Optimal Channel Probing and Transmission
Scheduling in a Multichannel System

Nicholas B. Chang and Mingyan Liu
Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, Ml 48109-2122
Email: {changn,mingyap@eecs.umich.edu

Abstract— In this study we consider the problem of optimal (SDR) systems [4] may provide nodes with multiple channels
channel selection policies for a transmitter in a multichamel (e.g. tunable frequency bands and modulation technigues)
wireless system where a channel can be in one of multiple by means of a programmable hardware which is controlled

states. Each channel state is associated with a probabilitpf b ft Such t ticularly i tant f
transmission success. In such systems, the sender typigalas y software. ouch systems are particularly important tor

partial information concerning the channel states, but candeduct ~@pplications such as military where flexible and interopkra
more information by probing individual channels, e.g. by seding communications are desired.

control packets in the channels. On the other hand, while prbing All of these systems share the common feature that the
can help the sender determine the best channel to use, it camaes transmitter is generally supplied with more channels than

valuable resources. The main goal of this work is to derive ded f ingle-t L Th it i ible f
optimal strategies for determining which channels to probe(in needed for a single-transmission. us, It IS possible tor

what sequence) and which channel to use for transmission. Nodes to exploit the time-varying channels by opportucaiy
Our primary interest in this study is to derive key structural choosing the best one to use for transmission [5], [6], [AlsT
properties of the optimal strategy. In particular, we show that may be viewed as an exploitation of channel fluctuations in

it exhibits a threshold structure and can be described by an gha0e (je., across different channels), and is akin todéa i
index policy. We further show that the optimal strategy can aly ; - .
of multiuser diversity [8].

take on one of three structural forms. In addition, we explidtly 0 o . .
derive optimal strategies for some practical channel mods| and In order to utilize such channel variation, it is desirable
provide conditions under which some commonly used strategs for the transmitter and/or receiver to periodically obt#&in

are optimal. Using these properties, we present a two stepd&-  formation on channel quality. One method of accomplishing
ahead policy and show that it is optimal for a number of specia this in a distributed manner is to allow nodes to probe

cases of practical interest. . .
Index Terms— channel probing, scheduling, stochastic control, channels by having the transmitter send control packetenUp

wireless ad hoc networks, dynamic programming, receiving a control packet, the receiver sends back a respon
packet to the sender that may indicate the channel quality.
|. INTRODUCTION For example, recent works such as [5], [9] have proposed

Effective transmission over wireless channels is a I(enhancing or exploiting the multi-rate capabilities of the
. . . 9EEE 802.11 RTS/CTS handshake mechanism. [9] proposes
component of wireless communication, and to achieve this

. o . | called R i B A R RBAR) in which
one must address a number of issues specific to the erelaé)rOtOCO called Receiver Based Auto Rate ( ) in whic

S . . ) .

: . : . receiver hysical-layer analysis of received RT

environment. One such key challenge is the tlme-varymrge eceivers use physical-layer analysis of received S
nature of the wireless channel due to multi-path fadingsThti

essages to find out the maximum possible transmission rate
) '~ 10 achieve a specific bit error rate. The receiver contrads th
channel fading can be caused by factors such as mobility, In- ) o . . . .
. 4 S sender’s transmission rate by inserting the maximum plessib
terference, and environmental objects. The unreliatibiysed - .
. o transmission rate into CTS message.
by such fading must be accounted for when designing robust_, . . . .
his probing process can help nodes obtain more informa-

trans_mission stra_lte_gies. Recen_t yvorks such as [1].’.[2] hathn about channel quality and therefore make better dmtssi
studied opportunistically transmitting when channel doods concerning which channel to use for transmission. However

are better in order to exploit these channel fluctuationsne t o .
hannel measurement and estimation also incur overhead

At the same time, many wireless systems also provide nocg S .
y Y P d consume valuable network resources. In particular, the

W'th multiple channels to use for transmission. As memw.neexchange of control packets decreases the amount of time
in [3], a channel can be thought of as a frequency in a

frequency division multiple access (FDMA) network, a Codavallable to send actual data and consumes energy. In@uditi

in a code division multiple access (CDMA) network, or a ending control packets can also prevent other users from
. Ipie . L . %imultaneously using the channel. Thus, channel probingt mu
an antenna or its polarization state in multiple-input rplet

X be done efficiently in order to balance the trade-off between
output (MIMO) systgms. Many IEEE 802.1.1.technolog|efs alsc?ntaining useful channel information and consuming vakiab
propose using multiple frequencies. In addition, softwacio

resources.

This work is supported by NSF award ANI-0238035 and a 20msaaiT [N this work, we study optimal strategies for a joint channel
Lincoln Laboratory Fellowship. probing and transmission problem. Specifically, we conside



