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Abstract

In this paper we model and characterize the stability regibtEEE 802.11 Distributed Coordination Function (DCF) libot
qualitatively and quantitatively. We also provide an itiid explanation and verification by comparing it to the kmogtability
region of slotted Aloha. We show that the size of backoff windplays a decisive role in shaping the corresponding stabil
region. Specifically, when the backoff window is sufficigntarge, the stability region is convex, and it evolves intaccacave
region as the window size decreases. In addition, for giwarmeterization, there exists a unique stable region whervindow
size is sufficiently large, whereas smaller window sizes theayl to a collection of stability regions.

I. INTRODUCTION

As a widely deployed WLAN multiple access solution, the IE&E.11 Distributed Coordination Function (DCF) has been
extensively studied, particularly in terms of its throughperformance. Such exercises provide insights in our rstaleding
of the potential and limitation of 802.11 DCF. Generally &gag, the modeling of the throughput performance of 802.11
may be categorized into two classes, namely, one that feausé¢hesaturatedregime and one on theon-saturatedegime.
Under the saturated case where each node is an infinite s@uncean field Markov model with great intuitive appeal wag firs
proposed by Bianchi in his seminar work [1]. This model wasvai to produce accurate prediction on the system throughput
of a singleclique, where all nodes interfere with each other. It has since vatd a large body of work on models of a
similar nature, see e.g., [2] for a more general frameworketdaon a simplified fixed point analysis using renewal theory.
There has also been work studying the unsaturated caseh wghimften done by adding extra states to the original Markov
chain proposed by Bianchi in [1], see e.g., [3], [4], [5]. hetunsaturated case the service processes across all rexbese)
coupled, thus characterizing the system throughput besameh harder, and determining the queue stability regicnblean
regarded as an open problem [6].

In this paper, we seek to characterize #tability regionof 802.11 DCF for a clique of a finite number of users operating
on a single channel. It is defined as the set of all arrivalsréib@t can be stabilized by 802.11 DCF. We present a system
of equations with feasibility constraints to describe thiability region. We then investigate the existence andjugness
of its solutions. In particular, we show that there existsnéque solution to this system of equations when the size ef th
backoff window is sufficiently large. We further show thaetkize of the backoff window plays a decisive role in shaping
the corresponding stability region. In particular, whee thackoff window is sufficiently large, the correspondingbdlity
region is convex; as the window size decreases it evolvesartoncave region. We provide an intuitive explanation Fas t
phenomenon, and connect this result to known results otedl@loha [7]. We note that while our discussion is focused on
802.11, our analytical framework is more generally appliea

It is worth noting that results on thete or throughput capacityegion of 802.11 DCF are available in the literature [8],
[9]. Technically, rate region and stability region are twiffetent concepts: the former may be analyzed assumingsaltsuare
saturated while the latter by definition is a notion that isycapplicable to a set of non-saturated users. In practicelies
have shown that in the case of slotted Aloha, its stabiligiae is the same as the Shannon capacity region [7]. Thistmigh
suggest that in the case of 802.11 DCF the two regions aregelsmetrically more similar than not. Results obtained is th
paper seem to support this statement (more is discussedctioi®dV), though fully validating it is out of the scope ofeh
present paper and will be addressed in a future study.

The rest of this paper is organized as follows. In Section él present our model and state definitions and assumptions.
In Section Il the aforementioned constrained system ofaéqos termed>, C, ) is presented to quantitatively describe the
stability region, followed by an analysis on its solutioAsalytical results generated by the model are then comptardiolat
from simulation in Section V. We provide an intuitive exp&ion in Section V on the shape of the stability region bynding
results from slotted Aloha, and we conclude the paper iniGedt!.



Il. SYSTEM MODEL AND PRELIMINARIES
Consider a multiple access system using the IEEE 802.11 BFassume that

1) the system consists aof nodes (or users interchangeably), indexed by theAset {1,2,...,n}, each with an infinite
buffer; each node uses the same parameterization and hdsaoseeiver;
2) the channel is ideal and there is no MAC-level packet discee., there is no retransmission limit of a packet after
collision;
3) the queueing process at each node is stationary and ergach that Little’s law is applicable [10].
Throughout the analysis we will adopt occasional other §fyipg assumptions to make the problem tractable; these ar
introduced in their respective specific context since someapplied locally and some globally in the modeling framewo
These are summarized in Table Il in the appendix. It shoulddied that due to the complexity of the problem, successive
simplification in the modeling effort is a rather common piee and has been used in most if not all previous works. W lat
show that these simplifications do not impact the accuradh@fmodel under normal operating parameter values.
The key to our method is to model the 802.11 DCF adadted mean field Markov chaiwe first define the notion of a
slot as follows.

