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Abstract

In this paper, we characterize the stability region of IEEE 802.11 DCF from a multi-channel perspective. The fundamental
conceptual issue accompanying channelization is the notion of channel-switching scheduling policy which introducesa channel-
occupancy distribution of each node. We show that channelization is heuristically equivalent to expanding the averagebackoff
window in shaping the stability region. Hence, the convexity of stability region of a multi-channel system under 802.11DCF is
almost ubiquitous. Also, as a result of the comparison amongstability regions of different scheduling policies, the existence of
throughput-optimal policy is inquired, and some preliminary results on this aspects are also presented.

I. I NTRODUCTION

Advances in software defined radio in recent years have motivated numerous studies on building agile, channel-aware
transceivers that are capable of sensing instantaneous channel quality and making opportunistic channel access and transmission
scheduling decisions. By allowing users to dynamically select which channel to use for transmission, these schemes aimto
improve the system performance, typically measured by the total (or per user) throughput, the average packet delay and etc,
compared to a system with a single channel or more static channel allocations. The main reason behind such improvement
lies in temporal, spatial and spectral diversity. That is, the quality of a channel perceived by a user is time-varying, user-
dependent, and channel-dependent. This technology development motivates us to continue the study in [1] on stability region
of IEEE 802.11 DCF in a single channel setting. The fundamental conceptual issue accompanying channelization is the notion
of channel-switching scheduling policy, either centralized or distributed, which introduces a channel-occupancy distribution
of each node. Consequently, the attempt rate of a node in a channel is roughly discounted by a factor of its occupancy
probability in this channel. In [1], the authors showed thatthe transmission attempt rate of each node is upper bounded by the
reciprocal of the average backoff window size. We may then heuristically argue that this discounting effect from channelization
is equivalent to expanding the average backoff window. Hence, following the conclusion in [1] that the stability regionunder
a large backoff window is convex, we may expect that the stability region in a multi-channel system is likely to be convex
in most parameterizations. Also, this window expansion effect from the channel occupancy distribution enables us to omit
successive attempts even under a small backoff window in themulti-channel case, thus simplifying the analysis without
impacting numerical accuracy. Moreover, for a given policy, instead of using the aforementioned metrics we can measurethe
system performance by its stability region, thus implying the concept of throughput-optimality, and we are then interested in
investigating the existence of such a throughput-optimal policy.

We proceed as follows. In Section II, we present our model andstate definitions and assumptions. In Section III, we provide
a constrained system of equations to quantitatively describe the stability region, followed by the analysis on characteristics
of its solutions. These results are then numerically studied and compared to results from simulation in Section IV, and we
conclude in Section V.

II. SYSTEM MODEL

Consider a multiple access system using the IEEE 802.11 DCF.We assume that

1) the system consists ofn nodes (or users interchangeably), indexed by the setN = {1, 2, . . . , n}, each with an infinite
buffer; each node uses the same parameterization and has onetransceiver;

2) the system is withK channels, indexed by the setC = {1, 2, . . . , K}; all channels are ideal and there is no MAC-level
packet discard, i.e., there is no retransmission limit of a packet after collision; all channels are physically symmetric,
namely in bandwidth, and the system use the same parameterization for all channels.

3) the queueing process at each node is stationary and ergodic such that Little’s law is applicable [2].

We are still unclear about the effects of asymmetry among channels on the system performance, and we leave the asymmetric
scenario as our future work. Despite the notion of channel-switching scheduling policy (scheduling policy or policy inter-
changeably), another rather technical issue introduced bychannelization is the heterogeneity of embedded time unitsamong



2

channels. Since the length of a slot in a channel is in nature arandom variable that depends on the traffic flows going through,
channels are in general strongly asynchronous in the embedded time units. Thus, as nodes transit among channels, we may
need to keep changing our reference of embedded time in slot-based analysis. We then define the notions of a slot in different
contexts as follows.

Definition 1: Consider a virtual backoff timer in each channel that countsdown according to the 802.11 exponential backoff
scheme with an infinite initial value. Achannel-slot (c-slot)is defined as the time interval between two consecutive decrements.
Consider a virtual backoff timer at each node with an infiniteinitial value, the one that is synchronized with the virtualtimer of
the channel in which the node resides. Anode-slot (n-slot)is defined as the time interval between two consecutive decrements
of the nodal virtual backoff timer.

Remark 1:There is in fact no inherent difference between notions of the two types of slots; however, the implicit references
of timing in embedded slots are explicitly distinguished. This differentiation of the references of time becomes crucial when we
define quantities based on the embedded time, the length of which is a random variable and inherently depends on a specific
channel, provided that nodes can traverse among different channels. This observation will soon be more concrete in analysis,
and without ambiguity in certain context, we will omit the explicit association of a channel (node) index with a slot in the rest
of the paper.

We then formally define a channel-switching scheduling policy. We first define some preliminary notation. Define by1(k)
i (s)

the indicator function of the presence of nodei in channelk in c-slot s. Define byIs,(k)
i the space of all possibly available

information to nodei up to c-slots in channelk. Assuming perfect record at each node, for any arbitrary realization I
s,(k)
i ∈

I
s,(k)
i andI

s′,(k)
i ∈ I

s′,(k)
i , we haveIs,(k)

i ⊂ I
s′,(k)
i for all s < s′, andIs,(k)

i is application-dependent. For instance, we may
have1(k)

i (s) ∈ I
s,(k)
i , and other information like the current backoff stage and the empirical average throughput up to the

c-slot s may also be elements ofIs,(k)
i . Define byTk the mapping from a c-slot index in channelk to the real time instantt

of the beginning of this slot, and byT−1
k the inverse mapping from a real time instantt to the index of a c-slot in channelk

that it is within. We then define a scheduling policy as follows.

Definition 2: 1) Centralized scheduling policy: assuming thatI
s,(k)
i ∈ I

s,(k)
i is known by the central controller for alli and

k at c-slot1 sk with perfect record,1(k)
i (sk + 1) is then given by1(k)

i (sk + 1) = g
(k)

i,sk(Isk

),

where
Isk

:=
{
I

sl,(l)
i , ∀i ∈ N , ∀l ∈ C, ∀sl ≤ T−1

l (Tk(sk))
}
.

