
1

M INING SPECTRUMUSAGE DATA : A

LARGE-SCALE SPECTRUMMEASUREMENT

STUDY

Sixing Yin
†

, Dawei Chen
‡

, Qian Zhang
‡

, Mingyan Liu
∨

and Shufang Li
†

†

Beijing University of Posts and Telecommunications
yinsixing@sina.com, lisf@bupt.edu.cn

‡

Hong Kong University of Science and Technology

{dwchen,qianzh}@cse.ust.hk
∨

University of Michigan

mingyan@eecs.umich.edu

November 19, 2009 DRAFT



Abstract

Dynamic spectrum access has been a hot topic for extensive study in recent years. The increas-

ing volumes of literatures calls for a deeper understandingof the characteristics of current spectrum

utilization. In this paper we present a detailed spectrum measurement study, with data collected in the

20MHz to 3GHz spectrum band and at four locations concurrently in Guangdong province of China.

We examine the statistics of the collected data, including channel vacancy statistics, channel utilization

within each individual wireless service, and the spectral and spatial correlation of these measures.

Main findings include that the channel vacancy durations follow an exponential-like distribution, but

are not independently distributed over time, and that significant spectral and spatial correlations are

found between channels of the same service. We then exploit such spectrum correlation to develop

a 2-dimensional frequent pattern mining algorithm that canpredict channel availability based on past

observations with considerable accuracy.

Index Terms

Spectrum Measurement, Channel Vacancy Duration, Service Congestion Rate, Spectrum Usage

Prediction, Frequent Pattern Mining, FPM-2D, Spectral Correlation, Spatial Correlation

I. INTRODUCTION

Recent advances in software defined radio (SDR) [10] and cognitive radio (CR) [6], [19]

combined with ever-increasing demand for wireless spectrum resources have led to the notion of

dynamic spectrum access; wireless devices with the abilityto detect spectrum availability and the

flexibility to adjust operating frequencies can opportunistically access under-utilized spectrum.

This type of access is aimed at significantly improving spectrum efficiency in light of evidence

that there exists abundant spectrum availability [12], [13] in the current allocation. This has also

led to the notion of open access, whereby unlicensed users ordevices are encouraged to access

to licensed spectrum bands such that spectrum opportunity can be fully exploited1.

These concepts have motivated extensive studies on both technical and policy issues related to

dynamic spectrum access. With this comes the need for betterand quantitative understanding of

current spectrum utilization, beyond the qualitative knowledge of the existence of ample spectrum

opportunities. With such understanding one can help (1) validate spectrum/channel models often

used in analysis without questioning, (2) provide grounds for more realistic channel models with

better predictive competence, and ultimately, (3) allow devices to adaptively make more effective

dynamic spectrum access decisions.

1For instance, the FCC on November 4, 2008 approved unlicensed wireless devices that operate in the empty white space

between TV channels, after four years of effort.
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To achieve these goals, we recently conducted a comprehensive spectrum measurement study

in the 20MHz to 3GHz spectrum band in Guangdong province, China. This paper reports our

methodology and findings from this study. There has been a number of spectrum measurement

studies published in recent years, like [12], [13] conducted in the US, one in Singapore [8], one

in New Zealand [2], and one in Germany [18]. A common finding among these studies is that

spectrum resources is indeed heavily underutilized at the moment.

Compared to the prior work, the salient features of the data sets we collected are:

• Our measurements are carried out in four locations concurrently;

• Our measurement locations are specifically selected (2 urban and 2 suburban locations) in

order to study the potential spatial correlation of spectrum usage between similar and different

types of locations.

There are two parts in this study. In the first part, we examinestatistics of the collected data

and use a variety of models to fit the data. These include (1) channel vacancy statistics (precisely

defined later), over time, across channels, and for different wireless services (that group multiple

channels), (2) service congestion rate that reveals how well channels assigned to a particular

wireless service are utilized, and (3) the use of a subscriber model to explain the dynamics in

channel utilization for specific services, (4) spectral andspatial correlation of spectrum usage.

In the second part of the study we exploit the spectrum correlations to develop a 2-dimensional

frequent pattern mining algorithm that can predict channelavailability based on past observations

with considerable accuracy.

The key findings and contributions of this work are summarized as follows:

1) The channel vacancy duration (CVD) distribution is shownto have an exponential tail

(but not exactly an exponential distribution; this is empirically obtained but with very high

statistical significance), in all channels and locations westudied. This evidence to a certain

extent supports some widely used channel models (e.g., the 0-1 Gilbert-Eliot model) under

which such vacancy durations are exponentially distributed. On the other hand, statistical

analysis on our data reveals that these vacancy durations are not independently distributed

over time, as is commonly assumed. This finding suggests thatspectrum usage is inherently

more predictable than current models imply, and that betterand more sophisticated models

may allow us to exploit such predictability.
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2) The service congestion rate (SCR), the spectrum utilization within a specific wireless

service, can well fitted by autoregressive model, which makes possible the high-precision

prediction for SCR such that degree of congestion for a service can be known about in

advance.

3) Spectral correlation of spectrum utilization is significant between channels within the same

service, and quite insignificant otherwise. This reflects the difference in the nature of these

services, and the resulting different usage patterns.

4) There is very significant spatial correlation between theSCRs of the same service (e.g.

GSM900 uplink) at different locations. The spatial correlation is even higher when the two

locations are of the same type (both in urban or both in suburban areas). This suggests that

usage patterns are heavily influenced by the nature/type of the wireless service, rather than

the location. There is a population factor (high vs. low density), but overall similarities in

collective usage pattern of the same service are significantin different regions.

5) Motivated by the strong correlation in spectral and spatial dimensions, we propose an

effective 2D frequent pattern mining algorithm, which can predict spectrum usage with

the accuracy exceeding 95%.

We hope that these findings will lead to more discussions on how to better model current

spectrum utilization, i.e., the behavior of primary users.This in turn can help us design better

and more efficient spectrum sensing and access schemes for secondary users.