Definition 1: Consider a virtual backoff timer of the system (or a virtuable) that counts down according to the 802.11
exponential backoff scheme with an infinite initial value.sfot is defined as the time interval between two successive
decrements. Since the virtual node has no packet to sendll itlternate between the count down mode and the freezing
mode indefinitely. The slot time is thus a random variable.

Remark 1:The above definition provides a universal slot time for aldl@® in the system and we will assume that real
backoff timers at a node is synchronized to this virtual tirme slot boundaries. The motivation behind such a constnct
originates from the principal difficulty in modeling a noatsrated system: the service process at each node runs ededeb
time in terms of a slot, which is a random variable, whereas ghcket arrival process is described in real-time [6]. This
difficulty does not exist in saturated analysis, where afprocesses do not play a role.

Let the arrival rate at nodé be \; bits per second, wheree N, and letA = (A, Aa,..., \,). We formally define the
stability region of system as follows.

Definition 2: The stability regionA is the set
A= {)\ € R’} | queue lengths at all nodes are bounded with arrival ratesder the 802.11 DCF scher}qe

For a given)\, whetherX € A is determined by the utilization factor at each node, dehbiep, for nodei, or equivalently
the probability that the queue at noflés non-empty at an arbitrary real time instant. lagtbe the probability that the queue
at nodei is non-empty at the beginning of an arbitrary slot, denotgdh p; is then given by

pi = P{the queue at nodgeis non-empty at~ }.

Note thatp; is conditioned on that™ is the beginning of a slot, and thys # p; in general. Furthermore, we show in the
appendix that; < p; where equality holds if and only i5; = 1 or p; = 0, i.e., nodei is either saturated or idle.

We next derive a relationship between transmission attgrgiiability andp;. Note that successive attempts by the same
node may occur if a node repeatedly selects timer value Oewditier nodes freeze their timers. This phenomenon can be
prominent when the window size is small. We will call the miyiof successive attemptsan of attemptsand the first attempt
in a run arun-first-attemptor simply first-attempt We will also use the termbackoff lengthto mean the selected timer value
plus 1.

A key assumption underlying our model is irst-attempt collision sequence (FACS) decoupling appration, stated as
follows. DefineC;(j) := 1 if the first-attempt of thejth run of attempts by noderesults in a collision, and’;(j) := 0 if it
results in a success.

Assumption 1 (FACS Decoupling Approximatiokpr each node € N, the first-attempt collision sequen¢€;(5)} is i.i.d.

If one omits the possibility of successive attempts, or egjantly, assume that each run consists of only one attemipth
is reasonable when the initial window size is sufficientlsgl then this decoupling approximation reduces to the-kredlwn
decoupling approximation by Bianchi [1].

Let 7; be the probability that nodeinitiates a first-attempt in an arbitrary slot. Then, we htwe following lemma.

Lemma 1:7; is given byr; = p;/W;, whereW; is the average first-attempt backoff length of nade

Proof: Define the following shorthand notations.
Tz := {nodei initiates a first-attempt in a slbt

Q(Q) := {the queue at nodeis non-empty (empty) at the beginning of a 3lot



We then have B B
T =P(T'z|Q) - P(Q) + P(Tz|Q) - P(Q).
Since P(Tx|Q) = =, P(Tz|Q) = 0, the result follows: |

Remark 2:1f the ;;ossibility of runs of attempts is neglected, i.e.,0 decoupling reduces to Bianchi's approximation,
then W, is given by

m—1
Wi = (L=pi) > @pi) + @2p)™ | +1], 1)
7=0

where W is the size of the initial backoff window andh is the value of the maximum backoff stage. Furthermore, if we
consider the saturated case where users are identical, weepha: p; = p = 1, andp; = p, for all i. Consequently,

