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ABSTRACT
Dynamic spectrum access has been a subject of extensive
study in recent years. The increasing volume of literature
calls for a deeper understanding of the characteristics of cur-
rent spectrum utilization. In this paper we present a de-
tailed spectrum measurement study, with data collected in
the 20MHz to 3GHz spectrum band and at four locations
concurrently in Guangdong province of China. We examine
the first and second order statistics of the collected data, in-
cluding channel occupancy/vacancy statistics, channel uti-
lization within each individual wireless service, and the tem-
poral, spectral, and spatial correlation of these measures.
Main findings include that the channel vacancy durations
follow an exponential-like distribution, but are not indepen-
dently distributed over time, and that significant spectral
and spatial correlations are found between channels of the
same service. We then exploit such spectrum correlation
to develop a 2-dimensional frequent pattern mining algo-
rithm that can accurately predict channel availability based
on past observations.
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1. INTRODUCTION
Recent advances in software defined radio (SDR) [9] and

cognitive radio (CR) [5, 16] combined with ever-increasing
demand for wireless spectrum have led to the notion of
dynamic spectrum access; wireless devices with the ability
to detect spectrum availability and the flexibility to adjust
operating frequencies can opportunistically access under-
utilized spectrum. This type of access is expected to sig-
nificantly improve spectrum efficiency in light of evidence
that abundant spectrum availability exists [10, 11] in the
current allocation. This has also led to the notion of open
access, whereby unlicensed users/devices are given access
to licensed spectrum bands to encourage use of unexploited
spectrum opportunity1.

These concepts have motivated extensive studies on both
technical and policy issues related to dynamic spectrum ac-
cess. With this comes the need for better and quantitative
understanding of current spectrum utilization, beyond the
qualitative knowledge of the existence of ample spectrum op-
portunity. Such understanding can help (1) validate spec-
trum/channel models often used in analysis without ques-
tioning, (2) provide grounds for more realistic channel mod-
els with better predictive power, and ultimately, (3) allow
devices to make more effective dynamic spectrum access de-
cisions.

To achieve these goals, we recently conducted a compre-
hensive spectrum measurement study in the 20MHz to 3GHz
spectrum band in Guangdong province, China. This paper
reports our methodology and findings from this study. There
has been a number of spectrum measurement studies pub-
lished in recent years, like [11, 10] conducted in the US, one
in Singapore [7], one in New Zealand [1], and one in Ger-
many [15]. A common finding among these studies is that
spectrum is indeed heavily underutilized at the moment.

1For instance, the FCC on November 4, 2008 approved un-
licensed wireless devices that operate in the empty white
space between TV channels, after four years of effort.



Compared to the prior work, the salient features of the
data sets we collected are:

• Our measurements are carried out in four locations concur-
rently;

• Our measurement locations are specifically selected (2 ur-
ban and 2 suburban locations) in order to study the poten-
tial spatial correlation of spectrum usage between similar
and different types of locations.

There are two parts to this study. In the first part, we
examine the first and second order statistics of the collected
data. These include (1) channel occupancy/vacancy statis-
tics (precisely defined later), over time, across channels, and
for different wireless services (that occupy multiple chan-
nels), (2) service congestion rate that reveals how well chan-
nels assigned to a particular wireless service are utilized, and
(3) temporal, spectral, and spatial correlation of spectrum
usage. In the second part of the study we exploit such spec-
trum correlations to develop a 2-dimensional frequent pat-
tern mining algorithm that can accurately predict channel
availability based on past observations.

The key findings and contributions of this study are sum-
marized as follows:

1. The channel vacancy duration (CV D) distribution is shown
to have an exponential tail (but not exactly an exponen-
tial distribution; this is empirically obtained but with
very high statistical significance), in all channels and lo-
cations we studied. This evidence to a certain degree
supports some widely used channel models (e.g., the 0-
1 Gilbert-Eliot model) under which such durations are
exponentially distributed. On the other hand, our data
reveals that these occupancy and vacancy durations are
not independently distributed over time, as is commonly
assumed. This finding suggests that spectrum usage is
inherently more predictable than current models imply,
and that better and more sophisticated models may allow
us to exploit such predictability.

2. The service congestion rate (SCR), the spectrum uti-
lization within a specific wireless service, appears to be
highly cyclical with a period of a day and have significant
temporal correlation. This is to be expected: it simply
reflects the persistence of user habit within a particular
service from day to day.

3. Spectral correlation of spectrum utilization is significant
between channels belonging to the same service, and quite
insignificant otherwise. This reflects the difference in the
nature of these services, and the resulting different usage
patterns.

4. There is very significant spatial correlation between the
SCRs of the same service (e.g. GSM900 uplink) at dif-
ferent locations. The spatial correlation is even higher
when the two locations are of the same type (both in
urban or both in suburban areas). This suggests that us-
age patterns are heavily influenced by the nature/type of
the wireless service, rather than the location. There is
a population element (high vs. low density), but overall
similarities in collective usage pattern of the same service
are significant in different regions.

Table 1: Location Overview
Location Type Coordinate
1.Trade Center,

Guangzhou
Downtown

E 113◦15′25′′

N 23◦08′01”
2.Canadian Garden,

Guangzhou
Downtown

E 113◦21′45′′

N 23◦08′20”

3.Jiangmen Suburban
E 113◦7′59.9′′

N 22◦22′46.9”

4.Zhongshan Suburban
E 113◦27′24.8′′

N 22◦25′32.5”

5. Motivated by the strong correlation in temporal, spectral,
and spatial dimensions, we propose an effective 2D fre-
quent pattern mining algorithm, which can predict spec-
trum usage with the accuracy exceeding 95%.

