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Abstract

In this paper, we characterize the stability region of IEER.81 DCF from a multi-channel perspective. The fundantenta
conceptual issue accompanying channelization is the matiacchannel-switching scheduling policy which introdu@eshannel-
occupancy distribution of each node. We show that charat@liz is heuristically equivalent to expanding the averbgekoff
window in shaping the stability region. Hence, the conwexit stability region of a multi-channel system under 8020QF is
almost ubiquitous. Also, as a result of the comparison ansiability regions of different scheduling policies, thestence of
throughput-optimal policy is inquired, and some prelinningesults on this aspects are also presented.

I. INTRODUCTION

Advances in software defined radio in recent years have atetivhumerous studies on building agile, channel-aware
transceivers that are capable of sensing instantaneonaehguality and making opportunistic channel access arginission
scheduling decisions. By allowing users to dynamicalleselvhich channel to use for transmission, these schemedgoaim
improve the system performance, typically measured by dked {or per user) throughput, the average packet delay tmd e
compared to a system with a single channel or more staticnehallocations. The main reason behind such improvement
lies in temporal, spatial and spectral diversity. That g guality of a channel perceived by a user is time-varyirsgru
dependent, and channel-dependent. This technology geweltt motivates us to continue the study in [1] on stabild@gion
of IEEE 802.11 DCF in a single channel setting. The fundaalerdnceptual issue accompanying channelization is thiemot
of channel-switching scheduling policy, either centrdizor distributed, which introduces a channel-occupansiridution
of each node. Consequently, the attempt rate of a node in anehd roughly discounted by a factor of its occupancy
probability in this channel. In [1], the authors showed ttiet transmission attempt rate of each node is upper boundéttb
reciprocal of the average backoff window size. We may tharriktically argue that this discounting effect from chaliragion
is equivalent to expanding the average backoff window. ldefalowing the conclusion in [1] that the stability regiomder
a large backoff window is convex, we may expect that the Btabiegion in a multi-channel system is likely to be convex
in most parameterizations. Also, this window expansioraffrom the channel occupancy distribution enables us td om
successive attempts even under a small backoff window inntbo#i-channel case, thus simplifying the analysis without
impacting numerical accuracy. Moreover, for a given pgliogtead of using the aforementioned metrics we can medisare
system performance by its stability region, thus implyihg toncept of throughput-optimality, and we are then irstect in
investigating the existence of such a throughput-optinaéitp.

We proceed as follows. In Section Il, we present our modelstatd definitions and assumptions. In Section Ill, we previd
a constrained system of equations to quantitatively diesdhe stability region, followed by the analysis on chagestics
of its solutions. These results are then numerically stu@died compared to results from simulation in Section IV, ared w
conclude in Section V.

Il. SYSTEM MODEL

Consider a multiple access system using the IEEE 802.11 BFassume that

1) the system consists af nodes (or users interchangeably), indexed by theAset {1,2,...,n}, each with an infinite
buffer; each node uses the same parameterization and hdsaoseeiver;

2) the system is with' channels, indexed by the sét={1,2,..., K}; all channels are ideal and there is no MAC-level
packet discard, i.e., there is no retransmission limit ofaaket after collision; all channels are physically symimgetr
namely in bandwidth, and the system use the same paranatienifor all channels.

3) the queueing process at each node is stationary and ergach that Little’s law is applicable [2].

We are still unclear about the effects of asymmetry amongméla on the system performance, and we leave the asymmetric
scenario as our future work. Despite the notion of channétehing scheduling policy (scheduling policy or policytén-
changeably), another rather technical issue introducedhlaynelization is the heterogeneity of embedded time wamitsng



channels. Since the length of a slot in a channel is in natuam@om variable that depends on the traffic flows going thnpug
channels are in general strongly asynchronous in the engldetiitie units. Thus, as nodes transit among channels, we may
need to keep changing our reference of embedded time irbak®d analysis. We then define the notions of a slot in differe
contexts as follows.

Definition 1: Consider a virtual backoff timer in each channel that codietsn according to the 802.11 exponential backoff
scheme with an infinite initial value. Ahannel-slot (c-slotjs defined as the time interval between two consecutive deamés.
Consider a virtual backoff timer at each node with an infiimigal value, the one that is synchronized with the virttialer of
the channel in which the node residesnéde-slot (n-slot)s defined as the time interval between two consecutive deames
of the nodal virtual backoff timer.

Remark 1:There is in fact no inherent difference between notions eftito types of slots; however, the implicit references
of timing in embedded slots are explicitly distinguishedisTdifferentiation of the references of time becomes @aushen we
define quantities based on the embedded time, the length ichvira random variable and inherently depends on a specific
channel, provided that nodes can traverse among differarirels. This observation will soon be more concrete inysisl
and without ambiguity in certain context, we will omit thepdicit association of a channel (node) index with a slot ia thst
of the paper.