a transmitter with multiple channels with known state disderived the optimal strategies when channels can only have
tributions. The transmitter can sequentially probe anynehatwo states, while [3] has proposed and studied suboptimal al
nel with channel-dependent costs. The problem is to decigerithms with performance guarantees for finite-state nhn
which channels to probe, in what order, when to stop, am@ur algorithm and results apply to arbitrary, possibly iitéin
upon stopping which channel to use for transmission. Similaumber of channel states and to arbitrary (possibly diffgri
problems have been studied in [3], [10], [11], [6], [7], [5].probing costs.
The commonality and differences between our study and theThe remainder of this paper is organized as follows. We
previous work are highlighted below within the context of ouformulate the problem and present preliminary results ic- Se
main contributions. tions Il and lll, respectively. Section IV introduces a chah
The main contributions of this work are as follows. probing algorithm and show that its optimal for a number of
Firstly, we derive key properties of optimal strategiestfe special cases. Section V concludes the paper.
problem outlined above, and show that the optimal stratagy h
a threshold structure. We use this structure to derive sacgs
and sufficient conditions for certain strategies to be ogtim We consider a wireless system consisting/¥fchannels,
In contrast to [3], [10], [11], we do not restrict the charmelindexed by the sef? = {1,2,---,N} and a transmitter
to take a finite number of states; our work applies to botho would like to send a message using exactly one of the
the case where the number of channel states is finite, and thannels. With each channgl we associate a probability of
case where they can take an infinite number of states. Thisccessful transmission h¥;, a random variable (discrete
generalization is important as many next generation phaysior continuous) with some distribution over the interi@|1].
layer technologies such as MIMO and Adaptive-Bit-Loadinghe randomness of the transmission probability comes from
OFDM [12] are aiming to provide continuous range of datthe time-varying and uncertain nature of the wireless madiu
rates that can be adjusted according to channel qualithi$n tThe transmitter knows: priori the distribution ofX; for all
sense our work is more general than previous work. j € Q. By sending a channgirobe on the jth channel, the
Secondly, we derive explicitly the optimal channel probingser can find out more information abaokit.
strategy for a number of practical special cases. One otthes We will assume temporal independence for the probability
special cases is when the channels are statistically @#ntiof transmission success on any given channel. That is, the
with possibly different probing costs, and our results jev channel state in any given time slot is independent of the sta
optimal strategies foarbitrary channel distributions and prob-during other slots. This assumption allows us to focus on the
ing costs. In [6], [7], [5], a variant of this problem was siedl transmission of a single message. In addition, we will agsum
when the channels are statistically identical. In particyl6], independence between channels,{i¥;};cq are independent
[7] analyzed the situation with identically distributedactmels, random variables. Thus, probing chanretioes not provide
only allowed channels to be used immediately after probiregy information about the state of any other chann€lin{;}.
(i.e. no recall of past channel probes), and did not alloWhese same assumptions were also made in [6], [3], [10], [11]
unprobed channels to be used for transmission. In additionNote that in reality, the transmitter may not be directly
their work restricts the transmitter to probe the channela i probing to find the probability of transmission success. For
particular order, while ours determines the optimal oraer fexample, channel probes may be used to measure the chan-
the transmitter. Meanwhile, [5] assumes independent Rgyle nel signal-to-noise ratio (SNR) in order to estimate channe
fading channels and because all channels are independint@nditions [5], [6]. This measured SNR, however, essdntial
identically distributed, do not focus on which channelswdto affects the probability of transmission success and teaesl
be probed and in what order. In our work, similar to [3]into a measured valued of;. Thus X; can be thought of
[10], we allow the situation where channels are not statiifi as an abstraction of the information obtained through prgbi
identical, and we provide results for a general class of shkn In addition, it should be noted that even if estimates oleizin
distributions. Our work can thus be seen as a generalizatitmough probing are not perfecX,; can nevertheless represent
of previous studies in [3], [10], [11], [6], [7], [5]. the expectedprobability of transmission success as a result
Finally, based on the key properties of optimal strategiesf the probe. Thus without loss of generality we will simply
we propose strategies that perform well for arbitrary numbassume the precise value (or the realization)Xgfis found
of channels and arbitrary number of channel states (finiter probing channel.
or infinite). To the best of our knowledge, this is the first The system proceeds as follows. The transmitter first de-
channel probing algorithm for the combined scenario of arides whether to probe a channekior to transmit using one
arbitrary number of channels, arbitrary channel distidndg, of the channels, based only on fEgriori information about
and statistically non-identical channels. It should beedot the distribution ofX . If it transmits over one of the channels,
that when probing costs are equal for all finite-state chisnneghen the process is complete. Otherwise, the sender probes
[11] has derived a class of strategies whose computatios tisome channej € 2 and finds out the value ak;. Based
is polynomial in the number of channels and can arbitrarilyn this new information, the sender must now decide between
approximate the performance of the optimal strategy. Whesing channej for transmission, probing another channel in
the probing costs possibly differ between channels, [1@] h& — {j} (will also be denoted simply & — j in the rest of
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the paper), or using a channelih— j for transmission even 7* denote the strategy that achievé&sin (1), and will refer
though it has not been probed. This decision process ca#into 7* as theoptimal strategySuch a strategy is guaranteed to
until the user decides which channel to use for transmissioexist since there are a finite humber of strategies due to the
We can therefore think of the system as proceeding fimite number of channels.
discrete steps, where at each step the transmitter has a s8gecause theX;’s are probabilities of transmission success
of unprobed channel§ C Q, and has determined the valuesind thus upper bounded Ry it can be seen thaf* is also
of channels i2 — S through probing. It must decide betweenipper bounded by. Thus we will further assume that <
the following actions: (1) probe a channel # (2) use the E[X;] < 1 for all j € Q, because ifE[X,] = 1, then it
best previously probed channel §h— S, for which we say is always optimal to use channglwithout probing, and if
the useretires or (3) use a channel if for transmission; we E[X;] = 0 then channelj is never probed or used. That is,
call thisguessingsince the channel has not been probed. Thike optimal strategy becomes trivial if these assumptioas a
last action was referred to as usingbackup channein [3]. violated.
Note that actions (2) and (3) can be seers@pping actions It can be shown that at any step, a sufficient information
that complete the entire probing and transmission process.state [13] is given by the paifu, S), whereS C  is the
We will assume that the sender receives a rewartigfon set of unprobed channels afd « < 1 is the highest value
a successful transmission over any channel. Thiygan also among probed channels @ — S. In other words,u is the
be thought of as theeward associated with using thgth probability of transmission success if we use the best grobe
channel for transmission. As mentioned earlier, in contims channel. We can use dynamic programming [13] to represent
previous works [3], [10], we will not assume tha; are the decision process as follows. L¥{u, S) denote the value
discrete random variables. In particular, we alldly to be function, i.e. maximum expected remaining reward given the
either continuous or discrete random variables. As meatlonsystem state isu, S). This can be written mathematically as:
earlier, this generalization allows us to model, for exampl
wireless systems with continuous data rates and channtdis Wy (¢, S) = max {meag {—c¢; + B[V (max{u, X;}, 5 = j)l},
discrete state space. !
We will also associate a cost, wherec; > 0, with probing u, max E[X], } (2
channelj. This cost may vary between channels, depending jes
on the probing time, interference caused to other userssandvhere all of the above expectations are taken with respect to
on. Though not free, probing channels can provide valuabndom variableX;. The first term on the right hand side of
information about the channel condition, particularly lifet (2) represents the expected reward of probing the best ehann
random variable X;} have large entropy. Therefore, it isin S, the second term represents the reward of using the best-
important that the sender efficiently balance the trade-gffobed channel, and the last term gives the expected reward
between probing too many channels and not using a goeldguessing the best unprobed channel. TH(8, 2) denotes
channel due to lack of probing. The sequence of decisioliite expected total reward of the optimal strategy.
on whether to continue to probe and which channel to probeNote that computing the value functioi(-,-) for every
or transmit in will be called astrategyor channel selection state is very difficult and practically impossible becausere

policy. are possibly an infinite number of states, sincecan be
With the assumptions and objectives outlined above, va@y real number irf0, 1] if the X;’s are continuous random
have the following problem. variables. For example, to computé(u, S), we may need