The remainder of the paper is organized as follows. Section II presents how our data is collected

and processed. We then present a comprehensive statisticalanalysis on the measurement data

including CVD, SCR, and subscriber model in Sections III. Spectrum correlation (spectral and

spatial) results are presented in Sections IV. In Section V we develop in detail a 2D frequent

pattern mining technique to predict spectrum availability. We discuss how these results can be

useful in spectrum sensing and access in Section VI. Relatedwork is presented in Section VII,

and Section VIII concludes the paper.

II. DATA COLLECTION AND PREPROCESS

A. Data Collection

The results presented in this paper are based on the analysisof 4 sets of measurement data,

which were collected at four different locations in Guangdong province, China, from 15:00 Feb

November 19, 2009 DRAFT
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TABLE I

LOCATION OVERVIEW

Location Type Coordinate

1.Trade Center,Guangzhou Downtown E 113◦15′25′′ N 23◦08′01”

2.Canadian Garden,GuangzhouDowntown E 113◦21′45′′ N 23◦08′20”

3.Jiangmen Suburban E 113◦7′59.9′′ N 22◦22′46.9”

4.Zhongshan Suburban E 113◦27′24.8′′ N 22◦25′32.5”

TABLE II

SPECTRUMALLOCATION OF POPULAR SERVICES

Services Band

CDMA uplink 825MHz - 835MHz

CDMA downlink 870MHz - 880MHz

GSM900 uplink 885MHz - 915MHz

GSM900 downlink 925MHz - 960MHz

GSM1800 uplink 1710.0MHz - 1785.0MHz

GSM1800 downlink 1805.0MHz - 1880.0MHz

Broadcasting TV1 48.5 - 92MHz

Broadcasting TV2 167 - 233MHz

Broadcasting TV3 470MHz - 566MHz

Broadcasting TV4 606 - 870MHz

ISM 2400 - 2500MHz

16, 2009 to 15:00 Feb 23, 2009. Locations 1 and 2 are in the downtown area of Guangzhou,

the main metropolis of Guangdong province. These two locations are roughly 10 kilometers

apart. Locations 3 and 4 are in suburban areas of two under-developed cities and are roughly

45 kilometers apart. These locations are listed in Table I.

We are primarily interested in spectrum usage of the frequency band between 20MHz and

3GHz. Within this range, the list of wireless services alongwith their spectrum assignment in

the local region are provided in Table II.

The measurement equipment we used is an R&S EM550 VHF / UHF Digital Wideband

Receiver. EM550 is a superheterodyne receiver that covers awide frequency range, from 20

MHz to 3.6 GHz. The measurement resolution is one per 0.2MHz,resulting in a total of 14,900

frequency readings per time slot (or sweep time), roughly 75seconds. There are 8,058 (7 days/

75s) time slots. As a result, there are 14,900×8,058 data points in the data set (roughly 2GB in

size) per location.

November 19, 2009 DRAFT
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Fig. 1. 3-D view of the energy level over all bands.

Here we would like to briefly compare our data sets with those reported on the Shared

Spectrum Company (SSC) website2. Judging by the published reports, our data sets are of a

similar nature and have been collected in a similar way, e.g., the antennas are placed outdoor

on the roof of a building while the receivers are placed indoor.

For illustration purpose, Figure 1 shows a 3-D depiction of the set of data at Location 3. The

color coding (energy level from low to high on a scale from blue to bright red) on the figure is

an attempt to make the figure easier to visualize, but does notprovide extra information, as the

vertical dimension already shows the energy reading (in dBµV).

These data sets provide us with a fairly rich set of measurements, based on which spectrum

utilization and patterns can be identified and analyzed as weshow in subsequent sections.

B. Preprocessing

To conduct the sequence of analysis presented in later sections, we will first convert the above

measurement data (in absolute energy reading) into a binarysequence of0s and1s, through a

thresholding process, with0 denoting a channel being unused, idle or available, and1 denoting

the opposite (i.e., used, busy or unavailable).

2http://www.sharedspectrum.com/measurements, one takenin Maine, one in Chicago, and one in Ireland.
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We begin by defining the following terms.

• Channel: a channel is an interval of radio frequency of bandwidth 200KHz. Channels are

indexed sequentially; ChannelX is the frequency interval[(20 + 0.2(X − 1))MHz, (20 +

0.2X)MHz], X > 0. Since 200KHz is the resolution of our measurement devices,a channel

is the smallest unit at which we can distinguish energy.

• Service: a service is a set of channels that have been assigned to the same application/service,

as listed in Table 2. Without ambiguity we will use this term to mean both the service and

the set of channels assigned to the service.

• Channel state (CS): this is a function of time and channel.CS(t, c) = 0 indicates that

Channelc is idle at time slott, andCS(t, c) = 1 otherwise.

• Channel vacancy: this is the period in which a channel remains idle.

Converting energy level to CS (0 or 1) is essentially a binary hypothesis testing process. For

lack of a priori knowledge on channel statistics, it is done in a simplistic way here through a

thresholding procedure: for channelc, a threshold is set to be 3dB higher than the minimum

value seen in this channel over the entire duration of the trace collected. At time slott if the

energy level is lower than this threshold, thenCS(t, c) = 0; otherwiseCS(t, c) = 1. The reason

for this thresholding scheme is the following: Figure 2 shows the maximum, minimum and

average energy level of some noise channels (those higher than 2GHz but below the ISM band)

at Location 2. They are called noise channels because they are currently assigned to satellite-to-

satellite communications (the signal does not reach the ground and thus the only energy present

on the ground is due to noise). We see that for these channels,the maximum and minimum power

levels are all within a 3dB range. Assuming that noise behaves similarly across channels (which

is not exactly true, but probably close), anything more than3dB above the minimum power

level suggests the presence of signal, hence the above thresholding is reasonable. Decreasing

this threshold will improve signal detection probability,but the false positive will become higher,

while lowering the threshold increases false negative.3 While an important subject in its own,

calibrating the error in such a process is out of the scope of the present paper.

The result of this process is a sequence ofCSs (0s and1s) for each spectrum channel of

3We did try increasing this threshold from 3dB to 4.5 dB and found the resulting 0-1 sequence to be nearly the same. The

same thresholding process was used in a measurement study conducted in Aachen, Germany [18].
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Fig. 2. The maximum, minimum and average energy levels of noise channels at Location 2.

200KHz wide, representing its availability over a time resolution of approximately 75 seconds.