We then formally define a channel-switching schedulinggyoNVe first define some preliminary notation. Define]lﬁ(})(s)
the indicator function of the presence of noda channelk in c-slots. Define byIf’(k) the space of all possibly available
information to node up to c-slots in channelk. Assuming perfect record at each node, for any arbitrarljzagaon If’(k) €
2% and 7™ € 7™, we havel™ c 1™ for all s < ¢/, andZ;"* is application-dependent. For instance, we may
have ]11(.’“)(3) S If’(k), and other information like the current backoff stage anel émpirical average throughput up to the
c-slot s may also be elements df’(k). Define byT} the mapping from a c-slot index in chanrieto the real time instant
of the beginning of this slot, and b:y,;l the inverse mapping from a real time instartb the index of a c-slot in channél
that it is within. We then define a scheduling policy as fokow

Definition 2: 1) Centralized scheduling policy: assuming tmﬁfk) € If’(k) is known by the central controller for alland
k: at c-slot s* with perfect record1‘" (s* + 1) is then given by

19(s* +1) = g (2,
where . .
"= {1 Y vie NVl e e, Vst < T, Y (Ti(s")).

2) Decentralized scheduling policy: assuming tﬁ%\fk) is the private information of nodg and scheduling is determined

locally at each node, then
1(s +1) = g (17 ™).

In both cases, the sequeng@) := (ggk)7g§k), ...) constitutes the corresponding scheduling policy in chainevhere
g = (g@,gé’fs), ...,g")). The collectiong := {g,g®,...,g)} then forms a channel-switching scheduling policy of
the system, and the space of all possible policies is derimtagl

Note that the mixture of centralized and decentralizedciedi defined above, e.g., locally centralized policies, ban
similarly defined. For the rest of this paper, we make theofwilhg assumptions about a scheduling policy
A1l Underg, the FACS decoupling approximation or simply Bianchi’s ap@mation is still satisfied.

A2 gis independent of the binary state of queue at any node, viherbinary state space I$= {empty, non-empt.
A3 g is persistentin a channel for the entire service process of a packet, shat channel-switching decision is only made
before or after the service process of a packet.

Remark 2: A3 also means that a channel switching is only scheduled atdpe ef a c-slot. However, the edges of c-slots in
the two channels that a node switches between may not beedlitpen, and we then assume the synchronization of the nodal
backoff time with the channel timer is done with the begimnof the next c-slot in the new channel. Hence, there may be a
fragment of time after switching that the nodal timer is ‘&fidite” about its channel allocation, as illustrated in &pdix A.

As aforementionedy introduces a channel occupancy distribution for each nodievee characterize it as follows. Define
by 9; = {qfk), k € C} the equilibrium channel occupancy distributian n-slotsof nodei. Denote byt~ the beginning of an

arbitrary n-slot, and theqfk) is given by
g™ = P{nodei is in channel at ¢~ }.

IHere we use the superscript to avoid ambiguity.



Define by 9, = {qgk),k € C} the equilibrium channel occupancy profile c-slotsof nodei. Similarly, denote byi~ the
beginning of an arbitrary c-slot in channiel and(jgk) is then given by

" = P{nodei is in channel at~}.

~(k)

Note that), .. ¢;~ may not be one, an@; is thus not a distribution in any probabilistic sense. HomveQ; is associated

with Q; by

) g

(1) (1)
q; 'E[slot ;] (k)
Zﬁ;élg ( ]E[slot(,ki)] ) * i

for all &, whereIE[slotfi)] (E[slot(fi)]) are the conditional average lengths of a c-slot in chahnelseconds, given the presence
(resp. absence) of nodetherein. We show in Appendix A that this approximation beesrequality if we assume the edges of
slots in two channels are aligned when there is a node swijdhétween them. Define t@l = {”(’C k € C} the equilibrium
packet assignment distribution of nodewhere

qz(k) P{an arbitrary packet of nodeis served in channd&}.

Q, and Q; are associated by a well-defined correspondence which @figgeat the end of this section after defining other
required quantities.

Let the data arrival rate at nodebe \; bits per second, wheree N, and letA = (A, A2,...,\,). We then define the
stability region of system as follows.