2) Decentralized scheduling policy: assuming thatI
s,(k)
i is the private information of nodei, and scheduling is determined

locally at each node, then 1(k)
i (s + 1) = g

(k)
i,s (I

s,(k)
i ).

In both cases, the sequenceg(k) := (g(k)
1 , g(k)

2 , . . .) constitutes the corresponding scheduling policy in channel k, where
g(k)

s = (g
(k)
1,s , g

(k)
2,s , . . . , g

(k)
n,s). The collectiong := {g(1), g(2), . . . , g(K)} then forms a channel-switching scheduling policy of

the system, and the space of all possible policies is denotedby G.

Note that the mixture of centralized and decentralized policies defined above, e.g., locally centralized policies, canbe
similarly defined. For the rest of this paper, we make the following assumptions about a scheduling policyg.

A1 Underg, the FACS decoupling approximation or simply Bianchi’s approximation is still satisfied.
A2 g is independent of the binary state of queue at any node, wherethe binary state space isB = {empty, non-empty}.
A3 g is persistentin a channel for the entire service process of a packet, that is, a channel-switching decision is only made

before or after the service process of a packet.

Remark 2:A3 also means that a channel switching is only scheduled at the edge of a c-slot. However, the edges of c-slots in
the two channels that a node switches between may not be aligned then, and we then assume the synchronization of the nodal
backoff time with the channel timer is done with the beginning of the next c-slot in the new channel. Hence, there may be a
fragment of time after switching that the nodal timer is “indefinite” about its channel allocation, as illustrated in Appendix A.

As aforementioned,g introduces a channel occupancy distribution for each node and we characterize it as follows. Define
by Qi = {q

(k)
i , k ∈ C} the equilibrium channel occupancy distributionin n-slotsof nodei. Denote byt− the beginning of an

arbitrary n-slot, and thenq(k)
i is given by

q
(k)
i = P

{
nodei is in channelk at t−

}
.

1Here we use the superscript to avoid ambiguity.
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Define by Q̂i = {q̂
(k)
i , k ∈ C} the equilibrium channel occupancy profilein c-slotsof node i. Similarly, denote bŷt− the

beginning of an arbitrary c-slot in channelk, and q̂
(k)
i is then given by

q̂
(k)
i = P

{
nodei is in channelk at t̂−

}
.

Note that
∑

k∈C q̂
(k)
i may not be one, and̂Qi is thus not a distribution in any probabilistic sense. However, Q̂i is associated

with Qi by

q̂
(k)
i ≈

q
(k)
i

∑
l 6=k
l∈C

(
q
(l)
i

E[slot
(l)
+i

]

E[slot
(k)
−i

]

)
+ q

(k)
i

for all k, whereE[slot
(k)
+i ] (E[slot

(k)
−i ]) are the conditional average lengths of a c-slot in channelk in seconds, given the presence

(resp. absence) of nodei therein. We show in Appendix A that this approximation becomes equality if we assume the edges of
slots in two channels are aligned when there is a node switching between them. Define bỹQi = {q̃

(k)
i , k ∈ C} theequilibrium

packet assignment distribution of nodei, where

q̃
(k)
i = P

{
an arbitrary packet of nodei is served in channelk

}
.

Q̃i andQi are associated by a well-defined correspondence which is specified at the end of this section after defining other
required quantities.

Let the data arrival rate at nodei be λi bits per second, wherei ∈ N , and letλ = (λ1, λ2, . . . , λn). We then define the
stability region of system as follows.

Definition 3: The stability regionof systemΛg given a scheduling policyg is the set

Λg
:=

{
λ ∈ R

n
+

˛

˛

˛

˛

˛

the queue lengths at all nodes are
bounded when the data arrival rates
areλ under 802.11 DCF withg

)

.

For any givenλ, whetherλ ∈ Λ is determined by the utilization factor of each node, denoted by ρi for node i,or equivalently
the probability that the queue at node i is non-empty at an arbitrary real time instant. Let̂ρ(k)

i be the probability that the queue
at nodei is non-empty at the beginning of an arbitrary c-slot in channel k, denoted byt−. ρ̂

(k)
i is then given by

ρ̂
(k)
i = P

{
the queue at nodei is non-empty att−

}
,

Similar to the single channel case, we haveρ̂
(k)
i ≤ ρi where equality holds if and only ifρi = 1 or ρi = 0, i.e., nodei is

either saturated or. In parallel, define

ˆ̂ρ
(k)
i =

ρiE[slot
(k)

i,Q
]

ρiE[slot
(k)

i,Q
] + (1− ρi)E[slot

(k)
i,Q]

,

whereE[slot
(k)
i,Q] (E[slot

(k)

i,Q
]) is the conditional average length of an arbitrary c-slot inchannelk, given that the queue at node

i is non-empty (resp. empty) at the beginning of slot. Using the similar argument in [1], we have

ρ̂
(k)
i ≈ ˆ̂ρ

(k)
i .

Let τ
(k)
i be the probability that nodei initiates a transmission attempt in an arbitrary c-slot in channelk. Then, we have the

following lemma.

Lemma 1:τ (k)
i is given byτ

(k)
i = q̂

(k)
i ρ̂

(k)
i /W

(k)

i , whereW
(k)

i is the average backoff length of nodei in channelk, and
the termbackoff lengthmeans the selected timer value plus 1.

Proof:

Tx :=
{

nodei initiates a first-attempt in a c-slot in channelk
}
;

Q(Q) :=
{

the queue at nodei is non-empty (empty) at the beginning of a c-slot in channelk
}
;

Ch(k)(Ch(k)) := {nodei is present (absent) in channelk in a c-slot}.

We then have

τ
(k)
i = P (Tx|Q) · P (Q) + P (Tx|Q) · P (Q)

= P (Tx|Q) · P (Q) + P (Tx|Q, Ch(k)) · P (Ch(k)|Q) · P (Q) + P (Tx|Q, Ch(k)) · P (Ch(k)|Q) · P (Q).
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Note thatP (Tx|Q, Ch(k)) = 1

W
(k)
i

andP (Ch(k)|Q) = q̂
(k)
i , we obtain2

τ
(k)
i = 0 · (1− ρ̂

(k)
i ) +

1

W
(k)

i

· q̂
(k)
i · ρ̂

(k)
i + 0 · (1− q̂

(k)
i ) · ρ̂

(k)
i

=
q̂
(k)
i ρ̂

(k)
i

W
(k)

i

.