2
L (- ey 2 + 1
2(1—2p)

(1 =2p)(W + 1) +pW (1 - (2p)™)’
which is the same result obtained in [1].
We conclude this section by noting that not all our assunmgtiare applied globally, e.g., successive attempts aregeégno
when computing the average first-attempt backoff length Bndis hence given by Eqgn. (1), but successive attempts are
critically considered when computing the average lengta slot given various conditions. These are summarized iteTiab

I1l. SINGLE CHANNEL ANALYSIS
A. The stability region equatioR
Our first main result is the following theorem on the quatiti&adescription ofA.

Theorem 1:X € A if and only if there exists at least one solutien= (71, 72, ..., 7,) to the following constrained system
of equationg%, C, A),

Pi
i = = a
O (a)
5. pi=1-[J0=7) (b)
J#i
[N (Wi—1 Di
pi = Min {? <1—7plE[SlOt7”Q’ﬂ] + Tcl——pl + Ts> ) 1} (C)
subject to
0<m <1 [
C: { =T ()
0<pi<l (i)

for all 7 € N. Here P is the packet payload sizé}[slotmyﬂ] is the conditional average length of a slot given that the
qgueue at node is non-empty but does not transmit in this sloff; and7. are the lengths of a successful transmission and
a collision, respectively.

Proof: ¥(a) is the result of Lemma 1, and(b) is an immediate consequence of its definition. Let theame packet
service time at nodeé ber seconds per packet. Therefore,

o 00 . 2nﬁn{jnn}[4/ 1 wW+1
X7 — Z [(pi)J (Tc + (% — 1) X ]E[sloti_’Q_’Tz])} + ( 2+ - 1) E[slot; o 7z) + Ts

j=1
> 2min{j,m}W -1 ) > )
-y [f@ﬂ Elstot, g 7s) + . 3 (i + 7
Jj=0 j=1
Wi — Pi
= 1_ [SlOtlQTz]—FTcl_—pi +Ts

Note that we have suppressed successive attempts in the.aboe average data service timeX§ = Yf/P. Thus, by
Little’s Law, the utilization factor of nodé is given byp; = min{\; X;, 1} and¥(c) follows. C(j) is for the validity of 7 as a
probability measure(X, C(i), A) then constitutes a full set of description on the systenizatibn. C(ii) is the necessary and
sufficient condition for a stable queueing system. [ |

1Technically the first equality is an approximation; simitgproximations have been adopted in related work like [11].



For a given set of system parameter values, two sets of diesrdire needed to compule E[slotinyﬂ] andp;, Vi € N.
These are computed in Appendix B and C, respectively. Iniquéar, in Appendix C we show that though it is analytically
intractable,p; is well approximated by

piE[slot; 5]

pPi = B
piE[slot; 5] + (1 — p;)E[slot; q]

whereE[slot; q] (E[slot; 5]) is the conditional average length of a slot, given that theug at node is non-empty (resp.
empty) at the beginning of this slot.

B. Characteristics of solutions t&
Without the stability constrain€(ii), (3, C(i), A) can be rewritten as a vector equationn1]™, that is,

T =T(1),

wheretT = (11, 72,...,7,) € [0,1]", and the existence of solutions can be then shown by Brosviiged point theorem.
However, the uniqueness of solution is in general difficalptove; nevertheless, under the condition of a sufficielaifge
initial backoff window ¥/, we have the following result on the uniqueness of solution.

Theorem 2:For sufficiently largelV, (3, A) admits a unique solution.
Proof: See Appendix D. [ |

Remark 3:1) Note that in the above theorem the condition is on theaihitindow sizel/. As an approximation we will
take this to be equivalent to a large average backoff windssum@ption. This is because the probability of a (first-afgm
collision decays inverse-linearly i/, and thusiV; is dominated byl whenW is sufficiently large.

2) As we will see in the next section, multiple fixed point s@ns may arise wheml” is small; this will be referred to as
multi-equilibria (as opposed to “multistable” or “metasial’ [6] to avoid confusion).

In the proof of Theorem 2, we in fact obtained the approximateique solution tg%, A). Therefore, by imposing feasibility
constraintsC, we can induce a simplified version @k, C, \) which is equivalently an approximation of. The above
observation is summarized in the following corollary.