We hope that these findings will lead to more discussions
on how to better model current spectrum utilization, i.e.,
the behavior of primary users. This in turn can help us
design better and more efficient spectrum sensing and access
schemes for secondary users.

The remainder of the paper is organized as follows. Sec-
tion II presents how our data is collected and processed. We
then analysis the CV D, SCR, and the spectrum correlation
(temporal, spectral and spatial) in Sections III, IV, and V,
respectively. We present in detail a 2D frequent pattern min-
ing technique in Section VI to predict spectrum usage. We
discuss how these results can help in spectrum sensing and
access in Section VII. Related work is presented in Section
VIII, and Section IX concludes the paper.

2. DATA COLLECTION AND PREPROCESS

2.1 Data Collection
The results presented in this paper are based on the anal-

ysis of 4 sets of measurement data, which were collected
at four different locations in Guangdong province, China,
from 15:00 Feb 16, 2009 to 15:00 Feb 23, 2009. Locations
1 and 2 are in the downtown area of Guangzhou, the main
metropolis of Guangdong province (roughly 10 kilometers
apart), while Locations 3 and 4 are in suburban areas of
two under-developed cities (roughly 45 kilometers apart).
These locations are listed in Table 1.

We are primarily interested in spectrum usage of the fre-
quency band between 20MHz and 3GHz. Within this range,
the list of wireless services along with their spectrum assign-
ment in the local region are provided in Table 2.

The measurement equipment we used is an R&S EM550
VHF / UHF Digital Wideband Receiver. EM550 is a su-
perheterodyne receiver that covers a wide frequency range,
from 20 MHz to 3.6 GHz. The measurement resolution is
one per 0.2MHz, resulting in a total of 14,900 frequency
readings per time slot (or sweep time, roughly 75 seconds).
There are 8,058 (7 days/ 75s) time slots. As a result, there
are 14,900×8,058 data points in the data set (roughly 2GB
in size) per location.

Here we would like to briefly compare our data sets with
those reported on the Shared Spectrum Company (SSC)
website2. Judging by the published reports, our data sets

2http://www.sharedspectrum.com/measurements, one
taken in Maine, one in Chicago, and one in Ireland.



Table 2: Spectrum Allocation of Popular Services
Services Band
CDMA uplink 825MHz - 835MHz
CDMA downlink 870MHz - 880MHz
GSM900 uplink 885MHz - 915MHz
GSM900 downlink 925MHz - 960MHz
GSM1800 uplink 1710.0MHz - 1785.0MHz
GSM1800 downlink 1805.0MHz - 1880.0MHz
Broadcasting TV1 48.5 - 92MHz
Broadcasting TV2 167 - 233MHz
Broadcasting TV3 470MHz - 566MHz
Broadcasting TV4 606 - 870MHz
ISM 2400 - 2500MHz

Figure 1: 3-D view of the energy level over all bands.

are of a similar nature and have been collected in a similar
way, e.g., the antennas are placed outdoor on the roof of a
building while the receivers are placed indoor.

For illustration purpose, Figure 1 shows a 3-D depiction of
the set of data at Location 3. The color coding (energy level
from low to high on a scale from blue to bright red) on the
figure is an attempt to make the figure easier to visualize, but
does not provide extra information, as the vertical dimension
already shows the energy reading (in dBµV).

These data sets provide us with a fairly rich set of mea-
surements, based on which spectrum utilization and patterns
can be identified and analyzed as we show in subsequent sec-
tions.

2.2 Preprocessing
To conduct the sequence of analysis presented in later

sections, we will first convert the above measurement data
(in absolute energy reading) into a binary sequence of 0s
and 1s, through a thresholding process, with 0 denoting a
channel being unused, idle or available, and 1 denoting the
opposite (i.e., used, busy or unavailable).

We begin by defining the following terms.

• Channel: a channel is an interval of radio frequency of

bandwidth 200KHz. Channels are indexed sequentially;
Channel X is the frequency interval [(20+0.2(X−1))MHz,
(20 + 0.2X)MHz], X > 0. Since 200KHz is the resolution
of our measurement devices, a channel is the smallest unit
at which we can distinguish energy.

• Service: a service is a set of channels that have been as-
signed to the same application/service, as listed in Table
2. Without ambiguity we will use this term to mean both
the service and the set of channels assigned to the service.

• Channel state information (CSI): this is a function of time
and channel. CSI(t, c) = 0 indicates that Channel c is idle
at time slot t, and CSI(t, c) = 1 otherwise.

• Channel vacancy: this is the period in which a channel re-
mains idle. In the CSI time series of a channel, a channel
vacancy is an interval of continuous 0’s.

Converting energy level to CSI data (0 or 1) is essentially
a binary hypothesis testing process, but done in a more sim-
plistic way here through a simple thresholding procedure:
for channel c, a threshold is set to be 3dB higher than the
minimum value seen in this channel over the entire dura-
tion of the trace collected. At time slot t if the energy level
is lower than this threshold, then CSI(t, c) = 0; otherwise
CSI(t, c) = 1. The reason for this thresholding scheme is
the following. Figure 2 shows the maximum, minimum and
average energy level of some noise channels (those higher
than 2GHz but below the ISM band) at Location 2. They
are called noise channels because they are currently assigned
to satellite-to-satellite communications (the signal does not
reach the ground and thus the only energy present on the
ground is due to noise). We see that for these channels, the
maximum and minimum power levels are all within a 3dB
range. Assuming that noise behaves similarly across chan-
nels (which is not exactly true, but probably close), anything
more than 3dB above the minimum power level suggests the
presence of signal, hence the above thresholding rule. De-
creasing this threshold will improve signal detection proba-
bility, but will also increase false alarms; the reverse is also
true. 3 Calibrating the error in such a process is out of
the scope of the present paper, though it is an important
subject.