Definition 3: The stability regionof systemA9 given a scheduling policyg is the set

bounded when the data arrival rates

are A under 802.11 DCF withy

the queue lengths at all nodes ayje
A%:=<{ A eRY }e

For any given\, whether\ € A is determined by the utilization factor of each node, dethbitgp; for node i,or equivalently
the probability that the queue at node i is non-empty at aitrar real time instant. Le,t} *) e the probability that the queue
at nodei is non-empty at the beginning of an arbitrary c-slot in chedrin denoted byt . Ek) is then given by

At = = P{the queue at nodgis non-empty at~ },

Similar to the single channel case, we haﬁé@ < p; where equality holds if and only if; = 1 or p; = 0, i.e., nodei is
either saturated or. In parallel, define

_ (k)
5(@ pZE[sloti@]

pZE[slotf%] +(1- pi)IE[slotl(-_k)]7

WhereE[slot ] (E[slot( )]) is the conditional average length of an arbitrary c-slotliannelk, given that the queue at node
1 is non- empty (resp. empty) at the beginning of slot. Using ghmilar argument in [1], we have

P
Let T ) be the probability that nodeinitiates a transmission attempt in an arbitrary c-slotharmnelk. Then, we have the
followmg lemma.
Lemma 1:7* is given byr" = Agk)ﬁgk)/Wfﬁ), WhereWEk)
the termbackoff lengthmeans the selected timer value plus 1.
Proof:

is the average backoff length of nodén channelk, and

Tz := {nodei initiates a first-attempt in a c-slot in chanrie};
Q(Q) = {the gueue at nodeis non-empty (empty) at the beginning of a c-slot in charm]el

Ch(k)(Ch(k ) := {nodei is present (absent) in chanrein a c-slot.
We then have

M = P(T2[Q) - P(Q) + P(T2|Q) - P(Q)
— P(T2[Q) - P(Q) + P(Tx|Q,Ch(k)) - P(Ch(¥)|Q) - P(Q) + P(T|Q,Ch(k)) - P(Ch(K)|Q) - P(Q).

|
3



Note thatP(Tz|Q, Ch(k)) = Ww and P(Ch(k)|Q) = ¢, we obtaiR

1
=0 (1= ")+ =™ 0 (1= M) - Y

i ng) i
_ a7
T
|
Remark 3:1) With A3, Wl(-k) is given by
wh _ Ly [ %f By 4 (2p®ym | 41
i 5 > )

Wherep( is the probability of collision given a transmission attérapd W is the initial size of backoff window.
2) With the notion OfT *) the family of quant|t|e§£[slot{ }] the conditional average length of a c-slot in chanhgiven
the event{- } is well deflned and the results are reported Appendix B.

Deflnep the probability of collision given a transmission from nadi channelk. Then, we have

(k) g

®) 4q; 7 (1—p
4; ~(1) ’

~(1)
e di 2 ﬁ

where the approximation becomes equality under the sarmhtcmnaSqfk) and is justified in the appendix as well.

IIl. M ULTI-CHANNEL ANALYSIS

A. The stability region equatioR?

Given any scheduling policg, Let A? be the corresponding stability region.
Theorem 1:X € A9 if and only if there exists at least one solution= (7", k € C) wherer® = (") i ¢ ) to the
following constrained system of equatiofs?, C, \),

(k) (k)

A0
z ng) (a)
so. ) p?=1-T[a-~") (b)
J#i
77 (F) (k)
: Ai ~(k) <Wi -1 (k) (k) _Pi (k)
pi = min {— Z {qi 7E[Slotz m] + 1) ——+T, 1 (c)
P keC 1- ng) @1 1— pgk)
subject to
o o< ()
0<pi<1 (ii)

wherei € N andk € C; P is the packet payload S|2E[slot Q)) ] is the conditional average length of a c-slot in charinel

given that the queue at nodds non-empty but does not transmit in this slot.
Proof: The proof is an immediate extension of the proof of Theorem [1], given the assumptions made abgut =

Remark 4:1) In the rest of the paper, we assume t¥tare constants that are predeterminable fori.alh addition, the

explicit upper bound om; in X9(c) can be omitted due tG(ii).
2) With K =1 and ql(l) =1 for all : € N, X9 degrades td in the single channel case [1], adi¥ then forms the unified

framework for the rest of our analysis.

2As noted in [1], the first equality is technically an approaiion.



B. Characteristics of solutions th9

Like in the single channel case, we use Brouwer’s fixed pbiebtem to prove the existence of solution&tb The technical
difference in the multi-channel case is the selection ofpprovariables to construct the fixed point equation. In thglsi
channel case, we rewrifeé as an fixed point equation with respectto= (7;,7 € N'). However, because of channelization,
unknown quantities i9 are intricately intertwined, and it turns out to be diffictit implementX? as an equation with
respect tor solely, wherer = (+(® k € ¢) and+® = (r*) i € ). Nevertheless, by using auxiliary variables, namely
p = (pi,i € N'), we show in Appendix F that we can construct a fixed point égodn [0, 1]5™ x [0,1]%", that is,

(r,p)=T'(7,p),
wherer, p € [0, 1]%". SinceI"” is a continuous vector function, the existence of solutimnk? is then established.

