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Abstract— In this study we consider the problem of optimal
channel selection policies for a transmitter in a multichannel
wireless system where a channel can be in one of multiple
states. Each channel state is associated with a probabilityof
transmission success. In such systems, the sender typically has
partial information concerning the channel states, but candeduct
more information by probing individual channels, e.g. by sending
control packets in the channels. On the other hand, while probing
can help the sender determine the best channel to use, it consumes
valuable resources. The main goal of this work is to derive
optimal strategies for determining which channels to probe(in
what sequence) and which channel to use for transmission.
Our primary interest in this study is to derive key structura l
properties of the optimal strategy. In particular, we show that
it exhibits a threshold structure and can be described by an
index policy. We further show that the optimal strategy can only
take on one of three structural forms. In addition, we explicitly
derive optimal strategies for some practical channel models, and
provide conditions under which some commonly used strategies
are optimal. Using these properties, we present a two step look-
ahead policy and show that it is optimal for a number of special
cases of practical interest.

Index Terms— channel probing, scheduling, stochastic control,
wireless ad hoc networks, dynamic programming,

I. I NTRODUCTION

Effective transmission over wireless channels is a key
component of wireless communication, and to achieve this
one must address a number of issues specific to the wireless
environment. One such key challenge is the time-varying
nature of the wireless channel due to multi-path fading. This
channel fading can be caused by factors such as mobility, in-
terference, and environmental objects. The unreliabilitycaused
by such fading must be accounted for when designing robust
transmission strategies. Recent works such as [1], [2] have
studied opportunistically transmitting when channel conditions
are better in order to exploit these channel fluctuations in time.

At the same time, many wireless systems also provide nodes
with multiple channels to use for transmission. As mentioned
in [3], a channel can be thought of as a frequency in a
frequency division multiple access (FDMA) network, a code
in a code division multiple access (CDMA) network, or as
an antenna or its polarization state in multiple-input multiple-
output (MIMO) systems. Many IEEE 802.11 technologies also
propose using multiple frequencies. In addition, softwareradio
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(SDR) systems [4] may provide nodes with multiple channels
(e.g. tunable frequency bands and modulation techniques)
by means of a programmable hardware which is controlled
by software. Such systems are particularly important for
applications such as military where flexible and interoperable
communications are desired.

All of these systems share the common feature that the
transmitter is generally supplied with more channels than
needed for a single-transmission. Thus, it is possible for
nodes to exploit the time-varying channels by opportunistically
choosing the best one to use for transmission [5], [6], [7]. This
may be viewed as an exploitation of channel fluctuations in
space (i.e., across different channels), and is akin to the idea
of multiuser diversity [8].

In order to utilize such channel variation, it is desirable
for the transmitter and/or receiver to periodically obtainin-
formation on channel quality. One method of accomplishing
this in a distributed manner is to allow nodes to probe
channels by having the transmitter send control packets. Upon
receiving a control packet, the receiver sends back a response
packet to the sender that may indicate the channel quality.
For example, recent works such as [5], [9] have proposed
enhancing or exploiting the multi-rate capabilities of the
IEEE 802.11 RTS/CTS handshake mechanism. [9] proposes
a protocol called Receiver Based Auto Rate (RBAR) in which
the receivers use physical-layer analysis of received RTS
messages to find out the maximum possible transmission rate
to achieve a specific bit error rate. The receiver controls the
sender’s transmission rate by inserting the maximum possible
transmission rate into CTS message.

This probing process can help nodes obtain more informa-
tion about channel quality and therefore make better decisions
concerning which channel to use for transmission. However,
channel measurement and estimation also incur overhead
and consume valuable network resources. In particular, the
exchange of control packets decreases the amount of time
available to send actual data and consumes energy. In addition,
sending control packets can also prevent other users from
simultaneously using the channel. Thus, channel probing must
be done efficiently in order to balance the trade-off between
obtaining useful channel information and consuming valuable
resources.

In this work, we study optimal strategies for a joint channel
probing and transmission problem. Specifically, we consider



a transmitter with multiple channels with known state dis-
tributions. The transmitter can sequentially probe any chan-
nel with channel-dependent costs. The problem is to decide
which channels to probe, in what order, when to stop, and
upon stopping which channel to use for transmission. Similar
problems have been studied in [3], [10], [11], [6], [7], [5].
The commonality and differences between our study and the
previous work are highlighted below within the context of our
main contributions.

The main contributions of this work are as follows.
Firstly, we derive key properties of optimal strategies forthe

problem outlined above, and show that the optimal strategy has
a threshold structure. We use this structure to derive necessary
and sufficient conditions for certain strategies to be optimal.
In contrast to [3], [10], [11], we do not restrict the channels
to take a finite number of states; our work applies to both
the case where the number of channel states is finite, and the
case where they can take an infinite number of states. This
generalization is important as many next generation physical
layer technologies such as MIMO and Adaptive-Bit-Loading
OFDM [12] are aiming to provide continuous range of data
rates that can be adjusted according to channel quality. In this
sense our work is more general than previous work.

Secondly, we derive explicitly the optimal channel probing
strategy for a number of practical special cases. One of these
special cases is when the channels are statistically identical
with possibly different probing costs, and our results provide
optimal strategies forarbitrary channel distributions and prob-
ing costs. In [6], [7], [5], a variant of this problem was studied
when the channels are statistically identical. In particular, [6],
[7] analyzed the situation with identically distributed channels,
only allowed channels to be used immediately after probing
(i.e. no recall of past channel probes), and did not allow
unprobed channels to be used for transmission. In addition,
their work restricts the transmitter to probe the channels in a
particular order, while ours determines the optimal order for
the transmitter. Meanwhile, [5] assumes independent Rayleigh
fading channels and because all channels are independent and
identically distributed, do not focus on which channels should
be probed and in what order. In our work, similar to [3],
[10], we allow the situation where channels are not statistically
identical, and we provide results for a general class of channel
distributions. Our work can thus be seen as a generalization
of previous studies in [3], [10], [11], [6], [7], [5].

Finally, based on the key properties of optimal strategies,
we propose strategies that perform well for arbitrary number
of channels and arbitrary number of channel states (finite
or infinite). To the best of our knowledge, this is the first
channel probing algorithm for the combined scenario of an
arbitrary number of channels, arbitrary channel distributions,
and statistically non-identical channels. It should be noted
that when probing costs are equal for all finite-state channels,
[11] has derived a class of strategies whose computation time
is polynomial in the number of channels and can arbitrarily
approximate the performance of the optimal strategy. When
the probing costs possibly differ between channels, [10] has

derived the optimal strategies when channels can only have
two states, while [3] has proposed and studied suboptimal al-
gorithms with performance guarantees for finite-state channels.
Our algorithm and results apply to arbitrary, possibly infinite,
number of channel states and to arbitrary (possibly differing)
probing costs.

The remainder of this paper is organized as follows. We
formulate the problem and present preliminary results in Sec-
tions II and III, respectively. Section IV introduces a channel
probing algorithm and show that its optimal for a number of
special cases. Section V concludes the paper.

