wireless spettesources have led to the notion of
dynamic spectrum access; wireless devices with the akbalitletect spectrum availability and the
flexibility to adjust operating frequencies can opporttio&gly access under-utilized spectrum.
This type of access is aimed at significantly improving speutefficiency in light of evidence
that there exists abundant spectrum availability [12]] fh3he current allocation. This has also
led to the notion of open access, whereby unlicensed usatevices are encouraged to access
to licensed spectrum bands such that spectrum opportuaitybe fully exploited.

These concepts have motivated extensive studies on bdthitet and policy issues related to
dynamic spectrum access. With this comes the need for metteguantitative understanding of
current spectrum utilization, beyond the qualitative kfexlge of the existence of ample spectrum
opportunities. With such understanding one can help (lijlatd spectrum/channel models often
used in analysis without questioning, (2) provide grouraadgtiore realistic channel models with
better predictive competence, and ultimately, (3) allowicks to adaptively make more effective
dynamic spectrum access decisions.

For instance, the FCC on November 4, 2008 approved unlidendreless devices that operate in the empty white space
between TV channels, after four years of effort.



To achieve these goals, we recently conducted a compreleessectrum measurement study
in the 20MHz to 3GHz spectrum band in Guangdong provincen&hrhis paper reports our
methodology and findings from this study. There has been apumf spectrum measurement
studies published in recent years, like [12], [13] condddtethe US, one in Singapore [8], one
in New Zealand [2], and one in Germany [18]. A common findingopamthese studies is that
spectrum resources is indeed heavily underutilized at tbmemt.

Compared to the prior work, the salient features of the dets we collected are:

« Our measurements are carried out in four locations conatlyre

« Our measurement locations are specifically selected (2nuapa 2 suburban locations) in
order to study the potential spatial correlation of spentusage between similar and different
types of locations.

There are two parts in this study. In the first part, we exansiaéistics of the collected data
and use a variety of models to fit the data. These include @)ro#l vacancy statistics (precisely
defined later), over time, across channels, and for difteréreless services (that group multiple
channels), (2) service congestion rate that reveals how aha@nnels assigned to a particular
wireless service are utilized, and (3) the use of a subgcnimlel to explain the dynamics in
channel utilization for specific services, (4) spectral apdtial correlation of spectrum usage.
In the second part of the study we exploit the spectrum caticgls to develop a 2-dimensional
frequent pattern mining algorithm that can predict chaawallability based on past observations
with considerable accuracy.

The key findings and contributions of this work are summatriae follows:

1) The channel vacancy duration (CVD) distribution is shawnhave an exponential tail
(but not exactly an exponential distribution; this is engally obtained but with very high
statistical significance), in all channels and locationsstuelied. This evidence to a certain
extent supports some widely used channel models (e.g.-1h&ibert-Eliot model) under
which such vacancy durations are exponentially distrithu@n the other hand, statistical
analysis on our data reveals that these vacancy duratienmaindependently distributed
over time, as is commonly assumed. This finding suggestsgeatrum usage is inherently
more predictable than current models imply, and that battedrmore sophisticated models

may allow us to exploit such predictability.
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2) The service congestion rate (SCR), the spectrum uitizatvithin a specific wireless
service, can well fitted by autoregressive model, which regl@ssible the high-precision
prediction for SCR such that degree of congestion for a serean be known about in
advance.

3) Spectral correlation of spectrum utilization is sigrafit between channels within the same
service, and quite insignificant otherwise. This reflecesdliference in the nature of these
services, and the resulting different usage patterns.

4) There is very significant spatial correlation between $#&ZRs of the same service (e.g.
GSM900 uplink) at different locations. The spatial cortiela is even higher when the two
locations are of the same type (both in urban or both in subudreas). This suggests that
usage patterns are heavily influenced by the nature/typeeoivireless service, rather than
the location. There is a population factor (high vs. low digmsbut overall similarities in
collective usage pattern of the same service are significadifferent regions.

5) Motivated by the strong correlation in spectral and spalimensions, we propose an
effective 2D frequent pattern mining algorithm, which camdct spectrum usage with
the accuracy exceeding 95%.

We hope that these findings will lead to more discussions om teobetter model current
spectrum utilization, i.e., the behavior of primary usérkis in turn can help us design better
and more efficient spectrum sensing and access schemeséordsey users.

The remainder of the paper is organized as follows. Sectipresents how our data is collected
and processed. We then present a comprehensive statestiahisis on the measurement data
including CVD, SCR, and subscriber model in Sections llle&pm correlation (spectral and
spatial) results are presented in Sections IV. In Sectione/develop in detail a 2D frequent
pattern mining technique to predict spectrum availabiMye discuss how these results can be
useful in spectrum sensing and access in Section VI. Relatek is presented in Section VII,

and Section VIII concludes the paper.

[I. DATA COLLECTION AND PREPROCESS
A. Data Collection

The results presented in this paper are based on the anafyéisets of measurement data,

which were collected at four different locations in Guangglgrovince, China, from 15:00 Feb
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TABLE |

LocATION OVERVIEW

Location Type Coordinate
1.Trade Center,Guangzhou Downtown | E 113°1525” N 23°08'01”
2.Canadian Garden,Guangzhowowntown | E 113°21’45" N 23°08'20”

3.Jiangmen Suburban | E 113°7'59.9” N 22°22'46.9”
4.Zhongshan Suburban | E 113°27/24.8"” N 22°25'32.5”
TABLE 1l

SPECTRUMALLOCATION OF POPULAR SERVICES

Services Band

CDMA uplink 825MHz - 835MHz
CDMA downlink 870MHz - 880MHz
GSM900 uplink 885MHz - 915MHz
GSM900 downlink | 925MHz - 960MHz
GSM1800 uplink 1710.0MHz - 1785.0MHz
GSM1800 downlink| 1805.0MHz - 1880.0MHz
Broadcasting TV1 | 48.5 - 92MHz
Broadcasting TV2 | 167 - 233MHz
Broadcasting TV3 | 470MHz - 566MHz
Broadcasting TV4 | 606 - 870MHz

ISM 2400 - 2500MHz

16, 2009 to 15:00 Feb 23, 2009. Locations 1 and 2 are in the weownarea of Guangzhou,
the main metropolis of Guangdong province. These two lonatiare roughly 10 kilometers
apart. Locations 3 and 4 are in suburban areas of two undetajeed cities and are roughly
45 kilometers apart. These locations are listed in Table I.