Remark 3:1) With A3, W
(k)

i is given by

W
(k)

i =
1

2


W


(1− p

(k)
i )

m−1∑

j=0

(2p
(k)
i )j + (2p

(k)
i )m


+ 1


 ,

wherep
(k)
i is the probability of collision given a transmission attempt andW is the initial size of backoff window.

2) With the notion ofτ (k)
i , the family of quantitiesE[slot

(k)
{·}], the conditional average length of a c-slot in channelk given

the event{·}, is well defined, and the results are reported Appendix B.

Definep
(k)
i the probability of collision given a transmission from nodei in channelk. Then, we have

q
(k)
i ≈

q̃
(k)
i

q̂
(k)
i

τ
(k)
i (1−p

(k)
i )

∑
l∈C q̃

(l)
i

q̂
(l)
i

τ
(l)
i

(1−p
(l)
i

)

,

where the approximation becomes equality under the same condition asq̂
(k)
i , and is justified in the appendix as well.

III. M ULTI -CHANNEL ANALYSIS

A. The stability region equationΣg

Given any scheduling policyg, Let Λg be the corresponding stability region.
Theorem 1:λ ∈ Λg if and only if there exists at least one solutionτ = (τ (k), k ∈ C) whereτ (k) = (τ

(k)
i , i ∈ N ) to the

following constrained system of equations(Σg, C, λ),

Σg :





τ
(k)
i =

q̂
(k)
i ρ̂

(k)
i

W
(k)

i

(a)

p
(k)
i = 1−

∏

j 6=i

(1− τ
(k)
j ) (b)

ρi = min

{
λi

P

∑

k∈C

[
q̃
(k)
i

(
W

(k)

i − 1

1− p
(k)
i

E[slot
(k)

i,Q,Tx
] + T (k)

c

p
(k)
i

1− p
(k)
i

+ T (k)
s

)]
, 1

}
(c)

subject to

C :

{
0 ≤ τ

(k)
i ≤ 1 (i)

0 ≤ ρi < 1 (ii)

wherei ∈ N andk ∈ C; P is the packet payload size;E[slot
(k)

i,Q,Tx
] is the conditional average length of a c-slot in channelk

given that the queue at nodei is non-empty buti does not transmit in this slot.
Proof: The proof is an immediate extension of the proof of Theorem 1 in [1], given the assumptions made aboutg.

Remark 4:1) In the rest of the paper, we assume thatQg
i are constants that are predeterminable for alli. In addition, the

explicit upper bound onρi in Σg(c) can be omitted due toC(ii).
2) With K = 1 andq

(1)
i = 1 for all i ∈ N , Σg degrades toΣ in the single channel case [1], andΣg then forms the unified

framework for the rest of our analysis.

2As noted in [1], the first equality is technically an approximation.
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B. Characteristics of solutions toΣg

Like in the single channel case, we use Brouwer’s fixed point theorem to prove the existence of solutions toΣg. The technical
difference in the multi-channel case is the selection of proper variables to construct the fixed point equation. In the single
channel case, we rewriteΣ as an fixed point equation with respect toτ = (τi, i ∈ N ). However, because of channelization,
unknown quantities inΣg are intricately intertwined, and it turns out to be difficultto implementΣg as an equation with
respect toτ solely, whereτ = (τ (k), k ∈ C) and τ (k) = (τ

(k)
i , i ∈ N ). Nevertheless, by using auxiliary variables, namely

ρ̂ = (ρ̂i, i ∈ N ), we show in Appendix F that we can construct a fixed point equation in [0, 1]Kn × [0, 1]Kn, that is,

(τ , ρ̂) = Γ
′(τ , ρ̂),

whereτ , ρ̂ ∈ [0, 1]Kn. SinceΓ
′ is a continuous vector function, the existence of solutionsto Σg is then established.

As to the uniqueness of solution to(Σg, λ). we limit our focus to a family of scheduling policies that wecall the unbiased
policies, and we present the result on the uniqueness of solution when the initial window sizeW is sufficiently large for an
unbiased policy. Before we formally state our theorem, we define the the family of unbiased scheduling policies as follows.

Definition 4: A scheduling policy isunbiasedif the stationary channel occupancy distribution is identical for every node,
i.e., q(k)

i = q(k) for all i ∈ N andk ∈ C. An unbiased scheduling policy is denoted bygU , and the space of unbiased policies
is denoted byGU .

We are then ready to present the theorem on the uniqueness of solution to (ΣgU

, λ).

Theorem 2:For all sufficiently largeW , (ΣgU

, λ) admits a unique solution.
Proof: See Appendix C.

Combining the results of Theorem 1 and the proof of Theorem 2,we conclude the following corollary.

Corollary 1: WhenW is sufficiently large,ΛgU

is approximated by

Λ̃gU

=

{
λ ∈ R

n
+

∣∣∣∣∣ 0 <
γ1

i (λi)
∑

j γ2
j (λj)

1−
∑

i γ1
j (λj)

+ γ2
i (λi) <

2

W + 1
, ∀i ∈ N

}
,

where
γ1

i (λi) =
(λiT

P

∑

l∈C

[
fl

(
Q
)
hl

(
Q
)])/(

1 +
λiT

P

∑

l∈C

[
fl

(
Q
)
hl

(
Q
)])

,

and

γ2
i (λi) =

(λiT

P
−

λi(W − 1)(T − σ)

P (W + 1)

)/(
1 +

λiT

P

∑

l∈C

[
fl

(
Q
)
hl

(
Q
)])

.

with the constantsfl

(
Q
)

andhl

(
Q
)

numerically determined givenQ = {q(k), k ∈ C} in Appendix C.

