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ABSTRACT
In this study we consider optimal opportunistic spectrum
access (OSA) policies for a transmitter in a multichannel
wireless system, where a channel can be in one of multiple
states. Each channel state is associated with either a prob-
ability of transmission success or a transmission rate. In
such systems, the transmitter typically has partial informa-
tion concerning the channel states, but can deduce more by
probing individual channels, e.g. by sending control pack-
ets in the channels, at the expense of certain resources, e.g.,
energy and time. The main goal of this work is to derive op-
timal strategies for determining which channels to probe (in
what sequence) and which channel to use for transmission.
We consider two problems within this context, the constant
data time (CDT) and the constant access time (CAT) prob-
lems. For both problems, we derive key structural proper-
ties of the corresponding optimal strategy. In particular,
we show that it has a threshold structure and can be de-
scribed by an index policy. We further show that the opti-
mal CDT strategy can only take on one of three structural
forms. Using these results we present a two-step lookahead
CDT (CAT) strategy. This strategy is shown to be optimal
for a number of cases of practical interest. We examine its
performance under a class of practical channel models via
numerical studies.
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1. INTRODUCTION
Effective transmission over wireless channels is a key com-

ponent of wireless communication. To achieve this one must
address a number of issues specific to the wireless environ-
ment. One such challenge is the time-varying nature of the
wireless channel due to multi-path fading. Recent works
such as [12, 13] have studied opportunistically transmitting
when channel conditions are better to exploit channel fluc-
tuations over time.

At the same time, many wireless systems also provide
transmitters with multiple channels to use for transmission.
As mentioned in [3], a channel can be thought of as a fre-
quency in a frequency division multiple access (FDMA) net-
work, a code in a code division multiple access (CDMA) net-
work, or as an antenna or its polarization state in multiple-
input multiple-output (MIMO) systems. In addition, soft-
ware defined radio (SDR) [9] and cognitive radio systems
[1] may provide users with multiple channels (e.g. tunable
frequency bands and modulation techniques) by means of
a programmable hardware which is controlled by software.
The transmitter, for example, could be a secondary user
seeking spectrum opportunities in a network whose N chan-
nels have been licensed to a set of primary users [1].

These systems share the common feature that the trans-
mitter is generally supplied with more channels than needed
for a single-transmission. Thus, it is possible for users or
transmitters to utilize the time-varying nature of the chan-
nels by opportunistically selecting the best one to use for
transmission [7, 14, 8]. This may be viewed as an exploita-
tion of channel fluctuations in space (i.e., across different
channels), and is akin to the idea of multiuser diversity [10].

In order to utilize such channel variation, it is desirable
for the transmitter and/or receiver to periodically obtain
information on channel quality. One method of accomplish-
ing this in a distributed manner is to allow nodes to probe
channels by having the transmitter send control packets.
Upon receiving a control packet, the receiver sends back
a response packet that may indicate the channel quality.



For example, recent works such as [7, 6] have proposed en-
hancing or exploiting the multi-rate capabilities of the IEEE
802.11 RTS/CTS handshake mechanism. [6] proposes a pro-
tocol called Receiver Based Auto Rate (RBAR) in which the
receivers use physical-layer analysis of received RTS mes-
sages to find out the maximum possible transmission rate to
achieve a specific bit error rate. The receiver controls the
sender’s transmission rate by inserting the maximum possi-
ble transmission rate into CTS message. In cognitive radio
systems, channel probing may be accomplished by using a
spectrum sensor at the physical layer [1]. At the beginning
of each slot, the spectrum sensor detects whether a channel
is available. This detection may be imperfect. Due to en-
ergy and hardware constraints, the sensor could be limited
in the number of channels it can sense during a given slot.

In all these applications, the probing process can help
nodes obtain information about channel quality and thus
make better decisions concerning which channel to use for
transmission. On the other hand, channel measurement and
estimation consume valuable resources. In particular, the
exchange of control packets or spectrum sensing in cognitive
radio systems decreases the amount of time available to send
actual data and consumes energy.

Thus, channel probing must be done efficiently in order
to balance the trade-off between obtaining useful channel
information and consuming valuable resources.

In this paper we study optimal strategies for a joint chan-
nel probing and transmission problem. Specifically, we con-
sider a transmitter with multiple channels with known state
distributions. It can sequentially probe any channel with
channel-dependent costs. The goal is to decide which chan-
nels to probe, in what order, when to stop, and upon stop-
ping which channel to use for transmission. Similar problems
have been studied in [3, 4, 2, 14, 8, 7]. The commonality
and differences between our study and the previous work are
highlighted below within the context of our main contribu-
tions.

The main contributions of this work are as follows.
Firstly, we derive key properties of optimal strategies for

the problem outlined above, and show that the optimal
strategy has a threshold property, and can only take on one
of a few structural forms. In contrast to [3, 4, 2], we do not
restrict the channels to take a finite number of states; our
work applies to both the case where the number of channel
states is finite, and the case where they can take an (un-
countably) infinite number of states. This generalization is
very useful as many next generation physical layer technolo-
gies such as MIMO and Adaptive-Bit-Loading OFDM [5]
are aiming to provide continuous range of data rates that
can be adjusted according to channel quality.

Secondly, we derive explicitly the optimal channel probing
strategy for a number of special cases of practical interest.
In [14, 8, 7], variants of the problem outlined above were
studied. In particular, [14, 8] analyzed a problem where
channels can only be used immediately after probing (i.e. no
recall of past channel probes), and that unprobed channels
cannot be used for transmission. Under these conditions
the problem reduces to an optimal stopping time problem
for a given ordering of channels to be probed. In this paper
we allow both recall and transmitting in unprobed channels;
the resulting problem is thus quite different from the optimal
stopping time problem. [7] assumes independent Rayleigh
fading channels and because all channels are independent

and identically distributed, does not focus on which channels
should be probed and in what order. In contrast we consider
channels that are not necessarily statistically identical, and
we provide numerical results for a general class of channel
distributions.

Finally, based on the key structural properties of the op-
timal strategies, we propose strategies that perform well for
arbitrary number of channels and arbitrary number of chan-
nel states (finite or infinite). To the best of our knowledge,
this is the first channel probing algorithm for the combined
scenario of an arbitrary number of channels, arbitrary chan-
nel distributions, statistically non-identical channels, and
possibly different probing costs.

The remainder of this paper is organized as follows. We
formulate two channel probing problems in Section 2. Sec-
tion 3 then presents preliminary results on the first prob-
lem and some important structural results on the optimal
strategy. Two channel probing algorithms for the first prob-
lem are presented in Section 4, and these algorithms are
shown to be optimal for a number of special cases. These
results are then extended to the second problem in Section
5. Section 6 provides numerical results which show that our
proposed algorithms perform very well for some practical
channel models. Section 7 concludes the paper.

2. PROBLEM FORMULATION
We consider a wireless system consisting of N channels,

indexed by the set Ω = {1, 2, · · · , N} and a transmitter who
would like to send a message using exactly one of the chan-
nels. With each channel j, we associate a reward of trans-
mission denoted by Xj , which is a random variable (discrete
or continuous) with some distribution over some bounded in-
terval [0, M ] where M < ∞. We call this the channel reward.
The {Xj} may represent either the probability of transmis-
sion success or the data rate of using channel j. The ran-
domness of the transmission probability or data rate comes
from the time-varying and uncertain nature of the wireless
medium. It is assumed that the transmitter knows a priori
the distribution of Xj for all j ∈ Ω.

We assume temporal independence for the channel re-
wards. That is, the channel state within the time frame of
a single transmission (including time for probing that pre-
cedes the transmission) is independent of the state during
other transmissions. This assumption allows us to focus on
the transmission of a single message. We also assume inde-
pendence between channels, i.e. {Xj}j∈Ω are independent
random variables. Thus, probing channel j does not pro-
vide any information about the state of any other channel
in Ω− {j}. These same assumptions were also made in [14,
3, 4, 2].

Note that in reality, the transmitter may not be probing
to directly find the probability of transmission success or
data rate. For example, channel probes may be used to
measure the channel signal-to-noise ratio (SNR) [7, 14]. This
measured SNR, however, essentially affects the probability
of transmission success or data rate and translates into a
measured valued of Xj . Thus Xj can be thought of as an
abstraction of the information obtained through probing.