This is shown in Figure 3 where black dots indicate busy channels. In subsequent sections we

will try to uncover the properties inherent in these sequences.

III. STATISTICAL PROPERTIES OFTHE MEASUREMENT DATA

In this section, we perform comprehensive statistical analysis on the measurement data in-

cluding channel vacancy durations (CVD), service congestion rate (SCR) series, as well as a

subscriber model to explain channel utilization dynamics.

A. channel vacancy duration (CVD) distribution

To make better spectrum access decision, we are often interested in knowing how long a

channel will remain idle. CVD is defined to capture this feature. In this section we show that

our measurement data suggest that it has an exponential tail, but is not exactly an exponential

distribution, nor is it independently distributed over time.

As defined earlier, channel vacancy is the period in which a channel remains idle. If we use

the CS time series of a given channel, then the channel vacancy duration will always be a

nonnegative integer (i.e., the number of consecutive 0’s) since theCS is defined for discrete

time slots. In reality, however, the channel state does not in general change at slot boundaries. In
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Fig. 4. Extract channel vacancy durations from raw data.

order to obtain a better, fractional estimate of the CVD, we use the original energy measurement

data: By treating it as a continuous time signal and determining the threshold-crossing times,

we can obtain CVD estimates in real numbers rather than integers. This is illustrated in Figure

4.

On average each channelCS time sequence (more than 8000 time slots) contains on the

order of hundreds of channel vacancies. This sample size turns out to be too small to derive the

CVD distribution. To increase this sample size we collect CVDs across all channels within the

same service. This is done based on the observation that spectrum usages of channels within

the same service are statistically very similar (shown in Section V.B). For example, spectrum
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GSM900 uplink at Location 2

usages in channels within GSM900 uplink service (885-915MHz) are nearly the same in terms

of occupancy, periodicity, average energy level, etc. Thisgives us enough samples to obtain the

empirical distribution of channel vacancies.

Figure 5 shows the statistical histogram of the CVD in GSM900uplink service at Location 2.

Then we plot the Gaussian-kernelled density graph such thatthe curve of its probability density

function (PDF) can be approximately restored as shown in Figure 6. Here we only focus on the

falling part of the curve Figure 6, where CVD samples that exceeds two timeslot, because a

longer vacancy period can provide access opportunities fora variety of services, no matter real-

time and delay-sensitive services such as push-to-talk andvideo teleconference, or best-effort

services such as file transferring. We then apply the least-square regression analysis to falling

part of the curve in Figure 6. The significance of the fitting ismeasured by the coefficient of

determinationr2, defined as:

r2 ≡ 1 −

∑

i(yi − ȳ)2

∑

i(yi − fi)2
(1)

whereyi is the sample value with mean̄y andfi is the modelled/fitted value.

As shown in Figure 7, the CVD distribution is very well approximated (r2 > 0.95) by an

exponential-like distributiony = a+be−cx. We repeated this exercise in all the services (GSM900

/ 1800 uplink / downlink, broadcasting TV, CDMA, ISM) at all 4locations and obtained similar

results. The regression results at Location 2 are showed in Table III, wherey denotesPr[CV D =

x] and x = 1, 2, 3, ...C time slot(s), whereC is a constant integer that indicates the maximal

value of the CVD obtained from the data.
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TABLE III

CHANNEL VACANCY DURATION DISTRIBUTION REGRESSION RESULTS AT LOCATION 2. REGRESSION EQUATION:

y = a + be−cx

Service a b c r2

GSM900 uplink 0.0134917 7.052599 1.268810 0.951047

GSM900 downlink 0.023809 0.710870 0.485794 0.986417

GSM1800 uplink 0.042653 0.884733 0.669833 0.983644

GSM1800 downlink 0.033259 1.058021 0.691488 0.993801

CDMA uplink -0.016088 0.250563 0.140147 0.930726

CDMA downlink 0.022279 1.253164 0.723049 0.986838

TV1 0.027716 1.021404 0.599504 0.988016

TV2 0.039241 0.714230 0.548904 0.989958

TV3 0.042968 0.725089 0.599759 0.959616

TV4 0.046246 0.756806 0.631420 0.943959

It should be noted thaty = a + be−cx has an exponential tail, but isnot an exponential

distribution. A direct consequence of this is that it does not have the memoryless property, i.e.,

how long a channel is going to remain in a certain state is a function of its history, rather than

being independent of it. This latter independence assumption has been commonly used in channel

access studies, see for example [15], [17], [20]. More precisely, these studies assume a two-state

Markov chain model for the channel (i.e., an Eliot-Gilbert model). This channel model implies

that the duration of channel vacancy are geometrically distributed (the discrete equivalent of an

exponential distribution), and that these durations are independently distributed. Our results here

indicate that such an assumption is inaccurate, and there issignificantly more memory in the

channel state information.

The above observations indicate that we will not be able to describe the CS series using a

first order Markov model, whereby future state is independent of history given present state. To

illustrate, we empirically obtain the following conditional probabilities for the GSM1800 uplink

band at Location 2:

Pr[CS(t + 1, c) = 0|CS(t, c) = 0] = 0.918953

while

Pr[CS(t + 1, c) = 0|CS(t, c) = 0, CS(t− 1, c) = 1] = 0.55454

November 19, 2009 DRAFT
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Clearly the channel state is highly history dependent, a feature this type of Markov model fails to

capture. We tried higher order Markov models, by defining a higher-dimensional state space (a

higher-dimension state consists of a sequence of channel states, which results in an increase the

state space), without much success. Besides, since CVD in our case is a statistic for the whole

service rather than a single channel such that the whole set of CVD samples can not constitute

a time series, we did not analyze CVD samples in any time-series way, such as autoregressive

model fitting.

All the above indicate that the channel state information possess some far richer properties.

Technically, any discrete system can be modeled as a Markov chain provided we embed sufficient

memory into the state, but the resulting expansion in the state space is in general computationally

prohibitive. In Section V we use a frequent pattern mining technique to get around this problem.

This technique exploits the potential correlation inCSs and provides accurate prediction.