II. PROBLEM FORMULATION

We consider a wireless system consisting ofN channels,
indexed by the setΩ = {1, 2, · · · , N} and a transmitter
who would like to send a message using exactly one of the
channels. With each channelj, we associate a probability of
successful transmission byXj, a random variable (discrete
or continuous) with some distribution over the interval[0, 1].
The randomness of the transmission probability comes from
the time-varying and uncertain nature of the wireless medium.
The transmitter knowsa priori the distribution ofXj for all
j ∈ Ω. By sending a channelprobe on thejth channel, the
user can find out more information aboutXj .

We will assume temporal independence for the probability
of transmission success on any given channel. That is, the
channel state in any given time slot is independent of the state
during other slots. This assumption allows us to focus on the
transmission of a single message. In addition, we will assume
independence between channels, i.e.{Xj}j∈Ω are independent
random variables. Thus, probing channelj does not provide
any information about the state of any other channel inΩ−{j}.
These same assumptions were also made in [6], [3], [10], [11].

Note that in reality, the transmitter may not be directly
probing to find the probability of transmission success. For
example, channel probes may be used to measure the chan-
nel signal-to-noise ratio (SNR) in order to estimate channel
conditions [5], [6]. This measured SNR, however, essentially
affects the probability of transmission success and translates
into a measured valued ofXj . Thus Xj can be thought of
as an abstraction of the information obtained through probing.
In addition, it should be noted that even if estimates obtained
through probing are not perfect,Xj can nevertheless represent
the expectedprobability of transmission success as a result
of the probe. Thus without loss of generality we will simply
assume the precise value (or the realization) ofXj is found
after probing channelj.

The system proceeds as follows. The transmitter first de-
cides whether to probe a channel inΩ or to transmit using one
of the channels, based only on hisa priori information about
the distribution ofXj . If it transmits over one of the channels,
then the process is complete. Otherwise, the sender probes
some channelj ∈ Ω and finds out the value ofXj . Based
on this new information, the sender must now decide between
using channelj for transmission, probing another channel in
Ω − {j} (will also be denoted simply asΩ − j in the rest of



the paper), or using a channel inΩ− j for transmission even
though it has not been probed. This decision process continues
until the user decides which channel to use for transmission.

We can therefore think of the system as proceeding in
discrete steps, where at each step the transmitter has a set
of unprobed channelsS ⊆ Ω, and has determined the values
of channels inΩ−S through probing. It must decide between
the following actions: (1) probe a channel inS, (2) use the
best previously probed channel inΩ − S, for which we say
the userretires or (3) use a channel inS for transmission; we
call this guessingsince the channel has not been probed. This
last action was referred to as using abackup channelin [3].
Note that actions (2) and (3) can be seen asstopping actions
that complete the entire probing and transmission process.

We will assume that the sender receives a reward of1 upon
a successful transmission over any channel. ThusXj can also
be thought of as thereward associated with using thejth
channel for transmission. As mentioned earlier, in contrast to
previous works [3], [10], we will not assume thatXj are
discrete random variables. In particular, we allowXj to be
either continuous or discrete random variables. As mentioned
earlier, this generalization allows us to model, for example,
wireless systems with continuous data rates and channels with
discrete state space.

We will also associate a costcj , wherecj > 0, with probing
channelj. This cost may vary between channels, depending
on the probing time, interference caused to other users, andso
on. Though not free, probing channels can provide valuable
information about the channel condition, particularly if the
random variables{Xj} have large entropy. Therefore, it is
important that the sender efficiently balance the trade-off
between probing too many channels and not using a good
channel due to lack of probing. The sequence of decisions
on whether to continue to probe and which channel to probe
or transmit in will be called astrategyor channel selection
policy.

With the assumptions and objectives outlined above, we
have the following problem.

Problem 1: Given a set of channels, their probing costs,
and statistics on the channel transmission success probabilities,
the sender’s objective is to choose the strategy that maximizes
transmission reward less the sum of probing costs, i.e. achiev-
ing the following maximum;

J∗ = max
π∈Π

Jπ = max
π∈Π

E

[

Xπ(τ) −

τ−1
∑

t=1

cπ(t)

]

, (1)

whereπ denotes the time-invariant strategy that probes chan-
nels in sequenceπ(1), · · · , π(τ − 1), and then transmits over
channel πτ at time τ . Π denotes the set of all possible
strategies (all possible sequences of channel probes and trans-
missions), and the right hand sum in (1) is set to0 if τ = 1.

Note thatτ is a random stopping time that may depend on
the result of channel probes, andP (1 ≤ τ ≤ N + 1) = 1
since the longest strategy is to probe allN channels and then
use one for transmission. For the rest of this paper, we will let

π∗ denote the strategy that achievesJ∗ in (1), and will refer
to π∗ as theoptimal strategy. Such a strategy is guaranteed to
exist since there are a finite number of strategies due to the
finite number of channels.

Because theXj ’s are probabilities of transmission success
and thus upper bounded by1, it can be seen thatJ∗ is also
upper bounded by1. Thus we will further assume that0 <
E[Xj ] < 1 for all j ∈ Ω, because ifE[Xj ] = 1, then it
is always optimal to use channelj without probing, and if
E[Xj ] = 0 then channelj is never probed or used. That is,
the optimal strategy becomes trivial if these assumptions are
violated.

It can be shown that at any step, a sufficient information
state [13] is given by the pair(u, S), whereS ⊆ Ω is the
set of unprobed channels and0 ≤ u ≤ 1 is the highest value
among probed channels inΩ − S. In other words,u is the
probability of transmission success if we use the best probed
channel. We can use dynamic programming [13] to represent
the decision process as follows. LetV (u, S) denote the value
function, i.e. maximum expected remaining reward given the
system state is(u, S). This can be written mathematically as:

V (u, S) = max

{

max
j∈S

{−cj + E[V (max{u, Xj}, S − j)]} ,

u, max
j∈S

E[Xj ],

}

(2)

where all of the above expectations are taken with respect to
random variableXj . The first term on the right hand side of
(2) represents the expected reward of probing the best channel
in S, the second term represents the reward of using the best-
probed channel, and the last term gives the expected reward
of guessing the best unprobed channel. ThusV (0, Ω) denotes
the expected total reward of the optimal strategy.

Note that computing the value functionV (·, ·) for every
state is very difficult and practically impossible because there
are possibly an infinite number of states, sinceu can be
any real number in[0, 1] if the Xj ’s are continuous random
variables. For example, to computeV (u, S), we may need
to know V (ũ, S − j) for all j ∈ S and all u ≤ ũ ≤ 1.
Nevertheless, it will be seen that the above formulation allows
us to obtain important insights into optimal strategies, and
helps us derive much simpler methods of determining optimal
strategies that we will study in Section IV.

Any strategy can be defined by the set of actions it takes
with respect to the set of information states,∪S ∪u (u, S).
We thus use the following notation. We let retire(u) denote
the action that the sender retires and uses the best previously
probed channel inΩ−S, which has valueu; probe(j) denotes
the action that channelj is probed, for somej ∈ S; and
guess(j) denotes the action that channelj, for j ∈ S, is
guessed (i.e., used even though it has not been probed).
For state(u, S), a strategy must decide between retire(u),
probe(j), and guess(j), for all j ∈ S. We let π(u, S) denote
the action taken by strategyπ when state is(u, S). For
example,π(u, S) =probe(j) means the sender probes channel
j when the state is(u, S).