The system proceeds as follows. The transmitter first de-
cides whether to probe a channel in Ω or to transmit using
one of the channels, based only on its a priori information
about the distribution of Xj . If it transmits over one of the
channels, the process is complete. Otherwise, the sender



probes some channel j ∈ Ω and finds out the value of Xj .
Based on this new information, the sender must now decide
between using channel j for transmission, probing another
channel in Ω−{j} (will also be denoted simply as Ω− j for
the rest of the paper), or using a channel in Ω− j for trans-
mission even though it has not been probed. This decision
process continues until the user decides which channel to use
for transmission.

We can therefore think of the system as proceeding in
discrete steps, where at each step the transmitter has a set
of unprobed channels S ⊆ Ω, and has determined the values
of channels in Ω−S through probing. It must decide between
the following actions: (1) probe a channel in S, (2) use the
best previously probed channel in Ω − S, for which we say
the user retires or (3) use a channel in S for transmission,
which we call guessing. This last action was referred to as
using a backup channel in [2, 3, 4]. Note that actions (2)
and (3) can be seen as stopping actions that complete the
entire probing and transmission process.

In practical situations, perhaps due to regulatory spec-
trum policies, it may be true that only a subset of channels
in Ω can be guessed or retired to. For example, the trans-
mitter may be allowed to transmit on an ISM band without
probing, but may be required to probe a TV band imme-
diately before using it. In this work, we assume the trans-
mitter can guess or retire to any channel in Ω, but we will
discuss in Sections 3.3, 4, and 6 that our results apply to the
case where only a subset of Ω can be guessed. Extending
these results to the case where only a subset of channels can
be retired to is part of our future work.

We will also associate a cost cj , where cj > 0, with probing
channel j. This cost may vary between channels, depending
on the probing time, interference caused to other users, and
so on. The sequence of decisions on whether to continue
to probe and which channel to probe or transmit in will be
called a strategy or channel selection policy.

With the assumptions and objectives outlined above, we
formulate two different problems. We first consider the con-
stant data time (CDT) problem [14], where the transmitter
has a fixed amount of time for data transmission, regardless
of how many channels it probes, as follows.

Problem 1. Given a set of channels, their probing costs,
and statistics on the channel transmission success probabili-
ties, the sender’s objective is to choose the strategy that max-
imizes transmission reward less the sum of probing costs, i.e.
achieving the following maximum;

J∗ = max
π∈Π

Jπ = max
π∈Π

E

"

Xπ(τ) −
τ−1
X

t=1

cπ(t)

#

, (1)

where π denotes the time-invariant strategy that probes chan-
nels in sequence π(1), · · · , π(τ −1), and then transmits over
channel πτ at time τ . Π denotes the set of all possible CDT
strategies and the right hand sum in (1) is set to 0 if τ = 1.

Note that τ is a random stopping time that in general
depends on the result of channel probes, and P (1 ≤ τ ≤
N + 1) = 1 since the longest strategy is to probe all N
channels and then use one for transmission. For the rest of
this paper, we will let π∗ denote the strategy that achieves
J∗ in (1), and will refer to π∗ as the optimal (CDT) strategy.
It can be shown that such a strategy is guaranteed to exist
since there are a finite number of channels.

Because the Xj ’s are bounded rewards, it can be seen
that J∗ is also upper bounded by M . Thus we will further
assume that 0 < E[Xj ] < M for all j ∈ Ω. This is because
if E[Xj ] = M , then it is always optimal to use channel j
without probing, and if E[Xj ] = 0 then channel j is never
probed or used; the optimal strategy becomes trivial if these
assumptions are violated.

It can be shown that at any step, a sufficient information
state [11] is given by the pair (u, S), where S ⊆ Ω is the set
of unprobed channels and 0 ≤ u ≤ M is the highest value
among probed channels in Ω− S. We can use dynamic pro-
gramming [11] to represent the decision process as follows.
Let V (u, S) denote the value function, i.e. maximum ex-
pected remaining reward given the system state is (u, S).
This can be written mathematically as:

V (u, S) = max



max
j∈S

{−cj + E[V (max{u, Xj}, S − j)]} ,

u, max
j∈S

E[Xj ],

ff

(2)

where all of the above expectations are taken with respect to
random variable Xj . The first term on the right hand side
of (2) represents the expected reward of probing the best
channel in S, the second the reward of using the best-probed
channel, and the last the expected reward of guessing the
best unprobed channel. Thus V (0, Ω) denotes the expected
total reward of the optimal strategy.

An alternative formulation of the problem concerns the
scenario where the transmitter has a fixed amount of time T
available for both probing and transmitting, and each prob-
ing action takes ∆ amount of time, i.e., the probing cost is
cj = ∆, where N∆ < T is assumed so that the transmitter
has the option of probing every channel. The correspond-
ing problem will be called the constant access time (CAT)
problem [14]. In this scenario, transmitting at a rate u af-
ter probing k channels gives final reward u(T − k∆). More
generally, this problem is described as follows.

Problem 2. We seek the strategy that achieves the fol-
lowing maximum:

J̄∗ = max
λ∈Λ

E
ˆ

Xλ(τ) · (T − ∆(τ − 1))
˜

, (3)

where λ(τ ) is the channel that strategy λ uses for transmis-
sion after τ − 1 probes, and Λ is the set of all possible CAT
policies. We will denote by λ∗ the strategy that maximizes
the expectation given by (3).

Similar to the CDT problem, it can be shown that (u, S)
is a valid information state for this problem given the set Ω.
However, note that whereas previously in the CDT prob-
lem V (u, S) does not depend on Ω, in the CAT problem the
value function does depend on Ω. Specifically, the state de-
pends on the amount of time left for transmission, denoted
by T̄ , given by T̄ = T −|Ω−S| ·∆. To emphasize this differ-
ence and remove the dependency of the value function on Ω,
we will adopt the triple (T̄ , u, S) as the information state,
while noting that T̄ is obtainable from S if Ω is also given.
Then the maximum expected remaining reward H(T̄ , u, S),
analogous to (2), is given by:

H(T̄ , u, S) = max



T̄ u, max
j∈S

˘

T̄E[Xj ]
¯

,

max
j∈S

˘

E
ˆ

H
`

T̄ − ∆, max {Xj , u} , S − j
´˜¯

ff

(4)



where the three terms represent, respectively, the reward of
retiring, using channel j without transmission, and prob-
ing channel j and then proceeding according to the optimal
strategy.

Note that while the dynamic programs are readily avail-
able in both cases, computing the value function V (·, ·) and
H(·, ·, ·) for every state is very difficult and practically im-
possible because the state space is potentially infinite and
uncountable, since u can be any real number in [0, M ] if
the Xj ’s are continuous random variables. Specifically, to
compute V (u, S), we may need to know V (ũ, S − j) for all
j ∈ S and all u ≤ ũ ≤ M . Consequently, instead of trying
to compute these values and the associated strategies, we
will use the above two formulations to derive fundamental
properties of optimal strategies and use them to find simpler
ways of determining optimal strategies in Section 4.

For the CDT problem, any strategy can be defined by the
set of actions it takes with respect to its entire set of in-
formation states, ∪S ∪u (u, S). We let retire(u) denote the
action that the sender retires and uses the best previously
probed channel in Ω − S, which has value u; probe(j) de-
notes the action that channel j is probed, for some j ∈ S;
and guess(j) denotes the action that channel j, for j ∈ S,
is guessed (i.e., used even though it has not been probed).
For state (u, S), a strategy must decide between retire(u),
probe(j), and guess(j), for all j ∈ S. We let π(u,S) de-
note the action taken by strategy π when state is (u, S).
For example, π(u, S) =probe(j) means the sender probes
channel j when the state is (u, S). Similarly, we will de-
note a CAT strategy by λ and use similar notations, e.g.,
λ(T̄ , u, S) =probe(j) means the strategy probes channel j
in state (T̄ , u, S).

The detailed analysis in this paper primarily deals with
the CDT problem due to space limitation as well as its rela-
tive simplicity in presentation. As we will discuss in Section
5, many of our results on CDT strategies are also applicable
to CAT strategies.

3. PROPERTIES OF THE OPTIMAL
STRATEGY

In this section, we establish key properties of the optimal
CDT strategy. Unless otherwise stated, all proofs are given
in the Appendix.