C. Disccusion on the throughput-optimality withinGU

In our random access system, the input data ratesλ and the occupancy distributionQgU

induced by the policygU are main
sets of tunable parameters for controlling the system. However, in most application scenariosλ is unknown to the network
manager or it is in fact regarded as private information of users. Thus, we may want to focus on designing the scheduling policy
g (could be viewed in a higher level of mechanism design) to engineer our system for desired or even optimal performance.
As to the notion of optimality and various metrics defining it, we concentrate on the so-called throughput optimality, and in
the following theorem we present a result on the throughput optimality within the family of unbiased policiesGU . We show
that the equi-occupancy policy that is interpreted by its name induces throughput optimality inGU . This result is stated after
the conventional definition of throughput optimality in thefollowing.

Definition 5: Let G be a set of scheduling policies.g∗ ∈ G is said to be throughput-optimal inG if Λg∗ ⊇ Λg for all g ∈ G.

Theorem 3 (The unbiased equi-occupancy theorem):Consider a scheduling policygU ∈ GU and the associated stationary
channel occupancy distributionQgU

and stability regionΛgU

. For all sufficiently large initial window sizeW , gU is throughput-
optimal inGU if q(k) = 1

K
for all k.

Proof: See Appendix D.

Remark 5:The above result may provide us the heuristic that given symmetric channelization and identical channel occu-
pancy of users (or any scaled version when channels are asymmetric), traffic-load balancing optimizes the system performance
in terms of expanding the stability region. However, in the context of unbiased channel occupancy distribution, the notion of
balancing may also be interpreted in terms of the number of active users in each channel. In fact, balancing traffic-loadsand
numbers of active users in channels may have a joint effect ontuning the system, and we are still unclear how the two types of
balancing affect the system performance. Also, we believe athroughput-optimal policy in the entire policy spaceG, if exists,
is in general a biased one. A trivial example would be that deterministically separating two users in a bi-channel systemis
clearly no worse than an equi-occupancy strategy. The inquires arisen above are open question to the future work.
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D. Heuristic implementation of equi-occupancy policies

In this part, we propose a simple algorithm to implement the equal occupancy policies in the bi-channel model. The proposed
algorithm consists of two parts called SAS (Switching AfterSuccess) and SAC (Switching After Collision). In both parts, a
switching probability is assigned to each backoff stage. InSAS (SAC), a node switches to the other channel with probability αi

after each successful transmission (resp. each collision)if it is at theith backoff stage. In addition, in SAC, after switching to the
other channel, a node does not reset its backoff stage; instead, it continues the exponential backoff due to the last collision. This
algorithm heuristically implements the equi-occupancy policy in the following sense. Consider the two-dimensional Markov
chains in the form of Bianchi’s model [3], where each state inone channel has a mirror state in the other one. Using the
argument of symmetry, the symmetric solution is one possible steady-state distribution which implements the equi-occupancy
as shown in Appendix E. Yet it is indefinite that if any asymmetric solution exists while the symmetric solution is always
observed in our numerical experiment. Also note that SAS satisfies the assumptionA3 but SAC does not. However, we show
in Appendix E that SAC is equivalent to SAS in terms of the attempt rate in saturation in the symmetric solution. Notice
that the Markov chain model implicitly assumes no empty channel for a significantly long time resulting from the policy;
otherwise, the system may operate at the steady state of a single channel system for considerably long time, which undermines
the assumed stationarity of the multi-channel chain, and moreover, the stationary distribution of this mean field modelmay
not reflect the empirical long-term time average. When collision is frequent, using SAS nodes tend to cluster in one certain
channel, thus incurring the above problem. Nonetheless, SAC heuristically avoids such situation in congestion. Therefore, we
may combine the two simple switching strategies according to the traffic condition.

IV. N UMERICAL STUDIES

In this section, we present the numerical results obtained based on the solver and simulator that we implemented on MATLAB

2008b. Specifically, we consider a system of two users with two channel. Though this scenario is a toy example, it illustrates
most of the essence in our previous analysis. The specification of the test bench is reported in Table II in Appendix F. We
focus on three objectives, namely, the comparison between stability regions of single and bi-channel systems, the throughput-
optimality in GU , and the relative advantage of channelization to a single channel.
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(3.8, 3.8) (0.4928, 0.5034)

(c) W = 32, m = 5

Fig. 1. The stability regions for various scenarios undergU and the empirical occupancy distribution under SAS withαi = 1 for all i.

In Figure 1, we plot the analytical stability region for various scenarios and their simulated boundary using SAS. We also
report the empirical occupancy distribution obtained aside. The method of simulation is the same as in the single channel
case and is reported in[1]. Compared to results of the single channel case, convexity of the stability region is observed even
with small backoff windows in the bi-channel case. Also, thenumerical multi-equilibrium phenomenon [1] disappears inthe
bi-channel system, which is expected from the heuristical equivalence between channelization and window expansion following
the discussion in [1]. To conclude, a unique convex stability region is generally expected for a mutli-channel system. Moreover,
empirical data shows that SAS implements the equi-occupancy in steady state.
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Fig. 2. Throughput optimality of equi-occupancy distribution.
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Fig. 3. Approximated stability regions̃ΛgU
.

In Figure 2, we plot the analytical boundaries of stability regions corresponding to different unbiased policies in twoscenarios
for instance. As can been seen therein, the equi-occupancy policy results in the stability region that is the superset ofthose
of other unbiased policies. It is also worth noting that as the backoff window enlarges, the gap between the superset region
and other inferior regions shrinks, as the reciprocal of thewindow size becomes the dominant factor in upper bounding the
attempt rate.

In Figure 3, we plot the approximated stability regionΛ̃gU

that are computed using the result of Corollary 1. Specifically, the
constantsfk

(
Q
)

andhk

(
Q
)

are determined using the iterative approach presented in Appendix C. Compared to solving the
original system of equations(ΣgU

, C, λ), solving the approximated system is of significantly reduced computational complexity.
Also, as can be seen in the plots, the resulting approximation is accurate especially when the policy is the equi-occupancy one
or the backoff window is large.

V. CONCLUSION

In this paper, we identified the stability region of 802.11 DCF from a multi-channel perspective. Compared to the single
channel case, the primarily novel problem is the characterization of the effects of channel-switching scheduling policies on the
system stability. We showed that the main effect can be heuristically understood as the expansion of backoff window. Also,
primary results on the throughput optimality are shown in the context of unbiased polices.