Corollary 1: WhenW is sufficiently large,A is approximated by

1 2
- . Yi(A) 2N, 2 .
A—{)\GR+ 0< 1_21/}/]1()\1) ’Yi(Ai)<W—H,V’L€N},
where
T T
now =1+ 55,
and AN MW —1)(T o) AT
20y \ il A¢ - — 0 i
00 = (5 PW +1) )/(1+ %)

Within the context of a unique solution &, C, A), considerA as input parameters and rewrlieas F(m,\) = 0, with
(n +n) unknowns, i.e.;;'s and \;’s. We can then inspect the existence of an implicit funcoér- in terms of A, and for
this we need to examine the invertibility of the correspogdiacobian matrix. Note also that the correspondence batwe
and (X, T) given by X(c) is a continuous function. If the Jacobian is invertible tbe boundary of the stability regiaf in
the spaceR’}, then the continuity op; = p;(A) is established. Hence, on the boundary\ofdenoted byA, there exists at
least one nodé such thatp; = 1. However, to determine the invertibility of the Jacobian@h is highly non-trivial and in
general analytically intractable when the number of nodelsiige. Therefore, we have resorted to numerical evaluatia
more is discussed in the next section.

IV. NUMERICAL RESULTS

In this section we present numerical results obtained fromumerical solver and simulation that we implemented on
MATLAB 2008b platform. Specifically, we consider a system of tworsisé/e reconstruct as a fixed point equation in the
form (7, p) = I’ (7, p) in the solver, where- = (7;,i € ') andp = (p;,i € N), and it is solved with an iterative procedure.
Solving for (7, p) simultaneously rather thafr, p) or simply 7 is a choice that makes this model easier to solve in the case
of a multi-channel system, which is reported in [12]. Thegmaeters used in both the solver and the simulation are egbort
in Table Il in the appendix. We consider the basic accesshar@sm of DCF in this paper, and have

T, = +raw + Header+ ACK + DIFS + SIFS+ 26
T. = w1 map + Header+ DIFS + 6

¢ 7 Tx. Rate

whered is the propagation delay.
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A. Multi-equilibrium and discontinuity i

We first illustrate the existence of multi-equilibrium stéins and discontinuity op;(X) with respect toX; this is shown
in Figure 1. We fix the value oA, and increase\; from 0 to 4.5 Mbps. For each pakX = (A1, \2), we solve the fixed
point(s) of I with the same set of initial values af and p; for i € A/ to which we later refer as a set of initial conditions
(ICs), and we convert the results o= (p;,7 € N') accordingly. The collection of the paifs\, p(\)) then forms asolution
componenfor this set of ICs. Notice that this is obtained by solvifig, C(i), A) without considering the stability constraint
C(ii). We repeat the above computation for different sets@$ Lnder the same system parameters inclutihngndm. The
entire process is then repeated for different pdit5 (n). For each pairl{/, m), the resulting solution components constitute
an overall correspondence between the vecloed p(\), and this is plotted ap; vs. \; in Figure 1.

In the first scenario as shown in Figure 1(a), where the Initiadow is of the smallest possible size for two users and
window expansion is disallowedn( = 0), three different zones of the correspondepg€\;) are present, labeled at, A’
and B in the figure. In zonesl and A’, single fixed point is admitted ane (A1) reduces to a function, while in zore we
see two solutions. Along each solution component, therejisng in p; in zone B as A, increases; this is essentially a phase
transition from stable to unstable. What this result illagts is that depending on the initial condition, certajuinrates may
or may lead to a feasible solution (a point in the stabilitgioa). Thus when such multi-equilibrium exists, we may have
collection of stability regiom\’s.

Intuitively, ICs with large values suggest a pessimistiediction on the system stability unda; and it may thus result
in a smallA; by contrast, ICs with small values render an optimistic and a largerA. Empirically, we find that the set of
ICs with 7; = p; ~ 1 for i € A/ results in the earliest jump ip; and the one withr; = p; = 0 for i € A/ gives the latest.
Consequently, solution components resulting from theses®is of ICs define the boundary of zaBeand the corresponding
stability regions, forming the supremum and infimum of théemtion of A’s.