Problem 1: Given a set of channels, their probing costd0 know V (@, S — j) for all j € S and allu < @ < 1.
and statistics on the channel transmission success piitiesbi Nevertheless, it will be seen that the above formulatiooves|
the sender’s objective is to choose the strategy that magsni Us to obtain important insights into optimal strategiesd an
transmission reward less the sum of probing costs, i.eeaehinelps us derive much simpler methods of determining optimal

ing the following maximum; strategies that we will study in Section IV.
Any strategy can be defined by the set of actions it takes
) - = with respect to the set of information statess U, (u, S).
7= glgr}f‘] - glgr}fE Ka(r) = ;cw(t)] (D We thus use the following notation. We let refirg denote

the action that the sender retires and uses the best privious
wheren denotes the time-invariant strategy that probes chamrobed channel if2 — S, which has value:; prob€;) denotes
nels in sequence(1),--- ,n(r — 1), and then transmits overthe action that channel is probed, for somg < S; and
channeln, at time 7. 1I denotes the set of all possiblegues$j) denotes the action that channglfor j € S, is
strategies (all possible sequences of channel probes amsl trguessed (i.e., used even though it has not been probed).
missions), and the right hand sum in (1) is sebt = = 1. For state(u,S), a strategy must decide between rétirg

Note thatr is a random stopping time that may depend oprobd ), and guesg), for all j € S. We let«(u, S) denote
the result of channel probes, adt{1 < 7 < N+1) = 1 the action taken by strategy when state is(u,S). For
since the longest strategy is to probe Alichannels and then example;r(u, S) =probgj) means the sender probes channel
use one for transmission. For the rest of this paper, we aiill I; when the state igu, .S).



I1l. PRELIMINARIES (subsequently simplified as; and b;) for a single element

In this section, we establish some properties of the optimaf {2 Which can be determined relatively easily from (5) and
strategies which will be crucial for proving our main result(6), respectively, as shown below. These are indices coimger
later. Unless otherwise stated, all proofs are given in tfgannelj that areindependent of other channel&/e will see

Appendix. that th_ey_e_lre very usef_ul for deciding t_he optimal strategie
thus significantly reducing the complexity of the problem.
A. Threshold Property of the Optimal Strategy It is thus worth taking a closer look af andb;. Note that at
We first note that for alls C Q and anyi > «, state(u, j), probing channel incurs an expected rewaret; +
E[max{u, X;}], since there are no channels to probe after
V(u,S) <V(aS) (3) ;. Action gues§j) gives the expected rewarB[X;] while

This inequality follows from (1) and (2). In particular, csider retiring gives reward:. Because of the assumptions tifat

any channel selection strategy starting from stateS), and E[X;] <1 andc; > 0, for sufficiently smallu the probing
apply the same strategy starting from states). Clearly the reward becomes less than the guessing reward. By comparing

expected reward of the strategy cannot be less in the Iattljé? reyvard_s of the three options, it can be seen that guessing
starting scenario, since the set of unprobed channels is i3 pt|ma_1l '_f: Bl - XJ"XJ < l.‘]l.D(Xj < u) < ¢ angiu =
same for both cases, while the best unprobed channels r}(j]'_ Similarly, whenu is sufficiently large the problng_ z_:md
the latter case is better than the best unprobed channeé of gy essing reward become less than the reward for retiting,
former scenario. Thusl/(-,S) is a nondecreasing function, Thus for any; € 5 we have the following:

Similgrly, _it can be established th&t(u, -) is a nondecreasing a; = min {u : u > E[X],

function, i.e. for allu € [0,1] and anyS D S: ¢; > B[X; —ulX; > uP(X; >w)} (7)

V(u,S) < V(u,S). 4 b =max{u:u< E[X,],
We have the following fundamental lemmas: ¢; = Elu—X;| X; <u] P(X; <u)} (8)
Lemma 1: Consider any statgu, 5). If V(u, 5) = u, then  Note thata; > E[X;] > b;. In addition,a; = b; if and only if
V(a,S) = aforall & > u. E[X;] = a; = b;. It also follows that for; < u < a; probing
Lemma 2: Consider any stateu, 5). If V(u, 5) = E[X;] s strictly an optimal strategy. It can be seen from the above
for somej € S, thenV (4, S) = E[X;] for all u < u. that ¢; essentially controls the width of this probing region;

The above two lemmas imply that fpr fixesl, the opti- fqy largerc;, thena; andb; will be closer to E[X;].
mallstrategy has #hresholdstructure Wlth. respect ta. Ip The above discussion is depicted in Figure 1 where we
particular, for any sety C €, we can define the following paye plotted the expected reward of the three actions ¢jiless
quantities: (dashed line), prolig) (solid line), and retiréw) (dotted line)

as = inf {u: V(u,S) = u} (5) @S func/tionsI obh\{vhean is unif(;;mlygiztribut(;g irI{\IO, 1] arr:d

, ¢; = 1/18. In this casea; = 2/3 andb; = 1/3. Note that

bs = sup {u: V(u,5) = E[X;],some j € 5} ,  (6) irjlcreasing (decreasing) Would shift the solid curve down
where the right hand side of (5) is nonempty sifid, S) =1  (uUp), thus decreasing (increasing) the width of the middle
is always true. We will sebg = 0 if the set on the right hand region where probfg) is the optimal action.
side of (6) is empty. Note that botly andbg are completely ~ This example demonstrates a method for computingnd
determined given the sé&. It follows from Lemmas 1 and 2 b; for any channel;. Notice that to determine these two
that0 < bg < ag < 1. Thus we have the following corollary: constants we simply need to take the intercepts between the

Corollary 1: For any statgu, S), there exists an optimal following three functions ofu: fi(u) = E[X,], f2(u) = u,
strategyr* and constant§ < bs < ag < 1 satisfying: and fs(u) = —¢;+uP(X; <u)+E[X;X; > ulP(X; > u).