III. PRELIMINARIES

In this section, we establish some properties of the optimal
strategies which will be crucial for proving our main results
later. Unless otherwise stated, all proofs are given in the
Appendix.

A. Threshold Property of the Optimal Strategy

We first note that for allS ⊆ Ω and anyũ ≥ u,

V (u, S) ≤ V (ũ, S) (3)

This inequality follows from (1) and (2). In particular, consider
any channel selection strategy starting from state(u, S), and
apply the same strategy starting from state(ũ, S). Clearly the
expected reward of the strategy cannot be less in the latter
starting scenario, since the set of unprobed channels is the
same for both cases, while the best unprobed channels for
the latter case is better than the best unprobed channel of the
former scenario. Thus,V (·, S) is a nondecreasing function.
Similarly, it can be established thatV (u, ·) is a nondecreasing
function, i.e. for allu ∈ [0, 1] and anyS̃ ⊇ S:

V (u, S) ≤ V (u, S̃). (4)

We have the following fundamental lemmas:
Lemma 1: Consider any state(u, S). If V (u, S) = u, then

V (ũ, S) = ũ for all ũ ≥ u.
Lemma 2: Consider any state(u, S). If V (u, S) = E[Xj ]

for somej ∈ S, thenV (ū, S) = E[Xj ] for all ū ≤ u.
The above two lemmas imply that for fixedS, the opti-

mal strategy has athresholdstructure with respect tou. In
particular, for any setS ⊆ Ω, we can define the following
quantities:

aS = inf {u : V (u, S) = u} (5)

bS = sup {u : V (u, S) = E[Xj ], some j ∈ S} , (6)

where the right hand side of (5) is nonempty sinceV (1, S) = 1
is always true. We will setbS = 0 if the set on the right hand
side of (6) is empty. Note that bothaS andbS are completely
determined given the setS. It follows from Lemmas 1 and 2
that 0 ≤ bS ≤ aS ≤ 1. Thus we have the following corollary:

Corollary 1: For any state(u, S), there exists an optimal
strategyπ∗ and constants0 ≤ bS ≤ aS ≤ 1 satisfying:

π∗(u, S) =







retire(u) if u ≥ aS

probe(j), some j ∈ S if bS < u < aS

guess(j
′

), some j
′

∈ S if u < bS

.

It should be noted for completeness that atu = bS,
π∗(u, S) = guess(j) if bS > 0; otherwise,π∗(u, S) =
probe(j). This corollary indicates that there exists an optimal
strategy with the described threshold structure. It remains
to determine these thresholds, which can be very difficult
especially for largeS. Secondly, it also remains to determine
which channel should be probed if we are in the “probe” region
above.

To help overcome the difficulty in determiningaS and bS

for a generalS, we first focus on quantitiesa{j} and b{j}

(subsequently simplified asaj and bj) for a single element
j ∈ Ω, which can be determined relatively easily from (5) and
(6), respectively, as shown below. These are indices concerning
channelj that areindependent of other channels. We will see
that they are very useful for deciding the optimal strategies,
thus significantly reducing the complexity of the problem.

It is thus worth taking a closer look ataj andbj. Note that at
state(u, j), probing channelj incurs an expected reward−cj+
E[max{u, Xj}], since there are no channels to probe after
j. Action guess(j) gives the expected rewardE[Xj ] while
retiring gives rewardu. Because of the assumptions that0 <
E[Xj ] < 1 and cj > 0, for sufficiently smallu the probing
reward becomes less than the guessing reward. By comparing
the rewards of the three options, it can be seen that guessing
is optimal if: E[u − Xj |Xj < u]P (Xj < u) ≤ cj and u ≤
E[Xj ]. Similarly, whenu is sufficiently large the probing and
guessing reward become less than the reward for retiring,u.
Thus for anyj ∈ S we have the following:

aj = min {u : u ≥ E[Xj ],

cj ≥ E [Xj − u|Xj > u]P (Xj > u)} (7)

bj = max {u : u ≤ E[Xj ],

cj ≥ E [u − Xj |Xj < u]P (Xj < u)} (8)

Note thataj ≥ E[Xj ] ≥ bj . In addition,aj = bj if and only if
E[Xj ] = aj = bj . It also follows that forbj < u < aj probing
is strictly an optimal strategy. It can be seen from the above
that cj essentially controls the width of this probing region;
for largercj , thenaj andbj will be closer toE[Xj ].

The above discussion is depicted in Figure 1 where we
have plotted the expected reward of the three actions guess(j)
(dashed line), probe(j) (solid line), and retire(u) (dotted line)
as functions ofu whenXj is uniformly distributed in[0, 1] and
cj = 1/18. In this case,aj = 2/3 and bj = 1/3. Note that
increasing (decreasing)cj would shift the solid curve down
(up), thus decreasing (increasing) the width of the middle
region where probe(j) is the optimal action.

This example demonstrates a method for computingaj and
bj for any channelj. Notice that to determine these two
constants we simply need to take the intercepts between the
following three functions ofu: f1(u) = E[Xj], f2(u) = u,
andf3(u) = −cj +uP (Xj < u)+E[Xj|Xj > u]P (Xj > u).
Thus regardless of whetherXj is continuous or discrete, we
do not expect computingaj andbj to be very complex.

In the rest of this section we derive properties of the optimal
strategy expressed in terms of these individual indicesaj and
bj.

B. Optimal Stopping

In this subsection we derive conditions for which it is
optimal to stop, i.e., either to retire and use the best previously
probed channel, or to guess and use an unprobed channel.

Lemma 3: For any(u, S), π∗(u, S) = retire(u) if and only
if u ≥ maxj∈Saj . Equivalently,

aS = max
j∈S

aj . (9)
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Fig. 1. As described in Section III-A: whenj is the only unprobed channel
and Xj is uniformly distributed in[0, 1], the expected reward from actions
guess(j), probe(j) and retire(u) as functions ofu. Note thataj = 2/3 (the
crossing point of solid and dotted lines) andbj = 1/3 (the crossing point of
solid and dashed lines).

This lemma provides both a necessary and sufficient condition
for the optimality of retiring and using a previously probed
channel. A very appealing feature of this lemmas lies in the
fact that it allows us to decide when to retire based only on
individual channel indices that are calculated independent of
other channels.

The following lemma provides conditions for guessing to
be optimal. Note thatbS = 0 implies guessing is not optimal
for all u ∈ [0, 1].

Lemma 4: Given a set of unprobed channelsS, defineR
as follows:

R =

{

j ∈ S : aj = max
k∈S

ak

}

. (10)

Then we have the following:
1) If there existsj∗ ∈ R satisfyingaj∗ > bj∗ and bj∗ ≤

maxj∈S−j∗ E[Xj ], then there exists an optimal strategy
with bS = 0, i.e., it never guesses for anyu.