Inspecting the set of figures Fig. 1(a)-1(d), we see that asirthial window increases, the multi-equilibrium gradyal
vanishes and the gap j,m caused by the jump discontinuity closes.

B. Numerical and empirical stability regions

We numerically solvéX, C, \) with two nodes to obtain the correspondifigand then compare with the simulated boundary.
In simulation, for each fixed,, we increase\; with a step sizeA\. Denote byS* the empirical throughput obtained under
A, by B> the total number of backlogged packets in the system, arffi/tyre total simulated time. The simulator declares a
point X to be unstable ifS* < \; + Xy and BAP > a - (A\; + X2)Ty, wherea is an instability threshold and < « < 1. In
our experiment, we seh\ = 0.1Mbps (100 Kbps).I'y = 10s anda = 1%. The stable poinfA;, A2) such that(A; + A\, X2)
is unstable is recorded as a point on the simulated boun@beyresults are shown in Figure 2. Also, all the stabilityioag
are scaled accordingly with respect to the length of a sloeal time units.

Our main observation is that when the initial (or average)kb# window is large, the stability region is convex (Figur
2(b)). The convexity gradually disappears as the window sigcreases and the region is given by a near-linear boundary
Figure 2(a). It becomes clearly concave when the window sizamall (Figure 2(c)). Interestingly, the case 1ot = 32 is
the most often studied in the literature, and the linear aoy of the capacity region has been observed in [8]. As shown
here, this linear boundary is only a special case in a spactiuconvex-concave boundaries. In [9], Le#h al. established
the general log-convexity of the rate region of 802.11 WLANs Figure 4, we numerically show that the stability region
obtained above is also log-convex, except the bump causedebgondifferentiable point due to the numerical instapidif
solver under the extreme parameterization. Thereforerasuits support the belief that the rate region and thelgtategion
are quite similar in feature. This however is not a formallgyen statement, nor are we aware of such in the case of 802.11

The change in the shape of the stability regionldschanges may be explained as follows. Smillrepresents a highly
aggressive configuration. This is much more beneficial whenetis a high degree of asymmetry between the users’ arrival
rates. This is reflected in the concave shape of the regioen\Wh is large, users are non-aggressive, which is more beneficial
when arrival rates are similar, resulting in the convex shaypumerically, thelV = 8 case gives the largest stability region.
This seems to suggest that the largest stability regionvisngby the smallest choice & such that a unique feasible solution
to (X, C, \) exists. It would be very interesting to see if this could b&aklshed rigorously.

In Figure 3, we compute the stability regions of the case @h&r = 2 and m = 0 for two different sets of ICs. As
discussed earlier in this section, when multi-equilibrigrists we may have a collection of stability regions. Thiglarly
seen in Figure 3: three different zonds A’ and B in the correspondengs (\,) are mapped accordingly onto. From these
results, we may interpret that in zonds(A’), the system is uniformly stable (resp. unstable) regasdtd the ICs, while in
zone B the stability of system depends on the ICs. As summarize6lirttie simulated observation reflects time-averages of
multiple equilibria.

C. Approximation ofA

In Corollary 1, we obtained a simplified version @f, C, X) which can be computed with significantly reduced complexity
and providesA, an approximation ofA. We are then interested in how accurate this approximatonhe, and numerical



results are reported in Figure 5. Roughly summarizing, astickoff window enlarges) approached, and the main source
of loss of accuracy roots in the approximation= p; which results in a gap between the boundarieg @ndA. Nonetheless,
we are still unable to obtain a more close approximation,ofeducing> to a computationally friendly form as given in

Corollary 1, and we leave it as one potential topic to ingzgt in our future work.
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Fig. 5. Approximated stability region.