) . Thus regardless of whethe¥; is continuous or discrete, we
retlre(“,) _ if u > as do not expect computing; andb; to be very complex.

7 (u,5) = prObe(?/)’ some j €5 if bs <u <as In the rest of this section we derive properties of the optima
guess(j ), some j €5 if u <bg strategy expressed in terms of these individual indiceand

It should be noted for completeness thatwat= bg, b;-

7*(u,S) = gues$j) if bg > 0; otherwise,7*(u,S) =
probdj). This corollary indicates that there exists an optim ) . ) . .
strategy with the described threshold structure. It remain N this subsection we derive conditions for which it is
to determine these thresholds, which can be very difficiPtimal to stop, i.e., either to retire and use the best presty
especially for largeS. Secondly, it also remains to determindobed channel, or to guess and use an unprobed channel.
which channel should be probed if we are in the “probe” region L€émma 3: For any(u, S), 7 (u, §) = retirg(u) if and only
above. if > max;esa;. Equivalently,

To help overcome the difficulty in determining; andbg as = maxa; . 9)
for a generalS, we first focus on quantities;;; and by;, jes

aEf' Optimal Stopping



1 ‘ ‘ ‘ ‘ _ Corollary 2: Given a set of unprobed channefs define
R as in Lemma 4.
1) If |[R| > 2 anda; = b; for at least ongj € R, then
bs = b;. Otherwisebg = 0.

- = = = guess(j)
probe(j)
........ retire(u)

0.8}

E 2) If |IR| =1, let {j*} = R. Thenn*(u,S) #gues$j)

g 06/ 1 for all w andj € S — j*. Furthermoreps < b;-, i.e.

B [Coooo==- il 7*(u, S) =gues$;*) only if u < b

§_ 0.47 . This corollary and its preceding lemma are very useful as

P they allow us to narrow down the set of possible channels we
02} i can guess. In words, channglin S with the highest value

of a; is the only possible channel we can guess. If there are
. multiple channels achieving this maximum, then we can gasil
o 02 04 06 08 1 check whether; = b; is true in order to determine whether

u probing or guessing is the optimal action.

Fig. 1. As described in Section I1l-A: whepis the only unprobed channel C. Optimal Probing

and X; is uniformly distributed in[0, 1], the expected reward from actions ; : - o .

guess$j), probe(j) and retirgu) as functions ofu. Note thata; = 2/3 (the In thl? subsection we examine when it is Optlm‘_"‘l to probe

crossing point of solid and dotted lines) ahg= 1/3 (the crossing point of @nd which channels to probe. In order to shed light on the

solid and dashed lines). best channels to probe, we present the optimal strategy for
a separate but related problem. It will be seen that analysis

This lemma provides both a necessary and sufficient conditig.” .thls problem will help us derive useful properties of the
ptimal strategy for Problem 1.

for the optimality of retiring and using a previously probeg Problem 2: Consider Problem 1 with the following mod-

channel. A very appealing f_eature of this "?mmas lies in tr?ﬁcation: at each step, the user must choose between the
fact that it allows us to decide when to retire based only

L - . 98 lowing two actions: (1) probe a channel that has not yet
individual channel indices that are calculated independent Béen probed, or (2) retire and use the best previously probed

other channgls. . . . channel. Therefore, the user is not allowed to use a channel
The following lemma provides conditions for guessing t?nat has not yet been probed

be optimal. Note thabs = 0 implies guessing is not optimal This problem can be seen as a generalization of the problem
for all w € [0, 1]. ; . . ) :
o ' considered in [3], which restricted; to be discrete random
Lemma 4: Given a set of unprobed channeds define R . . .
variables. To describe the theorem, we use the following

as follows: notation for any channel € Q:
R:{jES:ajzrl?eagzak} : (10) a; =min{u:¢; > E[X; —u|X; >u]P(X; >u)},
Then we have the following: wherea; = 0 if the above set is empty. Note that from

1) If there existsj* € R satisfyinga;. > b;- andb;. < €quations (7) and (8), we see that = a; if and only if
max;es_ ;- E[X;], then there exists an optimal strategyi; > 0;- If a; = b;, thena; < a;. We use these indices in

with bg = 0, i.e., it never guesses for amy the following theorem, which can be seen as a generalization
2) If there existsj* € R such thath;. > maxjeg_;- a;, Of Theorem4.1 in [3]. .
then there exists an optimal strategy with = b;-. Theorem 1: For state(u, S), the optimal strategyr for

Thus conditionsl) and 2) of the lemma provide separateProblem 2 is described as follows:
necessary and sufficient conditions for guessing to be aptim 1) If v > max;es {a;}, thent(u, S) =retire(u).
Note that this lemma also has further implications. When 2) Otherwise, define the following:

|R| > 2, anda; = b; for at least ongj € R, then condition

2) of Lemma 4 is always satisfied. This = b; in this case. R = {j €S:a; = max &k} :

Otherwise,a; > b; for all j € R and condition 1) of Lemma ‘

4 is always satisfied. j* = argmax;ep {E[Xj X, > a,] — 079} .
On the other hand, whefR| = 1 and lettingj* = R, P(X; = ay)

supposer®(u, S) =guess$k) for somek # j*, u > 0. This Then#(u, S) =prob€;j*) .

implies E[X;] > E[X;-] > b, which leads to condition This theorem implies that by first ordering the individual
1) of Lemma 4. This lemma implies that we hatig = 0, channels by functions of the indices, we can determine the
which implies guessing is not optimal and thus contradius toptimal channel to probe. Again note that thés are individ-
assumption thatr*(u, S) =guess$k). Thus, we have shown ual channel indices computed independently of other cHanne
that if |R| = 1 then n*(u,S) #guess$k) for k ¢ R. This thus reducing the computational complexity significantly.
narrows the possible channels to guess, and leads to th&lote that even though Problem 2 is different from Problem
following corollary: 1, its optimal strategy will also be optimal for Problem 1 if



0 max{b} a.=max{a;} 1 of action probék). Note that this procedure computes the
I ! ! | expected probing reward in a finite number of steps, whereas

guess(j)? ‘= probe() -~ - retire(u) | not using the threshold properties given by Corollary 1 wloul
probe(f)? first require the computation of (u,j) and V (u, k) for all
probe(k)? u € [0,1], thus requiring an infinite number of computations.