We are primarily interested in spectrum usage of the frequdrand between 20MHz and
3GHz. Within this range, the list of wireless services alavith their spectrum assignment in
the local region are provided in Table II.

The measurement equipment we used is an R&S EM550 VHF / UHRkdDigideband
Receiver. EM550 is a superheterodyne receiver that covevgde frequency range, from 20
MHz to 3.6 GHz. The measurement resolution is one per 0.2Meé&ylting in a total of 14,900
frequency readings per time slot (or sweep time), roughl\g&&onds. There are 8,058 (7 days/
75s) time slots. As a result, there are 14,980058 data points in the data set (roughly 2GB in

size) per location.

November 19, 2009 DRAFT



Energy Level Overview at Location 3 from 20~3000MHz over 7 days.
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Fig. 1. 3-D view of the energy level over all bands.

Here we would like to briefly compare our data sets with thosgorted on the Shared
Spectrum Company (SSC) websitdudging by the published reports, our data sets are of a
similar nature and have been collected in a similar way, ¢h@. antennas are placed outdoor
on the roof of a building while the receivers are placed indoo

For illustration purpose, Figure 1 shows a 3-D depictionhef $et of data at Location 3. The
color coding (energy level from low to high on a scale fromebto bright red) on the figure is
an attempt to make the figure easier to visualize, but doepnooide extra information, as the
vertical dimension already shows the energy reading (in\gB

These data sets provide us with a fairly rich set of measuntsnbased on which spectrum

utilization and patterns can be identified and analyzed ashegv in subsequent sections.

B. Preprocessing

To conduct the sequence of analysis presented in latepasctive will first convert the above
measurement data (in absolute energy reading) into a bseqyence ofs andls, through a
thresholding process, with denoting a channel being unused, idle or available, laddnoting

the opposite (i.e., used, busy or unavailable).

2http://www.sharedspectrum.com/measurements, one takbfaine, one in Chicago, and one in Ireland.
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We begin by defining the following terms.

« Channel: a channel is an interval of radio frequency of baddw200KHz. Channels are
indexed sequentially; Channdl is the frequency intervel(20 + 0.2(X — 1))MHz, (20 +
0.2X)MHz|, X > 0. Since 200KHz is the resolution of our measurement devicesannel
is the smallest unit at which we can distinguish energy.

« Service: a service is a set of channels that have been adsimytiee same application/service,
as listed in Table 2. Without ambiguity we will use this teronmhean both the service and
the set of channels assigned to the service.

. Channel state (CS): this is a function of time and chan6&l(t,c) = 0 indicates that
Channelc is idle at time slott, andC'S(t,c) = 1 otherwise.

« Channel vacancy: this is the period in which a channel resnaile.

Converting energy level to C9 (or 1) is essentially a binary hypothesis testing process. For
lack of a priori knowledge on channel statistics, it is doneaisimplistic way here through a
thresholding procedure: for channela threshold is set to be 3dB higher than the minimum
value seen in this channel over the entire duration of theetllected. At time slot if the
energy level is lower than this threshold, thé§(t, ¢) = 0; otherwiseC'S(t, ¢) = 1. The reason
for this thresholding scheme is the following: Figure 2 shathhe maximum, minimum and
average energy level of some noise channels (those higaer2GHz but below the ISM band)
at Location 2. They are called noise channels because teeyuarently assigned to satellite-to-
satellite communications (the signal does not reach thergt@nd thus the only energy present
on the ground is due to noise). We see that for these charthelsjaximum and minimum power
levels are all within a 3dB range. Assuming that noise behaumilarly across channels (which
is not exactly true, but probably close), anything more tBdB above the minimum power
level suggests the presence of signal, hence the abovénttales) is reasonable. Decreasing
this threshold will improve signal detection probabilibyt the false positive will become higher,
while lowering the threshold increases false negafivé/hile an important subject in its own,
calibrating the error in such a process is out of the scopd@fptesent paper.

The result of this process is a sequenceCdfs (0s and1s) for each spectrum channel of

3We did try increasing this threshold from 3dB to 4.5 dB andnibuhe resulting 0-1 sequence to be nearly the same. The
same thresholding process was used in a measurement stodiycted in Aachen, Germany [18].
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Fig. 2. The maximum, minimum and average energy levels adenohannels at Location 2.

200KHz wide, representing its availability over a time desion of approximately 75 seconds.
This is shown in Figure 3 where black dots indicate busy chEnrin subsequent sections we

will try to uncover the properties inherent in these seqasnc

IIl. STATISTICAL PROPERTIES OFTHE MEASUREMENT DATA

In this section, we perform comprehensive statistical y@iglon the measurement data in-
cluding channel vacancy durations (CVD), service congastate (SCR) series, as well as a

subscriber model to explain channel utilization dynamics.

A. channel vacancy duration (CVD) distribution

To make better spectrum access decision, we are often steédrén knowing how long a
channel will remain idle. CVD is defined to capture this featun this section we show that
our measurement data suggest that it has an exponentjabuails not exactly an exponential
distribution, nor is it independently distributed over &m

As defined earlier, channel vacancy is the period in whichannbl remains idle. If we use
the C'S time series of a given channel, then the channel vacancytidaraill always be a
nonnegative integer (i.e., the number of consecutive Oi®)estheC'S is defined for discrete

time slots. In reality, however, the channel state doesmgeneral change at slot boundaries. In
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Spectrum usage at Location 3, from 20~3000MHz over 7 days
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Fig. 4. Extract channel vacancy durations from raw data.

order to obtain a better, fractional estimate of the CVD, we the original energy measurement
data: By treating it as a continuous time signal and detangithe threshold-crossing times,
we can obtain CVD estimates in real numbers rather thanensed his is illustrated in Figure
4.