APPENDIX A
COMPUTATION OF Q̂ AND Q̃

We first define the following stochastic processes generatedby the queueing process at nodei.

N
(k)
+i (t)

(
N

(k)
−i (t)

)
:= the total number of c-slots in channelk that nodei is present at its beginning up to timet;

S
(k)
+i (j)

(
S

(k)
−i (j)

)
:= the length of thejth c-slot in channelk given the presence (resp. absence) of nodei at its beginning;

T
(k)
+i (t) := the total length of real time periods that nodei is present in channelk up to timet.

Note that the above processes are well-defined on the same space Ω. As we argued before, when a channel switching is
scheduled, the edges of c-slots of the two channels that a node switches between may not be aligned. Hence, there may be a
period of unsynchronized time of the nodal backoff timer, asshown in Figure 4. If omitting the unsynchronized time, we have

∑

l∈C

N
(l)
+i (t)∑

j=1

S
(l)
+i(j) = t =

N
(k)
+i (t)∑

j=1

S
(k)
+i (j) +

N
(k)
−i (t)∑

j=1

S
(k)
−i (j),
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c-slotslototc-sl n-slot
unsynchronized

time

unun

channel 1

channel 2 switch switch

Fig. 4. Illustration of channel switching and timer synchronization.

and then
∑

l 6=k
l∈C

N
(l)
+i

(t)∑

j=1

S
(l)
+i(j) =

N
(k)
−i

(t)∑

j=1

S
(k)
−i (j),

or equivalently,

∑

l 6=k
l∈C

N
(l)
+i (t)

∑N
(l)
+i

(t)

j=1 S
(l)
+i(j)

N
(l)
+i (t)

= N
(k)
−i (t)

∑N
(k)
−i

(t)

j=1 S
(k)
−i (j)

N
(k)
−i (t)

.

Using then the ergodicity assumption,q̂
(k)
i can be expressed alternatively for allω ∈ Ω as

q̂
(k)
i = lim

t→∞

N
(k)
+i (ω, t)

N
(k)
+i (ω, t) + N

(k)
−i (ω, t)

= lim
t→∞

N
(k)
+i

(ω,t)

Ni(ω,t)

N
(k)
+i

(ω,t)

Ni(ω,t) +
∑

l 6=k
l∈C

N
(l)
+i

(ω,t)

Ni(ω,t)

P

N
(l)
+i

(ω,t)

j=1 S
(l)
+i

(ω,j)

N
(l)
+i

(ω,t)

/P

N
(k)
−i

(ω,t)

j=1 S
(k)
−i

(ω,j)

N
(k)
−i

(ω,t)

=
q
(k)
i

q
(k)
i +

∑
l 6=k
l∈C

(
q
(l)
i

E[slot
(l)
+i

]

E[slot
(k)
−i

]

) .

We define a few more processes generated by the queueing process at nodei.

P
(k)
i (t) := the total number of packets transmitted by nodei in channelk up to timet;

B
(k)
i (t) := the number of busy slots in the service circle of thejth packet;

I
(k)
i (t) := the number of idle slots in the service circle of thejth packet,

where a service circle is the period in slots between the beginning of service processes of two successive packets. A busyslot
refers to a slot in the service process and a idle slot is a slotwhen the queue at the node is empty. Then,q

(k)
i can also be

expressed alternatively as

q
(k)
i = lim

t→∞

N
(k)
+i (t)

∑
l∈C N

(l)
+i (t)

= lim
t→∞

∑P
(k)
i

(t)
j=1 (B

(k)
i (j) + I

(k)
i (j))

∑
l∈C

∑P
(l)
i

(t)
j=1 (B

(l)
i (j) + I

(l)
i (j))

= lim
t→∞

P
(k)
i

(t)
P

h∈C P
(h)
i

(t)

PP
(k)
i

(t)

j=1 B
(k)
i

(j)

P
(k)
i

(t)

PP
(k)
i

(t)

j=1 (B
(k)
i

(j)+I
(k)
i

(j))

PP
(k)
i

(t)

j=1 B
(k)
i

(j)

∑
l∈C

P
(l)
i

(t)
P

h∈C P
(h)
i

(t)

PP
(l)
i

(t)

j=1 B
(l)
i

(j)

P
(l)
i

(t)

PP
(l)
i

(t)

j=1 (B
(l)
i

(j)+I
(l)
i

(j))

PP
(l)
i

(t)

j=1 B
(l)
i

(j)

,
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where we have suppressed the reference to a sample pointω in all involved processes for brevity in notation, or interpret the
equalities as with probability one. Note that the limits of all ratios are well defined, and we obtain

q
(k)
i =

q̃
(k)
i B

(k)

i
1

ρ̂
(k)
i∑

l∈C q̃
(l)
i B

(l)

i
1

ρ̂
(l)
i

=
q̃
(k)
i

W
(k)
i

1−p
(k)
i

1

ρ̂
(k)
i

∑
l∈C q̃

(l)
i

W
(l)
i

1−p
(l)
i

1

ρ̂
(l)
i

=
q̃
(k)
i

q̂
(k)
i

τ
(k)
i

(1−p
(k)
i

)

∑
l∈C q̃

(l)
i

q̂
(l)
i

τ
(l)
i

(1−p
(l)
i

)

.

APPENDIX B
COMPUTATION OF E[slot{·}] AND RELATED QUANTITIES

Given an event{·}, let P
(k)
idle;{·}, P

(k)
succ;{·} andP

(k)
coll;{·} be the conditional probabilities that this slot is idle, that it contains a

successful transmission, and that it has a collision, respectively. Notice thatP (k)
coll;{·} = 1−P

(k)
idle;{·}−P

(k)
succ;{·}. Then,E[slot{·}]

is given by
E[slot{·}] = P

(k)
idle;{·} · σ + P

(k)
succ;{·} · Ts +

(
1− P

(k)
idle;{·} − P

(k)
succ;{·}

)
· Tc.

whereσ, Ts and Tc are the lengths of an empty system slot, a successful transmission, and a collision, respectively. Given
τ

(k)
i,{·}, the conditional attempt rate of nodei in channelk, we further have

P
(k)
idle;{·} =

∏

i

(1− τ
(k)
i,{·}),

and
P

(k)
succ;{·} =

∑

i

τ
(k)
i,{·}

∏

j 6=i

(1− τ
(k)
j,{·}).