V. FROM 802.11 DCFBACK TO ALOHA
The slotted Aloha protocol is the natural prototype of thedera IEEE 802.11 DCF scheme. In this section, we first recall
results on the stability region of slotted Aloha, and theovfie an intuitive argument on why the qualitative propestof the

stability region of 802.11 DCF shown in the previous sectwa to be expected.
In [13], Massey and Mathys studied an information theoatticodel of multiaccess channel which shares several fuad&ah

features with slotted Aloha. They investigated the Shantepacity region of this channel with users, which is shown to
be the following subset aR’,

C= {Vect<p¢H(1 —pj)> ‘ 0<p;<1,1<i< n}
J#i
wherevect(v;) = (v1,v2,...,v,), andp; can be interpreted as the transmission attempt rate ofiuder[7], Anantharam
showed that the closure of the stability region of slottedhf is also given by, under a geometrically distributed aggregate
arrival process with parametey (>, \;) and with the probability that such an arrival is at nadeeingA;/ >_; A;.

1
_C_
—o -V W=15
A= CW W =2
08 o WV W=3 |
5
%06
=z
j 4
2
£04
<
0.2t
0 i i ‘ S
0 0.2 0.4 0.6 0.8 1

A1 (packets/slot)

Fig. 6. The stability region of slotted ALOHA and induced sats.

The above result on slotted Aloha can be used to explain #i®lisg region of 802.11 DCF. Note that the main difference
between the two lies in the collision avoidance mechanisisied of attempting transmission with probabilits p <1 ina
slot under slotted Aloha, in 802.11 each user adopts a bipkmtess with a randomly chosen timer value (or backoff flenhg
within a window of sizelW. The effect the average length has on transmission under 802.11 is akin to that of restgcti
the attempt rate within an upper bounq}? under slotted Aloha. Hence, the stability region of 802.1FDmay be thought

of as a subset of’ provided that we properly scale a slot to real time. o
To verify this intuition, letC" be the subset o when0 < p; < % for all 7. In Figure 6, we plotC’ and C"' with

different values ofi’. As can be seen, d¥ grows,CW evolves from a concave set to a convex set, consistent witt wh



observed of 802.11 DCF in the previous section. It must batpdiout that the connection described above, while inejiis
not a precise one technically. For instance, this connectight suggest that the stability region of 802.11 DCF welluce

to C' when the average backoff length is 1. This is however not tiu¢his trivial case, the stability region of 802.11 DCF is
reduced to one dimensional, i.e., the system is unstable fer2. This is because the retransmission probability of 802511 i
also lower bounded by the reciprocal of window size at itskb#cstage, and in the case when the backoff length (or window
is one another collision surely occurs.

VI. CONCLUDING REMARKS

In this paper, we identified the stability region of 802.11P@n interesting finding is that as the window si#é increases,
the stability region changes from concave to convex. Intaafdithis region is unique wheW is sufficiently large, whereas
it depends on the initial condition of the system whH&his small due to multi-equilibrium solutions to a system ofiatjons.
Our ongoing research aims at extending this result to a +ol#innel system, and preliminary results in this directoa
presented in [12].

APPENDIXA
PROOF OFp; < p;
We first define the following stochastic processes genefajethie queueing process at node
T; o(t) := the total length of real time periods that the queue at noidenon-empty (ori is busy) up to time;
Ti@(t) := the total length of real time periods that the queue at noideempty (or: is idle) up to timet;
N, o(t) := the total number of slots that the queue at node non-empty at its beginning up to tinte
Ni,é(t) := the total number of slots that the queue at néde empty at its beginning up to time

These processes are well-defined on the same spaend then because of the ergodicity assumptignand p; can be
expressed alternatively as

T; ,t T; , T
pi = lim 77@((.«) ) lim Q.?) ,
t—o00 t t—o0 T Q(w7 t) + Ti7§(w7 t)
and
Ni Q(w t)

lim
T 2% Nig(@,1) + N, g(w,t)’

for all w € Q. Let A;(¢) be the total time fragmentation of busy periods in idle slft®odei up to timet, and letS; o (k)
(Si@(k)) be the length of;ith busy (resp. idle) slot. Quantities described above &ustihted in Figure 7. Then, we have

N; Q t)
Tiq(t) Z Siq(k

and

Niq(t) Ni,a(t)

Z Siok)+ Y S, 5(k).

k=1
Therefore,
pi 2 hm Ti7Q(w7t) — Ai(w7t)

t—o00 t
]\7,;Y (w,t)
= lim k:{2 S@Q(W, k)