On average each chann€lS time sequence (more than 8000 time slots) contains on the
order of hundreds of channel vacancies. This sample sins twt to be too small to derive the
CVD distribution. To increase this sample size we collectD8Vacross all channels within the
same service. This is done based on the observation thatrispeasages of channels within

the same service are statistically very similar (shown intiBa V.B). For example, spectrum
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usages in channels within GSM900 uplink service (885-912M&te nearly the same in terms
of occupancy, periodicity, average energy level, etc. Tives us enough samples to obtain the
empirical distribution of channel vacancies.

Figure 5 shows the statistical histogram of the CVD in GSM@p0nk service at Location 2.
Then we plot the Gaussian-kernelled density graph suchthleaturve of its probability density
function (PDF) can be approximately restored as shown inr€i¢. Here we only focus on the
falling part of the curve Figure 6, where CVD samples thateexts two timeslot, because a
longer vacancy period can provide access opportunitiea fa@riety of services, no matter real-
time and delay-sensitive services such as push-to-talkvaieb teleconference, or best-effort
services such as file transferring. We then apply the lepstre regression analysis to falling
part of the curve in Figure 6. The significance of the fittingrisasured by the coefficient of

determination-2, defined as:
Zi(yi — fz')2

wherey; is the sample value with meanand f; is the modelled/fitted value.

(1)

As shown in Figure 7, the CVD distribution is very well appimated ¢? > 0.95) by an
exponential-like distributioy = a+be~“*. We repeated this exercise in all the services (GSM900
/ 1800 uplink / downlink, broadcasting TV, CDMA, ISM) at allldcations and obtained similar
results. The regression results at Location 2 are showedbteTll, wherey denotePr[C'V D =
z] andz = 1,2,3,...C time slot(s), wherel' is a constant integer that indicates the maximal

value of the CVD obtained from the data.
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TABLE 1lI
CHANNEL VACANCY DURATION DISTRIBUTION REGRESSION RESULTS & LOCATION 2. REGRESSION EQUATION

y=a+be

Service a b c r?

GSM900 uplink 0.0134917| 7.052599| 1.268810| 0.951047
GSM900 downlink | 0.023809 | 0.710870| 0.485794| 0.986417
GSM1800 uplink 0.042653 | 0.884733| 0.669833| 0.983644
GSM1800 downlink| 0.033259 | 1.058021| 0.691488| 0.993801

CDMA uplink -0.016088 | 0.250563| 0.140147| 0.930726
CDMA downlink 0.022279 | 1.253164| 0.723049| 0.986838
TV1 0.027716 | 1.021404| 0.599504| 0.988016
TV2 0.039241 | 0.714230| 0.548904| 0.989958
TV3 0.042968 | 0.725089| 0.599759| 0.959616
TV4 0.046246 | 0.756806| 0.631420| 0.943959

It should be noted thay = a + be~“* has an exponential tail, but isot an exponential
distribution. A direct consequence of this is that it does meve the memoryless property, i.e.,
how long a channel is going to remain in a certain state is atiom of its history, rather than
being independent of it. This latter independence asswmpis been commonly used in channel
access studies, see for example [15], [17], [20]. More pedyj these studies assume a two-state
Markov chain model for the channel (i.e., an Eliot-Gilbermatel). This channel model implies
that the duration of channel vacancy are geometricallyitdigied (the discrete equivalent of an
exponential distribution), and that these durations adependently distributed. Our results here
indicate that such an assumption is inaccurate, and thesgmsficantly more memory in the
channel state information.

The above observations indicate that we will not be able &ciilee the CS series using a
first order Markov model, whereby future state is indepehdémistory given present state. To
illustrate, we empirically obtain the following conditiahprobabilities for the GSM1800 uplink

band at Location 2:

Pr[CS(t + 1,¢) = 0]CS(t, ¢) = 0] = 0.918953

while
Pr[CS(t+1,¢) =0|CS(t,c) =0,CS(t—1,¢) = 1] = 0.55454
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Clearly the channel state is highly history dependent, mfedhis type of Markov model fails to
capture. We tried higher order Markov models, by definingghéi-dimensional state space (a
higher-dimension state consists of a sequence of charatesstvhich results in an increase the
state space), without much success. Besides, since CVDrinase is a statistic for the whole
service rather than a single channel such that the wholef$8¥D samples can not constitute
a time series, we did not analyze CVD samples in any timeesexiay, such as autoregressive
model fitting.

All the above indicate that the channel state informatioespes some far richer properties.
Technically, any discrete system can be modeled as a Matian provided we embed sufficient
memory into the state, but the resulting expansion in thte sf@ace is in general computationally
prohibitive. In Section V we use a frequent pattern mininghteque to get around this problem.

This technique exploits the potential correlation(i's and provides accurate prediction.

B. Service Congestion Rate (SCR)

The channel staté€'S(¢, ¢) is a microscopic level measure of the channel utilizationdeed
a single time slot together with a single channel is the fimesblution we can obtain from
the measurement data. Examining it over time for each chapgelts in CVD, a measure we
examined in the previous section. In this section we willnaiee it across channels within the
same service for a given time slot, a measure captured inetivece congestion rate (SCR). We
will then show how this measure evolves over time.

SCR for services at timet, denoted bySC'R(t, S) is defined as the ratio between the number
of busy channels in5 at timet¢ and the total number of channels & Thus SCR(t,S) =
Y ecs CS(t,c)/n, where n is number of channels in servie SCR is thus a measure of the
level of congestion in a service; the larger the SCR of a serid, the fewer idle channels there
are. This is a value ranging from 0O to 1.

Figure 8 shows the SCR series of service GSM1800 uplink and9B8 uplink at Location
2. We can see that the SCR series is cyclic in its outline witler@od of one day, as expected.
Also note that the SCR series of the two services are highisetaded: the rises and drops are
very much in synchrony.