2) If there existsj∗ ∈ R such thatbj∗ ≥ maxj∈S−j∗ aj,
then there exists an optimal strategy withbS = bj∗ .

Thus conditions1) and 2) of the lemma provide separate
necessary and sufficient conditions for guessing to be optimal.
Note that this lemma also has further implications. When
|R| ≥ 2, andaj = bj for at least onej ∈ R, then condition
2) of Lemma 4 is always satisfied. ThusbS = bj in this case.
Otherwise,aj > bj for all j ∈ R and condition 1) of Lemma
4 is always satisfied.

On the other hand, when|R| = 1 and letting j∗ = R,
supposeπ∗(u, S) =guess(k) for somek 6= j∗, u > 0. This
implies E[Xk] > E[Xj∗ ] ≥ bj∗ , which leads to condition
1) of Lemma 4. This lemma implies that we havebS = 0,
which implies guessing is not optimal and thus contradicts the
assumption thatπ∗(u, S) =guess(k). Thus, we have shown
that if |R| = 1 then π∗(u, S) 6=guess(k) for k 6∈ R. This
narrows the possible channels to guess, and leads to the
following corollary:

Corollary 2: Given a set of unprobed channelsS, define
R as in Lemma 4.

1) If |R| ≥ 2 and aj = bj for at least onej ∈ R, then
bS = bj . Otherwise,bS = 0.

2) If |R| = 1, let {j∗} = R. Then π∗(u, S) 6=guess(j)
for all u and j ∈ S − j∗. Furthermore,bS ≤ bj∗ , i.e.
π∗(u, S) =guess(j∗) only if u ≤ bj∗ .

This corollary and its preceding lemma are very useful as
they allow us to narrow down the set of possible channels we
can guess. In words, channelj in S with the highest value
of aj is the only possible channel we can guess. If there are
multiple channels achieving this maximum, then we can easily
check whetheraj = bj is true in order to determine whether
probing or guessing is the optimal action.

C. Optimal Probing

In this subsection we examine when it is optimal to probe
and which channels to probe. In order to shed light on the
best channels to probe, we present the optimal strategy for
a separate but related problem. It will be seen that analysis
on this problem will help us derive useful properties of the
optimal strategy for Problem 1.

Problem 2: Consider Problem 1 with the following mod-
ification: at each step, the user must choose between the
following two actions: (1) probe a channel that has not yet
been probed, or (2) retire and use the best previously probed
channel. Therefore, the user is not allowed to use a channel
that has not yet been probed.

This problem can be seen as a generalization of the problem
considered in [3], which restrictedXj to be discrete random
variables. To describe the theorem, we use the following
notation for any channelj ∈ Ω:

āj = min{u : cj ≥ E [Xj − u|Xj > u]P (Xj > u)} ,

where āj = 0 if the above set is empty. Note that from
equations (7) and (8), we see thatāj = aj if and only if
aj > bj . If aj = bj, then āj < aj. We use these indices in
the following theorem, which can be seen as a generalization
of Theorem4.1 in [3].

Theorem 1: For state(u, S), the optimal strategŷπ for
Problem 2 is described as follows:

1) If u ≥ maxj∈S {āj}, then π̂(u, S) =retire(u).
2) Otherwise, define the following:

R =

{

j ∈ S : āj = max
k∈S

āk

}

.

j∗ = argmaxj∈R

{

E[Xj |Xj ≥ āj ] −
cj

P (Xj ≥ āj)

}

.

Then π̂(u, S) =probe(j∗) .
This theorem implies that by first ordering the individual

channels by functions of the indicesāj , we can determine the
optimal channel to probe. Again note that theāj ’s are individ-
ual channel indices computed independently of other channels,
thus reducing the computational complexity significantly.

Note that even though Problem 2 is different from Problem
1, its optimal strategy will also be optimal for Problem 1 if
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Fig. 2. Summary of main results from Section III: figure depicts optimal
strategyπ∗(u, S) as a function ofu. For the middle and right regions of the
line, the optimal strategy is well-defined for anyS. For the left region, the
optimal action may depend onS.

guessing becomes non-optimal for all future time steps. From
Lemma 3 and Corollary 2, probing occurs ifmaxj∈Sbj < u <
maxj∈Saj . Thus we have the following result:

Corollary 3: For any state(u, S) where maxj∈Sbj <
u < maxj∈Saj , the optimal strategyπ∗ for Problem 1 is
π∗(u, S) =probe(j∗), wherej∗ is determined as follows: first,
define setR as in Theorem 1 but replacēaj with aj . Then
definej∗ as in Theorem 1 with̄aj again replacingaj .

Figure 2 summarizes the main results from Section III. We
have shown that for allu ≥ aj∗ , i.e. right region of the line,
retire(u) is optimal. Formaxj∈S bj < u < aj∗ , i.e. the middle
region of the line, probe(j∗) is optimal. Note that it is possible
this region may be empty if the probing costs become too high.
Finally, the optimal action in the left region will depend on
S, and thus remains to be determined. Note that guess(j∗) is
the only possible guessing action for this region, as provenin
Lemma 4 and Corollary 2.

IV. OPTIMAL STRATEGIES

As stated earlier, the state space for our problem is the set
of all (u, S), which is infinite. This makes it very difficult
to recursively apply dynamic programming to evaluate all
V (u, S) and solve for the optimal strategy. In this section
we propose an algorithm for channel probing for arbitrary
number of channels with arbitrary distributions. This algorithm
is motivated by the properties derived in the previous section.
We show that this algorithm is optimal for a number of special
cases.

A. A Channel Probing Algorithm

In order to motivate our algorithm, which we will callγ,
consider when there are two unprobed channelsS = {j ∪
k}. As described in the previous section, the ordering of the
constantsaj , bj , ak, andbk will help determine the optimal
strategy. Note that due to Corollary 1, it is not hard to calculate
the expected reward of probingj or k for state(u, S). For
example, ifu < bk, then probe(j) at state(u, S) incurs the
following expected reward:

− cj + E[V (max(u, Xj), k)]

= −cj + P (Xj < bk)E[Xk] + P (Xj ≥ ak)E[Xj |Xj ≥ ak]

+ P (bk ≤ Xj < ak) (−ck + E[max(Xk, Xj)| ak > Xj ≥ bk]) .

The above calculation can similarly be applied to the other
two separate cases ofu > ak andak > u > bk, and they can
also similarly be applied to determine the expected reward

of action probe(k). Note that this procedure computes the
expected probing reward in a finite number of steps, whereas
not using the threshold properties given by Corollary 1 would
first require the computation ofV (u, j) and V (u, k) for all
u ∈ [0, 1], thus requiring an infinite number of computations.

Motivated by the above, the proposed algorithm is as
follows. It essentially finds two channels indexed byj∗ and
k, and use these to define the strategyγ.