TR T 8w, k) + ST S 5w, k)
N; Q w,t) k Niq(w,t) ¢ k Nja(w’t) S =(w, k
_ m Pl Si,o(w, )N@Q(wi)/(Zk_l Si@(w, )Ni7Q(w7t) " D k=1 el )N.(w,t)>] .

t—o0 Nl-_’Q(w,t) Nl-_,Q(w,t) Nla(w,t) He

Let E[slot; o] andE[slot, 5] be the conditional average lengths of an arbitrary sloemthat the queue at nodés non-empty
or empty at the beglnnlng of slot, respectively. We claimt thgslot; o] > E[slot, 5], and N; () — oo and N, 5(t) — oo
ast — oo. Consequently, following the ergodicity, we obtain

> lim N;.o(w,t)E[slot; o]

~ t=o0 Njg(w, 1)E[slot; q] + N, 5w, t)E[slot; 5]




At) At)

[

LT I “—'—'. |
tl
idle period ———— busyperiod :| aslot
Fig. 7. Slotted time dynamics.

N; o(w,t

> lim 19w, 1)

= 5% Nog(@, 1) + N, (@, 1)

= pi-

It remains to justify the claims made above, and they appeapipendix B.

APPENDIXB
COMPUTATION OF E[slot;.;] AND RELATED QUANTITIES

Given an evenf-}, let Pgie.(.y, Pouce:.} @NdP.oy;.y be the conditional probabilities that this slot is idle, tttree first-attempt
in the slot is a success, and that the first-attempt is a wolligespectively. Notice thab,.q;;.(.} = 1 — Pigie;.} — Psuces{.)-
Also, denote byL;ie.{.}» Lsuce;{.3 @nd Loy the average lengths of the slot in the corresponding casedi[klot.,] be
the conditional average length of a slot. Therefore,

E[Slot{,}] = Z PS;{,} . LS;{.}.

se{idle,succ,coll}

As for L.y, wheres € {idle, succ, coll}, we have

dele{} =0,

1
succ,{} T Z ( ) —%Tsa

and
21’ 2171
1 1 1 1
=1 (e T )] e )
1

= 5T + — T,

1_(71 ) (1+CWey) (1-w)

CW iy

N 1 T 11:/;,

=% Weow
whereo, Ts andT, are the lengths of an empty system slot, a successful traagmj and a collision, respectivek&]‘;—W{_} is
the conditional average backoff window size. These quantidre well-defined wheW > 2 which is presumed in application.
The first approximation of..;;,(., is due to omitting the possibility of collisions involvingree or more nodes, and the other
one results from substituting'W;., with the initial backoff window sizél¥. Note that, if we neglect successive attempts,
we havel,,..y = Ts and L.,;,(.y = T., which is also a natural consequence whenis sufficiently large in the above

equations. Define then by ¢ the conditional probability that nodetransmits in an arbitrary slot, given its queue is non-empty
at the beginning of this slot, and hence we hayg = é Consequently,

Pzdlez@ = H(l - Tj)

J#i
succzQ ZTJH 1_Tl
JF lFL]
Pigie:ig = (1 = 7,) H(l - 75),

JF#

Psucc;i,Q = Ztl H(l - tl),

Al



10

where

b= Ti_’Q, If_]:Z
/ Ty, i j#i

Since Pgie.i 0 < Paeio ando < Ty, T, we haveE|[slot; g] > E[slotiﬂa]. In addition, it is clear thaE([slot ;] is finite, and

thus N; o(t) — oo and N, 5(t) — oo ast — oo when0 < p; < 1. Explicit expressions for other varieties Bfslot.,] that
are used throughout the paper are reported in Table I.

APPENDIXC
APPROXIMATION OF p;

Due to the analytical intractability ok, (¢), we are interested in proper approximationggfthus resulting in good estimation
of A, where the goodness in the context of our stability studyegarded as a tight underestimation. Recalling that p;
and equality holds if and only if; = 1 or p; = 0, therefore by replacing; by p; in X(c), solutions to the resulting system
of equations form an underestimation &fbut accurate whep; = 1 or 0 for all <. Moreover, by noticing that