Of particular interest is the high SCR regions in Figure &, ithose “plateau” regions. Within

these regions, th8C'R as a random process appears to be stationary. This turns batttue: it
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SCR series of GSM900 uplink V.S. GSM1800 uplink, Location 2
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Fig. 8. SCR series at Location 2. GSM1800 uplink vs. GSM90nkp

passes augmented Dickey-Fuller (ADF) test with signifiesn@1, verifying its stationarity [11]
(This test was performed for each of the plateau regions)fuber calculate the correlogram
of the SCR series of service GSM900 uplink at Location 2 arsdilte are shown in Figure 9
and 10. Here correlogram refers to autocorrelation func{®&CF), denoted by, ;, and partial
autocorrelation function (PACF), denoted by, of a time series”, which are respectively given
by

prs = Corr(Yy, Yi—s)

¢t,s = COTT(}/{H K—S‘K—l? }/;—27 “eey }/;f—s+1)

whereCorr refers to the correlation coefficient.
We see that the correlation coefficient decreases at angitdglirate, while the partial cor-
relation coefficient tails off rapidly. This suggests thia¢ tISCR series may be potentially well

modeled as an autoregressive process [16]. The autoregr@ssdel can be written as
O

SCR(t,S) =Y cnSCR(t —m,S) +n(t) 2)

m=1
whereO andn(t) are the order and the residual of the model, respectively.

A third-order autoregressive model of the above form is i@ppto the SCR series of all
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model.

services at Location“2 The regression results are shown in Table IV. We did notelthe
regression results of CDMA service as the existence of CDMyaad cannot be verified simply
using energy detection [4]. We see that in all cases the Bldr@utoregressive model achieved
very high accuracy, as indicated by the coefficients of detetion shown in 1.

Since autoregressive model can approximate the SCR sarits well, we can leverage it
into temporal prediction for SCR series, that is, to use @stpo predict its future. Therefore,
again we use 3rd-order autoregressive model to make sudiciioa. For illustration purpose,
we only show the prediction results for the service of GSM@pInk at Location 2 as shown in

Figure 11, results for other services are quite similar. We ahow the residual of the prediction

“Regarding selecting the right order for this model: a highreler generally results in better approximate; on the oltiaed,
the order cannot be arbitrily high based on Akaike InformmatCriterion, in which a high order will improve regressionatjty
but will also lead to the reduction of degree of freedom [jeTchoice of 3rd-order in our experiment seems to be ap@@pri
in particular we were not able to obtain significant fittingpimvement by increasing the order beyond 3.
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TABLE IV

3RD-ORDER AUTOGRESSIVE MODEL REGRESSION RESULTS ATOCATION 2.

Service c1 Co c3 r?

GSM900 uplink 0.380212| 0.313529| 0.305352| 0.960674
GSM900 downlink | 0.354719| 0.322443| 0.322548| 0.970801
GSM1800 uplink 0.392203| 0.319233| 0.286660| 0.974579
GSM1800 downlink| 0.407140| 0.312867| 0.279747| 0.973845

TV1 0.476766| 0.285754| 0.233663| 0.906869
TV2 0.424009| 0.302502| 0.270873| 0.861388
TV3 0.457287| 0.332248| 0.208510| 0.963755
TV4 0.409256| 0.336329| 0.254212| 0.921405

model and its statistical histogram as shown in Figure 12 Ehdespectively. The probability
distribution of the residual passes the Anderson-Darliyygpktest with confidence level1 such
that it is testified to comply with a normal distribution witlero mean, which indicates that the

autoregressive prediction model is quite adequate for iR Series [16].

C. Dynamic Utilization of GSM Services

Of all the services listed in Table Il, mobile services halre special feature of very high
dynamic utilization. This is because they are subscribeethand the level of energy present
in these channels are driven by the arrivals and departdresbscribers (or rather, their calls).
Understanding how the channel utilization changes ovee tas a function of the subscriber
dynamics can be very helpful in marketing and operatingtesgras including pricing and pro-
motions. In this section we show that the channel utilizativen by the measurement data
can be well described using a simple queuing model. Due tdliffieulty in energy-detecting
CDMA signal as mentioned before, we will only consider GSMvgees in this section.

To this end, we note that the received energy at a measurdotsaiton is the summation
of all transmitted signals, whose strength gets attenuated the propagation distance. While
this means that different users/callers will have a diffiéreontribution to this sum depending
on where they are located, if we assume that they are unijodistributed in space, one would
expect that the sum of received energy changes proportionile change in the active caller
population within an applicable region (i.e., the regionwhich a transmitted signal results in

non-negligible reception at the measurement locationjoBave will specifically consider the
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uplink at Location 1 between two measungplink at Location 1 between two measure-
ments. ments.

GSM uplink service while excluding downlink services as tB8M downlink traffic contains
not only user traffic but also that of signaling applications

We define the mobile service utilization (MSU) of a GSM seevit; denoted byM SU(t, S),
as the time-varying difference in the total received eneeypressed as

MSU(t,S) = e(t,c) = e(t—1.c).

ceS ceS

Figure 14 shows the probability distribution of MSU seridsGSEM900 uplink at Location 3
over a week. For proprietary reasons we do not show the acahad of M SU(t, S).

We next show that this distribution can be well describechgisa simple queuing model.
Suppose that in each time slot the arrival and departurelisfeach follows a Poisson distribution

with rate \, and )\, respectively. Assume further that they are independeatifiiributed (note
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that this is equivalent of saying that the call durationsexponentially distributed). Denote the
number of active callers at the beginning of time gidty N(¢). Then we haveN(t + 1) =
N(t) + A(t) — D(t), where A(t) (D(t)) is the arrival (departure) within time slét Then the
change in the number of active callers in the system, deroyedl (t) = N(t + 1) — N(¢), is

given by
6_()‘a+>\h))\m i ﬂ m > 0
a ! ! =
P(X(t) = m) = =L BB ) ©)
_()‘a+>\}L))\_m _Ta’h 0.
¢ W Fh ™

The probability distribution curve in Figure 14 is centeerdund zero, suggesting that in steady

state)\, and )\, are approximately equal. Equation 3 can therefore be Siegblto

2 - )\2k
e AN Z — m >0
| | -
PXx=m=(  ELREL (4)

We then compare Eqn (4) with the distribution curves of MSUhaf GSM uplink services at
four locations. For brevity, we only show the result of GSNplink at Location 4 as shown
in Figure 15 while noting the other results are similar. Aswgh in Figure 15, the two are very
close, and the fitting coefficient of determination is oU€7.