B. Service Congestion Rate (SCR)

The channel stateCS(t, c) is a microscopic level measure of the channel utilization – indeed

a single time slot together with a single channel is the finestresolution we can obtain from

the measurement data. Examining it over time for each channel results in CVD, a measure we

examined in the previous section. In this section we will examine it across channels within the

same service for a given time slot, a measure captured in the service congestion rate (SCR). We

will then show how this measure evolves over time.

SCR for serviceS at timet, denoted bySCR(t, S) is defined as the ratio between the number

of busy channels inS at time t and the total number of channels inS. Thus SCR(t, S) =
∑

c∈S CS(t, c)/n, where n is number of channels in serviceS. SCR is thus a measure of the

level of congestion in a service; the larger the SCR of a service is, the fewer idle channels there

are. This is a value ranging from 0 to 1.

Figure 8 shows the SCR series of service GSM1800 uplink and GSM900 uplink at Location

2. We can see that the SCR series is cyclic in its outline with aperiod of one day, as expected.

Also note that the SCR series of the two services are highly correlated: the rises and drops are

very much in synchrony.

Of particular interest is the high SCR regions in Figure 8, i.e., those “plateau” regions. Within

these regions, theSCR as a random process appears to be stationary. This turns out to be true: it
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Fig. 8. SCR series at Location 2. GSM1800 uplink vs. GSM900 uplink.

passes augmented Dickey-Fuller (ADF) test with significance 0.01, verifying its stationarity [11]

(This test was performed for each of the plateau regions). Wefurther calculate the correlogram

of the SCR series of service GSM900 uplink at Location 2 and results are shown in Figure 9

and 10. Here correlogram refers to autocorrelation function (ACF), denoted byρt,s, and partial

autocorrelation function (PACF), denoted byφt,s of a time seriesY , which are respectively given

by

ρt,s = Corr(Yt, Yt−s)

φt,s = Corr(Yt, Yt−s|Yt−1, Yt−2, ..., Yt−s+1)

whereCorr refers to the correlation coefficient.

We see that the correlation coefficient decreases at an negligible rate, while the partial cor-

relation coefficient tails off rapidly. This suggests that the SCR series may be potentially well

modeled as an autoregressive process [16]. The autoregressive model can be written as

SCR(t, S) =

O
∑

m=1

cmSCR(t − m, S) + n(t) (2)

whereO andn(t) are the order and the residual of the model, respectively.

A third-order autoregressive model of the above form is applied to the SCR series of all
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services at Location 24. The regression results are shown in Table IV. We did not include the

regression results of CDMA service as the existence of CDMA signal cannot be verified simply

using energy detection [4]. We see that in all cases the 3rd-order autoregressive model achieved

very high accuracy, as indicated by the coefficients of determination shown in 1.

Since autoregressive model can approximate the SCR series quite well, we can leverage it

into temporal prediction for SCR series, that is, to use its past to predict its future. Therefore,

again we use 3rd-order autoregressive model to make such prediction. For illustration purpose,

we only show the prediction results for the service of GSM900uplink at Location 2 as shown in

Figure 11, results for other services are quite similar. We also show the residual of the prediction

4Regarding selecting the right order for this model: a higherorder generally results in better approximate; on the otherhand,

the order cannot be arbitrily high based on Akaike Information Criterion, in which a high order will improve regression quality
but will also lead to the reduction of degree of freedom [1]. The choice of 3rd-order in our experiment seems to be appropriate;

in particular we were not able to obtain significant fitting improvement by increasing the order beyond 3.
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TABLE IV

3RD-ORDER AUTOGRESSIVE MODEL REGRESSION RESULTS ATLOCATION 2.

Service c1 c2 c3 r2

GSM900 uplink 0.380212 0.313529 0.305352 0.960674

GSM900 downlink 0.354719 0.322443 0.322548 0.970801

GSM1800 uplink 0.392203 0.319233 0.286660 0.974579

GSM1800 downlink 0.407140 0.312867 0.279747 0.973845

TV1 0.476766 0.285754 0.233663 0.906869

TV2 0.424009 0.302502 0.270873 0.861388

TV3 0.457287 0.332248 0.208510 0.963755

TV4 0.409256 0.336329 0.254212 0.921405

model and its statistical histogram as shown in Figure 12 and13 respectively. The probability

distribution of the residual passes the Anderson-Darling hypo-test with confidence level0.1 such

that it is testified to comply with a normal distribution withzero mean, which indicates that the

autoregressive prediction model is quite adequate for the SCR series [16].

C. Dynamic Utilization of GSM Services

Of all the services listed in Table II, mobile services have the special feature of very high

dynamic utilization. This is because they are subscriber based and the level of energy present

in these channels are driven by the arrivals and departures of subscribers (or rather, their calls).

Understanding how the channel utilization changes over time as a function of the subscriber

dynamics can be very helpful in marketing and operating strategies including pricing and pro-

motions. In this section we show that the channel utilization given by the measurement data

can be well described using a simple queuing model. Due to thedifficulty in energy-detecting

CDMA signal as mentioned before, we will only consider GSM services in this section.

To this end, we note that the received energy at a measurementlocation is the summation

of all transmitted signals, whose strength gets attenuatedover the propagation distance. While

this means that different users/callers will have a different contribution to this sum depending

on where they are located, if we assume that they are uniformly distributed in space, one would

expect that the sum of received energy changes proportionalto the change in the active caller

population within an applicable region (i.e., the region inwhich a transmitted signal results in

non-negligible reception at the measurement location). Below we will specifically consider the
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GSM uplink service while excluding downlink services as theGSM downlink traffic contains

not only user traffic but also that of signaling applications.

We define the mobile service utilization (MSU) of a GSM service S, denoted byMSU(t, S),

as the time-varying difference in the total received energy, expressed as

MSU(t, S) =
∑

c∈S

e(t, c) −
∑

c∈S

e(t − 1, c).

Figure 14 shows the probability distribution of MSU series of GSM900 uplink at Location 3

over a week. For proprietary reasons we do not show the actualvalue ofMSU(t, S).

We next show that this distribution can be well described using a simple queuing model.