The end result of this process is a sequence of CSIs (0s
and 1s) for each spectrum channel of 200KHz wide, rep-
resenting its availability over a time resolution of approxi-
mately 75 seconds. This is shown in Figure 3 where black
dots indicate busy channels. In subsequent sections we will
try to uncover the properties inherent in these sequences.

3. CHANNEL VACANCY DURATION (CVD)
DISTRIBUTION

In this section we present statistics on the channel vacancy
durations (CV D). They are shown to be exponential-like,
but not independently distributed, in all channels we stud-
ied.

As defined earlier, in the CSI time series of a given chan-
nel, a channel vacancy is a complete interval of consecutive

3We did try increasing this threshold from 3dB to 4.5 dB
and found the resulting 0-1 sequence to be nearly the same.
The same thresholding process was used in a measurement
study conducted in Aachen, Germany [15].
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Figure 4: Extract channel vacancy durations from
raw data.
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Probability in Measurement

Regression Curve. Equation: y=a+be−cx

a=0.000947
b=1.671621
c=1.079681
r2=0.993586

Figure 5: Channel Vacancy Duration (CV D) distri-
bution (discrete) at Location 2.

0’s. We collect the duration of each such interval, a process
(following the thresholding) illustrated in Figure 4.

On average each channel CSI time sequence (more than
8000 time slots) contains on the order of hundreds of chan-
nel vacancies. This sample size turns out to be too small to
derive the CV D distribution. To increase this sample size
we collect CV Ds across all channels within the same service.
This is done based on the observation that spectrum usages
of channels within the same service are statistically very sim-
ilar (shown in Section V.B). For example, spectrum usages
in channels within GSM900 uplink service (885-915MHz) are
nearly the same in terms of occupancy, periodicity, average
energy level, etc. This gives us enough samples to obtain
the empirical distribution of channel vacancies.

Figure 5 shows the probability distribution (histogram)
of the CV D in GSM900 uplink service at Location 2. We
then apply the least-square regression analysis to this data,
as shown by the curve. The significance of the regression is
measured by the coefficient of determination r2, defined as:

r2 ≡ 1−
∑

i
(yi−ȳ)2

∑

i
(yi−fi)

2 , where yi is the sample value with mean

ȳ and fi is the modelled/fitted value.



Table 3: Channel vacancy duration distribution re-
gression results at Location 2. Regression equation:
y = a + be−cx

Service a b c r2

GSM900
uplink

0.001887 1.740828 1.086233 0.993586

GSM900
downlink

0.000883 1.203442 0.911078 0.987065

GSM1800
uplink

0.00046 1.044305 0.873491 0.981235

GSM1800
downlink

0.000289 2.239406 1.307285 0.993754

CDMA
uplink

0.000937 0.355216 0.424722 0.947483

CDMA
downlink

0.003895 2.197034 1.305444 0.991024

ISM 0.000187 1.001091 0.748866 0.995018
TV1 0.000577 1.014972 0.849229 0.982828
TV2 0.00056 0.776721 0.732062 0.977416
TV3 0.000263 1.040206 0.882333 0.976712
TV4 0.000187 1.213682 0.982802 0.977935

Figure 6: Extract CV AI from CSI series.

As shown the CV D distribution is very well approximated
(r2 > 0.99) by an exponential-like distribution y = a +
be−cx. We repeated this exercise in all the services (GSM900
/ 1800 uplink / downlink, broadcasting TV, CDMA, ISM) at
all 4 locations and obtained similar results. The regression
results at Location 2 are showed in Table 3, where y denotes
Pr[CV D = x] and x = 1, 2, 3, ... time slot(s).

We also analyzed the following two similarly defined quan-
tities. The first is the distribution of the channel occupancy
durations (COD), a channel occupancy being a complete
interval of consecutive 1’s in a CSI series. The second is
the distribution of the channel vacancy appearance interval
(CV AI), which is the time interval from the start time of
a channel vacancy to the start time of the next channel va-
cancy. This is illustrated in Figure 6. As can be seen, CV AI
is a measure of how often a channel vacancy occurs. It turns
out that both COD and CV AI are well approximated (with
r2 > 0.9) by the same exponential-like distribution shown
for CV D.

It should be noted that y = a + be−cx has an exponen-
tial tail, but is not an exponential distribution. A direct
consequence of this is that it does not have the memoryless
property, i.e., how long a channel is going to remain in a
certain state is a function of its history, rather than being
independent of it. This latter independence assumption has
been commonly used in channel access studies, see for ex-
ample [14, 17, 13]. More precisely, these studies assume a
two-state Markov chain model for the channel (i.e., an Eliot-
Gilbert model). This channel model implies that the dura-
tion of consecutive 0’s or 1’s are geometrically distributed

(the discrete equivalent of an exponential distribution), and
that these durations are independently distributed. Our re-
sults here indicate that such an assumption is inaccurate,
and there is significantly more memory in the channel state
information.

Specifically, the two-state Markov chain model implies
that

Pr[CSI(t + 1, c)|CSI(t, c)]
= Pr[CSI(t + 1, c)|CSI(t, c), CSI(t− 1, c), CSI(t− 2, c), ...]

However, our data suggests for example in the GSM1800
uplink band at Location 2, that
Pr[CSI(t + 1, c) = 0|CSI(t, c) = 0] = 0.918953, but
Pr[CSI(t + 1, c) = 0|CSI(t, c) = 0, CSI(t − 1, c) = 1] =
0.55454.