3.1 Threshold Property of the Optimal
Strategy

We first note that for all S ⊆ Ω and any ũ ≥ u,

V (u, S) ≤ V (ũ, S) . (5)

This inequality follows from (1) and (2). In particular,
consider any channel selection strategy starting from state
(u, S), and apply the same strategy starting from state (ũ, S).
Clearly the expected reward of the strategy cannot be less in
the latter starting scenario, since the set of unprobed chan-
nels is the same for both cases, while the best probed channel
for the latter case is better than that of the former scenario.
Thus, V (·, S) is a nondecreasing function. Similarly, it can
be established that V (u, ·) is a nondecreasing function, i.e.

for all u ∈ [0, 1] and any S̃ ⊇ S:

V (u, S) ≤ V (u, S̃). (6)

We have the following lemmas:

Lemma 1. Consider any state (u, S). If V (u, S) = u,
then V (ũ, S) = ũ for all ũ ≥ u.

Lemma 2. If V (u, S) = E[Xj ] for some j ∈ S, then
V (ū, S) = E[Xj ] for all ū ≤ u.

Lemma 2 follows directly from (2) and (5), since these equa-
tions imply E[Xj ] ≤ V (ū, S) ≤ V (u, S) = E[Xj ]. Therefore,
its proof is not included in the Appendix.

The above two lemmas imply that for fixed S, the optimal
strategy has a threshold structure with respect to u. In
particular, for any set S ⊆ Ω, we can define the following
quantities:

aS = inf {u : V (u, S) = u} (7)

bS = sup {u : V (u, S) = E[Xj ], some j ∈ S} , (8)

where the right hand side of (7) is nonempty since it is always
true that V (M, S) = M . We will set bS = 0 if the set on the
right hand side of (8) is empty. Note that both aS and bS

are completely determined given the set S. It follows from
Lemmas 1 and 2 that 0 ≤ bS ≤ aS ≤ M . Thus we have the
following corollary:

Corollary 1. For any state (u, S), there exists an opti-
mal strategy π∗ and constants 0 ≤ bS ≤ aS ≤ M satisfying:

π∗(u, S) =

8

<

:

retire(u) if u ≥ aS

probe(ju), ju ∈ S if bS < u < aS

guess(j), j ∈ S if u < bS

.

It should be noted that at u = bS , π∗(u, S) = guess(j) if
bS > 0; otherwise, π∗(u, S) = probe(j). Also note that the
optimal channel to probe, ju, in general depends on the value
of u. This corollary indicates that there exists an optimal
strategy with the described threshold structure. It remains
to determine these thresholds, which can be very difficult
especially for large S. It also remains to determine which
channel should be probed if we are in the “probe” region
above.

To help overcome the difficulty in determining aS and bS

for a general S, we first focus on quantities a{j} and b{j}

(subsequently simplified as aj and bj) for a single element
j ∈ Ω, which can be determined relatively easily from (7)
and (8), respectively, as shown below. These are indices
concerning channel j that are independent of other channels.
We will see that they are very useful for deciding the optimal
strategies, thus significantly reducing the complexity of the
problem.

It is thus worth taking a closer look at aj and bj . Note
that at state (u, j), probing channel j results in an expected
reward −cj + E[max{u, Xj}], since there are no channels to
probe after j. Action guess(j) gives the expected reward
E[Xj ] while retiring gives reward u. Because of the assump-
tions that 0 < E[Xj ] < M and cj > 0, for sufficiently small u
the probing reward becomes less than the guessing reward.
By comparing the rewards of the three options, it can be
seen that guessing is optimal if: E[(u − Xj)I{Xj<u}] ≤ cj

and u ≤ E[Xj ], where I{·} is the indicator function. We
will also adopt the notation that, for any random variable
Z, E[Z+] = E[Z · I{Z>0}].

Similarly, when u is sufficiently large the probing and
guessing reward become less than the reward for retiring,
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Figure 1: As described in Section 3.1: when j is
the only unprobed channel and Xj is uniformly dis-
tributed in [0, 1], the expected reward from actions
guess(j), probe (j) and retire(u) as functions of u.
Note that aj = 2/3 (the crossing point of solid and
dotted lines) and bj = 1/3 (the crossing point of solid
and dashed lines).

u. Thus for any j ∈ S we have the following:

aj = min
˘

u : u ≥ E[Xj ], cj ≥ E
ˆ

(Xj − u)+
˜¯

(9)

bj = max
˘

u : u ≤ E[Xj ], cj ≥ E
ˆ

(u − Xj)
+˜¯

(10)

Note that aj ≥ E[Xj ] ≥ bj . In addition, aj = bj if and
only if E[Xj ] = aj = bj . It also follows that for bj < u <
aj probing is strictly an optimal strategy. It can be seen
from the above that cj essentially controls the width of this
probing region; for larger cj , both aj and bj will be closer
to E[Xj ].

The above discussion is depicted in Figure 1 where we have
plotted the expected reward of the three actions guess(j)
(dashed line), probe(j) (solid line), and retire(u) (dotted
line) as functions of u when Xj is uniformly distributed in
[0, 1] and cj = 1/18. In this case, aj = 2/3 and bj = 1/3.
Note that increasing (decreasing) cj would shift the solid
curve down (up), thus decreasing (increasing) the width of
the middle region where probe(j) is the optimal action.

This example demonstrates a method for computing aj

and bj for any channel j. Note that to determine these two
constants simply requires taking the intercepts between the
following three functions of u: f1(u) = E[Xj ], f2(u) = u,
and f3(u) = −cj + uP (Xj ≤ u) + E[XjI{Xj>u}]. Thus re-
gardless of whether Xj is continuous or discrete, computing
aj and bj is not very complex.

In the rest of this section we derive properties of the op-
timal strategy expressed in terms of these individual indices
aj and bj .

3.2 Structure of The Optimal Strategy
In this section we provide a summary of results on the

structure of the optimal strategy. These results are essential
in reducing the space of policies within which the optimal
strategy lies.

Theorem 1. For any set S, define R and j∗ as follows:

R =



j ∈ S : aj = max
k∈S

ak

ff

.

j∗ =argmax
j∈R

n

I{aj=bj}E[Xj ]

+ I{aj>bj}

„

E[Xj |Xj ≥ aj ] −
cj

P (Xj ≥ aj)

«ff

Then we have the following, where dS is some constant such
that dS ≤ bj∗ :

1. For all u ≥ aj∗ , π∗(u, S) =retire(u). If u < aj∗ then
π∗(u, S) 6=retire(u).

2. For all dS < u < aj∗ , π∗(u, S) =probe(j∗).

3. For all 0 ≤ u < dS, exactly one of the following three
possibilities holds for π∗:

(a) π∗(u, S) = probe(j∗)
(b) π∗(u, S) = guess(j∗)
(c) π∗(u, S) = probe(k), k ∈ S − j∗

where channel k does not vary with u.

The proof of Theorem 1 is broken down into separate sec-
tions in the Appendix as follows. Part 1 of Theorem 1 is
proven in Section 9.2. This result provides both a necessary
and sufficient condition for the optimality of retiring and us-
ing a previously probed channel. A very appealing feature of
this result is that it allows us to decide when to retire based
only on individual channel indices that are calculated inde-
pendently of other channels, thus reducing computational
complexity.

Part 2 of Theorem 1 is proven in Section 9.3. This re-
sult implies that by first ordering the individual channels by
functions of the indices aj , we can determine the optimal
channel to probe for u in the interval (dS, aj∗).

Finally, Part 3 of Theorem 1 gives three possibilities on the
structure of the optimal strategy. In particular, Part 3(b)
narrows down the set of possible channels we can guess. In
words, the best channel among those achieving the highest
value of aj in S (which we have called j∗) is the only possible
channel we can guess. This result is proven in Section 9.5.
A key result in that section is that if there are multiple
channels in R, then we can easily check whether aj = bj is
true in order to determine whether probing or guessing is the
optimal action. Section 9.5 also provides some necessary and
sufficient conditions for guessing to be optimal. In addition,
parts 3a and 3c indicate that the optimal channel to probe
does not vary with u in the region (0, dS). This result is
proven in Section 9.4.

Theorem 1 significantly reduces the number of possibili-
ties on the structure of the optimal strategy, but it remains
to determine when cases 3a, 3b, 3c of Theorem 1 hold along
with the value of dS . In general, this structure will depend
on the specific values of S and the indices aj , bj . One can
use the results of Sections 9.2, 9.3, 9.5 to determine some
necessary or sufficient conditions for any particular case of
the above theorem to hold. In the next section, we will
propose a suboptimal algorithm, based on these three pos-
sible forms, which we show to be optimal under a number
of special cases of interest.