We also examined whether the above utilization dynamicsighasignificantly over time.
Figure 16 and 17 show the MSU distributions obtained usingasueement data collected
over two different weeks, for the GSM900 uplink service ahd GSM1800 uplink service,
respectively. In both cases we see that this distributiay siughly the same from week to week,

indicating a rather steady collective calling pattern inre of arrival and departure statistics.

IV. SPECTRAL AND SPATIAL CORRELATIONS

The more we know about spectrum usage characteristics égrimary users), the better we
can predict spectrum opportunity, and the better we can rmdgkamic spectrum sensing and
access decisions. Much of this predictive power lies in {hecgal and spatial dependence of
spectrum usage. For instance, if everything is indepehddigtributed, then knowing the past
does not offer information for the future. On the other haRdure 8 shown in the previous
section suggests that measuring/sensing channels in GBM3ibk provides ample information

about channel availability in GSM1800 uplink. We thus sett toutake a more in-depth look at
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the dependence characteristics of our data sets in thimse8pecifically, we will analyze the
spectral, and spatial correlation of th& series and the SCR series, respectively.

We will use the following two measures of correlation, thatfione defined for two random
variables and the second one defined for two 0-1 random segsieiihe correlation coefficient
px.y between two random variableés andY” with sample meapn x andyy and sample standard
deviationsoy andoy is defined as:

ey = Y] B = (Y = ) -
ox0Oy Ox0y

wherecov is the covariance operator. This coefficient ranges betweemd 1, extreme values

indicating X andY are (inversely) fully correlated. In general correlatienconsidered high
(i.e., one random variable proving a lot of information abtihe other) when the absolute value
of the coefficient is closed to 1.

The correlation between two discrete-time 0-1 sefig$) and Y (¢) are defined as follows:
2 HXO =Y®O) =3, HX®) #Y(1)} 6)
DX =Y ()} + 52, H{X() #Y (1)}

wherel{ A} is the indicator function/{ A} = 1if A is true and O otherwise. The two summations

Corrx ),y @)

in the above equation are the total number of positions teatwo sequences coincide and differ,

respectively. This is commonly used for evaluating theaation between two binary sequences.

A. Spectral Correlation

In order for investigation on spectral correlation, we télke SCR and”'S series and cross
correlate them with their counterparts from a differentvemr and different channel within the
same service, using Eqn (5) and Eqgn (6), respectively.

Figure 18 shows th€'S correlation coefficients between every two channels in t&&800
uplink at Location 4. We see that these coefficients are mdhe high for almost every two
channels within the same service. This is because in moss¢he channels are either all busy
or all idle. There are also cases where the spectral camelabefficients are closed to -1. This
is because some channels are always idle while some otleeadveays busy. For instance, there
are channels in GSM that are kept idle to avoid inter-chammekference. These results are
representative of what we found in other services.

Table V shows the spectral correlation coefficients betwwen SCR series at Location 1;

these results are also representative of what we found aittte locations.
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CSl spectral correlation (GSM900 uplink, Location 4)

Carrelation Coefficient

Frequency (MHz) 1
885 ggs

Fig. 18. Spectral Correlation Coefficients 6fS series within GSM900 uplink at Location 4.

From the results shown in Table V, we see that there is sigmificorrelation among these
services, for none of the coefficients falls below 0.55, ewdren between a broadcasting TV
service and a GSM service. In addition, services of the sgpe dre particularly correlated, as
high as 0.952 in the case between GSM900 uplink and GSM18M&kup

B. Spatial Correlation

Figure 19 shows 4 SCR series of the same service (GSM900 ohdgviak all four locations.
At a high level, these series appear all correlated with edbhr; they share common changes
in value. In particular, Locations 1 and 2 are very similgr,ta a constant shift, and Locations
3 and 4 are very similar, also up to a constant shift. This estggspatial correlation across
different locations. We thus cross correlate SCRY series from the same service / channel at
different locations.

Table VI shows the spatial correlation coefficients of theRS§&ries in GSM900 downlink
service among four locations. These are very high and norteeofvalues falls below 0.8. It
appears that within the same service, the spectrum uidizé highly correlated across different
locations and different types of locations.

For other services the results are quite similar and are tlmispresented separately. For

instance between Locations 1 and 2, the spatial correlatefficient of SCR series is as high
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SPECTRAL CORRELATION COEFFICIENTS OFSCRAT LOCATION 1.

20

GSMQOO GSM?OO GSM.1800 GSM1_800 vi |l v | Tva | Tva
uplink downlink uplink downlink

GSMQOO 1.000

uplink

GSMQOO 0.873 1.000

downlink

GSM.18OO 0.952 0.832 1.000

uplink

GSM1.800 0.855 0.747 0.827 1.000

downlink

TV1 0.674 0.616 0.713 0.636 1.000

TV2 0.730 0.669 0.700 0.690 0.634 | 1.000

TV3 0.789 0.742 0.809 0.710 0.833| 0.711 | 1.000

TV4 0.588 0.581 0.557 0.566 0.655| 0.567 | 0.721 | 1.000

as 0.962.

SCR Series of GSM900 Downlink at 4 Locations

Service Congestion Rate
o4 o o o o
(5 ~ o
T

o
i
T

Location 1

- Location 2
— Location 3
— Locaton 4

Time (Day)

Fig. 19. SCR Series of GSM900 Downlink at 4 Locations.

It's easy to understand the reason behind such high caoeidbr the same service, such

as GSM voice calls, subscribers at different locations esltmmmon behavioral patterns (e.g.,

same peak calling hours of the day), even though the actuBl &Mies are different.