This shows that the CSI is highly history dependent, a
feature that cannot be captured by this type of 1st order
Markov model. We tried using higher order Markov mod-
els, by defining a higher-dimensional state space (a higher-
dimension state consists of a sequence of channel states,
which results in an increase in the number states), without
much success. This indicates that the channel state infor-
mation possess some far richer properties. Technically, any
discrete system can be modeled as a Markov chain provided
we embed sufficient memory into the state, but the resulting
expansion in the state space is in general computationally
prohibitive. In Section VI we use a frequent pattern min-
ing technique to get around this problem. This technique
exploits the temporal and spectral correlation in CSIs and
provides accurate prediction.

4. SERVICE CONGESTION RATE
CV D provides long-term average information for a single

channel. On the other hand, we often also need a real-time
measure that tracks the time-varying channel availability.
For example, suppose that a secondary user needs to choose
one service from GSM900 uplink and TV2 for dynamic ac-
cessing for the next several time slots. It knows that the
overall occupancy of these two services over one day is both
70% and the CV D distributions of these two services are
nearly identical. Under such average measures, there is no
difference between these two choices. However, if the user is
able to track the short-term availability, then one may have
a clear instantaneous advantage over the other. Below we
define such a measure referred to as the service congestion
rate (SCR).

SCR(t, S)=(number of busy channels in S at time t) /
(total number of channels in S). Equivalently, SCR(t, S) =
∑

c∈S
CSI(t, c)/n, where n is number of channels in the ser-

vice S.
SCR is thus a measure of the level of congestion in a

service. SCR is a value ranging from 0 to 1. The larger the
SCR of a service is, the fewer idle channels there are, and
the more busy channels there are.

SCR provides us with real-time information on spectrum
occupancy status to make decisions on dynamic access adap-
tively. Figure 7 shows the SCR series of service GSM1800
uplink and GSM900 uplink at Location 2. We can see that
the SCR series is cyclic in its outline with a period of one
day. What’s more interesting is that the SCR series of the
two services are highly correlated: the rises and drops are
very much in synchrony. We will give a more quantitive
analysis in the next section.
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Figure 7: SCR series at Location 2. GSM1800 uplink
vs. GSM900 uplink.

5. SPECTRUM CORRELATION ANALYSIS
The more we know about spectrum usage characteris-

tics (of the primary users), the better predictions we can
make about the spectrum opportunity, and the better we
can make dynamic spectrum sensing and access decisions.
Much of this predictive power lies in the temporal, spec-
tral, and (sometimes) spatial dependence of spectrum us-
age. For instance, if everything is independently distributed,
then knowing the past does not offer more information for
the future. On the other hand, Figure 7 shown in the pre-
vious section suggests that measuring/sensing channels in
GSM900 uplink provides ample information about channel
availability in GSM1800 uplink. We thus set out to take a
more in-depth look at the dependence characteristics of our
data sets in this section. Specifically, we will analyze the
temporal, spectral, and spatial correlation of the CSI series
and the SCR series, respectively.

We will use the following two measures of correlation, the
first one defined for two random variables and the second
one defined for two 0-1 random sequences. The correlation
coefficient ρX,Y between two random variables X and Y with
sample mean µX and µY and sample standard deviations σX

and σY is defined as:

ρX,Y =
cov(X, Y )

σXσY

=
E((X − µX)(Y − µY ))

σXσY

(1)

where cov is the covariance operator. This coefficient ranges
between -1 and 1, extreme values indicating X and Y are (in-
versely) fully correlated. In general correlation is considered
high (i.e., one random variable proving a lot of information
about the other) when the absolute value of the coefficient
is closed to 1.

The correlation between two discrete-time 0-1 series X(t)
and Y (t) are defined as follows:

CorrX(t),Y (t) =
∑

t I{X(t) = Y (t)} −
∑

t I{X(t) 6= Y (t)}
∑

t
I{X(t) = Y (t)}+

∑

t
I{X(t) 6= Y (t)}

(2)

where I{A} is the indicator function: I{A} = 1 if A is true
and 0 otherwise. The two summations in the above equation
are the total number of positions that the two sequences
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Figure 8: Temporal correlation at all locations.

coincide and differ, respectively. This is commonly used for
evaluating the correlation between two binary sequences.

5.1 Temporal Correlation
To study the temporal correlation within CSI and SCR

series, we first divide an entire (over 7 days) CSI or SCR se-
ries evenly into 7 subsequences, one per day. The SCR sub-
sequences are real-numbered. Treating each subsequence as
a collection of samples of the same random variable, we can
cross correlate any two subsequences using Eqn (1). This
results in 21 (C2

7) temporal correlation coefficients and the
final result is the average of these values. The CSI subse-
quences are 0-1 valued, and we cross correlate any two using
Eqn (2). Again this results in 21 coefficients and the final
result is the average.

Figure 8 shows that for most services at all locations, the
temporal correlation of SCR within a service is significant
(on average > 0.7), especially for popular services like GSM
and TV broadcast. This is easily explained by noting that
the collective utilization of a certain service follows a clear
daily pattern, thus the correlation between any two days is
quite high.

There are a few exceptions to this:
1. The temporal correlation within CDMA service is rather

low. This is due to the unique characteristics of CDMA sig-
nals: their presence adds relatively little energy to the noise
floor, and therefore our simple thresholding technique is not
very effective in this case. There are well-documented ap-
proaches to detect CDMA signals (see e.g., [3]), but were
not used in this study due to complexity issues.

2. The temporal correlation in GSM1800 uplink and ISM
is quite low at Locations 3 and 4. This is because these two
locations have fewer cell phone users and GSM900 is suffi-
cient for cellphone communication (thus GSM1800 uplink is
not used), and there is virtually no WiFi presence. As a re-
sult GSM1800 uplink and ISM channels contain mostly noise
at these locations. By contrast, the GSM1800 downlink is
actually utilized at these locations, e.g, used for synchro-
nization.



Figure 9: Spectral Correlation Coefficients of CSI
series within GSM900 uplink at Location 4.