Figure 2 summarizes the main results from Theorem 1.
We have shown that for all u ≥ aj∗ , i.e. right region of
the line, retire(u) is optimal. For maxj∈S bj < u < aj∗ , i.e.
the middle region of the line, probe(j∗) is optimal. Note
that it is possible this region may be empty if the probing
costs become too high. Finally, the optimal action in the left
region will depend on S, and thus remains to be determined.
Note that guess(j∗) is the only possible guessing action for
this region, as proven in Lemma 9 and Corollary 2.



retire(u)

j* =maxj{aj}

probe(j*)guess(j*)?
probe(j*)?
probe(k)?
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Figure 2: Summary of main results from Section 3:
figure depicts optimal strategy π∗(u, S) as a function
of u. For the middle and right regions of the line,
the optimal strategy is well-defined for any S. For
the left region, the optimal action may depend on
S.

3.3 Decomposition of Problem 1
The following result on the structure of the optimal strat-

egy allows us to decompose Problem 1 into N subproblems.
To begin, define Φ(j), j = 1, 2, · · · , N , to be the set of strate-
gies which do not guess any channel except possibly channel
j. Within each set Φ(j) we define the best strategy, i.e.
achieves the value function in (2), by π∗

j :

π∗
j (u, S) = argmax

π∈Φ(j)

V π(u, S) , (11)

where V π(u, S) is the expected remaining reward under pol-
icy π given the system state (u, S). It can be shown in
a similar manner to Theorem 5.2 in [3] (where a 3-channel
system is considered) that the optimal strategy satisfies π∗ ∈
∪j∈Ω {Φ(j)}. In other words, we have:

Lemma 3. For any (u, S), there exists an optimal strat-
egy π∗ such that:

π∗(u, S) = argmax
π∈Π

V π(u, S) = argmax
j∈S

V π∗

j (u, S) (12)

That is, the optimal strategy will only guess one channel (if
it guesses at all). Thus, the optimal strategy π∗ among all
strategies is the best π∗

j among all j ∈ Ω. This result again
reduces the number of possible optimal strategies. As the
proof of this lemma is similar to that of Theorem 5.2 in [3],
it is omitted for brevity. However, we would like to point
out that it can be shown that Lemma 3 can be extended
to the case where the transmitter is only allowed to guess a
subset S̄ ⊆ S of the channels. In this case, one can replace
S under the argmax in Lemma 3 with S̄.

Finally, it remains to determine the structure of π∗
j . We

have the following useful result.

Lemma 4. For any S and j ∈ S, define R as in Theorem
1, replacing, ak with āk (defined in Equation (18)) for every
channel except for j. If j ∈ R, then let j∗ = j. Otherwise,
define j∗ as in Theorem 1. Then if j∗ 6= j, the optimal
strategy π∗

j is:

π∗
j (u, S) =



retire(u) if u ≥ aj∗

probe(j∗) if u < aj∗
.

It can be shown that Theorem 1 also holds for each strat-
egy π∗

j . Thus, Lemma 3 can be seen as arising from Case
1 in Theorem 1. This result uniquely describes the opti-
mal strategy π∗

j for any set of channels S, if j 6= j∗. When
j = j∗, then the optimal strategy has a more complicated
structure. In the next section, we propose a suboptimal
algorithm which approximates the optimal strategy when
j = j∗.

4. JOINT PROBING AND
TRANSMISSION STRATEGIES

As stated earlier, the state space for our problem is the set
of all (u, S), which is infinite. This makes it very difficult
to recursively apply dynamic programming to evaluate all
V (u, S) and solve for the optimal strategy. In this section
we propose two algorithms for channel probing for arbitrary
number of channels with arbitrary distributions. They are
motivated by the properties derived in the previous section.
We show they are optimal for a number of special cases of
practical interest.

4.1 Channel Probing Algorithms
In order to motivate our first algorithm, consider when

there are two unprobed channels S = {j∪k}. As described in
the previous section, the ordering of the constants aj , bj , ak,
and bk will help determine the optimal strategy. Note that
due to Corollary 1, it is not hard to calculate the expected
reward of probing j or k for state (u, S). For example, if
u < bk, then probe(j) at state (u, S) incurs the following
expected reward:

− cj + E[V (max(u, Xj), k)]

= −cj + P (Xj < bk)E[Xk] + E[XjI{Xj≥ak}]

− ck·P (bk ≤ Xj < ak) + E[max(Xk, Xj)I{ak>Xj≥bk}] .

The above calculation can similarly be applied to the other
two separate cases of u > ak and ak > u > bk, and they
can also similarly be applied to determine the expected re-
ward of action probe(k). Note that this procedure computes
the expected probing reward in a finite number of steps,
whereas not using the threshold properties given by Corol-
lary 1 would first require the computation of V (u, j) and
V (u, k) for all u ∈ [0, 1], thus requiring an infinite number
of computations.

Motivated by the above, the proposed algorithm is as fol-
lows. It essentially finds two channels indexed by j∗ and k,
and use these to define the strategy γ. We use the following
notation in describing the algorithm:

fj,k(u) = −cj + E[V (max(Xj , u), k)] , (13)

which is the expected reward of probe(j) at state (u, j ∪ k).

Algorithm 1. (A two-step lookahead policy γ for a given
set of unprobed channels S ⊆ Ω)

Step 1: Compute j∗ as defined in Theorem 1.
Step 2: Replace S with S − j∗ and repeat Step 1, with k

denoting the result of this step.
Then strategy γ is defined as follows for state (u, S):

1. If u ≥ aj∗ , then γ(u, S) =retire(u).

2. If aj∗ > u > max{bj∗ , bk}, then γ(u, S) =probe(j∗).

3. If u ≤ max{bj∗ , bk}, we have the following cases:

(a) If bj∗ ≥ ak, then γ(u, S) =guess(j∗).

(b) If either fj∗,k(0) ≥ max {E[Xj∗ ], fk,j(0)} or bk ≥
bj∗ is true, then γ(u, S) =probe(j∗).

(c) Otherwise, there exists a unique b0 such that bj∗ >
b0 > bk and fj∗,k(b0) = max {E[Xj∗ ], fk,j∗ (0)}.
For b0 ≤ u ≤ bj∗ , we have γ(u, S) =probe(j∗).
For u < b0, we have γ(u, S) =guess(j∗) if E[Xj∗ ]
≥ fk,j∗ (0). Otherwise, γ(u, S) =probe(k).



It is worth describing this strategy in the context of results
derived in the previous section. For u satisfying Case 1 of
the algorithm description, γ is optimal from Theorem 1 and
Lemma 6. For some of the u values described in Case 2, γ
is optimal from Theorem 1 and Lemma 7. For Case 3(a),
γ is optimal from Theorem 1, Lemma 9 and Corollary 2.
Thus γ is optimal for most values of u. For Cases 3(b) and
3(c) of Algorithm 1, the procedure essentially computes the
expected probing cost if we are forced to retire in two steps.

An important reason for proposing a two-step policy arises
from Theorem 1 which states that the optimal strategy takes
one of three possible forms. For fixed S, it was shown that as
u varies there can be at most two possible channels to probe,
one of which must be j∗. This gives rise to the strategy above
that only considers two channels, j∗ and a second channel
k.

We also propose a second two-step lookahead algorithm,
which we call β, that is motivated by Algorithm γ and Lem-
mas 3 and 4. Due to space limitations and its similarity to
γ, we present only a brief description.

Algorithm 2. (Two-Step Lookahead Policy β) For each
channel j ∈ S and the corresponding set of strategies Φ(j)
defined in Section 3.2, find the best two-step policy (analo-
gous to Algorithm 1) as follows. If j∗ 6= j, we can set βj to
be strategy π∗

j of Lemma 4. Otherwise, determine the best
two-step strategy in Φ(j) using the two channels j∗ and k,
similar to Algorithm 1 but replacing ak with āk and setting
bk = 0.

After determining βj for all j ∈ S, using Lemma 3 take
the best strategy among all {βj}j∈S to obtain algorithm β.

In the case when the transmitter can only guess a subset S̄ ⊆
S of channels then we can modify Algorithm 2 by replacing
S with S̄ in the above description.

Note that determining algorithm β requires running a sim-
ilar algorithm to γ for each channel in S, thus requiring more
computation. However, this strategy generally performs bet-
ter than γ as we will show in Section 6. We next consider a
few special cases and show that γ is optimal in these cases.
It can also be shown that these results hold for β as well.