! . i e - Motivated by the above, the proposed algorithm is as
Fig. 2. Summary of main results from Section llI: figure dépioptimal . . . )
strategyr* (u, S) as a function ofu. For the middle and right regions of the follows. It essentially finds two channels indexed py and
line, the optimal strategy is well-defined for ai$ For the left region, the k, and use these to define the strategy
optimal action may depend ofi Algorithm 1: (A two-step lookahead policy for a given

set of unprobed channels C Q)

guessing becomes non-optimal for all future time stepsmFro St€P 1 Computel and j* as follows:

Lemma 3 and Corollary 2, probing occursuifixc sb; < u <
max;cga;. Thus we have the following result: R= {j €S5:a; = max ak}

Corollary 3: For any state(u,S) where max;cgb; < ’
u < maxjega;, the optimal strategyr* for Problem 1 is
7*(u, S) =prob€;*), wherej* is determined as follows: first, Cs
define setR as in Theorem 1 but replacg; with a;. Then Tia;>b;y (E[Xj X5 > a;] - P(X7j>a))} ,
definej* as in Theorem 1 witl; again replacing;. r=

Figure 2 summarizes the main results from Section Ill. Wehere /() is the indicator function.
have shown that for all. > a;-, i.e. right region of the line,  Step 2 ReplaceS with S — j* and repeat Step 1. The result
retire(u) is optimal. Formax;es b; < u < a;+, i.e. the middle of the second equation abovefks
region of the line, probg™) is optimal. Note that it is possible  Then strategyy is defined as follows for stat@u, S):
th_|s region may_be emp'_cy if Fhe probing co_sts be_come too hlgh.l) If u > a;-, then(u, 5) =retire(u).
Finally, the optimal action in the left region will depend on - .
S, and thus remains to be determined. Note that giesss 2) I aje >u> by, theny(u, S) =probd;”).

' ) ; ) y . ) 3) If w < b;- then we have the following cases:
the only possible guessing action for this region, as promen s

a) If bj« > ay, theny(u, S) =guess;*).

Lemma 4 and Corollary 2. )
b) If either b, > b« or —¢;» + E[V(X;-,k)] >

it = Irp.—a A E|X;
j* = argmax {Ip,—0,) B[X;]+

IV. OPTIMAL STRATEGIES {EX;),—cx  +  E[V(Xg i)} then
As stated earlier, the state space for our problem is the set 7v(u, S) =probe;j*).
of all (u,S), which is infinite. This makes it very difficult c) Otherwise, there exists a uniqueby,
to recursively apply dynamic programming to evaluate all where b > by > by, such that
V(u,S) and solve for the optimal strategy. In this section —cj-  +  E[V(max(by, Xj+), k)] =
we propose an algorithm for channel probing for arbitrary max {E[X -], —c, + E[V(Xg,j)]}.  Then for
number of channels with arbitrary distributions. This aition bo < u < bj-, we havey(u,S) =probe;”).
is motivated by the properties derived in the previous secti For u < by, we have~y(u,S) =guess$;”) if
We show that this algorithm is optimal for a number of special EX;] > —o+ E[V(X, ). Otherwise,
cases. 7v(u, S) =probek).
) ] It is worth describing the motivation behind this strategy.
A. A Channel Probing Algorithm For u satisfying case 1) of the algorithm description,is

In order to motivate our algorithm, which we will call, optimal from Lemma 3. For some of the values described
consider when there are two unprobed chanrttls: {j U in Case 2);y is optimal from Corollary 3. For case 3ay),is
k}. As described in the previous section, the ordering of tlptimal from Lemma 4 and Corollary 2. Thusis optimal
constantsz;, b;, ax, andb, will help determine the optimal for most values ofu. For cases 3b) and 3c) of Algorithm 1,
strategy. Note that due to Corollary 1, it is not hard to clt1 the procedure essentially computes the expected probisig co
the expected reward of probingor k for state(u,S). For if we are forced to retire in two steps.
example, ifu < by, then probéj) at state(u, S) incurs the ~ We next consider a few special cases and show thist
following expected reward: optimal in these cases.

—¢j + E[V(max(u, X;), k)]

B. Special Cases
=—cj + P(XJ < bk)E[Xk] + P(Xj > ak)E[XJ| Xj > ak]

We first consider a two channel system. Since Algorithm 1 is
+ P < X < ax) (—ex + Elmax(Xy, X;) ax > X 2 bi]) essentially a two-step lookahead policy, we have the fatigw
The above calculation can similarly be applied to the othegsult (the proof is omitted for brevity):
two separate cases aof> a; anday > u > by, and they can  Theorem 2: For any given set of unprobed channds
also similarly be applied to determine the expected rewawhere|S| = 2, v is an optimal strategy.



We next consider the case when all channels are statigticatien whethew; > b; or a; = b; determines if we will probe
identical, but there are an arbitrary number of them. The guess channgl Analogously, we have the following result:
channels can have different probing costs. Theorem 4: For any set of channels, definej* according

Theorem 3: Suppose|S| > 2, and all channels it are to Step lof Algorithm 1. Then for Problem 3, there exists an
identically distributed, with possibly different probingpsts. optimal strategyr* satisfying the following:

Then the optimal strategy* is described as follows, withi* 1) If u > a;+, thent*(u, S) =retire(u).
being a channel ity satisfyingc;- = minjegs {c¢;}. 2) If u <aj- andb;+ =0, thenw*(u, S) =probg;*).

Case 1If aj« > bj«, we have: 3) If u <aj« andb;- > 0, thenw*(u, S) =guess;*).

Due to space limitations, proof of the above theorem is not
included; however, it should be noted that it essentiallipfes

from Theorem 3. This theorem implies that when the number
. _ ... of channels is infinite, and there are an arbitrary number of

Case 2 If dj* = bg the optlmal.ftrategy is: retife) if channel types, then we will only probe or guess one channel,
u > aj-; otherwise,r* (u, S) =guesg;”). ~i.e. the other channels become irrelevant. In additiore thut
_ This theorem implies that if we have a set of statistically|gqrithm 1 is also the optimal strategy for Probléybecause
identical channels(}, then the initial step of the optimal o556 3¢) of the description of Algorithm 1 does not occur. For
strategy is uniquely determined ly- andb;-, wherej* is | the other cases, Algorithm 1 reduces to the optimaleat
the channel with smallest probing cost.df- = b;-, then yaccribed in Theorem 4.