In contrast to the generally high temporal correlation be-
tween the SCR series, our results are less conclusive about
the CSI series. The temporal correlation coefficients for the
CSI series do not seem to follow a clear pattern (which is
why no figure is shown here for the CSI series). Our expla-
nation is that while the spectrum utilization within a service
follows clear daily patterns due to collective consumer be-
havior, the individual channel’s short-term (in time slots)
states fluctuates.

This perhaps highlights the difference between the macro-
scopic behavior (SCR) and the microscopic behavior (CSI)
of spectrum utilization, where a pattern emerges when the
system is viewed as a whole, but not necessarily so at a
microscopic level.

5.2 Spectral Correlation
We next take the SCR and CSI series and cross correlate

them with their counterparts from a different service and
different channel within the same service, using Eqn (1) and
Eqn (2), respectively.

Figure 9 shows the CSI correlation coefficients between
every two channels in the GSM900 uplink at Location 4. We
see that these coefficients are extremely high for almost ev-
ery two channels within the same service. This is because in
most cases the channels are either all busy or all idle. There
are also cases where the spectral correlation coefficients are
closed to -1. This is because some channels are always idle
while some others are always busy. For instance, there are
channels in GSM that are kept idle to avoid inter-channel
interference. These results are representative of what we
found in other services.

Table 4 shows the spectral correlation coefficients between
two SCR series at Location 1; these results are also repre-
sentative of what we found at the other locations.

From the results shown in Table 4, we see that there is
significant correlation among these services, for none of the
coefficients falls below 0.55, even when between a broadcast-
ing TV service and a GSM service. In addition, services of
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Figure 10: SCR Series of GSM900 Downlink at 4
Locations.

the same type are particularly correlated, as high as 0.952
in the case between GSM900 uplink and GSM1800 uplink.

5.3 Spatial Correlation
Figure 10 shows 4 SCR series of the same service (GSM900

downlink) at all four locations. At a high level, these series
appear all correlated with each other; they share common
changes in value. In particular, Locations 1 and 2 are very
similar, up to a constant shift, and Locations 3 and 4 are
very similar, also up to a constant shift. This suggests spa-
tial correlation across different locations. We thus cross cor-
relate SCR / CSI series from the same service / channel at
different locations.

Table 5 shows the spatial correlation coefficients of the
SCR series in GSM900 downlink service among four loca-
tions. These are very high and none of the values falls below
0.8. It appears that within the same service, the spectrum
utilization is highly correlated across different locations and
different types of locations.

For other services the results are quite similar and are thus
not presented separately. For instance between Locations 1
and 2, the spatial correlation coefficient of SCR series is as
high as 0.962.

The reason for such high correlation is because for the
same service, such as GSM voice calls, subscribers at differ-
ent locations share common behavioral pattern (e.g., same
peak calling hours of the day), even though the actual SCR
values are different.

As in the temporal correlation case, the CSI series do
not appear to have a clear spatial correlation pattern, for
the same reason mentioned in Section 5.1.

5.4 Summary
To summarize this section, we have found high correla-

tion along temporal / spectral / spatial dimensions for the
SCR series, as well as high spectral correlation between CSI
series within the same service. These results provide moti-
vation and ground for building algorithms and models that
exploit such correlation relationship and can better predict
spectrum opportunity. We present such a methodology in
the next section.



Table 4: Spectral Correlation Coefficients of SCR at Location 1
GSM900UP GSM900DN GSM1800UP GSM1800DN TV1 TV2 TV3 TV4

GSM900UP 1.000
GSM900DN 0.873 1.000
GSM1800UP 0.952 0.832 1.000
GSM1800DN 0.855 0.747 0.827 1.000

TV1 0.674 0.616 0.713 0.636 1.000
TV2 0.730 0.669 0.700 0.690 0.634 1.000
TV3 0.789 0.742 0.809 0.710 0.833 0.711 1.000
TV4 0.588 0.581 0.557 0.566 0.655 0.567 0.721 1.000

6. PREDICTION USING FREQUENT PAT-
TERN MINING (FPM)

The correlation structure presented in the previous section
suggests that it can be exploited to help us better predict
channel state or spectrum opportunity based on measure-
ments made in the past, in adjacent channels, or at similar
locations. More precisely, we are interested in the ques-
tion of whether one could accurately predict the value of
CSI(t, c) based on the knowledge of CSI(t − k, c′), k > 0,
and if so how many past observations (what values of k) and
over what set of channels (what values of c′) are needed.

There are different approaches one could take to model
such correlation. For instance, as pointed out in Section III,
the memory in channel state information could conceptu-
ally be captured by a sufficiently high-ordered Markov chain
(and one can use measurement data to collect statistics on
the transition probabilities of this chain), but with signifi-
cant technical difficulty due to the exponential increase in
the state space.

To overcome this difficulty, in this section we present a
technique based on frequent pattern mining (FPM) ([2, 12]
and a survey [4]) through an efficient pattern identification
process over the spectrum data. This technique generates
predictions of future channel state based on a collection of
past observation in a set of channels. A unique feature of
this approach is that it automatically adjusts the algorithm
to the appropriate size of past observations (both in time
and in channels) based on the data set. This method along
with our experimental results are detailed in the remainder
of this section.