Algorithm 1: (A two-step lookahead policyγ for a given
set of unprobed channelsS ⊆ Ω)

Step 1: ComputeR andj∗ as follows:

R =

{

j ∈ S : aj = max
k∈S

ak

}

j∗ = argmax
j∈R

{

I{bj=aj}E[Xj ]+

I{aj>bj}

(

E[Xj |Xj ≥ aj ] −
cj

P (Xj ≥ aj)

)}

,

whereI(·) is the indicator function.
Step 2: ReplaceS with S− j∗ and repeat Step 1. The result

of the second equation above isk.
Then strategyγ is defined as follows for state(u, S):

1) If u ≥ aj∗ , thenγ(u, S) =retire(u).
2) If aj∗ > u > bj∗ , thenγ(u, S) =probe(j∗).
3) If u ≤ bj∗ then we have the following cases:

a) If bj∗ ≥ ak, thenγ(u, S) =guess(j∗).
b) If either bk ≥ bj∗ or −cj∗ + E[V (Xj∗ , k)] ≥

{E[Xj∗ ],−ck + E[V (Xk, j∗)]}, then
γ(u, S) =probe(j∗).

c) Otherwise, there exists a uniqueb0,
where bj∗ > b0 > bk, such that
−cj∗ + E[V (max(b0, Xj∗), k)] =
max {E[Xj∗ ],−ck + E[V (Xk, j)]}. Then for
b0 ≤ u ≤ bj∗ , we haveγ(u, S) =probe(j∗).
For u < b0, we have γ(u, S) =guess(j∗) if
E[Xj∗ ] ≥ −ck + E[V (Xk, j∗)]. Otherwise,
γ(u, S) =probe(k).

It is worth describing the motivation behind this strategy.
For u satisfying case 1) of the algorithm description,γ is
optimal from Lemma 3. For some of theu values described
in Case 2),γ is optimal from Corollary 3. For case 3a),γ is
optimal from Lemma 4 and Corollary 2. Thusγ is optimal
for most values ofu. For cases 3b) and 3c) of Algorithm 1,
the procedure essentially computes the expected probing cost
if we are forced to retire in two steps.

We next consider a few special cases and show thatγ is
optimal in these cases.

B. Special Cases

We first consider a two channel system. Since Algorithm 1 is
essentially a two-step lookahead policy, we have the following
result (the proof is omitted for brevity):

Theorem 2: For any given set of unprobed channelsS,
where|S| = 2, γ is an optimal strategy.



We next consider the case when all channels are statistically
identical, but there are an arbitrary number of them. The
channels can have different probing costs.

Theorem 3: Suppose|S| ≥ 2, and all channels inS are
identically distributed, with possibly different probingcosts.
Then the optimal strategyπ∗ is described as follows, withj∗

being a channel inS satisfyingcj∗ = minj∈S {cj}.
Case 1: If aj∗ > bj∗ , we have:

π∗(u, S) =

{

retire(u) if u ≥ aj∗

probe(j∗), otherwise

Case 2: If aj∗ = bj∗ , the optimal strategy is: retire(u) if
u ≥ aj∗ ; otherwise,π∗(u, S) =guess(j∗).

This theorem implies that if we have a set of statistically
identical channelsΩ, then the initial step of the optimal
strategy is uniquely determined byaj∗ and bj∗ , wherej∗ is
the channel with smallest probing cost. Ifaj∗ = bj∗ , then
π∗(u, Ω) =guess(j∗) and it is not worth probing any channels.
If aj∗ > bj∗ , then we should first probej∗. Let k denote
the channel with the smallest probing cost inS − {j∗}. If
the probed value ofXj∗ is higher thanak, then it is optimal
to retire and usej∗ for transmission. Otherwise, ifak > bk

then probe(k) is optimal; if ak = bk then guess(k) is the
optimal action. This process continues until we retire, guess,
or |S| = 1. When |S| = 1, then we compare the best probed
channel, which has valueu, to aj and bj , whereS = {j}. If
u ≥ aj , then we retire; ifaj > u ≥ bj, then we probe the last
remaining channel; finally, ifu < bj then we should just use
the last remaining channel without probing it.

Note that the optimal strategy described above is the same
as strategyγ of Algorithm 1 applied to statistically identical
channels. This is true because within case 3) in the description
of Algorithm 1, 3b) will occur wheneveraj∗ > bj∗ for
statistically identical channels, and case 3a) occurs whenever
aj∗ = bj∗ . Collectively, 1), 2), 3a) and 3b) all describe the
optimal strategy of Theorem 3. Note that this theorem applies
to all cases of statistically identical channels, regardless of
their distribution or probing costs. Changing the channel
distribution and probing costs will affect the values ofaj or
bj , but they do not alter the general structure of the optimal
strategy as given by the theorem. It should be noted that [5],
[6], [7] have all considered variants of Problem 1 where the
set of channels are statistically identical. However, their results
do not allow unprobed channels to be used for transmission.
In addition, [6], [7] do not determine the optimal order for
probing channels.

Finally, we consider the case where the number of channels
is very large and not statistically identical.

Problem 3: Consider Problem 1 with the following modi-
fication: the wireless system consists ofN different types of
channels, but an infinite number of each channel type.
Note that Theorem 3 solves this problem ifN = 1. When
referring to the state space for this problem, we will letS
denote the set of available channeltypes. Theorem 3 says that
if we have many statistically identical channels of one type,

then whetheraj > bj or aj = bj determines if we will probe
or guess channelj. Analogously, we have the following result:

Theorem 4: For any set of channelsS, definej∗ according
to Step 1of Algorithm 1. Then for Problem 3, there exists an
optimal strategyπ∗ satisfying the following:

1) If u ≥ aj∗ , thenπ∗(u, S) =retire(u).
2) If u < aj∗ andbj∗ = 0, thenπ∗(u, S) =probe(j∗).
3) If u < aj∗ andbj∗ > 0, thenπ∗(u, S) =guess(j∗).

Due to space limitations, proof of the above theorem is not
included; however, it should be noted that it essentially follows
from Theorem 3. This theorem implies that when the number
of channels is infinite, and there are an arbitrary number of
channel types, then we will only probe or guess one channel,
i.e. the other channels become irrelevant. In addition, note that
Algorithm 1 is also the optimal strategy for Problem3, because
case 3c) of the description of Algorithm 1 does not occur. For
all the other cases, Algorithm 1 reduces to the optimal strategy
described in Theorem 4.

To summarize, in this subsection we have shown that
Algorithm 1 reduces to the optimal strategies for the above
special cases based on Theorems 2, 3, and 4.

V. CONCLUSION

In this paper, we analyzed the problem of channel probing
and transmission scheduling in wireless multichannel systems.
We derived some key properties of optimal channel probing
strategies, and showed that the optimal policy has a threshold
structure. We also proposed a channel probing algorithm,
shown to be optimal for some cases of practical interest,
including statistically identical channels, a few nonidentical
channels, and a large number of nonidentical channels.

REFERENCES

[1] X. Liu, E. Chong, and N. Shroff, “Transmission scheduling for efficient
wireless network utilization,”Proceedings of IEEE INFOCOM, 2001,
anchorage, AK.

[2] X. Quin and R. Berry, “Exploiting multiuser diversity for medium access
control in wireless networks,”Proceedings of IEEE INFOCOM, 2003,
san Francisco, CA.