4.2 Special Cases
We first consider a two channel system. Since Algorithm

1 is essentially a two-step lookahead policy, we have the
following (the proof is omitted for brevity):

Theorem 2. For any given set of unprobed channels S,
where |S| = 2, γ is an optimal strategy.

We next consider the case when all channels are statis-
tically identical, with an arbitrary number of them, each
having different probing costs.

Theorem 3. Suppose |S| ≥ 2, and all channels in S are
identically distributed, with possibly different probing costs.
Then the optimal strategy π∗ is described as follows, with j∗

being a channel in S satisfying cj∗ = minj∈S {cj}.
Case 1: If aj∗ > bj∗ , we have:

π∗(u, S) =



retire(u) if u ≥ aj∗

probe(j∗), otherwise

Case 2: If aj∗ = bj∗ , the optimal strategy is: retire(u) if
u ≥ aj∗ ; otherwise, π∗(u, S) =guess(j∗).

This theorem implies that if we have a set of statistically
identical channels Ω, then the initial step of the optimal
strategy is uniquely determined by aj∗ and bj∗ , where j∗

is the channel with smallest probing cost. If aj∗ = bj∗ ,
then π∗(u, Ω) =guess(j∗) and it is not worth probing any
channels. If aj∗ > bj∗ , then we should first probe j∗. Let
k denote the channel with the smallest probing cost in S −
{j∗}. If the probed value of Xj∗ is higher than ak, then it is
optimal to retire and use j∗ for transmission. Otherwise, if
ak > bk then probe(k) is optimal; if ak = bk then guess(k)
is the optimal action. This process continues until we retire,
guess, or |S| = 1. When |S| = 1, then we compare the
best probed channel, which has value u, to aj and bj , where
S = {j}. If u ≥ aj , then we retire; if aj > u ≥ bj , then we
probe the last remaining channel; finally, if u < bj then we
should just use the last remaining channel without probing
it.

Note that the optimal strategy described above is the
same as strategy γ of Algorithm 1 applied to statistically
identical channels. This is true because within Case 3 in
the description of Algorithm 1, 3(b) will occur whenever
aj∗ > bj∗ for statistically identical channels, and Case 3(a)
occurs whenever aj∗ = bj∗ . Collectively, Cases 1, 2, 3(a)
and 3(b) all describe the optimal strategy of Theorem 3.
Note that this theorem applies to all cases of statistically
identical channels, regardless of their distribution or prob-
ing costs. Changing the channel distribution and probing
costs will affect the values of aj or bj , but they do not alter
the general structure of the optimal strategy as given by the
theorem.

Finally, we consider the case where the number of channels
is very large and not statistically identical.

Infinite Number of Channels (INC) Problem: Con-
sider Problem 1 with the following modification: we have N
different types of channels, but an infinite number of each
channel type.

Note that Theorem 3 solves this problem if N = 1. When
referring to the state space for this problem, we will let S
denote the set of available channel types. Theorem 3 says
that if we have many statistically identical channels of one
type, then whether aj > bj or aj = bj determines if we will
probe or guess channel j. Analogously, we have the following
result:

Theorem 4. For any set of channels S, define j∗ accord-
ing to Step 1 of Algorithm 1. Then for the INC Problem,
there exists an optimal strategy π∗ satisfying:

1. If u ≥ aj∗ , then π∗(u, S) =retire(u).

2. If u < aj∗ and aj∗ > bj∗ , then π∗(u, S) =probe(j∗).

3. If u < aj∗ and aj∗ = bj∗ , then π∗(u, S) =guess(j∗).

Due to space limitations, proof of the above theorem is not
included; however, it should be noted that it essentially fol-
lows from Theorem 3. This theorem implies that when the
number of channels is infinite, and there are an arbitrary
number of channel types, then we will only probe or guess
one channel, i.e. the other channels become irrelevant. In
addition, note that Algorithm 1 is also the optimal strat-
egy for the INC Problem, because Case 3(c) of the descrip-
tion of Algorithm 1 does not occur. For all the other cases,
Algorithm 1 reduces to the optimal strategy described in
Theorem 4.



To summarize, in this subsection we have shown that Al-
gorithm 1 reduces to the optimal strategies for the above
special cases based on Theorems 2, 3, and 4.

5. CONSTANT ACCESS TIME POLICIES
In this section we present results on the optimal channel

access time (CAT) policy.
Similarly to Corollary 1, we can show that for any state

(T̄ , u, S), there exists an optimal strategy λ∗ and constants
0 ≤ bS,T̄ ≤ aS,T̄ ≤ 1 such that:

λ∗(T̄ , u, S) =

8

<

:

retire(u) if u ≥ aS,T̄

probe(ju), ju ∈ S if bS,T̄ < u < aS,T̄

guess(j
′

), j
′

∈ S if u < bS,T̄

Thus for each set of channel j, we can define indices aj,T̄

and bj,T̄ similar to (9) and (10) but note that these indices
are time-variant, which makes the analysis significantly more
complex. The following results show a similarity between λ∗

and π∗.
First, we note that any individual channel index aj,T̄ can

be calculated for each T̄ as follows:

aj,T̄ = min



u : u ≥ E[Xj ], u ≥ E [max(Xj , u)] ·
T̄ − ∆

T̄

ff

where aj,T̄ is the smallest u such that λ(T̄ , u, j) =retire(u).
The indices bj,T̄ can be calculated similarly. We can use
these individual channel indices to obtain the following.

Lemma 5. For any set of channels S and T̄ > 0, we
have aS,T̄ = maxj∈S aj,T̄ .

Thus, the index aS,T̄ , and therefore the set of states where
retirement is optimal, can be determined using only individ-
ual channel indices from time T̄ . As in the case of CDT, it
is important to note these indices do not depend on other
indices {aj,T̄−k∆}, which simplifies computation.

In general, due to the time-varying nature of these in-
dices, it becomes very difficult to determine the structure of
the optimal strategy. However, the similarity in the index
properties between the CDT and CAT policies can be used
to propose the following two-step lookahead algorithm, sim-
ilar to Algorithms γ and β. For any particular T̄ and set
of channels S, we first determine the two channels with the
highest indices aj,T̄ . Then compute the optimal strategy if
we are forced to retire within two steps, similarly to Algo-
rithm 1. We evaluate the performance of this strategy in
the next section.

6. NUMERICAL RESULTS
In this section we examine the performance of the pro-

posed algorithms under a practical class of channel models.
For both CDT and CAT policies, we will consider a two-

state channel model where, for each channel P (Xj = rj) =
pj = 1 − P (Xj = 0) for some rj > 0. This models the case,
for example, where channels are either off or on, and have
data rate rj in the on state 1. Under this setting, the set of
information states is ∪j ∪S (rj , S).

For our numerical results, we chose parameters rj , pj , and
cj for each channel as follows. First, rj and pj were modeled

1[4] has considered optimal CDT strategies for two-state
channels, each with identical data rate. When the parame-
ters rj differ between different channels, it can be shown the
strategies of [4] are not necessarily optimal.
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Figure 3: (TOP): Average performance of optimal
CDT strategy, algorithms γ and β of Section 4.1,
and the optimal strategy without guessing. Rewards
are normalized by the average reward of the opti-
mal strategy. (BOTTOM): Average performance of
these strategies for a four-channel system where the
number of channels that can be guessed varies be-
tween 0 and 4.

as independent random variables, uniformly distributed in
the interval 2 (0, 1). After the particular realization of these
parameters was chosen, the cost for channel j was uniformly
chosen in the interval 3 (0, pj(1 − pj)rj + 0.01).

For each realization of rj , pj , cj , the expected rewards of
the following strategies were computed for the CDT prob-
lem: the optimal strategy (determined via dynamic pro-
gramming), algorithms γ and β from Section 4.1, and the
optimal algorithm if guessing is not allowed (no-guess), as
described in Section 9.3 and Theorem 5. A total of 103 ran-
dom realizations are generated and then averaged for each
value N . Figure 3 (TOP) depicts the performance of these
strategies as the number of channels N varies. The average
rewards of these strategies are normalized by dividing the
average reward of the optimal strategy. We note that both
Algorithm γ and β perform very close to the optimal, with
β performing slightly better. This is because Algorithm γ
and β are optimal when Case 3(a) from Theorem 1 holds.
In general, this case holds for most values of pj , rj , and cj .
When Case 3(b) or 3(c) of Theorem 1 holds, Algorithms γ
and β only differ with the optimal algorithm in the param-
eter dS. Thus in general they are very close numerically to
the optimal strategy.