6.1 FPM and Prediction
We begin by illustrating how FPM can be used for spec-

trum usage prediction and the challenges in doing so. Sup-
pose we know the CSIs of Channels c, c+1 of previous 8000
time slots (from time slot t − 7999 to t) and we would like
to predict the CSI of the next time slot of Channel c and
c + 1 (i.e., CSI(t + 1, c) and CSI(t + 1, c + 1)). The known
CSIs can be written into a single matrix shown below:

[

at−7999,c at−7998,c ... at,c

at−7999,c+1 at−7998,c+1 ... at,c+1

]

,

where ai,j = CSI(i, j).
Define a submatrix as a pattern if it appears no less than

200 times throughout the CSI series of these channels. For

instance, if the submatrix

[

1 0 1
1 1 0

]

appears 1000 times,

it’s considered a pattern. We may find another pattern
[

1 0 1 1
1 1 0 0

]

which appears 990 times. Comparing these

Table 5: SCR spatial correlation coefficients for
GSM900 downlink among 4 locations

Loc 1 Loc 2 Loc 3 Loc 4
Loc 1 1.000
Loc 2 0.833 1.000
Loc 3 0.858 0.846 1.000
Loc 4 0.854 0.880 0.909 1.000

two patterns we can predict that CSI(t + 1, c) = 1 and
CSI(t + 1, c + 1) = 0 with probability 99% (990/1000) if
CSI(t− 2, c) = 1, CSI(t− 1, c) = 0, CSI(t, c) = 1, CSI(t−
2, c + 1) = 1, CSI(t− 1, c + 1) = 1, and CSI(t, c + 1) = 0.

Clearly this prediction method needs to successfully han-
dle two issues: the first is to find frequent patterns, referred
to as frequent pattern mining. The second issue is to find
associations among these patterns, referred to as pattern
association rules mining.

In our setting the dimension (number of rows and columns)
of the patterns of interest are not fixed in advance, i.e., we
do not know in advance how much history and how many
neighboring channels are needed in order to have accurate
prediction. Rather, this has to be learned during the mining
process. This 2-D (of patterns) learning element is a unique
challenge in our mining process, compared to existing FPM
literature, e.g., [2, 12, 4]. In addition, in all these studies
the patterns are 1-D and can be written in a row, although
the data sets can be in multiple rows. In our problem, the
patterns are in 2-D, which is another unique challenge. To
summarize, both the width and the height of the patterns
are variable, and their appropriate sizes need to be automat-
ically identified in this process.

In the following we will refer to our problem as a FPM-2D
problem.

6.2 FPM-2D Problem Definition
The goal of the FPM-2D problem is to find all relevant

2D patterns. Once this is achieved, it is fairly easy to com-
pute the probabilities of future channel state (spectrum pre-
diction). Table 6 contains a list of terminologies used in
FPM-2D.

Formally, the FPM-2D problem is stated as follows: Given
the input set M, min area, and min rep, find all valid block
patterns and the corresponding match numbers.

6.3 Proposed Algorithm
We start by scanning the input matrix M from left to

right, top to bottom to find all the blocks with size x × y.
This is done for all x and y such that x × y ≥ min area.



Table 6: Notations / concepts in FPM-2D
Notation /
Concept

Definition

Γ The literals set. Γ = {0, 1}

M

An input matrix Mm×n =








a1,1 a1,2 ... a1,n

a2,1 a2,1 .. a2,n

...
am,1 am,2 .. am,n









where ai,j ∈ Γ,
m: the number of adjacent channels,
n: the number of consecutive time slots

block a submatrix of M

subblock a submatrix of a block
block area the number of elements in a block

block pattern
a block whose area ≥ min area.
“pattern” and “block pattern” are used
interchangeably.

subpattern submatrix of a pattern

matches
(supports)

If a pattern P and a block A are identical,
we say A is a match (support) of P,
or A matches (supports) P

match number
the number of ALL matches of
a pattern

valid
a pattern is valid if its match number is
no less than min rep

We use a hash table to store the blocks for efficiently search,
since it takes O(1) time to search an item in a hash table.
A potential problem is the number of blocks might be too
large; it is 2x×y in the worst case. This problem is addressed
by the following simple property.

Consider a block Ax×y. We say block B is Ax×y’s parent
block if: a) B is Ax×y’s subblock, b) B’s size is (x− 1)× y
or x× (y− 1), and c) B’s area is not less than min area. A
simple yet key property concerning a valid pattern is that
for any block Ax×y, it has at most 4 parent blocks and it is a
valid pattern only if all its parent blocks are valid patterns.

Thus, if any block has a parent block that is not valid,
then we can simply skip this block because itself cannot be
valid. By checking parent blocks, a large number of blocks
can be ignored, which significantly reduces the memory con-
sumption and improves the performance.

The pseudo code of the proposed algorithm is given in
Algorithm 1. In Algorithm 1, Tx,y is the hash table to store
patterns with size x× y.

After all valid patterns have been identified, the predic-
tion rules are extracted as follows. A prediction rule is
defined as P1 → P2, where P1 and P2 are all valid pat-
terns. P2 has the form [P1 V], where V is a column vec-
tor (v1, v2, v3, ...vk)T , vi ∈ Γ. Thus P1 is one of the parent
blocks of P2. Let M(P1) denote the match number of P1,
then the transferring rate R(P1 → P2) = M(P2)/M(P1)
What this rule says is that if the current CSI appears to
match P1, then the CSI in the next time slot will match V
with probability R(P1 → P2). Clearly, a similar procedure
can be used to predict the CSI over multiple future slots,
by simply considering V as multiple column vectors.

6.4 Experiment Result
To test our algorithm we split the measurement data into

Algorithm 1 FPM-2D
for N=2 to ∞:

flag ← false
for each (x, y) s.t. (x + y = N , x× y ≥ min area):

Tx,y ← new empty hash table
if Tx−1,y and Tx,y−1 are both empty:

continue;
for each block Bx×y in M:

if one of Bx×y’s parent blocks
is not a valid pattern:

continue
if Bx×y is in Tx,y:

Tx,y[Bx×y] ← Tx,y[Bx×y ] + 1
else:

Tx,y[Bx×y] ← 1
for each block Px×y in Tx,y:

if Tx,y[Px×y ] < min rep:
remove Px×y from Tx,y

if Tx,y is not empty:
flag ← true
output the valid patterns in Tx,y and
the corresponding match numbers

if flag == false:
break

two part, one as a training set on which we run Algorithm 1
and find the prediction rules, while the other as the testing
set on which we apply the prediction rules and perform spec-
trum usage prediction. We set min rep = 200, min area =
4.