[3] S. Guha, K. Munagala, and S. Sarkar, “Jointly optimal transmission
and probing strategies for multichannel wireless systems,” Proceedings
of Conference on Information Sciences and Systems, March 2006,
princeton, NJ.

[4] J. Kennedy and M. Sullivan, “Direction finding and ”smartantennas”
using software radio architechtures,”IEEE Communications Magazine,
pp. 62–68, May 1995.

[5] Z. Ji, Y. Yang, J. Zhou, M. Takai, and R. Bagrodia, “Exploiting medium
access diversity in rate adaptive wireless lans,”ACM MOBICOM,
September 2004, philadelphia, PA.

[6] A. Sabharwal, A. Khoshnevis, and E. Knightly, “Opportunistic spectral
usage: Bounds and a multi-band csma/ca protocol,”IEEE/ACM Trans-
actions on Networking, 2007, accepted for publication.

[7] V. Kanodia, A. Sabharwal, and E. Knightly, “Moar: A multi-channel
opportunistic auto-rate media access protocol for ad hoc networks,”
Proceedings of Broadnets, October 2004.

[8] R. Knopp and P. Humblet, “Information capacity and powercontrol in
a single cell multiuser environment,”Proceedings of IEEE ICC, 1995,
seattle, WA.

[9] G. Holland, N. Vaidya, and P. Bahl, “A rate-adaptive mac protocol for
multi-hop wireless networks,”Proceedings of ACM MobiCom, 2001,
rome, Italy.

[10] S. Guha, K. Munagala, and S. Sarkar, “Optimizing transmission rate
in wireless channels using adaptive probes,”Poster paper in ACM
Sigmetrics/Performance Conference, June 2006, saint-Malo, France.



[11] ——, “Approximation schemes for information acquisition and ex-
ploitation in multichannel wireless networks,”Proceedings of 44th An-
nual Allerton Conference on Communication, Control and Computing,
September 2006, monticello, IL.

[12] J. Heiskala and J. Terry, “Ofdm wireless lans: A theoretical and practical
guide,” SAMS, 2001.

[13] P. Kumar and P. Karaiya,Stochastic Systems: Estimation, Identification,
and Adaptive Control. Prentice-Hall, Inc, 1986, englewood Cliffs, NJ.

VI. A PPENDIX

A. Proof of Lemma 1

It suffices to prove that the following holds for allS and
0 ≤ u ≤ ũ ≤ 1:

V (ũ, S) − V (u, S) ≤ ũ − u . (11)

If (11) is true, thenV (u, S) = u implies thatV (ũ, S) ≤ ũ.
Combining this with (2), which says thatV (ũ, S) ≥ ũ, proves
the lemma. We prove (11) by induction on the cardinality of
S.

Induction Basis: Consider anyS ⊆ Ω such that|S| = 1.
Let j = S. From equation (2) defining the value function,
V (ũ, {j}) (also simplified asV (ũ, j) below) has three possible
values. We show (11) holds for all three cases.

Case 1: V (ũ, j) = ũ. From (2),V (u, j) ≥ u. Therefore,
equation (11) easily follows.

Case 2: V (ũ, j) = −cj + E[max(Xj , ũ)]. From (2),
V (u, j) ≥ −cj + E[max(Xj , u)]. Therefore,

V (ũ, j) − V (u, j) ≤ E [max(Xj , ũ)] − E [max(Xj , u)]

= E[ũ − max(Xj , u)|Xj < ũ]P (Xj < ũ) ≤ ũ − u ,

which proves that (11) holds.
Case 3: V (ũ, j) = E[Xj ]. From (2), V (u, j) ≥ E[Xj ].

Therefore, equation (11) easily follows.
Induction Hypothesis: Consider anyS ⊆ Ω such that|S| ≥

2 and suppose (11) holds for all̃S ⊆ Ω such that|S̃| <
|S|. Again we prove that (11) holds for all possible values of
V (ũ, S). If V (ũ, S) = ũ, then (2) impliesV (u, S) ≥ u which
implies (11) holds. Similarly, ifV (ũ, S) = E[Xj ] for some
j ∈ S, thenV (u, j) ≥ E[Xj ] implies equation (11). Finally,
supposeV (ũ, S) = −cj + E[max(Xj , ũ)] for somej ∈ S.
Then becauseV (u, S) ≥ −cj + E[V (max(Xj , u), S − j)] for
the samej we have:

V (ũ, S) − V (u, S)

≤ E [V (max(Xj , ũ), S − j) − V (max(Xj , u), S − j)]

= E
[

(V (ũ, S − j) − V (max(Xj , u), S − j)) I(Xj<ũ)

]

≤ V (ũ, S − j) − V (u, S − j) ≤ ũ − u ,

where the last two inequalities follow from (3) and the
induction hypothesis, respectively, andI(·) is the indicator
function. Therefore we have proven (11). �

B. Proof of Lemma 2

This lemma follows from (3). In particular, suppose
V (u, S) = E[Xj ]. Then (3) impliesV (ū, S) ≤ E[Xj ].
However, from (2) we knowV (ū, S) ≥ E[Xj ]. Combining
the two impliesV (ū, S) = E[Xj ] and proves the lemma.�

C. Proof of Lemma 3

We prove the lemma by contradiction, on two separate
cases:

Case 1: SupposeaS < maxj∈S aj . Equivalently,aS < ak

for at least onek ∈ S. Fix u such thataS < u < ak. By
definition of aS , we haveV (u, S) = u. On the other hand,
the definition ofak andu < ak implies:

V (u, k) = max {E[Xk],−ck + E [max(Xk, u)]} > u ,

Finally, (4) givesV (u, S) ≥ V (u, k) > u, which contradicts
the assumption thatu > aS . Thus,aS < ak is not possible
for any k ∈ S.

Case 2: SupposeaS > maxj∈S aj. Fix any u such that
maxj∈S aj < u < aS . By definition of aS , we have the
optimal strategy at state(u, S) is to either probe or guess a
channel inS, but retiring is not optimal. Suppose the optimal
strategy is to probe a channelk ∈ S. This implies:

−ck + E [V (max(u, Xk), S − k)] ≥ V (u, S)

≥ V (u, S − k) , (12)

where the last inequality follows from (4).Sinceu > ak, then
by definition ofak we have:

−ck + E [max(u, Xk)] < u (13)

Combining (12) and (13), we have:

E [V (max(u, Xk), S − k) − V (u, S − k)] > ck

> E [max(u, Xk) − u]

Conditioning the above expectations on the events{Xk > u}
and{Xk ≤ u} gives us:

E [V (Xk, S − k) − V (u, S − k)|Xk > u]P (Xk > u)

> E [Xk − u|Xk > u]P (Xk > u) , (14)

which contradicts (11).
If the optimal strategy is to guess a channelk ∈ S, then

V (u, S) = E[Xk]. However, sinceV (u, k) ≤ V (u, S) then
V (u, k) = E[Xk] as well. This impliesak ≥ u, which
contradicts the assumption thatu > ak.