Suppose that in each time slot the arrival and departure of calls each follows a Poisson distribution

with rate λa andλh, respectively. Assume further that they are independentlydistributed (note
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that this is equivalent of saying that the call durations areexponentially distributed). Denote the

number of active callers at the beginning of time slott by N(t). Then we haveN(t + 1) =

N(t) + A(t) − D(t), whereA(t) (D(t)) is the arrival (departure) within time slott. Then the

change in the number of active callers in the system, denotedby X(t) = N(t + 1) − N(t), is

given by

P (X(t) = m) =















e−(λa+λh)λm
a

∞
∑

k=1

λk
aλ

k
h

k!(k + m)!
m ≥ 0

e−(λa+λh)λ−m
h

∞
∑

k=1

λk
aλ

k
h

k!(k − m)!
m < 0 .

(3)

The probability distribution curve in Figure 14 is centeredaround zero, suggesting that in steady

stateλa andλh are approximately equal. Equation 3 can therefore be simplified to

P (X = m) =















e−2λλm
∞
∑

k=1

λ2k

k!(k + m)!
m ≥ 0

e−2λλ−m
∞
∑

k=1

λ2k

k!(k − m)!
m < 0

(4)

We then compare Eqn (4) with the distribution curves of MSU ofthe GSM uplink services at

four locations. For brevity, we only show the result of GSM900 uplink at Location 4 as shown

in Figure 15 while noting the other results are similar. As shown in Figure 15, the two are very

close, and the fitting coefficient of determination is over0.97.

We also examined whether the above utilization dynamics change significantly over time.

Figure 16 and 17 show the MSU distributions obtained using measurement data collected

over two different weeks, for the GSM900 uplink service and the GSM1800 uplink service,

respectively. In both cases we see that this distribution stay roughly the same from week to week,

indicating a rather steady collective calling pattern in terms of arrival and departure statistics.

IV. SPECTRAL AND SPATIAL CORRELATIONS

The more we know about spectrum usage characteristics (of the primary users), the better we

can predict spectrum opportunity, and the better we can makedynamic spectrum sensing and

access decisions. Much of this predictive power lies in the spectral and spatial dependence of

spectrum usage. For instance, if everything is independently distributed, then knowing the past

does not offer information for the future. On the other hand,Figure 8 shown in the previous

section suggests that measuring/sensing channels in GSM900 uplink provides ample information

about channel availability in GSM1800 uplink. We thus set out to take a more in-depth look at
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the dependence characteristics of our data sets in this section. Specifically, we will analyze the

spectral, and spatial correlation of theCS series and the SCR series, respectively.

We will use the following two measures of correlation, the first one defined for two random

variables and the second one defined for two 0-1 random sequences. The correlation coefficient

ρX,Y between two random variablesX andY with sample meanµX andµY and sample standard

deviationsσX andσY is defined as:

ρX,Y =
cov(X, Y )

σXσY

=
E((X − µX)(Y − µY ))

σXσY

(5)

wherecov is the covariance operator. This coefficient ranges between-1 and 1, extreme values

indicating X and Y are (inversely) fully correlated. In general correlation is considered high

(i.e., one random variable proving a lot of information about the other) when the absolute value

of the coefficient is closed to 1.

The correlation between two discrete-time 0-1 seriesX(t) andY (t) are defined as follows:

CorrX(t),Y (t) =

∑

t I{X(t) = Y (t)} −
∑

t I{X(t) 6= Y (t)}
∑

t I{X(t) = Y (t)} +
∑

t I{X(t) 6= Y (t)}
(6)

whereI{A} is the indicator function:I{A} = 1 if A is true and 0 otherwise. The two summations

in the above equation are the total number of positions that the two sequences coincide and differ,

respectively. This is commonly used for evaluating the correlation between two binary sequences.

A. Spectral Correlation

In order for investigation on spectral correlation, we takethe SCR andCS series and cross

correlate them with their counterparts from a different service and different channel within the

same service, using Eqn (5) and Eqn (6), respectively.

Figure 18 shows theCS correlation coefficients between every two channels in the GSM900

uplink at Location 4. We see that these coefficients are extremely high for almost every two

channels within the same service. This is because in most cases the channels are either all busy

or all idle. There are also cases where the spectral correlation coefficients are closed to -1. This

is because some channels are always idle while some others are always busy. For instance, there

are channels in GSM that are kept idle to avoid inter-channelinterference. These results are

representative of what we found in other services.

Table V shows the spectral correlation coefficients betweentwo SCR series at Location 1;

these results are also representative of what we found at theother locations.
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Fig. 18. Spectral Correlation Coefficients ofCS series within GSM900 uplink at Location 4.

From the results shown in Table V, we see that there is significant correlation among these

services, for none of the coefficients falls below 0.55, evenwhen between a broadcasting TV

service and a GSM service. In addition, services of the same type are particularly correlated, as

high as 0.952 in the case between GSM900 uplink and GSM1800 uplink.

B. Spatial Correlation

Figure 19 shows 4 SCR series of the same service (GSM900 downlink) at all four locations.

At a high level, these series appear all correlated with eachother; they share common changes

in value. In particular, Locations 1 and 2 are very similar, up to a constant shift, and Locations

3 and 4 are very similar, also up to a constant shift. This suggests spatial correlation across

different locations. We thus cross correlate SCR /CS series from the same service / channel at

different locations.

Table VI shows the spatial correlation coefficients of the SCR series in GSM900 downlink

service among four locations. These are very high and none ofthe values falls below 0.8. It

appears that within the same service, the spectrum utilization is highly correlated across different

locations and different types of locations.

For other services the results are quite similar and are thusnot presented separately. For

instance between Locations 1 and 2, the spatial correlationcoefficient of SCR series is as high
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TABLE V

SPECTRALCORRELATION COEFFICIENTS OFSCRAT LOCATION 1.

GSM900

uplink

GSM900

downlink

GSM1800

uplink

GSM1800

downlink
TV1 TV2 TV3 TV4

GSM900

uplink
1.000

GSM900

downlink
0.873 1.000

GSM1800

uplink
0.952 0.832 1.000

GSM1800
downlink

0.855 0.747 0.827 1.000

TV1 0.674 0.616 0.713 0.636 1.000

TV2 0.730 0.669 0.700 0.690 0.634 1.000

TV3 0.789 0.742 0.809 0.710 0.833 0.711 1.000

TV4 0.588 0.581 0.557 0.566 0.655 0.567 0.721 1.000
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Fig. 19. SCR Series of GSM900 Downlink at 4 Locations.

as 0.962.