As to the uniqueness of solution (&9, A). we limit our focus to a family of scheduling policies that wall the unbiased
policies, and we present the result on the uniqueness ofi@olwhen the initial window sizéV is sufficiently large for an
unbiased policy. Before we formally state our theorem, windethe the family of unbiased scheduling policies as foow

Definition 4: A scheduling policy isunbiasedif the stationary channel occupancy distribution is ideattifor every node,
ie., qgk) =¢® for all i € N andk € C. An unbiased scheduling policy is denoted dfy, and the space of unbiased policies
is denoted bygY.

We are then ready to present the theorem on the uniquenestutibs to (Egu)\).

Theorem 2:For all sufficiently largelV, (Zgu,)\) admits a unique solution.

Proof: See Appendix C. [ |

Combining the results of Theorem 1 and the proof of Theoreme2conclude the following corollary.

Corollary 1: WhenW is sufficiently Iarge,AgU is approximated by

A = {A eR} |0< ”fi)zzf(ii’ #A00) < g WA }
where
o= (22X [a@m(@)])/ (1+ 25 3 [a(Qm(Q)]).
leC leC
and
00 = (5 - 2D 0+ 2 o))

with the constantg;(Q) andh;(Q) numerically determined give@ = {¢*), k € C} in Appendix C.

C. Disccusion on the throughput-optimality withgit’

In our random access system, the input data ratasd the occupancy distributiop?” induced by the policyg? are main
sets of tunable parameters for controlling the system. Wewen most application scenarids is unknown to the network
manager or it is in fact regarded as private information @rsisThus, we may want to focus on designing the scheduliligypo
g (could be viewed in a higher level of mechanism design) tarexey our system for desired or even optimal performance.
As to the notion of optimality and various metrics definingvite concentrate on the so-called throughput optimalitg, i&n
the following theorem we present a result on the throughptitmlity within the family of unbiased policie§V. We show
that the equi-occupancy policy that is interpreted by itmadnduces throughput optimality iG”. This result is stated after
the conventional definition of throughput optimality in tfalowing.

Definition 5: Let G be a set of scheduling policieg € G is said to be throughput-optimal @ if A9 D A9 for all g € G.

Theorem 3 (The unbiased equi-occupancy theorebonsider a scheduling polieg¥ € GV and the associated stationary
channel occupancy distributia@® and stability regiom\9" . For all sufficiently large initial window siz&/, g is throughput-
optimal inGY if ¢*) = L for all k.

Proof: See Appendix D. [ |

Remark 5:The above result may provide us the heuristic that given sgtrismchannelization and identical channel occu-
pancy of users (or any scaled version when channels are astyiontraffic-load balancing optimizes the system perfance
in terms of expanding the stability region. However, in tlomtext of unbiased channel occupancy distribution, théonadf
balancing may also be interpreted in terms of the number feaasers in each channel. In fact, balancing traffic-loacld
numbers of active users in channels may have a joint effettiming the system, and we are still unclear how the two tyges o
balancing affect the system performance. Also, we belietlr@ighput-optimal policy in the entire policy spageif exists,
is in general a biased one. A trivial example would be thaemheinistically separating two users in a bi-channel sysiem
clearly no worse than an equi-occupancy strategy. The liagurisen above are open question to the future work.



D. Heuristic implementation of equi-occupancy policies

In this part, we propose a simple algorithm to implement tipga occupancy policies in the bi-channel model. The pregos
algorithm consists of two parts called SAS (Switching Afarccess) and SAC (Switching After Collision). In both pads
switching probability is assigned to each backoff stageSA® (SAC), a node switches to the other channel with protblail
after each successful transmission (resp. each colliffi@n$ at the:th backoff stage. In addition, in SAC, after switching to the
other channel, a node does not reset its backoff stageahstecontinues the exponential backoff due to the lasisioii. This
algorithm heuristically implements the equi-occupanciigyoin the following sense. Consider the two-dimensionairkbv
chains in the form of Bianchi's model [3], where each stateome channel has a mirror state in the other one. Using the
argument of symmetry, the symmetric solution is one possibtady-state distribution which implements the equiipaocy
as shown in Appendix E. Yet it is indefinite that if any asymrigesolution exists while the symmetric solution is always
observed in our numerical experiment. Also note that SABf& the assumptioA3 but SAC does not. However, we show
in Appendix E that SAC is equivalent to SAS in terms of the rafte rate in saturation in the symmetric solution. Notice
that the Markov chain model implicitly assumes no empty clghrior a significantly long time resulting from the policy;
otherwise, the system may operate at the steady state ofle simannel system for considerably long time, which undees
the assumed stationarity of the multi-channel chain, andemer, the stationary distribution of this mean field moahely
not reflect the empirical long-term time average. When sidlfi is frequent, using SAS nodes tend to cluster in oneicerta
channel, thus incurring the above problem. Nonetheles§; Béuristically avoids such situation in congestion. Tfae we
may combine the two simple switching strategies accordinthé traffic condition.