2Note that the upperbound on rj of 1 is chosen for simplic-
ity; it could be any positive value M , which simply causes
the reward and the cost to scale simultaneously.
3This choice of upperbound on cj is to ensure that some
channels will be probed, as it can be shown that if cj >
pj(1−pj)rj then channel j should never be probed and only
guessed. The additional 0.01 to pj(1 − pj)rj is to ensure
that some channel will be guessed, but the value 0.01 is an
arbitrary choice.
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Figure 4: (TOP): Performance of optimal CAT
strategy and a two-step lookahead CAT policy as the
number of channels (N) varies. (BOTTOM) Perfor-
mance of the two-step lookahead, one-channel, two-
channel, and four channel algorithms as described in
Section 6, when all channels are statistically identi-
cal with P (Xj ≤ x) = xα and different probing costs
cj = 0.01j.

As mentioned in Section 2, it may be the case that some
regulatory spectrum policies do not allow all channels to be
guessed. Figure 3 (BOTTOM) analyzes the performance of
these strategies when N = 4 and only a subset S̄ ⊆ S of
these channels can be guessed. For this case, we modify
Algorithm γ as follows. If j 6∈ S̄, we set aj = āj as given
by (18), and set bj = 0. For j ∈ S̄, the indices remain un-
changed. These changes are made to remove guess(j) as a
possible action. For Algorithm β, we replace S in its defini-
tion with S̄. We see that the relative performance between
the optimal strategy and algorithms γ and β does not sig-
nificantly change as |S̄| varies. On the other hand, by defi-
nition the no-guess strategy is optimal when |S̄| = 0, but as
expected its average reward decreases as |S̄| increases.

Similarly, Figure 4 (TOP) analyzes the performance of the
optimal strategy and a two-step lookahead algorithm (simi-
lar to γ) for the CAT problem. As can be seen, the two-step
lookahead algorithm, calculated similarly to Algorithm 1 but
for each T̄ as mentioned in the previous section, performs
very well in comparison to the optimal strategy.

Figure 4 (BOTTOM) analyzes performance when the chan-
nels are statistically identical with CDF P (Xj ≤ x) = xα

for all j and with different probing costs cj = 0.01j. From
Theorem 3, the two-step lookahead algorithm is optimal. Its
performance is compared in the figure to the following algo-
rithms. The one-channel algorithm does not probe and sim-
ply transmits using the “best” channel (lowest cost). Thus
comparing the two-step lookahead algorithm to this strat-
egy gives an indication of the gain from using probing. The
two-channel (four-channel) algorithm depicted in the figure
probes the best two (four) channels and then uses the best

channel (among those probed) for transmission. Thus, com-
paring these strategies to the two-step lookahead strategy
indicates the gain from using a more efficient probing algo-
rithm over simple heuristics.

In all cases, these results confirm that the two-step looka-
head policy performs very similarly and close to the opti-
mal strategy, but with much less computational overhead.
From the dynamic programming formulation given in (2),
even when the channel rewards are discrete random vari-
ables, computing the optimal strategy at state (u, S) still
requires us to take combinations of all subsets of S. By
comparison, the two-step lookahead policy determines the
optimal strategy by only considering the best two channels
in S.

7. CONCLUSION
In this paper, we analyzed the problem of channel probing

and transmission scheduling in wireless multichannel sys-
tems. We derived some key properties of optimal channel
probing strategies, and showed that the optimal policy has
a threshold structure and can only take one of a few forms.
Using these properties, we proposed two channel probing
algorithms which we showed are optimal for some cases of
practical interest, including statistically identical channels,
a few nonidentical channels, and a large number of noniden-
tical channels. These algorithms were also shown to perform
very well compared to the optimal strategy under a practical
class of channel models.

Future work includes extending results to cover regula-
tory spectrum policy constraints, such as the case where the
transmitter can only retire to a subset of channels. It would
also be interesting to simulate the proposed algorithms with
realistic physical layer assumptions.
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9. APPENDIX

9.1 Proof of Lemma 1
It suffices to prove for all S and 0 ≤ u ≤ ũ ≤ M :

V (ũ, S) − V (u, S) ≤ ũ − u . (14)

If (14) is true, then V (u, S) = u implies V (ũ, S) ≤ ũ. Com-
bining this with (2), which says V (ũ, S) ≥ ũ, proves the
lemma. We prove (14) by induction on the cardinality of S.

Induction Basis: Consider any S ⊆ Ω such that |S| = 1.
Let j = S. From equation (2) defining the value function,
V (ũ, {j}) (simplified as V (ũ, j) below) has three possible
values. We show (14) holds for all three cases.

Case 1 : V (ũ, j) = ũ. From (2), V (u, j) ≥ u. Therefore,
equation (14) easily follows.

Case 2 : V (ũ, j) = −cj + E[max(Xj , ũ)]. From (2), we
have V (u, j) ≥ −cj + E[max(Xj , u)]. Therefore,

V (ũ, j) − V (u, j) ≤ E [max(Xj , ũ)] − E [max(Xj , u)]

= E[ũ − max(Xj , u)|Xj < ũ]P (Xj < ũ) ≤ ũ − u ,

which proves that (14) holds.
Case 3 : V (ũ, j) = E[Xj ]. From (2), V (u, j) ≥ E[Xj ].

Therefore, equation (14) easily follows.
Induction Hypothesis: Consider any S ⊆ Ω such that

|S| ≥ 2 and suppose (14) holds for all S̃ ⊆ Ω such that

|S̃| < |S|. Again we prove (14) holds for all possible values
of V (ũ, S). If V (ũ, S) = ũ, then (2) implies V (u, S) ≥ u
which implies (14) holds. Similarly, if V (ũ, S) = E[Xj ] for
some j ∈ S, then V (u, j) ≥ E[Xj ] implies (14). Finally,
suppose V (ũ, S) = −cj + E[max(Xj , ũ)] for some j ∈ S.
Then because V (u, S) ≥ −cj + E[V (max(Xj , u), S − j)] for
this j, we have:

V (ũ, S) − V (u, S)

≤ E [V (max(Xj , ũ), S − j) − V (max(Xj , u), S − j)]

= E
ˆ

(V (ũ, S − j) − V (max(Xj , u), S − j)) I{Xj<ũ}

˜

≤ V (ũ, S − j) − V (u, S − j) ≤ ũ − u ,

where the last two inequalities follow from (5) and the in-
duction hypothesis, respectively.

9.2 Proof of Part 1 in Theorem 1
We will prove the following lemma:

Lemma 6. For any (u, S), π∗(u, S) = retire(u) if and
only if u ≥ maxj∈Saj. Equivalently,

aS = max
j∈S

aj . (15)

Proof. We use proof by contradiction on two cases.
Case 1 : Suppose aS < maxj∈S aj . Equivalently, aS < ak

for at least one k ∈ S. Fix u such that aS < u < ak. By
definition of aS, we have V (u, S) = u. On the other hand,
the definition of ak and u < ak implies:

V (u, k) = max {E[Xk],−ck + E [max(Xk, u)]} > u ,

Finally, (6) gives V (u, S) ≥ V (u, k) > u, which contradicts
the assumption that u > aS. Thus, aS < ak is not possible.

Case 2 : Suppose aS > maxj∈S aj . Fix any u such that
maxj∈S aj < u < aS . By definition of aS, the optimal strat-
egy at state (u, S) is to either probe or guess a channel in S,
but retiring is not optimal. Suppose the optimal strategy is
to probe k ∈ S. This implies:

−ck + E [V (max(u, Xk), S − k)] ≥ V (u, S)

≥ V (u, S − k) , (16)

where the last inequality follows from (6). Since u > ak,
then by definition of ak we have: −ck + E [max(u, Xk)] < u
Combining this with (16), we have:

E [V (max(u, Xk), S − k) − V (u, S − k)] > ck

> E [max(u, Xk) − u]

Conditioning the above expectations on events {Xk > u}
and {Xk ≤ u} gives us:

E [V (Xk, S − k) − V (u, S − k)|Xk > u] P (Xk > u)

> E [Xk − u|Xk > u] P (Xk > u) , (17)

which contradicts (14).
If the optimal strategy is to guess a channel k ∈ S, then

V (u, S) = E[Xk]. However, since V (u, k) ≤ V (u, S) then
V (u, k) = E[Xk] as well. This implies ak ≥ u, which con-
tradicts the assumption that u > ak.