It’s easy to understand the reason behind such high correlation: for the same service, such

as GSM voice calls, subscribers at different locations share common behavioral patterns (e.g.,

same peak calling hours of the day), even though the actual SCR values are different.

V. PREDICTION USING FREQUENT PATTERN M INING (FPM)

The correlation structure presented in the previous section suggests that it can be exploited

to help us better predict channel state or spectrum opportunity based on measurements made in
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the past, in adjacent channels, or at similar locations. More precisely, we are interested in the

question of whether one could accurately predict the value of CS(t, c) based on the knowledge

of CS(t− k, c′), k > 0, and if so how many past observations (what values ofk) and over what

set of channels (what values ofc′) are needed.

There are different approaches one could take to model such correlation. For instance, as

pointed out in Section III, the memory in channel state information could conceptually be

captured by a sufficiently high-ordered Markov chain (and one can use measurement data to

collect statistics on the transition probabilities of thischain), but with significant technical

difficulty due to the exponential increase in the state space.

To overcome this difficulty, in this section we present a technique based on frequent pattern

mining (FPM) ( [3], [14] and a survey [5]) through an efficientpattern identification process

over the spectrum data. This technique generates predictions of future channel state based on a

collection of past observation in a set of channels. It uses both temporal and spectral correlations

examined in earlier sections. A unique feature of this approach is that it automatically adjusts

the algorithm to the appropriate size of past observations (both in time and in channels) based

on the data set. This method along with our experimental results are detailed in the remainder

of this section.

A. FPM and Prediction

We begin by illustrating how FPM can be used for spectrum usage prediction and the chal-

lenges in doing so. Suppose we know theCSs of Channelsc, c + 1 of previous 8000 time slots

(from time slot t − 7999 to t) and we would like to predict theCS of the next time slot of

Channelc and c + 1 (i.e., CS(t + 1, c) andCS(t + 1, c + 1)). The knownCSs can be written

into a single matrix shown below:




at−7999,c at−7998,c ... at,c

at−7999,c+1 at−7998,c+1 ... at,c+1



 ,

whereai,j = CS(i, j).

Define a submatrix as a pattern if it appears no less than 200 times throughout theCS series

of these channels. For instance, if the submatrix





1 0 1

1 1 0



 appears 1000 times, it’s considered a
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TABLE VI

SCRSPATIAL CORRELATION COEFFICIENTS FORGSM900DOWNLINK AMONG 4 LOCATIONS

Loc 1 Loc 2 Loc 3 Loc 4

Loc 1 1.000

Loc 2 0.833 1.000

Loc 3 0.858 0.846 1.000

Loc 4 0.854 0.880 0.909 1.000

pattern. We may find another pattern





1 0 1 1

1 1 0 0



 which appears 990 times. Comparing these

two patterns we can predict thatCS(t + 1, c) = 1 and CS(t + 1, c + 1) = 0 with probability

99% (990/1000) ifCS(t − 2, c) = 1, CS(t − 1, c) = 0, CS(t, c) = 1, CS(t − 2, c + 1) =

1, CS(t − 1, c + 1) = 1, andCS(t, c + 1) = 0.

Clearly this prediction method needs to successfully handle two issues: the first is to find

frequent patterns, referred to as frequent pattern mining.The second issue is to find associations

among these patterns, referred to as pattern association rules mining.

In our setting the dimension (number of rows and columns) of the patterns of interest are not

fixed in advance, i.e., we do not know in advance how much history and how many neighboring

channels are needed in order to have accurate prediction. Rather, this has to be learned during

the mining process. This 2-D (of patterns) learning elementis a unique challenge in our mining

process, compared to existing FPM literature, e.g., [3], [5], [14]. In addition, in all these studies

the patterns are 1-D and can be written in a row, although the data sets can be in multiple rows.

In our problem, the patterns are in 2-D, which is another unique challenge. To summarize, both

the width and the height of the patterns are variable, and their appropriate sizes need to be

automatically identified in this process.

In the following we will refer to our problem as a FPM-2D problem.

B. FPM-2D Problem Definition

The goal of the FPM-2D problem is to find all relevant 2D patterns. Once this is achieved,

it is fairly easy to compute the probabilities of future channel state (spectrum prediction). Table

VII contains a list of terminologies used in FPM-2D.

Formally, the FPM-2D problem is stated as follows: Given theinput setM, min area, and

min rep, find all valid block patterns and the corresponding match numbers.
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TABLE VII

NOTATIONS / CONCEPTS INFPM-2D

Notation /

Concept
Definition

Γ The literals set.Γ = {0, 1}

M

An input matrixMm×n =










a1,1 a1,2 ... a1,n

a2,1 a2,1 .. a2,n

...

am,1 am,2 .. am,n











whereai,j ∈ Γ,

m: the number of adjacent channels,
n: the number of consecutive time slots

block a submatrix ofM

subblock a submatrix of a block

block area the number of elements in a block

block pattern
a block whose area≥ min area.
“pattern” and “block pattern” are used

interchangeably.

subpattern submatrix of a pattern

matches

(supports)

If a patternP and a blockA are identical,

we sayA is a match (support) ofP,
or A matches (supports)P

match number
the number of ALL matches of

a pattern

valid
a pattern is valid if its match number is
no less thanmin rep

C. Proposed Algorithm

We start by scanning the input matrixM from left to right, top to bottom to find all the blocks

with sizex× y. This is done for allx andy such thatx× y ≥ min area. We use a hash table

to store the blocks for efficiently search, since it takesO(1) time to search an item in a hash

table. A potential problem is the number of blocks might be too large; it is2x×y in the worst

case. This problem is addressed by the following simple property.

Consider a blockAx×y. We say blockB is Ax×y’s parent blockif: a) B is Ax×y’s subblock,

b) B’s size is(x− 1)× y or x× (y − 1), and c)B’s area is not less thanmin area. A simple

yet key property concerning a valid pattern is that for any block Ax×y, it has at most 4 parent

blocks and it is a valid pattern only if all its parent blocks are valid patterns.