Tz’,Q(va;)*Ai](w-,t)
. E[slot; g
tliglo Ti,0(w,t)—A;(w,t) + T, 5(w,t)+A(w,t)
E[slot;,q] E[slot; 5]
Ti.q(w, t)E[slot, 5
< Jim Q(w, t)E[slot; 7]

t—o0 T%_’Q(u}, t)E[SlOtha] + T;,a(w, t)E[SlOtin]

i =

< pi,

and defining

S Ti(w, t)E[slot; 5]
Pi= % Tiq(w, t)E[slot, 5] + T, 5(w, t)E[slot; q]
piE[slot; 5]

n pilslot, 5] + (1 — pi)E[slot; q]’

we havep; < p; < p;. Hence, substitutingy; with p; in £(c), we can obtain a tighter underestimation of thetrading off
with higher computational complexity compared to the poesi approximation. Empirical results suggest tha sufficiently
close top, and we use asp throughout our computation.

APPENDIXD
PROOF OFTHEOREM 2

First of all, with a large backoff window, the probability obllision is small, so we hav®/; ~ @ We also observe that
Elslot; q| ~ E[slot, 5] sincer; g = % and IV is large. Consequently,

Pi

N pilE[slot; 5] ~
piElslot, 5] + (1 — pi)Elslotiq] ~

Let T, =T, =T for the simplicity of presentation. Thel; is approximated by the following system of equations,

T = @
2
- | m=1-T[C-7) (b)
N | BB -1 pi

Note that with the constraint of(ii), the explicit unit upper-bound omp; is not necessary, and thus we can suppress this
upper-bound in:(c). Substituting®:(b) and (c) in (a), we obtain

2\ W—1< 1 ) 1 1
T = o+ T —1 —|—TH
P(W +1) 2 (#il—rj ) #il—rj
on Wt 1 w1
= — T—
PW+1)| 2 JH#1—TJ- 5 (T=0)
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o )\ZTH 1 _/\i(W—l)(T—U)
paleT P(W +1)
Using the first-order Taylor approximation, we haM%# ﬁ ~1+ Z#i 7;. Hence,

AT (W = 1)(T — o)
P(H_;Tj)_ PW+1)

T =

which can be rewritten as

T Tj

ML) (1 M)

Il
o
|5
]

Therefore, lety = Zj Tk = k}iDT

~

(1 + A?‘T) and+? = (X;DT - 7&(2/(—‘;5:3—0))/(1 + A;gT), and we have

Ti =YY+

Then,X is equivalent to

 (m=vy+? @)
iy y=Y (Wy+d) ()
i
which admits only one solution, namely . ,
e 2 s
- > 731 '
APPENDIXE

MISCELLANEOUS

P’Ldle;{~} PSuCC§{‘}
E[slot, 6] H(l = 75) ZTJ' H (1—-m)
’ J#i J#i 1F
doulla-w
(1—ﬂ,Q)H(1—Tj) T
Elslot; q] J#i
1 heret; — { @ =1
wherer; o = W, whereti; {Tﬁ JAi
Elslot; o 73] H(l = 75) ZTJ' H (1—-m)
o J#i J#E 1F
TABLE |

SUMMARY OF COMPUTATION OF E[slot (., ].

sirr?;liaflinetd Vggz}p. Approx. and Assump.
— () successive attempts omitted;
Wi (ii) approximated by"-** when W is large
X7 successive attempts omitted
(i) collisions involving three or more nodes omitted;
Elsloty,] (i) CW ., approximated byV/
p numerically approximated by
FACS decoupling approximation or equivalently
Bianchi's decoupling approximation when successive gitsnomitted

TABLE Il
SUMMARY OF SIMPLIFICATIONS MADE IN THE MODELING AND COMPUTATION.



(1]
(2]
(3]
(4]
(5]

6]
(7]

(8]
El
[10]
[11]
[12]

[13]

12

Transmission rate per channel| 5.5 Mbps
Data packet length 1500 Bytes
DIFS 50 us
SIFS 10 us

ACK packet length (in time units 203 us
Header length (in time units) 192 us

Empty system slot timer 20 us

Propagation delay 1 us
Initial backoff window sizeW 32
Maximum backoff stagen 5

Data rate granulariAX 100 Kbps
Instability threshold constant 1%
Total simulated timeT’, 10 seconds
TABLE Il

SPECIFICATIONS OF THE IMPLEMENTATION OF TEST BENCH
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