Thus combining Case1 and Case2, we have proven
Lemma 3. �

D. Proof of Lemma 4

Case 1: For notation, letE[Xk] = maxj∈S−j∗ E[Xj ] for
j∗ ∈ R satisfyingaj∗ > bj∗ as described by the lemma. From
the lemma, we know thatbj∗ ≤ E[Xk]. If we can show that
for every u, probing some channel inS or retiring is better
than guessing any channel inS, then this will prove there
exists an optimal strategy withbS = 0. Note that the expected
reward of guessing the best channel ismaxj∈S E[Xj ] =
max {E[Xk], E[Xj∗ ]}. Thus it suffices to show that for all
u ≤ aj∗ , there exists a probing strategy with higher expected
reward thanE[Xk] andE[Xj∗ ].

As described in Section III-A,E[Xk] ≤ ak. Thus we have
bj∗ ≤ E[Xk] ≤ aj∗ since j∗ is in R. From the definition



of bj∗ , aj∗ and by the assumption thataj∗ > bj∗ , then
π∗(u, j∗) =probe(j∗) wheneverbj∗ ≤ u ≤ aj∗ . Therefore,
π∗(E[Xk], j∗) =probe(j∗) and we have have:

V (E[Xk], j∗) = −cj∗ + E[max(Xj∗ , E[Xk])] ≥ E[Xk] ,

However, note that the lefthandside of the above equation is
the expected reward of the following strategy: probej∗ first,
and use this channel for transmission if its value is higher than
E[Xk]; if its value is lower thanE[Xk], thenguess(k), i.e.
use channelk for transmission. Thus the expected reward of
this two-step strategy is always at least the reward of simply
using channelk for transmission. This result holds for allu. In
addition, by definition ofaj∗ and bj∗ , π∗(u, j∗) =guess(j∗)
for all u < bj∗ . ThusV (u, j∗) = E[Xj∗ ] for all suchu. How-
ever, from equation (3), we also know thatV (E[Xk], j∗) ≥
V (u, j∗) = E[Xj∗ ]. Thus we have shown that for allu, there
exists a strategy of probingj first which does at least as good
as the strategy of guess(k) or guess(j∗). As explained earlier,
these are the two best guessing actions; thus, there exists an
optimal strategy which never guesses for allu, i.e. bS = 0.

Case 2: From the lemma, we haveaj∗ ≥ bj∗ ≥
maxj∈S−j∗ aj . In addition, from Lemma 3 and from the
threshold properties described in Section III-A, we havebS ≤
aS = aj∗ . Thus, V (u, bS) = u for all u ≥ aj∗ . Now we
have two cases for the relationship betweenaj∗ and bj∗ .
First, supposeaj∗ = bj∗ . From the equations in Section III-
A for individual channel indices, we see that this equality
implies thatE[Xj∗ ] = bj∗ . Finally, using (3), we see that
V (u, S) ≤ V (bj∗ , S) = bj∗ = E[Xj∗ ] for all u < bj∗ . On
the other hand, from (2) we haveV (u, S) ≥ E[Xj∗ ] for all
u < bj∗ . Thus we have shown thatV (u, S) = E[Xj∗ ] for all
u < bj∗ . This implies thatbS = bj∗ .

Now supposeaj∗ > bj∗ . This impliesaj∗ > maxj∈S−j∗ aj.
Thus, by using Corollary 3, to be proven later, we
have thatπ∗(u, S) =probe(j∗) for all aj∗ > u ≥ bj∗ .
Thus, V (bj∗ , S) = −cj∗ + E[max(Xj∗ , bj∗)], where
we do not probe anything afterj∗ because of Lemma
3. Finally, from Section III-A, we have thataj∗ > bj∗

implies −cj∗ + E[max(Xj∗ , bj∗)] = E[Xj∗ ]. Thus,
V (bj∗ , S) = E[Xj∗ ], which again implies that
V (u, S) = E[Xj∗ ] for all u < bj∗ . Thus we have
shown there exists an optimal strategy withbS = bj∗ . �

E. Proof of Theorem 1

The proof that̂π(u, S) =retire(u) for all u ≥ maxj∈S {āj}
follows from the same steps as proving Lemma 3 (the fact
that guessing is not an option does not alter the result of this
proof).

For u < maxj∈S {āj}, we prove the result by induction on
the cardinality ofS.

Induction Basis: Suppose|S| = 1. Let S = {j}. Then
π̂(u, j) =probe(j) follows from the definition of̄aj, because
−cj + E[max(Xj , u)] > u for all u < āj .

Induction Hypothesis: Let |S| = n ≥ 2, and suppose the
result holds for allS̃ ⊆ Ω such that|S̃| < n. DefineR and

j∗ as in the theorem. For notational convenience, we index
channels by the set{j1, j2, · · · , jn}, where ājn

≥ ājn−1
≥

· · · ≥ āj1 and when̄ajm
= ājm−1

, then

E[Xjm
|Xjm

≥ ājm
] −

cjm

P (Xjm
≥ ājm

)

≥ E[Xjm−1

∣

∣Xjm−1
≥ ājm−1

] −
cjm−1

P (Xjm−1
≥ ājm−1

)
.

Thusjn = j∗ as defined in the theorem.
Now consider anyjm where 1 ≤ m < n such that

jm ∈ S − R. Let u satisfy ājm
≤ u < ājn

, and suppose
π̂(u, S) =probe(jm). We will show by contradiction that
this cannot be true. In fact, following the same exact steps
as (12),(13), and (14), we arrive at a contradiction to (11).
Therefore,V (u, S) 6=probe(j) for all u > āj and all j ∈
S − R.

From Lemma 3, retiring cannot be optimal (again, removing
guessing as an option does not change this result). Therefore,
the optimal strategy at(u, S), ājm

≤ u < ājn
, must be to

probe a channel inR. To see which channel inR to probe,
we prove by contradiction that̂π(u, S) =probe(jn). Suppose
π̂(u, S) 6=probe(jn), so that π̂(u, S) =probe(jm) for some
jm ∈ R, m 6= n. Note thatājm

= ājn
by definition of R.

Probingjm first will cost cjm
. By the induction hypothesis,

at stateS − jm we will probe jn if Xjm
< ājn

, or we will
retire if Xjm

≥ ājn
. Similarly, we can compute the expected

reward of probingjn first, and then probingjm in the second
step if Xjn

< ājm
. Since we are assuming probingjn is not

optimal, then the expected gain of probingjm first minus the
expected gain of probingjn first must be positive. Taking this
difference and cancelling terms gives us:

− cjm
+ P (Xkm

≥ ājn
)E[Xjm

|Xjm
≥ ājn

]

− cjn
P (Xjm

< ājn
) > −cjn

− cjm
P (Xjn

< ājn
)

+ P (Xjn
≥ ājn

)E[Xjn
|Xjn

≥ ājn
] ,

Rearranging, we get a contradiction to the definition ofj∗

in Theorem 1 and the fact thatj∗ = jn. Thus, we arrive at a
contradiction to the assumption that probingjn is not optimal.