IV. NUMERICAL STUDIES

In this section, we present the numerical results obtaimseéd on the solver and simulator that we implemented anLs
2008b. Specifically, we consider a system of two users with ¢hvannel. Though this scenario is a toy example, it illusta
most of the essence in our previous analysis. The spedificati the test bench is reported in Table Il in Appendix F. We
focus on three objectives, namely, the comparison betweddilis/ regions of single and bi-channel systems, the ulgrgout-
optimality in GY, and the relative advantage of channelization to a singiacél.
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Fig. 1. The stability regions for various scenarios unglérand the empirical occupancy distribution under SAS with= 1 for all i.

In Figure 1, we plot the analytical stability region for vaus scenarios and their simulated boundary using SAS. Ve als
report the empirical occupancy distribution obtained asithe method of simulation is the same as in the single channe
case and is reported {i]. Compared to results of the single channel case, convekitlyeostability region is observed even
with small backoff windows in the bi-channel case. Also, thenerical multi-equilibrium phenomenon [1] disappearsha
bi-channel system, which is expected from the heuristigah@&lence between channelization and window expansilbowimg
the discussion in [1]. To conclude, a unique convex statiégion is generally expected for a mutli-channel systerarédver,
empirical data shows that SAS implements the equi-occypansteady state.
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Fig. 3. Approximated stability region&gU.

In Figure 2, we plot the analytical boundaries of stabilggions corresponding to different unbiased policies in $a@narios
for instance. As can been seen therein, the equi-occupasimy pesults in the stability region that is the supersethaise
of other unbiased policies. It is also worth noting that as bfackoff window enlarges, the gap between the superseirregi
and other inferior regions shrinks, as the reciprocal ofwledow size becomes the dominant factor in upper boundieg th
attempt rate.

In Figure 3, we plot the approximated stability reglm?\ that are computed using the result of Corollary 1. Specifictdie
constantsfk( ) and hk(Q) are determined using the iterative approach presented pergix C. Compared to solving the
original system of equatior(§9u ,C, \), solving the approximated system is of significantly redboemputational complexity.
Also, as can be seen in the plots, the resulting approximédiaccurate especially when the policy is the equi-occopane
or the backoff window is large.

V. CONCLUSION

In this paper, we identified the stability region of 802.11 B®€om a multi-channel perspective. Compared to the single
channel case, the primarily novel problem is the charazd@an of the effects of channel-switching scheduling @es on the
system stability. We showed that the main effect can be keally understood as the expansion of backoff window.oAls
primary results on the throughput optimality are shown i@ tontext of unbiased polices.

APPENDIXA
COMPUTATION OF Q AND Q

We first define the following stochastic processes genefaetie queueing process at node

N(@ (t) (NS’?) (t)) := the total number of c-slots in channklthat node: is present at its beginning up to tinie

S(k)( )(S(k)( )) := the length of thejth c-slot in channek given the presence (resp. absence) of nodeits beginning

TJ(F’Z) (t) := the total length of real time periods that nodes present in channél up to timet.

Note that the above processes are well-defined on the sance QpaAs we argued before, when a channel switching is
scheduled, the edges of c-slots of the two channels that a swidches between may not be aligned. Hence, there may be a
period of unsynchronized time of the nodal backoff timershswn in Figure 4. If omitting the unsynchronized time, weéda
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Fig. 4. lllustration of channel switching and timer synafization.
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(k)
A(k) lim NJri (wu t)
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We define a few more processes generated by the queueinggratcrode.

p® (t) := the total number of packets transmitted by néde channelk up to timet;

3

Bi(k) (t) := the number of busy slots in the service circle of file packet

1) (t) := the number of idle slots in the service circle of tjtd packet

K2

where a service circle is the period in slots between thennéggy of service processes of two successive packets. A dlasy
refers to a slot in the service process and a idle slot is avah@n the queue at the node is empty. Th@fﬁ) can also be
expressed alternatively as

«® = lim Niﬁ)(t)
' 7oy e N (l)()
S OB )+ 19())
e T OBY () + 19 ()
PO@ 2RO B ) s O (50 ()1 ()