Thus, if any block has a parent block that is not valid, then wecan simply skip this block
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Algorithm 1 FPM-2D

for N=2 to∞:

flag← false

for each(x, y) s.t. (x + y = N , x× y ≥ min area):
Tx,y ← new empty hash table

if Tx−1,y andTx,y−1 are both empty:

continue;
for each blockBx×y in M:

if one of Bx×y ’s parent blocks
is not a valid pattern:

continue

if Bx×y is in Tx,y:
Tx,y[Bx×y] ← Tx,y[Bx×y] + 1

else:
Tx,y[Bx×y] ← 1

for each blockPx×y in Tx,y:

if Tx,y[Px×y ] < min rep:
removePx×y from Tx,y

if Tx,y is not empty:
flag← true

output the valid patterns inTx,y and

the corresponding match numbers
if flag == false:

break

because itself cannot be valid. By checking parent blocks, alarge number of blocks can be

ignored, which significantly reduces the memory consumption and improves the performance.

The pseudo code of the proposed algorithm is given in Algorithm 1. In Algorithm 1,Tx,y is

the hash table to store patterns with sizex × y.

After all valid patterns have been identified, the prediction rules are extracted as follows. A

prediction rule is defined asP1 → P2, whereP1 and P2 are all valid patterns.P2 has the

form [P1 V], where V is a column vector(v1, v2, v3, ...vk)
T , vi ∈ Γ. Thus P1 is one of the

parent blocks ofP2. Let M(P1) denote the match number ofP1, then thetransferring rate

R(P1 → P2) = M(P2)/M(P1) What this rule says is that if the currentCS appears to match

P1, then theCS in the next time slot will matchV with probability R(P1 → P2). Clearly, a

similar procedure can be used to predict theCS over multiple future slots, by simply considering

V as multiple column vectors.
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D. Experiment Result

To test our algorithm we split the measurement data into two part, one as a training set

on which we run Algorithm 1 and find the prediction rules, while the other as the testing

set on which we apply the prediction rules and perform spectrum usage prediction. We set

min rep = 200, min area = 4.

In our experiment we adopted the following prediction methods: a) We only consider those

rules whose transferring rates are larger than0.9. b) If the currentCSs appears to match the

patternP1 in a ruleP1 → P2, we predict theCSs matchesP2 in the next time slot. c) If the

currentCSs do not match any patterns, we do not predict and count it as a miss.

We are interested in answering the following questions:

1) what is the prediction accuracy if the training set and corresponding testing set are from

the same service (self-service prediction)?

2) what is the missing rate of the prediction?

3) can the mining result in one service be used to predict theCSs in another service (cross-

service prediction)?

4) can the mining result in a service at one location be used topredict theCSs in the same

service at a different location (cross-location prediction)?

5) how large the training set needs to be for accurate prediction?

We define prediction accuracy to be the ratio between the number of correctly predictedCSs

and the total number of predictedCSs, and define missing rate as the ratio between the number

of CSs that cannot be predicted and the total number ofCSs.

We first study the case where the training set and the corresponding testing set are from the

same service at Location 1, i.e., both from TV1 or both from GSM900 uplink. The training sets

areCS series over durations from 1 hour to 3 days. The testing sets are CSs of the last 4 days.

The results are shown in Figure 20. We observe that:

• The prediction accuracy is larger than 0.95, a very encouraging sign.

• The missing rate is around 5% for TV1 service, which is very low. It is higher, around 15%

for GSM900 uplink. The reason why the missing rate on GSM900 uplink is higher than

TV1 is that TV service is a pure broadcast service, while GSM service is an interactive

service whose patterns are more complicated to match.
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Fig. 20. The experiment results of intra-location intra-service spectrum usage prediction at Location 1. The prediction accuracy

is larger than 0.95 if the training set size is no less than 3 hours.

• The training set cannot be less than 2 hours. Otherwise FPM-2D cannot find sufficient

prediction rules.

• A 3-hour training set appears sufficient and the performanceof the algorithm saturates at

this level. Beyond this threshold, more training data does not seem to help improve the

prediction accuracy or reduce the missing rate.

For other services of Location 1, the results are similar except for the missing rate, which is

listed in Table VIII. We see that the prediction accuracy is consistently high but the missing rate

varies from 4% up to 25%. We also give the overall occupancy ofthe services as a reference.

If the overall occupancy isa, then the prediction does not help if its accuracy is lower than

max{a, 1 − a}. This is because we can always achieve this accuracy simply by guessing.

For comparison, we have also shown the prediction accuracy using the 1st-order Markov Chain

model (1st MC), which is one of the most commonly used models in the existing papers [15],

[17], [20]. We could see that the prediction accuracy of the 1st MC is only around 80%, which

is much lower than that of FPM-2D, except for those services whose occupancy is high. In these

latter cases the prediction accuracy can be naturally high even by guessing.

The results of the other locations are similar, and thus not repeated.
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TABLE VIII

THE SPECTRUM USAGE PREDICTION RESULTS ATLOCATION 1. THE TRAINING / TESTING SETS ARE FROM THE SAME

SERVICE.

Service
occu-
pancy

1-st order

Markov
Prediction

Accuracy

Miss
rate

FPM-2D

Prediction

Accuracy

GSM900
downlink

85.1% 85.2% 11.8% 96.9%

GSM1800

uplink
60.3% 77.4% 24.8% 95.1%

GSM1800

downlink
30.2% 83.7% 16.2% 96.6%

TV2 92.1% 92.6% 5.4% 96.9%

TV3 44.5% 75.0% 4.2% 97.8%

TV4 41.9% 74.5% 6.3% 97.7%

TABLE IX

THE SPECTRUM USAGE PREDICTION RESULTS ATLOCATION 1. THE TRAINING / TESTING SETS ARE FROM DIFFERENT

SERVICES.

Training Set Testing Set Miss Rate
Prediction

Accuracy

GSM900

downlink
TV1 66.1% 79.2%

TV1
GSM900
uplink

75.3% 80.4%

GSM900

uplink

GSM900

downlink
35.2% 86.4%

GSM900
downlink

GSM900
uplink

31.8% 87.4%

We next study the case where the training set (CSs of 3 days) and the testing set (CSs of 4

days) are from different services. The results are shown in Table IX.