This holds for alljm not in R. Therefore, we have shown
that π̂(u, S) =probe(jn) for all maxj∈S−R ≤ u < ājn

.
Now to show that π̂(u, S) =probe(jn) for all u <

maxj∈S−R aj , we note that for allu ≤ ājn
the expected

reward of probingjm first can again be calculated by using
the induction hypothesis. In particular, ifXjm

≥ ājn
then we

retire. Otherwise,Xjm
< ājn

and by the induction hypothesis
we continue. It suffices to show for allu ≤ ājn

, the difference
in expected rewards between probingjn first and probing
k, wherek is any other channel, does not depend onu. If
this holds, then probe(jn) must be optimal for allu ≤ ājn

since we have already shown that probe(jn) is optimal for
maxj∈S−R āj ≤ u < ājn

. Due to space limitations, we will
only consider the alternate strategy of probingjn−1 first, but
we note that the steps generalize to any other channeljm 6= jn.

By the induction hypothesis, probingjn−1 first gives ex-



pected reward:

− cjn−1
+ E[Xjn−1

I{B}] − P (Xjn−1
< ājn

)cjn

+ E
[

max(Xjn
, Xjn−1

)I{A∩Bc}

]

+ E
[

V̂ (max(u, Xjn
, Xjn−1

), S − jn − jn−1)I{Ac∩Bc}

]

,

where V̂ (·, ·) is the value function for Problem 2, defined
similarly to (2),A is the event{max(Xjn

, Xjn−1
) ≥ ājn−2

},
Ac is its complement, andB is the event

{

Xjn−1
≥ ājn

}

.
Similarly, probingjn first gives expected reward:

− cjn
+ E[Xjn

I{D}] − P (Xjn
< ājn−1

)cjn−1

+ E
[

max(Xjn
, Xjn−1

)I{A∩Dc}

]

+ E
[

V̂ (max(u, Xjn
, Xjn−1

), S − jn − jn−1)I{Ac∩Dc}

]

,

whereD denotes the event
{

Xjn
≥ ājn−1

}

. Taking the differ-
ence between this expected reward and the expected reward
of probing jn−1 first, we see that the difference is invariant
to u (only the term withV̂ (·, ·) containsu, and this cancels
out during the subtraction by conditioning the expectations on
whether eventsB and D occur). Similar steps can be taken
for otherjm 6= jn, by calculating the expected reward for any
strategy until only channels{j1, · · · , jm−1} are left. It can
then be shown that the difference in expected reward between
actions probe(jn) and probe(jm) does not change withu.
Therefore,̂π(u, S) =probe(jn) for all u < maxj∈S−R {aj}.

Therefore, we have shown̂π(u, S) =probe(jn) for all
u < ājn

, which completes the proof. �

F. Proof of Theorem 3

Note that when probing costs are equal for all channels,
then this theorem follows from Case 1) of Corollary 2. In
particular, since all channels inS are statistically identical,R
defined in Corollary 2 is equal toS. Thus,|R| = |S| ≥ 2 and
the optimal strategy is determined from whetheraj = bj for
any j ∈ S.

When probing costs differ between channels, then we can
use induction on the cardinality ofS to prove the result. Note
that from the discussion in Section III, whencj ≤ ck but
Xj and Xk have the same distribution, thenaj ≥ ak while
bj ≤ bk. We will use this fact throughout the proof.

Induction Basis: Suppose|S| = 2. From Theorem 2, the
strategy given in Theorem 3 is optimal.

Induction Hypothesis: Consider anyS ⊆ Ω such that
|S| ≥ 3 and suppose the theorem holds for allS̃ ⊆ Ω
such that|S̃| < |S|. For notational convenience, letS =
{j1, j2, · · · , jn} wherecj1 ≥ cj2 ≥ · · · ≥ cjn

. As mentioned
earlier, this assumption impliesajn

≥ ajn−1
≥ · · · ≥ aj1 and

bjn
≤ bjn−1

≤ · · · ≤ bj1 .
From Lemma3, we know thataS = ajn

. Thus, it only
remains to determine the optimal strategyπ∗(u, S) for u <
ajn

.
Case 1: We first prove the theorem for the case whereajn

>
bjn

. From Corollary 2, the only channel that can be guessed
is jn. However, becausebjn

≤ bjn−1
, then from Lemma 2 we

havebS = 0. Thus, guessingjn is not an optimal action for
all u and therefore we only need to decide which channel to
probe whenu < ajn

.
We derive the optimal strategy here for two separate sub-

cases. First supposeajl
> bjl

for all 1 ≤ l ≤ n. In
particular, this impliesajn

> bj1 . Let V ∗(u, S) denote the
expected reward of the following strategy: first probejn and
then proceed according to the optimal strategy as determined
by the induction hypothesis. Meanwhile, letH(u, S) denote
the expected reward of first probing some channeljk, where
k < n, and proceeding according to the optimal strategy. For
any bj1 ≤ u < ajn

, it can be shown similar to the proof
of Theorem 1 thatV ∗(u, S) − H(u, S) is invariant to u.
However, from Corollary 3 we know thatπ∗(u, S) =probe(jn)
for all bj1 ≤ u < ajn

, which meansV ∗(u, S) > H(u, S)
for these values ofu. Combining everything implies that
π∗ (bj1 , S) =probe(jn) and V (bj1 , S) = V ∗(bj1 , S). Finally,
it can be easily shown thatV ∗(u, S) = V ∗(bj1 , S) for any
u < bj1 because no channel is guessed unlessj1 is the only
remaining channel. From (3), this implies thatV (u, S) =
V ∗(u, S) for all u < bj1 ; therefore,π∗(u, S) =probe(jn) for
all u < bj1 .

Now supposeajl
= bjl

for some 1 ≤ l < n (we let
l denote the largest index satisfyingajl

= bjl
). Consider

probing any channeljk where k < n and k 6= l. Then
from the induction hypothesis, after probingjk we will either
retire or continue to probe channels in decreasing order of
the indices

{

ajn
, ajn−1

· · · , ajl

}

. If the state is reached where
channeljl has the highest index value, then from the induction
hypothesis we will retire ifmax

{

Xjk
, Xjn

, · · · , Xjl+1

}

≥
ajl

; otherwise, the optimal action is guess(jl) which collects
a reward ofE[Xjl

]. Sincejl is never probed, the total expected
reward of this strategy is exactly the same as the reward of
a strategy in Problem 2 where initiallyu = E[Xj ], channels
are probed in the order:{jk, jn, · · · , jl+1, jl} and retirement
occurs according to Theorem 1. Similarly, first probingjn

has the same expected reward as a strategy in Problem 2 that
probes channels in the order{jn, jn−1, · · · , jl} and retires
according to Theorem 1, where againu = E[Xj ]. Given this
equivalence, we can use Theorem 1 to show that the latter
strategy must have higher expected reward. Similar steps can
be used to show that probe(jl) cannot be optimal for anyu.
Thus,π∗(u, S) =probe(jn) for all u < ajn

.
Case 2: Now supposeajn

= bjn
. This implies from

Corollary 2 thatπ∗(u, S) =guess(jn) for all u ≤ ajn
= bjn

.
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