V. PREDICTION USING FREQUENT PATTERN MINING (FPM)

The correlation structure presented in the previous sediggests that it can be exploited

to help us better predict channel state or spectrum oppbyrtbased on measurements made in
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the past, in adjacent channels, or at similar locations.eMwecisely, we are interested in the
question of whether one could accurately predict the vafu€ $(¢, c) based on the knowledge
of CS(t—k,d),k >0, and if so how many past observations (what values)aind over what
set of channels (what values d) are needed.

There are different approaches one could take to model soakelation. For instance, as
pointed out in Section Ill, the memory in channel state infation could conceptually be
captured by a sufficiently high-ordered Markov chain (an@& @an use measurement data to
collect statistics on the transition probabilities of thukain), but with significant technical
difficulty due to the exponential increase in the state space

To overcome this difficulty, in this section we present a teghe based on frequent pattern
mining (FPM) ( [3], [14] and a survey [5]) through an efficigpattern identification process
over the spectrum data. This technique generates preusctibfuture channel state based on a
collection of past observation in a set of channels. It usgls temporal and spectral correlations
examined in earlier sections. A unique feature of this apginois that it automatically adjusts
the algorithm to the appropriate size of past observatibogh(in time and in channels) based
on the data set. This method along with our experimentalltseswe detailed in the remainder

of this section.

A. FPM and Prediction

We begin by illustrating how FPM can be used for spectrum eigagdiction and the chal-
lenges in doing so. Suppose we know tHi8s of Channels:, ¢+ 1 of previous 8000 time slots
(from time slott — 7999 to ¢t) and we would like to predict th€'S of the next time slot of
Channelc andc +1 (i.e.,, CS(t + 1,¢) andCS(t + 1,c+ 1)). The knownC'Ss can be written

into a single matrix shown below:

At—7999,c At—7998,¢c - Qic
b
At—7999,c+1  At—7998,c+1 -+ At 41
wherea; ; = C'S(1, 7).

Define a submatrix as a pattern if it appears no less than g@stthroughout thé'S series

1 1
of these channels. For instance, if the submatrix appears 1000 times, it's considered a
1 1 0
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TABLE VI

SCRSPATIAL CORRELATION COEFFICIENTS FORGSM900DOWNLINK AMONG 4 LOCATIONS

Locl| Loc?2 | Loc 3| Loc 4
Loc 1 | 1.000
Loc 2 | 0.833 | 1.000
Loc 3 | 0.858 | 0.846 | 1.000
Loc 4 | 0.854 | 0.880 | 0.909 | 1.000

1 11
pattern. We may find another pattern
1 100
two patterns we can predict thatS(t + 1,¢) = 1 and CS(t + 1,¢ + 1) = 0 with probability
99% (990/1000) IfCS(t — 2,¢) = 1,CS(t — 1,¢) = 0,CS(t,c) = 1,CS(t — 2,c+ 1) =
1,CS(t—1,c+1)=1,andCS(t,c+ 1) =0.
Clearly this prediction method needs to successfully hamdio issues: the first is to find

which appears 990 times. Comparing these

frequent patterns, referred to as frequent pattern minihg.second issue is to find associations
among these patterns, referred to as pattern associat&smining.

In our setting the dimension (number of rows and columnshefgatterns of interest are not
fixed in advance, i.e., we do not know in advance how much tyistod how many neighboring
channels are needed in order to have accurate predictidheiR#his has to be learned during
the mining process. This 2-D (of patterns) learning elenieatunique challenge in our mining
process, compared to existing FPM literature, e.qg., [3],[[B4]. In addition, in all these studies
the patterns are 1-D and can be written in a row, although #t@ sets can be in multiple rows.
In our problem, the patterns are in 2-D, which is another usighallenge. To summarize, both
the width and the height of the patterns are variable, and #ppropriate sizes need to be
automatically identified in this process.

In the following we will refer to our problem as a FPM-2D prebi.

B. FPM-2D Problem Definition

The goal of the FPM-2D problem is to find all relevant 2D patserOnce this is achieved,
it is fairly easy to compute the probabilities of future chahstate (spectrum prediction). Table
VII contains a list of terminologies used in FPM-2D.

Formally, the FPM-2D problem is stated as follows: Given ityeut setM, min_area, and

min_rep, find all valid block patterns and the corresponding matciminers.
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TABLE VII

NOTATIONS/ CONCEPTS INFPM-2D

Notation / Definition
Concept
r The literals setI’ = {0, 1}
An input matrix M, x», =
ai,1 air2 ... QAin
a1 a1 . az,n
M
Am,1 Am,2 .. Am,n
wherea; ; € T,
m: the number of adjacent channels,
n: the number of consecutive time slots
block a submatrix ofMl
subblock a submatrix of a block
block area the number of elements in a block

block pattern

a block whose areax min_area.
“pattern” and “block pattern” are used
interchangeably.

23

subpattern submatrix of a pattern

If a patternP and a blockA are identical,
matches .

we sayA is a match (support) aP,
(supports)

or A matches (supportdp

the number of ALL matches of

a pattern

a pattern is valid if its match number is
no less thamin_rep

match number

valid

C. Proposed Algorithm

We start by scanning the input matfif from left to right, top to bottom to find all the blocks
with sizex x y. This is done for allz andy such thatr x y > min_area. We use a hash table
to store the blocks for efficiently search, since it tak&d) time to search an item in a hash
table. A potential problem is the number of blocks might be Karge; it is2**¥ in the worst
case. This problem is addressed by the following simple gntyp

Consider a blockA . ,. We say blockB is A,.,'s parent blockif: a) B is A,.,’s subblock,
b) B's size is(x — 1) x y or z x (y — 1), and c)B’s area is not less thamin_area. A simple
yet key property concerning a valid pattern is that for amchlA ., it has at most 4 parent
blocks and it is a valid pattern only if all its parent blocks aalid patterns.