Yhee P (1) P (1) PR ) ey,
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where we have suppressed the reference to a samplegpainall involved processes for brevity in notation, or intexpthe

equalities as with probability one. Note that the limits dfratios are well defined, and we obtain

iMB (k) WP k) __a

) _ B; PG &G 1,0 50 E R O O
= (i(l)

q;
)= (l) 1 () w4 ~(1)
Zlec 4 B & Zlec Qi 10 50 Zlec (l)(—l’b_pil))

i

APPENDIX B
COMPUTATION OF E[slot;.;] AND RELATED QUANTITIES
be the conditional probabilities that this slot is idle,ttliacontains a

) pt anchol)l a
=1-pP¥ —P® . ThenE[slot,]

Given an event-}, Iethle 1 Prucer ()

successful transmission, and that it has a collision, i@dy. Notice thatP ll 0 vte: {1~ Psuce:{
is given by
_ pk) (k) (k) (k)
E[SlOt{}] - Pidle;{~} o+ Psucc {7} Ts + (1 B Pidle;{~} Psucc i{ }) Te.

whereo, Ts; and T, are the lengths of an empty system slot, a successful traagmj and a collision, respectively. Given
Z({ b the conditional attempt rate of noden channelk, we further have
(k) (k)
Pite; oy = H(l - Ti,{-})’

(k) _ (k) (k)
P Ty (1—7']{}).

suce;{-}
i VE)

Explicit expressions for varieties d@[slot(.,] that are used throughout the paper are reported in Table I.

and

(k) p*)
Pidle;{-} aucc {3}
(k) (1 -7 (k) ()
sty | T0-2 | 0
JFi 1#1,j
k k k k
= ITa-") St TIa -4,
[slot(k)] J#i l J#l
wherer, 7, = —* wheret\”) ={ Q7
¢ w 5
(k)
k — T
Blstot") ] E[(l ) S T (- )
7 iF 1
~(k k k k
(=7 JTa-7") S T -4,
j7#1 l j#l
Efstot!)] ] (k) " k)
W- i JF£i
(k)
sy | 0= > [l a-v*)
7 i U
TABLE |
(k)

SUMMARY OF COMPUTATION OFIE[slot{A}}.

APPENDIXC
PROOF OFTHEOREM 2

A. Main proof
As in the proof of Theorem 2 in [1], we first make several siriyjilig approximations due to the large window assumption
)~ Wtl We also observe thﬁ[slotl(.fg] ~

With a large backoff window, the probability of collision ssnall, so we havél;
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[slot(’g] since 1(63 and W is large. Consequently,

w
_ (k)
plﬂi[slotaz§] -
() . (k)
pi [sloti_@] +(1- Pz)E[SZOti,Q]

A (K
p()

Let T, = T, = T for the simplicity of presentation. The? is approximated by the following set of equations, that is:
5 (k)
4; "Pi

Ti(k) = IZV+11 @
2
(k) _ (k)
o, ) v =1=]a-7") (b)
’ J#i
Ai ~(k) @ 1 (k) (k) (k)
pi=5> V0 T o[J1 -7 )+T( -1 -+ )) +T1 (k)+T )
keC j#i VE

Note that for a policyg?, we haveq( ) = = ¢ for all i € N. Furthermore, we have two more approximations abjﬁ@t
and g™, We assume thaj" ~ fx(Q) and i ~ hi,(Q) for all i and k, whereQ = {¢\V,1 € C}, and f, and h;, are
non-user-specific functions and determined after the mainfpThe rest of steps is similar to the proof of Theorem 21ih [
For the completeness of report, we repeat them as followsstiuting ¥9(b) and (c) in (a), we obtain

( RORLY oy | W+1 W -1
=4 BT 7 T - (T —o)
P(W+1);{ [ 2 31;[11—7) 2
—‘L(k)Z{@fl)

ATy AW = 1)(T - o)
Al - .
lec P j;éil_T;) P(W +1)

Using the first-order Taylor approximation, we ha\k_; 1—1“) 1+ T;l). Hence,
—T;
J

AT A (W —1)(T' - o)
<k>;{<l[ (1+§ l)) PW +1) ]}

Letr; = MQ,LH and then noticefi(k) = qj’%. Therefore, we can further reduce the dimensionality ofgbace of unknowns

by rewriting the above equation w.ri;'s. We have

. . AT AW —=1)(T -0
=t p i B (1 o)) - zp ol |

lec Ve

or equivalently,

AR i (1S )| 2

lec jF#i

) +(0) Ai(W = 1)(T' - o)
(HZZ%I Y ) FUES

leC j#i

Using the approximations af and g, then

S [@m(@)] - T+ 2 - 2T

T, =
lec J#i
or equivalently,

< A}T 3 {fl(Q)hl(Q)D Y

lec
Therefore, lety = > . 7;,

/\lT )\i(W—l)(T—O')
;{ﬁ( Jhu(Q)] - 37+ P PW+1)