In our experiment we adopted the following prediction
methods: a) We only consider those rules whose transferring
rates are larger than 0.9. b) If the current CSIs appears to
match the pattern P1 in a rule P1 → P2, we predict the
CSIs matches P2 in the next time slot. c) If the current
CSIs do not match any patterns, we do not predict and
count it as a miss.

We are interested in answering the following questions:

1. what is the prediction accuracy if the training set and
corresponding testing set are from the same service (self-
service prediction)?

2. what is the missing rate of the prediction?

3. can the mining result in one service be used to predict
the CSIs in another service (cross-service prediction)?

4. can the mining result in a service at one location be used
to predict the CSIs in the same service at a different
location (cross-location prediction)?

5. how large the training set needs to be for accurate pre-
diction?

We define prediction accuracy to be the ratio between the
number of correctly predicted CSIs and the total number of
predicted CSIs, and define missing rate as the ratio between
the number of CSIs that cannot be predicted and the total
number of CSIs.

We first study the case where the training set and the cor-
responding testing set are from the same service at Location
1, i.e., both from TV1 or both from GSM900 uplink. The
training sets are CSI series over durations from 1 hour to



1h 2h 3h 6h 12h 1d 2d 3d
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Size of the training set (h=hour, d=day)

P
re

di
ct

io
n 

A
cc

ur
ac

y 
/ M

is
si

ng
 R

at
e

Intra−Location intra−service spectrum usage prediction at Location 1

 

 

Prediction Accuracy in TV1
Prediction Accuracy in GSM900 uplink
Missing Rate in TV1
Missing Rate in GSM900 uplink

Figure 11: The experiment results of intra-location
intra-service spectrum usage prediction at Location
1. The prediction accuracy is larger than 0.95 if the
training set size is no less than 3 hours.

3 days. The testing sets are CSIs of the last 4 days. The
results are shown in Figure 11. We observe that:

• The prediction accuracy is larger than 0.95, a very en-
couraging sign.

• The missing rate is around 5% for TV1 service, which is
very low. It is higher, around 15% for GSM900 uplink.
The reason why the missing rate on GSM900 uplink is
higher than TV1 is that TV service is a pure broadcast
service, while GSM service is an interactive service whose
patterns are more complicated to match.

• The training set cannot be less than 2 hours. Otherwise
FPM-2D cannot find sufficient prediction rules.

• A 3-hour training set appears sufficient and the perfor-
mance of the algorithm saturates at this level. Beyond this
threshold, more training data does not seem to help im-
prove the prediction accuracy or reduce the missing rate.

For other services of Location 1, the results are similar
except for the missing rate, which is listed in Table 7. We
see that the prediction accuracy is consistently high but the
missing rate varies from 4% up to 25%. We also give the
overall occupancy of the services as a reference. If the over-
all occupancy is a, then the prediction does not help if its
accuracy is lower than max{a, 1 − a}. This is because we
can always achieve this accuracy simply by guessing.

For comparison, we have also shown the prediction ac-
curacy using the 1st-order Markov Chain model (1st MC),
which is one of the most commonly used models in the ex-
isting papers [14, 17, 13]. We could see that the prediction
accuracy of the 1st MC is only around 80%, which is much
lower than that of FPM-2D, except for those services whose
occupancy is high, in which case the prediction accuracy can
be naturally high even by guessing.

Table 7: The spectrum usage prediction results at
Location 1. The training / testing sets are from the
same service.

Service
occu-
pancy

1-st order
Markov
Prediction
Accuracy

Miss
rate

FPM-2D
Prediction
Accuracy

GSM900
downlink

85.1% 85.2% 11.8% 96.9%

GSM1800
uplink

60.3% 77.4% 24.8% 95.1%

GSM1800
downlink

30.2% 83.7% 16.2% 96.6%

TV2 92.1% 92.6% 5.4% 96.9%
TV3 44.5% 75.0% 4.2% 97.8%
TV4 41.9% 74.5% 6.3% 97.7%

Table 8: The spectrum usage prediction results at
Location 1. The training / testing sets are from
different services.

Training Set Testing Set Miss Rate
Prediction
Accuracy

GSM900
downlink

TV1 66.1% 79.2%

TV1
GSM900
uplink

75.3% 80.4%

GSM900
uplink

GSM900
downlink

35.2% 86.4%

GSM900
downlink

GSM900
uplink

31.8% 87.4%

The results of the other locations are similar, and thus not
repeated.

We next study the case where the training set (CSIs of 3
days) and the testing set (CSIs of 4 days) are from different
services. The results are shown in Table 8.

We see that the accuracy of cross-service prediction is
much lower than that of self-service prediction, and the
missing rate is quite high. This is because the patterns in
different services collide, i.e. patterns and prediction rules
found in one service might lead to wrong prediction results
in other services. This is another manifestation of the con-
clusion drawn earlier that the spectral correlation is high
for channels within the same service but low across different
services.

Consistent with earlier correlation result, we also observe
that the prediction accuracy is high if we use the prediction
rules at one location to predict the CSIs of the same service
at another location, due to the high spatial correlation of

Table 9: The cross-location spectrum usage predic-
tion results.