Thus, if any block has a parent block that is not valid, thenoae simply skip this block
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Algorithm 1 FPM-2D
for N=2 to co:
flag < false
for each(z,y) s.t. @ +y = N, z X y > min_area):
T.,, < new empty hash table
if To—1,y andT,,,—1 are both empty:
continue;
for each blockB,x, in M:
if one of B, x,'s parent blocks
is not a valid pattern:
continue
if Bexy isin Ty,
Toy[Baxyl < Tay[Baxy] +1
else:
Toy[Baxy] — 1
for each blockP . x, in Ty y:
if Ty y[Poxy] < min_rep:
removeP,, from T, ,
if T,y IS Nnot empty:
flag < true
output the valid patterns i, and
the corresponding match numbers
if flag == false:
break

because itself cannot be valid. By checking parent block&rge number of blocks can be
ignored, which significantly reduces the memory consunmpéind improves the performance.

The pseudo code of the proposed algorithm is given in Algoritl. In Algorithm 1,T, , is
the hash table to store patterns with size y.

After all valid patterns have been identified, the predittiales are extracted as follows. A
prediction rule is defined aB; — P,, whereP; and P, are all valid patternsP, has the
form [P, V], whereV is a column vector(v, vy, vs, ...v)T,v; € T. ThusP; is one of the
parent blocks ofP,. Let M (P;) denote the match number &f,, then thetransferring rate
R(P, — Py) = M(Py)/M(P;) What this rule says is that if the curre@tS appears to match
Py, then theC'S in the next time slot will matcivV with probability R(P; — P,). Clearly, a
similar procedure can be used to predict ¢he over multiple future slots, by simply considering

V as multiple column vectors.
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D. Experiment Result

To test our algorithm we split the measurement data into tad, pne as a training set
on which we run Algorithm 1 and find the prediction rules, whthe other as the testing
set on which we apply the prediction rules and perform spettusage prediction. We set
man_rep = 200, min_area = 4.

In our experiment we adopted the following prediction met$ica) We only consider those
rules whose transferring rates are larger than b) If the currentC'Ss appears to match the
patternP1 in a ruleP1 — P2, we predict theC'Ss matches®2 in the next time slot. c) If the
currentC'Ss do not match any patterns, we do not predict and count it ass m

We are interested in answering the following questions:

1) what is the prediction accuracy if the training set andesponding testing set are from
the same service (self-service prediction)?

2) what is the missing rate of the prediction?

3) can the mining result in one service be used to predictte in another service (cross-
service prediction)?

4) can the mining result in a service at one location be usquddict theC'Ss in the same
service at a different location (cross-location predit}id

5) how large the training set needs to be for accurate preditt

We define prediction accuracy to be the ratio between the rummbcorrectly predicted’Ss
and the total number of predict&dSs, and define missing rate as the ratio between the number
of C'Ss that cannot be predicted and the total numbef’'SE.

We first study the case where the training set and the comelspg testing set are from the
same service at Location 1, i.e., both from TV1 or both fronMS80 uplink. The training sets
areC'S series over durations from 1 hour to 3 days. The testing set§'8s of the last 4 days.
The results are shown in Figure 20. We observe that:

« The prediction accuracy is larger than 0.95, a very encaogasign.

« The missing rate is around 5% for TV1 service, which is vewy. It is higher, around 15%

for GSM900 uplink. The reason why the missing rate on GSM9plink is higher than
TV1 is that TV service is a pure broadcast service, while G®wise is an interactive

service whose patterns are more complicated to match.
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Intra-Location intra—service spectrum usage prediction at Location 1
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Fig. 20. The experiment results of intra-location intravee spectrum usage prediction at Location 1. The preaficéiccuracy
is larger than 0.95 if the training set size is no less than @&$o

« The training set cannot be less than 2 hours. Otherwise FPM#&hnot find sufficient
prediction rules.

« A 3-hour training set appears sufficient and the performaridde algorithm saturates at
this level. Beyond this threshold, more training data does seem to help improve the
prediction accuracy or reduce the missing rate.

For other services of Location 1, the results are similaepkdéor the missing rate, which is
listed in Table VIIl. We see that the prediction accuracyassistently high but the missing rate
varies from 4% up to 25%. We also give the overall occupancthefservices as a reference.
If the overall occupancy is, then the prediction does not help if its accuracy is lowemnth
max{a, 1 — a}. This is because we can always achieve this accuracy sinypgubssing.

For comparison, we have also shown the prediction accursiog the 1st-order Markov Chain
model (1st MC), which is one of the most commonly used modelthé existing papers [15],
[17], [20]. We could see that the prediction accuracy of teeMC is only around 80%, which
is much lower than that of FPM-2D, except for those servickese occupancy is high. In these
latter cases the prediction accuracy can be naturally high by guessing.

The results of the other locations are similar, and thus epéated.
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TABLE VIII

THE SPECTRUM USAGE PREDICTION RESULTS ALOCATION 1. THE TRAINING / TESTING SETS ARE FROM THE SAME

SERVICE.
1-st ord
S order . FPM-2D
. occu- | Markov Miss -
Service L Prediction
pancy | Prediction| rate
Accuracy
Accuracy
GSMQ.OO 85.1% 85.2% 11.8% 96.9%
downlink
GS,M18OO 60.3% 77.4% 24.8% 95.1%
uplink
GSMl.SOO 30.2% 83.7% 16.2% 96.6%
downlink

TV2 92.1% 92.6% 5.4% 96.9%
TV3 44.5% 75.0% 4.2% 97.8%
TV4 41.9% 74.5% 6.3% 97.7%

TABLE IX

THE SPECTRUM USAGE PREDICTION RESULTS ALOCATION 1. THE TRAINING / TESTING SETS ARE FROM DIFFERENT

SERVICES
Training Set| Testing Set| Miss Rate Prediction
Accuracy
GSMQOO V1 66.1% o
downlink
V1 GS.MQOO - 00.4%
uplink
GS.MQOO GSM9_00 35 206 56.4%
uplink downlink
GSMQ_OO GS.M9OO 31.8% 67 4%
downlink uplink

We next study the case where the training $éf'¢ of 3 days) and the testing set.{s of 4
days) are from different services. The results are showralweriX.

We see that the accuracy of cross-service prediction is nowér than that of self-service
prediction, and the missing rate is quite high. This is beeathe patterns in different services
collide, i.e. patterns and prediction rules found in oneviser might lead to wrong prediction
results in other services. This is another manifestatiothefconclusion drawn earlier that the
spectral correlation is high for channels within the sameise but low across different services.