We see that the accuracy of cross-service prediction is muchlower than that of self-service

prediction, and the missing rate is quite high. This is because the patterns in different services

collide, i.e. patterns and prediction rules found in one service might lead to wrong prediction

results in other services. This is another manifestation ofthe conclusion drawn earlier that the

spectral correlation is high for channels within the same service but low across different services.

Consistent with earlier correlation result, we also observe that the prediction accuracy is high
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TABLE X

THE CROSS-LOCATION SPECTRUM USAGE PREDICTION RESULTS.

Service
Training

Set

Testing

Set

Miss

Rate

Prediction

Accuracy

TV1 Location 1 Location 2 5.7% 95.3%

TV1 Location 3 Location 4 7.3% 97.4%

TV1 Location 1 Location 3 6.5% 96.7%

TV1 Location 3 Location 1 7.7% 95.8%

if we use the prediction rules at one location to predict theCSs of the same service at another

location, due to the high spatial correlation of channels within the same service. Table X Shows

the experiment results of this cross-location self-service prediction.

To summarize this section, we conclude that:

1) The self-service self-location spectrum usage prediction accuracy is higher than 95%, which

is significantly larger than that of the commonly used 1st-order Markov model.

2) The missing rate varies from 4% to 25%, an overall acceptable range.

3) The cross-service prediction accuracy ranges from 60% to80%, much lower than the self-

service prediction. The corresponding missing rate is above 30%, sometimes over 70%,

which is too high.

4) The accuracy and missing rate of cross-location self-service prediction are nearly as high

as that of self-location self-service prediction.

5) CSs of 3 hours appear sufficient for training purpose.

VI. D ISCUSSIONS

In this section we briefly summarize how findings and results presented in previous sections

may be used toward both the theory and practice in spectrum sensing and access within the

context of cognitive radio networks.

Broadly speaking, these results contribute to two aspects of dynamic spectrum access: (1) the

construction of better channel models (as a way of describing the spectrum usage of the primary

users), that may be more generally applicable in other environments, and (2) the prediction of

channel availability in a similar wireless spectrum environment.

Channel models are an essential component in an array of spectrum access studies, especially

theoretical analysis. Our study has shown certain weaknesses of existing channel models (e.g.,
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insufficient capture of history-dependence, inability to describe spectral and spatial dependence).

Our results here can help build better channel models that more accurately reflect the primary

users’ activity. In particular, the statistics we collected on channel occupancy/vacancy, its rich

dependency property, as well as the statistics on theCS series may motivate the construction

of certain type of discrete event models (e.g., a Petri net) to describe the channel behavior. This

may allow us to model the memory structure as well as the spatial and spectral correlation while

avoiding a large state space.

The frequent pattern mining technique introduced here can be a very powerful tool in analyzing

spectrum usage data. For specific wireless environments where such data are available for

training, we have shown that using this technique can generate very accurate predictions on

channel availability (especially in the TV broadcast channels in our study). This allows a

secondary user to make far better channel sensing and accessdecisions, and exploit much more

effectively under-utilized spectrum opportunity.

VII. RELATED WORKS

The Shared Spectrum Company (SSC) performed extensive spectrum measurements at 7

locations in the US and one outside the US between 2004 to 2007[12], [13]. These measurements

are all wide-band and over long periods of time. For instance, the measurement in Chicago

scanned the energy level from 30MHz to 2900MHz and lasted 46 hours. The goal of these

measurements is to gain a better understanding of the actualutilization of spectrum in rural and

urban environments. To achieve this, the authors set two fixed thresholds for channels in higher

and lower frequency bands, respectively, and considered a channel busy if the power level is

above the corresponding threshold, and idle otherwise. According to their reports, among those

7 locations in the US, the lowest average occupancy is 1% at Greenbank, West Virginia while

the highest is 17.4% at Chicago, Illinois.

In addition to SSC, there have been a few similar measurementstudies recently. In 2008,

Institute for Infocomm Research (I2R) published their spectrum measurement results in Singapore

[8]. They scanned from 80MHz to 5850MHz for 12 weekdays. Theyfound the average occupancy

to be 4.54% and most of the allocated frequencies were heavily underutilized except the TV

broadcast channels and cell phone channels. Similar results were reported from Auckland, New

Zealand according to [2].
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The above cited work primarily focused on collecting statistics on the average utilization of

wireless spectrum, and they all confirmed that it is indeed heavily underutilized. Correlations in

the temporal, spectral and spatial dimensions were not a focus in these studies.

There has also been work in exploring correlations. A spectrum measurement was carried out

during the 2006 Football World Cup in Germany, in the cities of Kaiserslautern and Dortmund

[7]. They found that the change of spectrum usage (energy level) was clearly related to specific

events (football match). Moreover they investigated the autocorrelation structure of changes in

energy levels. Later in 2007 another measurement was conducted in the US on the public safety

band (around 800MHz) [9]. The authors collected data concurrently at two locations, with a

total of 5 pairs of locations with distance ranging from 5 meters to a few kilometers. They

investigated the adjacent channel interference and spatial correlation. They revealed that very

different energy detection results were obtained at closely located detection stations (5 meters

apart); this was attributed to the difference in sensitivity in the sensing devices used.

Compared to this set of studies, our analysis also explored spectral correlation, both within

the same service and across services. The service congestion rate (SCR) is a unique notion that

allows us to examine spectrum usage service by service. In addition, our measurement involves

the most concurrent locations (4), is over a fairly long duration (7 days), and scans from 20MHz

to 3GHz. This allowed us to conduct a very detailed analysis on both the first and second order

statistics of these data sets.

VIII. C ONCLUSIONS

In this paper we carried out a set of spectrum measurements inthe 20MHz to 3GHz spectrum

band at 4 locations concurrently in Guangdong province of China. Using these data sets we

conducted a set of detailed analysis of the first and second order statistics of the collected

data, including channel occupancy / vacancy statistics, channel utilization within each individual

wireless service, also spectral and spatial correlation ofthese measures. Moreover, we also

utilized such spectrum correlation to develop a 2-dimensional frequent pattern mining algorithm

that can accurately predict channel availability based on past observations.

We believe our findings will spur more discussions on how to better model current spec-

trum utilization and help us design more efficient spectrum sensing and accessing schemes for

secondary users.
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