Explicit expressions for varieties ofE[slot{·}] that are used throughout the paper are reported in Table I.

P
(k)
idle;{·}

P
(k)
succ;{·}

E[slot
(k)

i,Q
]

Y

j 6=i

(1 − τ
(k)
j )

X

j 6=i

τ
(k)
j

Y

l6=i,j

(1 − τ
(k)
l

)

E[slot
(k)
i,Q

]

(1 − τ
(k)
i,Q

)
Y

j 6=i

(1 − τ
(k)
j )

whereτ
(k)
i,Q

=
q̂
(k)
i

W
(k)
i

X

l

t
(k)
l

Y

j 6=l

(1 − t
(k)
l

),

wheret
(k)
j =

(

τ
(k)
i,Q

, j = i

τ
(k)
j , j 6= i

E[slot
(k)

i,Q,Tx
]

Y

j 6=i

(1 − τ
(k)
j )

X

j 6=i

τ
(k)
j

Y

l6=i,j

(1 − τ
(k)
l

)

E[slot
(k)
+i ]

(1 − τ̃
(k)
i )

Y

j 6=i

(1 − τ
(k)
j )

where τ̃
(k)
i =

ρ̂
(k)
i

W
(k)
i

X

l

t
(k)
l

Y

j 6=l

(1 − t
(k)
l

),

wheret
(k)
j =

(

τ̃
(k)
i , j = i

τ
(k)
j , j 6= i

E[slot
(k)
−i ]

Y

j 6=i

(1 − τ
(k)
j )

X

j 6=i

τ
(k)
j

Y

l6=i,j

(1 − τ
(k)
l

)

TABLE I
SUMMARY OF COMPUTATION OFE[slot

(k)
{·}

].

APPENDIX C
PROOF OFTHEOREM 2

A. Main proof

As in the proof of Theorem 2 in [1], we first make several simplifying approximations due to the large window assumption.
With a large backoff window, the probability of collision issmall, so we haveW

(k)

i ≈ W+1
2 . We also observe thatE[slot

(k)
i,Q] ≈
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E[slot
(k)

i,Q
] sinceτ

(k)
i,Q ≤

1

W
(k)
i

andW is large. Consequently,

ρ̂
(k)
i ≈

ρiE[slot
(k)

i,Q
]

ρiE[slot
(k)

i,Q
] + (1− ρi)E[slot

(k)
i,Q]
≈ ρi.

Let Ts = Tc = T for the simplicity of presentation. Then,Σg is approximated by the following set of equations, that is:

Σ̃g :





τ
(k)
i =

q̂
(k)
i ρi

W+1
2

(a)

p
(k)
i = 1−

∏

j 6=i

(1 − τ
(k)
j ) (b)

ρi =
λi

P

∑

k∈C



q̃

(k)
i




W+1
2 − 1

1− p
(k)
i


σ

∏

j 6=i

(1 − τ
(k)
j ) + T

(
1−

∏

j 6=i

(1− τ
(k)
j )

)

+ T

p
(k)
i

1− p
(k)
i

+ T





 (c)

Note that for a policygU , we haveq
(k)
i = q(k) for all i ∈ N . Furthermore, we have two more approximations aboutq̂

(k)
i

and q̃
(k)
i . We assume that̂q(k)

i ≈ fk

(
Q
)

and q̃
(k)
i ≈ hk

(
Q
)

for all i and k, whereQ = {q(l), l ∈ C}, and fk and hk are
non-user-specific functions and determined after the main proof. The rest of steps is similar to the proof of Theorem 2 in [1].
For the completeness of report, we repeat them as follows. Substituting Σ̃g(b) and (c) in (a), we obtain

τ
(k)
i = q̂

(k)
i

2λi

P (W + 1)

∑

l∈C



q̃

(l)
i


W + 1

2
T
∏

j 6=i

1

1− τ
(l)
j

−
W − 1

2
(T − σ)







= q̂
(k)
i

∑

l∈C



q̃

(l)
i


λiT

P

∏

j 6=i

1

1− τ
(l)
j

−
λi(W − 1)(T − σ)

P (W + 1)





 .

Using the first-order Taylor approximation, we have
∏

j 6=i
1

1−τ
(l)
j

≈ 1 +
∑

j 6=i τ
(l)
j . Hence,

τ
(k)
i ≈ q̂

(k)
i

∑

l∈C



q

(l)
i


λiT

P


1 +

∑

j 6=i

τ
(l)
j


− λi(W − 1)(T − σ)

P (W + 1)





 .

Let τi = 2ρi

W+1 , and then noticeτ (k)
i = q̂

(k)
i τi. Therefore, we can further reduce the dimensionality of thespace of unknowns

by rewriting the above equation w.r.t.τi’s. We have

q̂
(k)
i τi = q̂

(k)
i

∑

l∈C



q̃

(l)
i


λiT

P


1 +

∑

j 6=i

(
q̂
(l)
j τj

)

− λi(W − 1)(T − σ)

P (W + 1)





 ,

or equivalently,

τi =
λiT

P

∑

l∈C


q̃

(l)
i


1 +

∑

j 6=i

(
q̂
(l)
j τj

)



− λi(W − 1)(T − σ)

P (W + 1)

=
λiT

P


1 +

∑

l∈C

∑

j 6=i

q̃
(l)
i q̂

(l)
j τj


− λi(W − 1)(T − σ)

P (W + 1)
.

Using the approximations of̂q and q̃, then

τi =
λiT

P

∑

l∈C

[
fl

(
Q
)
hl

(
Q
)]
·
∑

j 6=i

τj +
λiT

P
−

λi(W − 1)(T − σ)

P (W + 1)

or equivalently,
(

1 +
λiT

P

∑

l∈C

[
fl

(
Q
)
hl

(
Q
)]
)

τi =
λiT

P

∑

l∈C

[
fl

(
Q
)
hl

(
Q
)]
·
∑

j

τj +
λiT

P
−

λi(W − 1)(T − σ)

P (W + 1)
.