J

S [r@m(@])/(1+ 25 3 [r@m(@)]).

lec lec
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and

= (5 - My )/ (4 Zli@n@))

and¥9” is then equivalent to

[ mi=viy @)
g .
2y y=Y () ()
[
which admits only one solution, namely, ,
DI
s e

B. Technical approximations
When the window size is sufficiently large, we can approximﬁé’f) andqjk) by fk(Q) = hk(Q) = ¢*). A more accurate
approximation ofA( )i given as follows. Given

(k)
(k)

4 ¢® O]
E[slot) ;]
)+ DUk ( slot(k)] )
leC
we consﬂer}i[[slo (t;;] wherel # k. Using the first-order Taylor approximation, we have

Elstot{’)) = "H (- +7(1- H (1-7%))
= 0(1 — ZT(?}) + TZT(?}
:0—|— T—0o ZTi,{-}'

Then referring to Table I, it follows that

1), =
E[slot(l)] o+ (- 0)(2#1 O+ Ti( ))

E[siot™)] o+ (T - )z#ﬁ;’”

oy l
W+Zj7éi qd; )Pj

where W = @ - 7. We then letp; = 1 for all 7 following the heuristic that the accuracy of the entire apgmated

stability region can be reduced to that of the boundary edgch Therefore, we obtain
o

W (2,007 +1)\
g +Z7é§ (Qfl)—~( = )
€

W35 45"

)

i ~

Recalling tha’&jgk) = fk(Q) for all 7, the above equation is in fact a fixed point equation, and vretican solve it using an
iterative approach with the initial valug® = (%)

APPENDIXD
PROOF OFTHEOREM 3
We consider the unbiased model establishe&%with the approximatlor@f ) = ( ) = =¢®. Using ig(a) and (b), we can
rewrite X9(c) as follows,

i W +1 1 W —1
L 1 (k) _ _
Pi = PZ q 2 TH1_7_(19) 2 (T 0)
kec J#i J
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=3 |g® Ai(WJrl)TH 1 (W -=1)(T-o0)

%
keC | 2P jAi L= T( ) 2P
1
_ k) [ 1 2
=>_ [« | L ® +0;
kec | i+ T
1
=0; Z g H ®m | T 0;
keC ]7511 T
=0; ) ¢i(q™:p,5#10)+0
kec
: (W—1)(T—0 , (*) . ,
whereg} = 2WHUT g2 AW_L(T—0) andcb*( ®spjg #0) = a1z o = T with a; = 28

and1 — ajq( > 0 for all j. Notice thate; (¢* ,pJ,_] # i) is a convex function of;(* 5 given any fixedp; wherej # i, and
it is also an increasing function gf;’s given any fixedg*). We then have

=0} > ¢i(q™) + 67

keC

0 KX (o)) + o

keC

>0 K¢, <Z (%q“))) +0?
keC

1
—gl. = 2
_91 K¢Z (K) +911
where the equality holds whe@(k) = % Therefore, when switching to the equi-occupancy schadupiolicy from any
arbitrary unbiased policy, the utilization factor of eaatr is always non-increasing. Hence, we conclude that @cpupancy
scheduling policy is throughput-optimal &".

APPENDIXE
SASAND SAC
q
o -qyw,
-)(lmI = o —] |
PV, (D e () ‘ /nzo LG
I I~
,)(la) 0 ‘—. RV Y (o \_l_/ o)t S
M | M
|
[ . l GG - D
NW
|
(a) SAS (b) SAC

Fig. 5. The two-dimensional Markov chain models of SAS andCSA

Using the similar argument in [3], we can determine the ctetiy distribution of the Markov chain of SAS and SAC in
each channel as follows. First note that the time unit in Makov chain model is implicitly then-slots and also we solve
for the symmetric solution. Consider the SAS model as showfigure E. Leth;., be the stationary distrbition of stafe},
and hence we have

by = = 1)

where theM state is the aggregate of the mirror states in the other ehaByg the global balance equation and the chain’s
regularities, we can then obtain the following results:

bi—1,0-p=0;0,0<i<m, andby,_1,0-p+ bm,0- P = bm,o, 2
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or equivalently

bio = p'bo,0,0 < i < m, andby, o = 1p_ pbo,o, 3)
and -
wo k| AP e —ag)bjo + (1= )by, i=0
bik = =5 "\ P bivo, 0<i<m. (4)
' P(bm—1,0 + bm,0); i=m