Consistent with earlier correlation result, we also obsehat the prediction accuracy is high
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TABLE X

THE CROSSLOCATION SPECTRUM USAGE PREDICTION RESULT.S

Training Testing Miss | Prediction
Set Set Rate | Accuracy
TV1 Location 1| Location 2 | 5.7% 95.3%
TV1 Location 3| Location 4| 7.3% 97.4%
TV1 Location 1| Location 3| 6.5% 96.7%
TV1 Location 3| Location 1| 7.7% 95.8%

Service

if we use the prediction rules at one location to predict@hes of the same service at another
location, due to the high spatial correlation of channelhiwithe same service. Table X Shows
the experiment results of this cross-location self-serycediction.

To summarize this section, we conclude that:

1) The self-service self-location spectrum usage preamhciccuracy is higher than 95%, which
is significantly larger than that of the commonly used 1steorMarkov model.

2) The missing rate varies from 4% to 25%, an overall accéptange.

3) The cross-service prediction accuracy ranges from 6080%, much lower than the self-
service prediction. The corresponding missing rate is al®®%6, sometimes over 70%,
which is too high.

4) The accuracy and missing rate of cross-location selfiseiprediction are nearly as high
as that of self-location self-service prediction.

5) CSs of 3 hours appear sufficient for training purpose.

VI. DISCUSSIONS

In this section we briefly summarize how findings and resules@nted in previous sections
may be used toward both the theory and practice in spectrumsirgg and access within the
context of cognitive radio networks.

Broadly speaking, these results contribute to two aspdaiymamic spectrum access: (1) the
construction of better channel models (as a way of desgitiia spectrum usage of the primary
users), that may be more generally applicable in other enments, and (2) the prediction of
channel availability in a similar wireless spectrum enmirent.

Channel models are an essential component in an array drspeaccess studies, especially

theoretical analysis. Our study has shown certain weaksesexisting channel models (e.g.,
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insufficient capture of history-dependence, inability &scribe spectral and spatial dependence).
Our results here can help build better channel models thae rccurately reflect the primary
users’ activity. In particular, the statistics we colletten channel occupancy/vacancy, its rich
dependency property, as well as the statistics on(tieseries may motivate the construction
of certain type of discrete event models (e.g., a Petri metlelscribe the channel behavior. This
may allow us to model the memory structure as well as theapaid spectral correlation while
avoiding a large state space.

The frequent pattern mining technique introduced here eaam\ery powerful tool in analyzing
spectrum usage data. For specific wireless environmentsewsigch data are available for
training, we have shown that using this technique can gémemry accurate predictions on
channel availability (especially in the TV broadcast clelanin our study). This allows a
secondary user to make far better channel sensing and at®aisgns, and exploit much more

effectively under-utilized spectrum opportunity.

VIl. RELATED WORKS

The Shared Spectrum Company (SSC) performed extensivdr@meceneasurements at 7
locations in the US and one outside the US between 2004 to[2@),13]. These measurements
are all wide-band and over long periods of time. For instariee measurement in Chicago
scanned the energy level from 30MHz to 2900MHz and lasted a@ifsh The goal of these
measurements is to gain a better understanding of the agilization of spectrum in rural and
urban environments. To achieve this, the authors set twd tixeesholds for channels in higher
and lower frequency bands, respectively, and consideredaanel busy if the power level is
above the corresponding threshold, and idle otherwiseowiieg to their reports, among those
7 locations in the US, the lowest average occupancy is 1% eérbiank, West Virginia while
the highest is 17.4% at Chicago, lllinois.

In addition to SSC, there have been a few similar measurestedies recently. In 2008,
Institute for Infocomm Research?R) published their spectrum measurement results in Sirrgapo
[8]. They scanned from 80MHz to 5850MHz for 12 weekdays. Tioemd the average occupancy
to be 4.54% and most of the allocated frequencies were lyeantlerutilized except the TV
broadcast channels and cell phone channels. Similar seselte reported from Auckland, New

Zealand according to [2].
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The above cited work primarily focused on collecting statsson the average utilization of
wireless spectrum, and they all confirmed that it is indeeaitye underutilized. Correlations in
the temporal, spectral and spatial dimensions were not asfocthese studies.

There has also been work in exploring correlations. A spettmeasurement was carried out
during the 2006 Football World Cup in Germany, in the citié¥aiserslautern and Dortmund
[7]. They found that the change of spectrum usage (energh)l@as clearly related to specific
events (football match). Moreover they investigated thsearrelation structure of changes in
energy levels. Later in 2007 another measurement was ctedliucthe US on the public safety
band (around 800MHz) [9]. The authors collected data coeatly at two locations, with a
total of 5 pairs of locations with distance ranging from 5 emstto a few kilometers. They
investigated the adjacent channel interference and $matieelation. They revealed that very
different energy detection results were obtained at cjokmlated detection stations (5 meters
apart); this was attributed to the difference in sensitiuit the sensing devices used.

Compared to this set of studies, our analysis also explgoedtsal correlation, both within
the same service and across services. The service congestieo(SCR) is a unique notion that
allows us to examine spectrum usage service by service.diti@a our measurement involves
the most concurrent locations (4), is over a fairly long diora(7 days), and scans from 20MHz
to 3GHz. This allowed us to conduct a very detailed analysidath the first and second order

statistics of these data sets.

VIII. CONCLUSIONS

In this paper we carried out a set of spectrum measuremetite iROMHz to 3GHz spectrum
band at 4 locations concurrently in Guangdong province oh&hUsing these data sets we
conducted a set of detailed analysis of the first and secoddr astatistics of the collected
data, including channel occupancy / vacancy statisticnicél utilization within each individual
wireless service, also spectral and spatial correlatiothebe measures. Moreover, we also
utilized such spectrum correlation to develop a 2-dimamaifrequent pattern mining algorithm
that can accurately predict channel availability based &st pbservations.

We believe our findings will spur more discussions on how tttebemodel current spec-
trum utilization and help us design more efficient spectremsgng and accessing schemes for

secondary users.
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