Combining Cases 1 and 2 proves Lemma 6.

9.3 Proof of Part 2 in Theorem 1
We prove the following for any set of channels S.

Lemma 7. For any S, define R, j∗ as in Theorem 1.
For all maxj∈S bj < u < maxj∈S aj , π∗(u, S) =probe(j∗).

To prove this, we define and solve another problem.
No Guessing (NG) Problem: Consider Problem 1

with the following modification: at each step, the user must
choose between the following two actions: (1) probe a chan-
nel that has not yet been probed, or (2) retire and use the
best previously probed channel. Therefore, the user is not
allowed to use a channel that has not yet been probed.

The NG Problem can be seen as a generalization of Theo-
rem 4.1 considered in [3], which restricted Xj to be discrete



random variables. To describe the theorem, we use the fol-
lowing notation for any channel j ∈ Ω:

āj = min
˘

u : cj ≥ E
ˆ

(Xj − u)+
˜¯

, (18)

where āj = 0 if the above set is empty. Note that from
equations (9) and (10), we see that āj = aj if and only if
aj > bj . If aj = bj , then āj < aj . We use these indices in
the following theorem, which can be seen as a generalization
of Theorem 4.1 in [3].

Theorem 5. For state (u, S), the optimal strategy π̂ for
the NG Problem is described as follows:

1. If u ≥ maxj∈S {āj}, then π̂(u, S) =retire(u).

2. Otherwise, define R and j∗ as in Theorem 1 by replac-
ing aj with āj for each j ∈ S. Then π̂(u, S) =probe(j∗) .

Due to space constraints, we provide a sketch proof. The
proof that π̂(u, S) =retire(u) for all u ≥ a∗

j = maxj∈S {āj}
uses Lemma 6. For u < maxj∈S {āj}, we use induction on
the cardinality of S. It can be shown by computation that
at u = aj∗ , probe(j∗) is optimal. Then, it can be shown
that for all u ≤ a∗

j , the difference between (1) the expected
reward of probing j∗ first and (2) probing any other channel
k first, does not depend on u. Using this result, we have
π∗(aj∗ , S) =probe(j∗) implies π∗(u, S) =probe(j∗) for all
u < aj∗ .

Even though the NG Problem is different from Problem 1,
its optimal strategy is also optimal for Problem 1 if guessing
is not optimal for all future time steps. From Lemma 6 and
Corollary 2, probing occurs if maxj∈Sbj < u < maxj∈Saj .
Thus, we have proven Lemma 7.

9.4 Proof of 3a, 3c in Theorem 1
To prove 3c, we prove the following lemma:

Lemma 8. If π∗(u, S) =probe(k) for some u > 0 and
k 6= j∗, then π∗(ũ, S) =probe(k) for all 0 ≤ ũ ≤ u.

Proof. It suffices to prove π∗(u, S) =probe(k) implies:

E[V (max(Xk, u), S − k)] = E[V (Xk, S − k)]. (19)

Proving that (19) suffices because if this equation were true,
then it implies: V (u, S) = −ck +E[V (max(Xk, u), S−k)] =
−ck + E[V (Xk, S − k)]. However, the last term of this
equation is the expected reward of probing channel k at
state (0, S). Since (5) implies that V (0, S) ≤ V (u, S), then
probe(k) must be the optimal strategy at (0, S). Similarly,
using (5) again we have π∗(ũ, S) =probe(k) all 0 ≤ ũ ≤ u.

Now we prove (19) holds. In order for the optimal strategy
at (u, S) to be probe(k), from Lemma 6 it must be true
that u < aj∗ . We prove (19) by backward induction on the
cardinality of S, starting with |S| = 2 as the lemma requires
non-singleton S.

Induction Basis: Suppose |S| = 2. From Lemma 7, we
know that π∗(u, S) =probe(j∗) for all max{bj∗ , bk} < u <
aj∗ . Suppose π∗(u, S) =probe(k) for some u ≤ max{bj∗ , bk}.
We prove (19) for two cases.

Case 1: bj∗ ≤ bk. Taking the difference in expected re-
ward between probe(j∗) and probe(k) for bk ≤ u < aj∗ ,
it is straightforward to show (similar to the proof of Theo-
rem 5) that this difference is invariant to u. Since we know
π∗(u, S) =probe(j∗) for all bk < u < aj∗ , then it must also
be true that π∗(bk, S) =probe(j∗). It can be shown that
E [V (max{Xj∗ , bk}, k)] = E [V (max{Xj∗ , ũ}, k)], for any

0 ≤ ũ ≤ bk, because V (ũ, S) is constant when ũ ≤ bk. Thus,
the expected reward of probe(j∗) is contant for all ũ ≤ bk.
Combining this with (5) implies π∗(ũ, S) =probe(j∗) for all
ũ ≤ u, which contradicts π∗(u, S) =probe(k) for some u > 0.

Case 2: bj∗ > bk. In this case, π∗(u, S) =probe(k) for
some u ≤ max{bj∗ , bk} = bj∗ . On the other hand, by
definition of bj∗ , we know that π∗(u, j∗) =guess(j∗) for all
u ≤ bj∗ . Thus, V (u, j∗) = E[Xj∗ ] = V (0, j∗), proving (19).

Induction Hypothesis: Consider any S such that |S| = n
for some n > 2. Suppose (19) is true for all S̄ ⊂ S such that
2 ≤ |S̄| < n. We prove (19) holds for S by contradiction.

Suppose E[V (max(Xk, u), S−k)] > E[V (Xk, S−k)]. This
implies by conditioning on {Xk ≤ u}:

0 <E
ˆ

{V (u, S − k) − V (Xk, S − k)} I{Xk≤u}

˜

(20)

Note that if V (u, S−k) = V (0, S−k), then by (5) we have
V (ũ, S − k) = V (0, S − k) for all 0 ≤ ũ ≤ u. This would
imply the righthandside of (20) is equal to 0, which con-
tradicts the equation. Thus (20) implies that V (u, S−k) 6=
V (0, S − k). From the induction hypothesis, this inequality
means that π∗(u, S−k) 6=probe(i) for any i 6= j∗. Similarly,
π∗(u, S − k) 6=guess(j∗) since this would imply π∗(0, S −
j∗) =guess(j∗), which would mean V (u, S−k) = V (0, S − k).
Finally, using u < aj∗ implies that π∗(u, S − k) =probe(j∗).

From repeating the argument, the optimal strategy is the
following. First probe(k). If Xk ≥ aj∗ , then retire. Other-
wise, probe(j∗), and retire if max {Xk, Xj∗} ≥ aj2 ; other-
wise probe(j2), where j2 is the channel determined similarly
to j∗ in Theorem 1 but replacing S with S−j∗−k. This pro-
cess continues until the transmitter retires. Thus, we see the
optimal strategy either probes or retires, but never guesses a
channel. However, from the NG problem and Theorem 5, we
know that the strategy which first probes j∗ obtains a higher
expected reward than any strategy that probes k first and
never guesses. Thus, it cannot be optimal to first probe k,
which contradicts the assumption that π∗(u, S) =probe(k).

Therefore, it must be true that E[V (max(Xk, u), S−k)] =
E[V (Xk, S − k)], which completes the proof.

Proving 3a can occur is straightforward. These results imply
the optimal channel to probe is constant for 0 ≤ u < dS.

9.5 Proof of 3b in Theorem 1
We first derive conditions for guessing to be optimal.

Lemma 9. Given a set of unprobed channels S, define R
as in Theorem 1. Then we have the following:

1. If there exists j∗ ∈ R such that aj∗ > bj∗ and bj∗ ≤
maxj∈S−j∗ E[Xj ], then bS = 0.

2. If there exists j∗ ∈ R such that bj∗ ≥ maxj∈S−j∗ aj,
then bS = bj∗ .

Proof. We prove the result for the two cases.
Case 1 : For notation, let E[Xk] = maxj∈S−j∗ E[Xj ] for

j∗ ∈ R satisfying aj∗ > bj∗ as described by the lemma.
From the lemma, we know that bj∗ ≤ E[Xk]. If we can
show that for every u, probing some channel in S or retir-
ing is better than guessing any channel in S, then this will
prove there exists an optimal strategy with bS = 0. Note
that the expected reward of guessing the best channel is
maxj∈S E[Xj ] = max {E[Xk], E[Xj∗ ]}. Thus it suffices to
show that for all u ≤ aj∗ , there exists a probing strategy
with higher expected reward than E[Xk] and E[Xj∗ ].