7" (u,(2) =guesgj”) and it is not worth probing any channels. 1, symmarize, in this subsection we have shown that

If aj- > bj-, then we should first probg™. Let k denote ajgorithm 1 reduces to the optimal strategies for the above
the channel with the smallest probing costSn— {j*}. If special cases based on Theorems 2, 3, and 4.
the probed value o ;- is higher tharay, then it is optimal

to retire and usg* for transmission. Otherwise, if;, > by, V. CONCLUSION

then probék) is optimal; if a, = by then guesg) is the In this paper, we analyzed the problem of channel probing
optimal action. This process continues until we retire,sgue and transmission scheduling in wireless multichanneksyst

or |S| = 1. When|S| = 1, then we compare the best probedVe derived some key properties of optimal channel probing
channel, which has value, to a; andb;, whereS = {j}. If strategies, and showed that the optimal policy has a thigsho
u > aj, then we retire; ifa; > u > b;, then we probe the last structure. We also proposed a channel probing algorithm,
remaining channel; finally, it: < b; then we should just use shown to be optimal for some cases of practical interest,

retire(u
probe(j*),

if u> aj;-
otherwise

7 (u, S) = {

the last remaining channel without probing it.

including statistically identical channels, a few nonitiea

Note that the optimal strategy described above is the saoteannels, and a large number of nonidentical channels.

as strategyy of Algorithm 1 applied to statistically identical
channels. This is true because within case 3) in the degmsript
of Algorithm 1, 3b) will occur whenevew;- > b;- for
statistically identical channels, and case 3a) occurs edem
a;« = b;-. Collectively, 1), 2), 3a) and 3b) all describe the[2]
optimal strategy of Theorem 3. Note that this theorem applie
to all cases of statistically identical channels, regardless gf
their distribution or probing costs. Changing the channel
distribution and probing costs will affect the valuesagfor

bj, but they do not alter the general structure of the optimgl,
strategy as given by the theorem. It should be noted that [5],
[6], [7] have all considered variants of Problem 1 where th%]
set of channels are statistically identical. However rthesults

do not allow unprobed channels to be used for transmission.
In addition, [6], [7] do not determine the optimal order for [
probing channels.

Finally, we consider the case where the number of channeld
is very large and not statistically identical.

Problem 3: Consider Problem 1 with the following modi- [g]
fication: the wireless system consists f different types of
channels, but an infinite number of each channel type.
Note that Theorem 3 solves this problemNf = 1. When
referring to the state space for this problem, we will tet 0]
denote the set of available chantygbes Theorem 3 says that
if we have many statistically identical channels of one type

(1]

&l
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VI. APPENDIX the definition ofax, andu < a; implies:

A. Proof of Lemma 1 V(u, k) = max {E[Xy], —cx + E [max(Xg,u)]} > u,
It suffitzes to prove that the following holds for &l and  Finaly, (4) givesV (u, S) > V(u, k) > u, which contradicts
0<u<a<l: the assumption that > ag. Thus,as < a; is not possible
V(a,S)—V(u,S)<i—u. (11) foranyk e S.

Case 2 Supposeas > maxjes a;. FiXx any u such that
maxjes a; < u < ag. By definition of ag, we have the

ptimal strategy at statéu, S) is to either probe or guess a

hannel inS, but retiring is not optimal. Suppose the optimal

If (11) is true, thenV (u,S) = u implies thatV (a, S) < 4.
Combining this with (2), which says th&t(u, .S) > @, proves
the lemma. We prove (11) by induction on the cardinality

S. . NS
h ke S. Th lies:
Induction Basis Consider anyS C €2 such that|S| = 1. strategy is to probe a channfelc 5. This implies
Let j = S. From equation (2) defining the value function, —c + E[V(max(u, Xi), S — k)] > V(u,S)
V(a,{j}) (also simplified a§’ (4, j) below) has three possible >V(u,S—k), (12)

values. We show (11) holds for all three cases. ) ] ]
Case 1 V(a,j) = @. From (2),V(u,j) > u. Therefore, where the last inequality follows from (4).Sinee> ay, then

equation (11) easily follows. by definition ofa, we have:
V(u,j) > —c; + Emax(X;,u)]. Therefore,
V(a,j) —V(u,j) < Emax(X;, )] — E [max(X;,u)]
= Ela — max(X;,u)|X; < @)P(X; <@) <i—u, EV(max(u, Xi), S — k) = V(u, S = k)] > ¢k

which proves that (11) holds. > B [max(u, Xi) — u]
Case 3 V(u,j) = E[X;]. From (2),V(u,j) > E[X;]. Conditioning the above expectations on the everfs > u}
Therefore, equation (11) easily follows. and{ X} < u} gives us:
Induction HypothesisConsider anys C €2 such that S| >
2 and suppose (11) holds for afl C Q such that|S| < EV(Xy, S —k) = V(u, 5 = k)| X > u] P(Xy > u)
|S|. Again we prove that (11) holds for all possible values of > E[ Xy —u| X > u] P(Xy > u) (14)
V(a,S). If V(a,S) =4, then (2) impliesV (u, S) > u which
implies (11) holds. Similarly, ifV’(z,S) = E[X;] for some
j €8S, thenV(u,j) > E[X;] implies equation (11). Finally,
supposeV (u, S) = —c¢; + E[max(X;, a)] for somej € S.
;Lhen becguséfr(]u, S? > —¢; + E[V(max(Xj, u), § — j)] for contradicts the assumption that> ay.
€ samey we have. Thus combining Casd and Case2, we have proven
V(a,S)—V(u,S) Lemma 3. O
< E[V(max(X;,u),S — j) — V(max(X;,u),S — j)]
=E|[(V(@,S —j)— V(max(X;,u), S — 7)) Ix,<a)] D. Proof of Lemma 4
<V(@,S—j)-VuS-j)<i—u, Case 1 For notation, letE[X;] = maxjes—;- E[X,] for
where the last two inequalities follow from (3) and the € % salisfyinga;- > b;- as described by the lemma. From

induction hypothesis, respectively, arg, is the indicator ;he lemma, we tl:_now that;. EE[XIIC]S” we can S.hmg that
function. Therefore we have proven (11). 0 or every u, probing some channel i or reprmg is better
than guessing any channel 1, then this will prove there

exists an optimal strategy withy = 0. Note that the expected
B. Proof of Lemma 2 reward of guessing the best channelnsixjcs E[X;] =
This lemma follows from (3). In particular, supposenax{E[Xy], E[X;-]}. Thus it suffices to show that for all
V(u,S) = E[X;]. Then (3) impliesV(u,S) < E[X;]. wu < a,-, there exists a probing strategy with higher expected
However, from (2) we know/ (@, S) > E[X,]. Combining reward thanE[X}] and E[X-].
the two impliesV (u, S) = E[X;] and proves the lemmaé.] As described in Section II-AF[X] < ax. Thus we have
bj» < E[Xi] < aj~ sincej* is in R. From the definition

Combining (12) and (13), we have:

which contradicts (11).