Therefore, lety =
∑

j τj ,

γ1
i =

(λiT

P

∑

l∈C

[
fl

(
Q
)
hl

(
Q
)])/(

1 +
λiT

P

∑

l∈C

[
fl

(
Q
)
hl

(
Q
)])

,
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and

γ2
i =

(λiT

P
−

λi(W − 1)(T − σ)

P (W + 1)

)/(
1 +

λiT

P

∑

l∈C

[
fl

(
Q
)
hl

(
Q
)])

,

and Σ̃gU

is then equivalent to

Σ̃gU

:





τi = γ1
i y + γ2

i (a′)

y =
∑

i

(
γ1

i y + γ2
i

)
(b′)

which admits only one solution, namely,

τi =
γ1

i

∑
i γ2

i

1−
∑

i γ1
i

+ γ2
i .

B. Technical approximations

When the window size is sufficiently large, we can approximate q̂
(k)
i and q̃

(k)
i by fk

(
Q
)

= hk

(
Q
)

= q(k). A more accurate
approximation ofq̂(k)

i is given as follows. Given

q̂
(k)
i =

q
(k)
i

q
(k)
i +

∑
l 6=k
l∈C

(
q
(l)
i

E[slot
(l)
+i

]

E[slot
(k)
−i

]

) ,

we consider
E[slot

(l)
+i

]

E[slot
(k)
−i

]
wherel 6= k. Using the first-order Taylor approximation, we have

E[slot
(k)
{·}] = σ

∏

i

(
1− τ

(k)
i,{·}

)
+ T

(
1−

∏

i

(
1− τ

(k)
i,{·}

))

≈ σ
(
1−

∑

i

τ
(k)
i,{·}

)
+ T

∑

i

τ
(k)
i,{·}

= σ + (T − σ)
∑

i

τ
(k)
i,{·}.

Then referring to Table I, it follows that

E[slot
(l)
+i]

E[slot
(k)
−i ]

=
σ + (T − σ)

(∑
j 6=i τ

(l)
j + τ̃

(l)
i

)

σ + (T − σ)
∑

j 6=i τ
(k)
j

=
W̃ +

(∑
j 6=i q̂

(l)
j ρj + ρi

)

W̃ +
∑

j 6=i q̂
(k)
j ρj

,

whereW̃ = W+1
2 · σ

T−σ
. We then letρi = 1 for all i following the heuristic that the accuracy of the entire approximated

stability region can be reduced to that of the boundary estimated. Therefore, we obtain

q̂
(k)
i ≈

q
(k)
i

q
(k)
i +

∑
l 6=k
l∈C

(
q
(l)
i

fW+
“

P

j 6=i
q̂
(l)
j

+1
”

fW+
P

j 6=i q̂
(k)
j

) .

Recalling thatq̂(k)
i = fk

(
Q
)

for all i, the above equation is in fact a fixed point equation, and we can then solve it using an

iterative approach with the initial valuêq(k)
i = q(k).

APPENDIX D
PROOF OFTHEOREM 3

We consider the unbiased model established byΣ̃g with the approximation̂q(k)
i = q̃

(k)
i = q(k). Using Σ̃g(a) and (b), we can

rewrite Σ̃g(c) as follows,

ρi =
λi

P

∑

k∈C


q(k)


W + 1

2
T
∏

j 6=i

1

1− τ
(k)
j

−
W − 1

2
(T − σ)





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=
∑

k∈C


q(k)


λi(W + 1)T

2P

∏

j 6=i

1

1− τ
(k)
j

−
λi(W − 1)(T − σ)

2P






=
∑

k∈C


q(k)


θ1

i

∏

j 6=i

1

1− τ
(k)
j

+ θ2
i






= θ1
i

∑

k∈C


q(k)

∏

j 6=i

1

1− τ
(k)
j


+ θ2

i

= θ1
i

∑

k∈C

φi(q
(k); ρj , j 6= i) + θ2

i ,

whereθ1
i = λi(W+1)T

2P
, θ2

i = −λi(W−1)(T−σ)
2P

, andφi(q
(k); ρj , j 6= i) = q(k)

∏
j 6=i

1

1−τ
(k)
j

=
∏

j 6=i
q(k)

1−αjq(k) with αj =
2ρj

W+1

and1− αjq
(k) > 0 for all j. Notice thatφi(q

(k); ρj , j 6= i) is a convex function ofq(k) given any fixedρj wherej 6= i, and
it is also an increasing function ofρj ’s given any fixedq(k). We then have

ρi = θ1
i

∑

k∈C

φi(q
(k)) + θ2

i

= θ1
i ·K

∑

k∈C

(
1

K
φi(q

(k))

)
+ θ2

i

≥ θ1
i ·Kφi

(
∑

k∈C

(
1

K
q(k)

))
+ θ2

i

= θ1
i ·Kφi

(
1

K

)
+ θ2

i ,

where the equality holds whenq(k)
i = 1

K
. Therefore, when switching to the equi-occupancy scheduling policy from any

arbitrary unbiased policy, the utilization factor of each node is always non-increasing. Hence, we conclude that equi-occupancy
scheduling policy is throughput-optimal inGU .

APPENDIX E
SAS AND SAC
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Fig. 5. The two-dimensional Markov chain models of SAS and SAC.