As described in Section 3.1, E[Xk] ≤ ak. Thus we have
bj∗ ≤ E[Xk] ≤ aj∗ since j∗ is in R. From the definition
of bj∗ , aj∗ and by the assumption that aj∗ > bj∗ , then
π∗(u, j∗) =probe(j∗) whenever bj∗ ≤ u ≤ aj∗ . Therefore,
π∗(E[Xk], j∗) =probe(j∗) and we have: V (E[Xk], j∗) =
−cj∗ + E[max(Xj∗ , E[Xk])] ≥ E[Xk] , However, note that
the lefthandside of this equation is the expected reward of
the following strategy: probe j∗ first, and use this chan-
nel for transmission if its value is higher than E[Xk]; if its
value is lower than E[Xk], then guess(k), i.e. use channel k
for transmission. Thus the expected reward of this two-step
strategy is always at least the reward of simply using channel
k for transmission. This result holds for all u. Also, by def-
inition of aj∗ and bj∗ , π∗(u, j∗) =guess(j∗) for all u < bj∗ .
Thus V (u, j∗) = E[Xj∗ ] for all such u. However, from (5),
we also know that V (E[Xk], j∗) ≥ V (u, j∗) = E[Xj∗ ]. Thus
we have shown that for all u, there exists a strategy of prob-
ing j first which does at least as good as the strategy of
guess(k) or guess(j∗), which are the only two possible guess-
ing actions. Thus, there exists an optimal strategy which
never guesses for all u, i.e. bS = 0.

Case 2 : From the lemma, aj∗ ≥ bj∗ ≥ maxj∈S−j∗ aj . In
addition, from Lemma 6 and from the threshold properties
described in Section 3.1, we have bS ≤ aS = aj∗ . Thus,
V (u, bS) = u for all u ≥ aj∗ . Now we have two cases for the
relationship between aj∗ and bj∗ . First, suppose aj∗ = bj∗ .
From equations in Section 3.1, we see that this equality im-
plies that E[Xj∗ ] = bj∗ . Finally, using (5), we see that
V (u, S) ≤ V (bj∗ , S) = bj∗ = E[Xj∗ ] for all u < bj∗ . Com-
bining this with (2) we have bS = bj∗ .

Now suppose aj∗ > bj∗ , which implies aj∗ > maxj∈S−j∗ aj .
From Lemma 7, π∗(u, S) =probe(j∗) for all aj∗ > u ≥ bj∗ .
Thus, V (bj∗ , S) = −cj∗ +E[max(Xj∗ , bj∗ )], where we do not
probe anything after j∗ because of Lemma 6. From Section
3.1, we know aj∗ > bj∗ implies −cj∗ + E[max(Xj∗ , bj∗)] =
E[Xj∗ ]. Thus, V (bj∗ , S) = E[Xj∗ ], which again implies that
V (u, S) = E[Xj∗ ] for all u < bj∗ . Thus we have shown there
exists an optimal strategy with bS = bj∗ .

Thus conditions 1) and 2) of the lemma provide separate
necessary and sufficient conditions for guessing to be opti-
mal. Note that this lemma also has further implications.
When |R| ≥ 2, and aj = bj for at least one j ∈ R, then
condition 2) of Lemma 9 is always satisfied. Thus bS = bj

in this case. Otherwise, aj > bj for all j ∈ R and condition
1) of Lemma 9 is always satisfied.

When |R| = 1 and letting j∗ = R, suppose π∗(u, S) =
guess(k) for some k 6= j∗, u > 0. This implies E[Xk] >
E[Xj∗ ] ≥ bj∗ , which leads to condition 1) of Lemma 9.
This lemma implies bS = 0, which contradicts π∗(u, S) =
guess(k). Thus, if |R| = 1 then π∗(u, S) 6=guess(k) for
k 6∈ R. This leads to the following corollary:

Corollary 2. Given a set S, define R as in Theorem 1.
Then if |R| ≥ 2 and aj = bj for at least one j ∈ R, then
bS = bj. Otherwise, bS = 0. If |R| = 1, let {j∗} = R. Then
π∗(u, S) 6=guess(j) for all u and j ∈ S − j∗.

Finally, Lemma 8 shows bS > 0 implies π∗(u, S) 6=probe(k)
for all k 6= j∗ and u, where j∗ is defined in Theorem 1.

9.6 Proof of Theorem 3
When probing costs are equal for all channels, this the-

orem follows from Corollary 2 since all channels in S are
statistically identical, R = S, and |R| = |S| ≥ 2

When probing costs differ between channels, we can use
induction on the cardinality of S to prove the result.

Induction Basis: Suppose |S| = 2. From Theorem 2, the
strategy given in Theorem 3 is optimal.

Induction Hypothesis: Consider any S ⊆ Ω, where |S| ≥ 3,

and suppose the theorem holds for all S̃ ⊆ Ω such that
|S̃| < |S|. For notation, let S = {j1, j2, · · · , jn} where cj1 ≥
cj2 ≥ · · · ≥ cjn . Note that from the discussion in Section
3, when cj ≤ ck but Xj and Xk have the same distribution,
then aj ≥ ak while bj ≤ bk. Thus, ajn ≥ ajn−1

≥ · · · ≥ aj1

and bjn ≤ bjn−1
≤ · · · ≤ bj1 .

From Lemma 6, we know aS = ajn . Thus, it only remains
to determine π∗(u, S) for u < ajn .

Case 1 : Suppose ajn > bjn . From Corollary 2, only chan-
nel jn can be guessed. However, because bjn ≤ bjn−1

, then
Lemma 9 implies bS = 0. Thus, we only need to decide
which channel to probe when u < ajn .

We derive π∗ for two separate subcases. First, suppose
ajl

> bjl
for all 1 ≤ l ≤ n. In particular, this implies

ajn > bj1 . Let V ∗(u, S) denote the expected reward of the
following strategy: first probe jn and then proceed accord-
ing to π∗ as determined by the induction hypothesis. Mean-
while, let H(u, S) denote the expected reward of first prob-
ing some channel jk, where k < n, and proceeding according
to π∗. For any bj1 ≤ u < ajn , it can be shown similar to the
proof of Theorem 5 that V ∗(u, S) − H(u, S) is invariant to
u. However, from Lemma 7 we know π∗(u, S) =probe(jn)
for all bj1 ≤ u < ajn . Thus, V ∗(u, S) > H(u, S) for these
u. Combining everything implies π∗ (bj1 , S) =probe(jn) and
V (bj1 , S) = V ∗(bj1 , S). Finally, it can be easily shown
that V ∗(u, S) = V ∗(bj1 , S) for any u < bj1 . From (5),
this implies V (u, S) = V ∗(u, S) for all u < bj1 ; therefore,
π∗(u, S) =probe(jn) for all u < bj1 .

Now suppose ajl
= bjl

for some 1 ≤ l < n (we let l denote
the largest index satisfying ajl

= bjl
). Consider probing

any channel jk where k < n and k 6= l. Then from the in-
duction hypothesis, after probing jk we will either retire or
continue to probe channels in decreasing order of the indices
˘

ajn , ajn−1
· · · , ajl

¯

. If the state is reached where channel
jl has the highest index value, then from the induction hy-
pothesis we will retire if max

˘

Xjk
, Xjn , · · · , Xjl+1

¯

≥ ajl
;

otherwise, the optimal action is guess(jl) which collects a re-
ward of E[Xjl

]. Since jl is never probed, the total expected
reward of this strategy is exactly the same as the reward of a
strategy in the NG Problem where initially u = E[Xj ], chan-
nels are probed in the order: {jk, jn, · · · , jl+1, jl} and retire-
ment occurs according to Theorem 5. Similarly, first probing
jn has the same expected reward as a strategy in the NG
Problem that probes channels in the order {jn, jn−1, · · · , jl}
and retires according to Theorem 5, where again u = E[Xj ].
Thus, we can use Theorem 5 to show that the latter strat-
egy must have higher expected reward. Similar steps can be
used to show that probe(jl) cannot be optimal for any u.

Case 2 : Suppose ajn = bjn . Then Corollary 2 implies
π∗(u, S) =guess(jn) for all u ≤ ajn = bjn .