If the optimal strategy is to guess a chankek S, then
V(u,S) = E[X]. However, sinceV (u,k) < V(u,S) then
V(u,k) = E[Xx] as well. This impliesar, > w, which



of bj«, a; and by the assumption that;- > b;-, then j* as in the theorem. For notational convenience, we index
©*(u, j*) =probg;*) wheneverb;- < u < a;-. Therefore, channels by the sefji, jo, -, jn}, Wherea;, > a;,_, >
7 (E[Xk], 7*) =probd;*) and we have have: --->a;, and whena;, = a,, ,,then

*

") = —cCax . > .
VIEIXE],57) = =eje & Blmax(Xe, BRG] 2 BLXG] ElX | X 2 85,] = 5 X.CJT; >
However, note that the lefthandside of the above equation is (X 2 85,,) .
the expected reward of the following strategy: prgtiefirst, > E[X;, . |ij_1 > @, 4] — Jm—1

and use this channel for transmission if its value is highant P(Xjpor 2 s

E[X}]; if its value is lower thanE[X}], then guess(k), i.e. Thusj, = j* as defined in the theorem.

use channek for transmission. Thus the expected reward of Now consider anyj,, wherel < m < n such that
this two-step strategy is always at least the reward of simpm € S—R. Let u satisfy a;,, < u < aj,, and suppose
using channek for transmission. This result holds for al In #(u, ) =probejm). We will show by contradiction that
addition, by definition ofa;- andb;-, 7*(u, ;") =gues§j”) this cannot be true. In fact, following the same exact steps
forall u < bj.. ThusV (u, j*) = E[X;-] for all suchu. How- a5 (12 (13), and (14), we arrive at a contradiction to (11).

ever, from equation (3), we also know the([Xy], /%) > Therefore,V (u, S) #£probe;) for all u > a; and all j €
V(u,j*) = E[X;-]. Thus we have shown that for all there

exists a strategy of probingfirst which does at least as good
as the strategy of guggs or gues§;j*). As explained earlier,
these are the two best guessing actions; thus, there enist

optimal strategy which never guesses forualii.e. bs = 0. probe a channel irR. To see which channel i to probe,

Case 2 From the lemma, we havey- > b > o _— - .
. prove by contradiction that(u, S) =probdj,). Suppose
max;es—;+ aj. In addition, from Lemma 3 and from the. o robdi ). so that#(u.S) —probdi.) for some
threshold properties described in Section IlI-A, we haye< #(u, 5) 7probejn), #(u, §) =probejm)

Jjm € R,m # n. Note thata;,, = a;, by definition of R.
as = aj-. Thus, V(u,bs) = u for all u > aj.. NOw we ‘propingsi - first will cost ¢;,.- By the induction hypothesis,
hgve two cases for the relationship bgtvvagn and.bj*. at stateS — j,, we will probe j, if X; < a;,, or we will
First, SUppose;- = bj. F'ronj the equations in Sgctmn ”'_'retire if X;,. > a;,. Similarly, we can computre the expected
A for individual channel indices, we see that this equality, . .4 Srobing};' first, and then probing,, in the second
implies that E[X ;-] = b;«. Finally, using (3), we see thatStep it X " ’ "

i, < aj_ . Since we are assuming probirg is not
V(u,8) < Vb, 8) = bj = E[X;.] for all u < bj-. On optimal ﬁien tﬁg expected gain of probipg first minus the
the other hand, from (2) we havé(u, S) > E[X;-] for all P ’ P g probuig

expected gain of probing, first must be positive. Taking this
U < bje. Th_us. we 'have shown thaf(u, 5) = E[X;-] for all difference and cancelling terms gives us:
u < bj«. This implies thatg = b;-.

Now suppose;- > bj-. This impliesa;« > max;cs_;- a;. — ¢, + P(Xy,, >a;,)E[X;,|X;
Thus, by using Corollary 3, to be proven later, we
have that7*(u,S) =probgj*) for all a;» > u > bj-.
Thus, V(bj-,8) = —c¢j» + E[max(Xj-,b;-)], where +P(X;, > a;,)ELX;,
we do not probe anything aftej* because of Lemma , . L
3. Finally, from Section Ill-A, we have that,- > b;- Rearranglng, we get a contrgdlctlpn to the deﬁmponjbf
implies —c;- + Elmax(X;-,b5-)] = E[X;-]. Thus, in Theo_rem 1 and the fact thgt = Jn- Thgs,_ we arrive at a
V(b;-,S) = E[X;:], which again implies that contradiction to the assumption that probjfgis not optimal.
V(u,S) = E[X;s] for all u < b-. Thus we have This holds for allj'm not in R. Therefore, we have shown
shown there exists an optimal strategy with=b;.. 0  that#(u, ) =probej,) for all maxjes—r < u < aj,.