Using the similar argument in [3], we can determine the stationary distribution of the Markov chain of SAS and SAC in
each channel as follows. First note that the time unit in thisMarkov chain model is implicitly then-slots, and also we solve
for the symmetric solution. Consider the SAS model as shown in Figure E. Letb{·} be the stationary distrbition of state{·},
and hence we have

bM =
1

2
, (1)

where theM state is the aggregate of the mirror states in the other channel. By the global balance equation and the chain’s
regularities, we can then obtain the following results:

bi−1,0 · p = bi,0, 0 < i < m, andbm−1,0 · p + bm,0 · p = bm,0, (2)
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or equivalently

bi,0 = pib0,0, 0 < i < m, andbm,0 =
pm

1− p
b0,0, (3)

and

bi,k =
Wi − k

Wi

·





(1− p)
∑m

j=0(1− αj)bj,0 + (1− q)bM , i = 0

p · bi−1,0, 0 < i < m

p(bm−1,0 + bm,0), i = m

. (4)

We note that due to the global balance at state(0, 0), we have

b0,0 = (1− p)

m∑

j=0

(1− αj)bj,0 + (1− q)bM . (5)

Hence, combining Eqn. (2) and (5), Eqn. (4) gives

bi,k =
Wi − k

Wi

bi,0, 0 < i < m, 0 < k < Wi − 1. (6)

Furthermore, by the normalization condition and Eqn. (6), we have

1 =

( m∑

i=0

Wk−1∑

k=0

bi,k

)
+ bM =

( m∑

i=0

bi,0

Wk−1∑

k=0

Wi − k

Wi

)
+ bM

=

( m∑

i=0

bi,0
Wi + 1

2

)
+ bM . (7)

Substituting Eqn. (1) and (3) in Eqn. (7), we get

b0,0 =

[
W

(m−1∑

i=0

(2p)i +
(2p)m

1− p

)
+

1

1− p

]−1

=
(1− 2p)(1− p)

(1− 2p)(W + 1) + pW (1− (2p)m)
. (8)

Thus, the probability that a station transmits in an arbitrary n-slot in a specific channel (say, 1), denoted byτsas, is given by

τsas =

m∑

i=0

bi,0. (9)

To evaluate the summation on the right hand side of Eqn. (9), we note that, by the global balance at stateM , we have

bM = q · bM + (1− p)

m∑

i=0

αibi,0. (10)

Combining Eqn. (5) (10) (9) and (8), we have

τsas =
b0,0

1− p
=

(1 − p)

(1− 2p)(W + 1) + pW (1− (2p)m)
.

As for SAC, we evaluate the stationary distribution in a similar manner. Letb(j)
{·} be the stationary distribution of state{·}

in channelj, wherej = 1, 23. For the symmetric solution, we have

b
(1)
i,k = b

(2)
i,k , ∀i and∀k,

or equivalently,

b
(1)
M = b

(2)
M =

1

2
. (11)

Due to balance equations and regularities of the chain, we have

b
(1)
i−1,0 · p(1− αi−1) + b

(2)
i−1,0 · pαi−1 = b

(1)
i,0 , 0 < i < m, (12)

and
b
(1)
m−1,0 · p(1− αm−1) + b

(2)
m−1,0 · pαm−1 + b(1)

m · p(1 − αm) + b(2)
m · pαm = b

(1)
m,0, (13)

3Since the state transition in SAC are intertwined between mirror state pairs, we use the superscript to avoid ambiguity when necessary, otherwise suppressed.
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or equivalently,

bi,0 = pib0,0, 0 < i < m, andbm,0 =
pm

1− p
b0,0, (14)

and also

bi,k =
Wi − k

Wi

·





(1− p)
∑m

j=0 bj,0, i = 0

p(1− αi−1) · b
(1)
i−1,0 + pαi−1 · b

(2)
i−1,0, 0 < i < m

p(1− αm−1) · b
(1)
m−1,0 + pαm−1 · b

(2)
m−1,0 + p(1− αm) · b

(1)
m + pαm · b

(2)
m , i = m

. (15)

Using the global balance equation at state(0, 0), we have

b0,0 = (1− p)

m∑

j=0

bj,0. (16)

Hence, combining Eqn. (12) (13) and (16), Eqn. (15) gives

bi,k =
Wi − k

Wi

bi,0, 0 < i < m, 0 < k < Wi − 1. (17)

Therefore, using the normalization condition and Eqn. (17), we have

1 =

( m∑

i=0

Wi−1∑

k=0

bi,k

)
+ bM =

( m∑

i=0

bi,0

Wi−1∑

k=0

Wi − k

Wk

)
+ bM

=

m∑

i=0

bi,0
Wi + 1

2
+ bM . (18)

Substituting Eqn. (11) and (14) in Eqn. (18), we get

b0,0 =

[
W

(m−1∑

i=0

(2p)i +
(2p)m

1− p

)
+

1

1− p

]−1

=
(1− 2p)(1− p)

(1− 2p)(W + 1) + pW (1− (2p)m)
. (19)

Thus, the probability that a station transmits in an arbitrary n-slot in a channel under SAC, denoted byτsac, is given by

τsac =

m∑

i=0

bi,0. (20)

Combing Eqn. (16) and (20), we have

τsac =
b0,0

1− p
=

(1− p)

(1 − 2p)(W + 1) + pW (1− (2p)m)
= τsas.

APPENDIX F
M ISCELLANEOUS

A. RewriteΣg as a fixed point equation

Let x← y mean the relation “x quantitatively depend(s) ony”. We then have

τ
(k)
i ← q̂

(k)
i , ρ̂

(k)
i , W

(k)

i

q̂
(k)
i ← E[slot

(l)
+i], E[slot

(k)
−i ]← τ (k), ρ̂

(k)
i , W

(k)

i

W
(k)

i ← p
(k)
i ← τ (k)




⇒ τ

(k)
i ← ρ̂

(k)
i , τ (k),

and

ρ̂
(k)
i ← ρi, E[slot

(k)

i,Q
], E[slot

(k)
i,Q]← ρi, τ

(k), q̂
(k)
i , W

(k)

i

ρi ← q̃
(k)
i , W

(k)

i , p
(k)
i , E[slot

(k)

i,Q,Tx
]← q̃

(k)
i , τ (k)



⇒ ρ̂

(k)
i ← ρ̂

(k)
i , τ (k).

Therefore,
(τ , ρ̂) = Γ

′(τ , ρ̂).
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Total bandwidth 11 Mbps
Data packet lengthP 1500 Bytes

DIFS 50 µs
SIFS 10 µs

ACK packet length (in time units) 203 µs
Header length (in time units) 192 µs

Empty system slot timeσ 20 µs
Propagation delayδ 1 µs

Initial backoff window sizeW 32
Maximum backoff stagem 5
Data rate granularity∆λ 100 Kbps

Instability threshold constant 1%
Total simulated timeTf 10 seconds

TABLE II
SPECIFICATIONS OF THE IMPLEMENTATION OF TEST BENCH.

B. Referential tables

See Table II.
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