Service
Training
Set

Testing
Set

Miss
Rate

Prediction
Accuracy

TV1 Location 1 Location 2 5.7% 95.3%
TV1 Location 3 Location 4 7.3% 97.4%
TV1 Location 1 Location 3 6.5% 96.7%
TV1 Location 3 Location 1 7.7% 95.8%



channels within the same service. Table 9 Shows the exper-
iment results of this cross-location self-service prediction.

To summarize this section, we conclude that:

1. The self-service self-location spectrum usage prediction
accuracy is higher than 95%, which is significantly larger
than that of the commonly used 1st-order Markov model.

2. The missing rate varies from 4% to 25%, an overall ac-
ceptable range.

3. The cross-service prediction accuracy ranges from 60%
to 80%, much lower than the self-service prediction. The
corresponding missing rate is above 30%, sometimes over
70%, which is too high.

4. The accuracy and missing rate of cross-location self-service
prediction are nearly as high as that of self-location self-
service prediction.

5. CSIs of 3 hours appear sufficient for training purpose.

7. DISCUSSIONS
In this section we briefly summarize how findings and re-

sults presented in previous sections may be used toward
both the theory and practice in spectrum sensing and ac-
cess within the context of cognitive radio networks.

Broadly speaking, these results contribute to two aspects
of dynamic spectrum access: (1) the construction of better
channel models (as a way of describing the spectrum usage of
the primary users), that may be more generally applicable
in other environments, and (2) the prediction of channel
availability in a similar wireless spectrum environment.

Channel models are an essential component in an array
of spectrum access studies, especially theoretical analysis.
Our study has shown certain weaknesses of existing chan-
nel models (e.g., insufficient capture of history-dependence,
inability to describe spectral and spatial dependence). Our
results here can help build better channel models that more
accurately reflect the primary users’ activity. In particular,
the statistics we collected on channel occupancy/vacancy,
its rich dependency property, as well as the statistics on the
CSI series may motivate the construction of certain type
of discrete event models (e.g., a Petri net) to describe the
channel behavior. This may allow us to model the memory
structure as well as the spatial and spectral correlation while
avoiding a large state space.

The frequent pattern mining technique introduced here
can be a very powerful tool in analyzing spectrum usage
data. For specific wireless environments where such data
are available for training, we have shown that using this
technique can generate very accurate predictions on channel
availability (especially in the TV broadcast channels in our
study). This allows a secondary user to make far better
channel sensing and access decisions, and exploit much more
effectively under-utilized spectrum opportunity.

8. RELATED WORKS
The Shared Spectrum Company (SSC) performed exten-

sive spectrum measurements at 7 locations in the US and
one outside the US between 2004 to 2007 [11, 10]. These
measurements are all wide-band and over long periods of
time. For instance, the measurement in Chicago scanned
the energy level from 30MHz to 2900MHz and lasted 46

hours. The goal of these measurements is to gain a better
understanding of the actual utilization of spectrum in rural
and urban environments. To achieve this, the authors set
two fixed thresholds for channels in higher and lower fre-
quency bands, respectively, and considered a channel busy
if the power level is above the corresponding threshold, and
idle otherwise. According to their reports, among those 7
locations in the US, the lowest average occupancy is 1%
at Greenbank, West Virginia while the highest is 17.4% at
Chicago, Illinois.

In addition to SSC, there have been a few similar measure-
ment studies recently. In 2008, Institute for Infocomm Re-
search (I2R) published their spectrum measurement results
in Singapore [7]. They scanned from 80MHz to 5850MHz
for 12 weekdays. They found the average occupancy to be
4.54% and most of the allocated frequencies were heavily un-
derutilized except the TV broadcast channels and cell phone
channels. Similar results were reported from Auckland, New
Zealand according to [1].

The above cited work primarily focused on collecting statis-
tics on the average utilization of wireless spectrum, and they
all confirmed that it is indeed heavily underutilized. Cor-
relations in the temporal, spectral and spatial dimensions
were not a focus in these studies.

There has also been work in exploring correlations. A
spectrum measurement was carried out during the 2006 Foot-
ball World Cup in Germany, in the cities of Kaiserslautern
and Dortmund [6]. They found that the change of spectrum
usage (energy level) was clearly related to specific events
(football match). Moreover they investigated the autocor-
relation structure of changes in energy levels. Later in 2007
another measurement was conducted in the US on the pub-
lic safety band (around 800MHz) [8]. The authors collected
data concurrently at two locations, with a total of 5 pairs of
locations with distance ranging from 5 meters to a few kilo-
meters. They investigated the adjacent channel interference
and spatial correlation. They revealed that very different
energy detection results were obtained at closely located de-
tection stations (5 meters apart); this was attributed to the
difference in sensitivity in the sensing devices used.

Compared to this set of studies, our analysis also explored
spectral correlation, both within the same service and across
services. The service congestion rate (SCR) is a unique no-
tion that allows us to examine spectrum usage service by
service. In addition, our measurement involves the most
concurrent locations (4), is over a fairly long duration (7
days), and scans from 20MHz to 3GHz. This allowed us to
conduct a very detailed analysis on both the first and second
order statistics of these data sets.

9. CONCLUSIONS
In this paper we carried out a set of spectrum measure-

ments in the 20MHz to 3GHz spectrum band at 4 locations
concurrently in Guangdong province of China. Using these
data sets we conducted a set of detailed analysis of the first
and second order statistics of the collected data, including
channel occupancy / vacancy statistics, channel utilization
within each individual wireless service, and the temporal,
spectral, and spatial correlation of these measures. More-
over, we also utilized such spectrum correlation to develop
a 2-dimensional frequent pattern mining algorithm that can
accurately predict channel availability based on past obser-
vations.



We believe our findings will spur more discussions on how
to better model current spectrum utilization and help us de-
sign more efficient spectrum sensing and accessing schemes
for secondary users.
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