Now to show that#(u,S) =probdj,) for all v <
maxjes—r aj, we note that for allu < a;, the expected
E. Proof of Theorem 1 reward of probingj,, first can again be calculated by using

The proof thati (u, S) =retire(u) for all uw > max;cs {a;} the induction hypothesis. In particular, X; > a;, then we
follows from the same steps as proving Lemma 3 (the faettire. OtherwiseX; . < a;, and by the induction hypothesis
that guessing is not an option does not alter the result f thwe continue. It suffices to show for all< a;, , the difference

From Lemma 3, retiring cannot be optimal (again, removing
guessing as an option does not change this result). Therefor
Y& optimal strategy atu, S), a;,, < u < a;,, must be to

> aj,]
- C.j"LP(Xj””. < aj'll) > _C.j"L - Cj"”.P(Xj"L < aj”L)

X.jn 2 ajn] ?

m

proof). in expected rewards between probirg first and probing
For u < maxjes {a; }, we prove the result by induction onk, wherek is any other channel, does not dependwonif
the cardinality ofS. this holds, then prolg,) must be optimal for alu < a;,

Induction Basis Suppose|S| = 1. Let S = {j}. Then since we have already shown that prohg is optimal for
7t(u,j) =probgj) follows from the definition ofa;, because maxjes—ra; < u < a;,. Due to space limitations, we will
—¢; + Elmax(X;,u)] > u for all u < a;. only consider the alternate strategy of probijiag first, but

Induction HypothesisLet |S| = n > 2, and suppose the we note that the steps generalize to any other chainet j,,.
result holds for allS C Q such that|§| < n. Define R and By the induction hypothesis, probing,_; first gives ex-



pected reward: havebs = 0. Thus, guessing,, is not an optimal action for
all v and therefore we only need to decide which channel to
probe whernu < a;,,.

+E [maX(ijXjnfl)I{AmBC}] We derive the optimal strategy here for two separate sub-

’ , , i cases. First suppose;, > b, for all 1 < I < n. In

B {V(max(u’Xj“’Xj“’l)’S n ‘7"71)1{”036}} " particular, this impliesjcij“ > ljaljl Let V*(u,S) denote the
where V(-,-) is the value function for Problem 2, definecexpected reward of the following strategy: first proheand
similarly to (2), A is the eventf{max(X;, , X;, ,) > a;, ,}, then proceed according to the optimal strategy as detethmine
Ac is its complement, and3 is the event{ X, , >aj, }. by the induction hypothesis. Meanwhile, 18t(u,.S) denote

—cj,_, T E[X;,  Iipy] — P(X;, , <aj,)c,

Similarly, probingj, first gives expected reward: the expected reward of first probing some chanjpelwhere
k < n, and proceeding according to the optimal strategy. For
— ¢ + EX;, Iipy] = P(X;, <@, ,)¢j, any b;, < u < aj,, it can be shown similar to the proof
+ E [max(Xj,, X;,_, ) {anpey] of Theorem 1 thatV*(u,S) — H(u,S) is invariant to u.

- . . However, from Corollary 3 we know that* (u, S) =prob€j,,

B {V(max(u’Xj“’Xj“*l)’S_‘7” _‘7"’1)1{“0”[’”}} ' forall b, < u < aj,, which meansV*((u,S; > H(S, S;
whereD denotes the ever{tX;, > a;, , }. Taking the differ- for these values ofu. Combining everything impli_es that
ence between this expected reward and the expected rewardbs:»5) =probej,) andV (b;,,.5) = V*(bj,, 5). Finally,
of probing j,_; first, we see that the difference is invariant! can be easily shown that™(u,S) = V*(b;,,5) for any
to u (only the term withV'(-,-) containsu, and this cancels “ < bj, because no channel is guessed unigsis the only
out during the subtraction by conditioning the expectation '€maining channel. From (3), this implies theft(u, S) =
whether events3 and D occur). Similar steps can be takenV " (u,5) for all u < b;,; thereforer*(u, S) =probe(j,) for
for other j,, # j., by calculating the expected reward for anll © < bj.
strategy until only channel§j,, - ,jm_1} are left. It can  NOW supposea;, = bj, for somel < I < n (we let
then be shown that the difference in expected reward betwded€note the largest index satisfying, = b;). Consider
actions probgj,) and prob¢j,,) does not change with. Probing any channej, wherek < n andk 7 [. Then
Therefore(u, S) =probej,,) for all u < max;cs_r {a;}. from the |ndu_ct|on hypothesis, after prc_)blgjng we W|_II either

Therefore, we have showt(u,S) =probgj,) for all retire or continue to probe channels in decreasing order of

u < aj,, which completes the proof. O theindices{a;,,a;, , -+ . a;}. If the state is reached where
channelj; has the highest index value, then from the induction
hypothesis we will retire ifmax {X;,, X, , -+, X;.,} =

F. Proof of Theorem 3 aj,; otherwise, the optimal action is gués$ which collects

Note that when probing costs are equal for all channelsreward ofE[X,|. Sincey; is never probed, the total expected
then this theorem follows from Case 1) of Corollary 2. Imeward of this strategy is exactly the same as the reward of
particular, since all channels ifi are statistically identicalz a strategy in Problem 2 where initially = E[X], channels
defined in Corollary 2 is equal t8. Thus,|R| = |S| > 2 and are probed in the ordefj, jn, -, ji+1, 5} and retirement
the optimal strategy is determined from whetlgr= b; for occurs according to Theorem 1. Similarly, first probifg
anyj € S. has the same expected reward as a strategy in Problem 2 that

When probing costs differ between channels, then we cprobes channels in the ord€y,,, j.—1, - ,7:} and retires
use induction on the cardinality ¢f to prove the result. Note according to Theorem 1, where again= E[X]. Given this
that from the discussion in Section Ill, when < ¢, but equivalence, we can use Theorem 1 to show that the latter
X; and X, have the same distribution, ther) > a; while strategy must have higher expected reward. Similar steps ca

b; < br. We will use this fact throughout the proof. be used to show that profg) cannot be optimal for any.
Induction Basis Suppose|S| = 2. From Theorem 2, the Thus,7*(u, S) =prob€j,) for all u < a;,,.
strategy given in Theorem 3 is optimal. Case 2 Now supposea;, = b;,. This implies from

Induction Hypothesis Consider anyS C  such that Corollary 2 thatr*(u, .S) =gues$j,) for all u < a;, = b;,.
|S| > 3 and suppose the theorem holds for allC Q O
such that|S| < |S|. For notational convenience, le&t =
{j1.j2,- ,jn} Wherec;, > ¢;, > --- > ¢;,. As mentioned
earlier, this assumption implies;, > a;,_, > --- > a;, and
bj, Sbj, .y S-S by

From Lemma3, we know thatas = a;,. Thus, it only
remains to determine the optimal strateg¥(u, S) for u <
ajn.

Case 1 We first prove the theorem for the case wheye >
b;,. From Corollary 2, the only channel that can be guessed
iS jn. However, becausk;, < b; then from Lemma 2 we

Jn—11