We note that due to the global balance at stét®), we have

m

bo,o=(1—p) ) (1 —a;)bjo+(1—q)bum. (5)
7=0
Hence, combining Eqgn. (2) and (5), Eqn. (4) gives
i —k .
bi,k:WW‘ bio,0<i<m,0<k<W, -1 (6)

Furthermore, by the normalization condition and Eqn. (6, vave
m Wg—1 Wi—1

— <Z% ;} zk) + by = (Zblo ;) WWZ k) + b
- <§biﬂowi2+1) + b @)

Substituting Egn. (1) and (3) in Eqn. (7), we get

m—1 —1
_ i (2p)m 1
Po0 = [W(Z}m )
(1 =2p)(W+1) +pW (1 — (2p)™)

Thus, the probability that a station transmits in an arbjtraslot in a specific channel (say, 1), denotedhys, is given by

Tsas — Z bi.,O- (9)
i=0

To evaluate the summation on the right hand side of Eqn. (8)nate that, by the global balance at stafe we have

by =¢q-bu+(1—p) Z aib; o. (10)
i—0

Combining Eqgn. (5) (10) (9) and (8), we have

o boo _ (1-p)
T p T -2 (WH+1) +pW(A—(2p)™)

As for SAC, we evaluate the stationary distribution in a gmimanner. Le'b(J) be the stationary distribution of stafe}
in channelj, where;j = 1,23, For the symmetric solution, we have

o) = b3, vi andVk,

or equivalently, )
1) 2)
bl = p2) — 5 (11)

Due to balance equations and regularities of the chain, we ha

bV o p(1 = aim1) + 07 o paiy = b0 < i < m, (12)

and

b(l) 10 P(L—am_1) + bglLO CPQyp—1 + bﬁ,P p(1 — am) + bﬁﬁ) POy, = pH)

m,0’

(13)

3Since the state transition in SAC are intertwined betweemomstate pairs, we use the superscript to avoid ambiguitgnanecessary, otherwise suppressed.
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or equivalently,

m

bi70 = piboyo, 0<i< m, and bm70 = 1p_ pbo_]o, (14)
and also
(1—p) 370 b0, i=0
by = ik 00 2) .
vk = T p(1—a;-1) b1 0 i1 - b;7 o, 0<i<m. (15)
' p(1—am-1)- bg)fl,() + pQm—1 bgll,o +p(1 —am) - b + pam - b, i=m
Using the global balance equation at stéig0), we have
bo,o = (1 —p) Zbg‘,o- (16)
j=0
Hence, combining Eqn. (12) (13) and (16), Eqn. (15) gives
Wi —k .
biyk:Tbi70,0<l<m,0<k<wi—1. (17)
Therefore, using the normalization condition and Eqn. (W& have
m W;—1 W; W — k
1= ; = ; i
(ZZM)MM (Zboz W )+bM
i=0 k=0 k=0
u W;,+1
= Z b@o —2 + by (18)
=0
Substituting Egn. (11) and (14) in Eqgn. (18), we get
m—1 -1
(2p)™ 1
boo = |W 2p — —
0,0 [ (;( )+1 , +1—p
1—-2p)(1—
(1-2p)(1 —p) (19)

T (=2 (W 1)+ pW (1= 2p))
Thus, the probability that a station transmits in an arbjtraslot in a channel under SAC, denoted hy., is given by

Tsac — i bi,O- (20)

Combing Eqgn. (16) and (20), we have

boo (1-p) -
Il—p (A=2p(W+1)+pWQA—(2p)m) >

TSG.C -

APPENDIXF
MISCELLANEOUS

A. RewriteX? as a fixed point equation
Let z «— y mean the relationz quantitatively depend(s) oi’. We then have

Ti(k) - ngk) 5 (k) W(k)
k ~(K
i - hMW Elstot)] — ~) 0 H b= a®) 50 20,
and
P piElslot®] Elstot")] — pi, r®), M W
1 W% PO b o g k) ),
pi = @ W M Elslot) ], 7 ® ' ‘
Therefore,

(r.p) =T'(7, p).
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Total bandwidth 11 Mbps
Data packet length 1500 Bytes
DIFS 50 us
SIFS 10 us

ACK packet length (in time units 203 us
Header length (in time units) 192 us

Empty system slot timer 20 us

Propagation delay 1 us
Initial backoff window sizeW 32
Maximum backoff stagen 5

Data rate granulariAX 100 Kbps
Instability threshold constant 1%
Total simulated timeT’, 10 seconds
TABLE 1l

SPECIFICATIONS OF THE IMPLEMENTATION OF TEST BENCH

B. Referential tables
See Table II.
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