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Abstract—In this study, we consider optimal opportunistic spec-
trum access (OSA) policies for a transmitter in a multichannel
wireless system, where a channel can be in one of multiple states.
In such systems, the transmitter typically does not have complete
information on the channel states, but can learn by probing indi-
vidual channels at the expense of certain resources, e.g., energy and
time. The main goal is to derive optimal strategies for determining
which channels to probe, in what sequence, and which channel to
use for transmission. We consider two problems within this con-
text and show that they are equivalent to different data maximiza-
tion and throughput maximization problems. For both problems,
we derive key structural properties of the corresponding optimal
strategy. In particular, we show that it has a threshold structure
and can be described by an index policy. We further show that the
optimal strategy for the first problem can only take one of three
structural forms. Using these results, we first present a dynamic
program that computes the optimal strategy within a finite number
of steps, even when the state space is uncountably infinite. We then
present and examine a more efficient, but suboptimal, two-step
look-ahead strategy for each problem. These strategies are shown
to be optimal for a number of cases of practical interest. We ex-
amine their performance via numerical studies.

Index Terms—Channel probing, cognitive radio, dynamic
programming, opportunistic spectrum access (OSA), optimal
stopping, scheduling, stochastic optimization.

I. INTRODUCTION

E FFECTIVE transmission over wireless channels is a key
component of wireless communication. To achieve this,

one must address a number of issues specific to the wireless
environment. One such challenge is the time-varying nature of
the wireless channel due to multipath fading caused by factors
such as mobility, interference, and environmental objects. The
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resulting unreliability must be accounted for when designing ro-
bust transmission strategies. Recent works such as [1] and [2]
have studied opportunistic transmission when channel condi-
tions are better to exploit channel fluctuations over time.

At the same time, many wireless systems also provide trans-
mitters with multiple channels to use for transmission. As men-
tioned in [3], a channel can be thought of as a frequency in a
frequency division multiple access (FDMA) network, subcarrier
in an orthogonal frequency division multiple access (OFDM)
network, a code in a code division multiple access (CDMA)
network, or as an antenna or its polarization state in multiple-
input–multiple-output (MIMO) systems. In addition, software-
defined radio (SDR) [4] and cognitive radio networks [5] may
provide users with multiple channels (e.g., tunable frequency
bands and modulation techniques) by means of a programmable
hardware that is controlled by software. The transmitter, for ex-
ample, could be a secondary user seeking spectrum opportuni-
ties in a network whose channels have been licensed to a set
of primary users [5].

In these systems, the transmitter is generally supplied with
more channels than needed for a single transmission. Thus, the
transmitter could possibly utilize the time-varying nature of the
channels by opportunistically selecting the best one to use for
transmission [6], [7]. This may be viewed as an exploitation of
spatial channel fluctuations (i.e., across different channels) and
is akin to the idea of multiuser diversity [2].

In order to utilize such channel diversity, it is desirable for the
transmitter and/or receiver to periodically obtain information on
channel quality. One distributed method of accomplishing this is
to allow nodes to exchange control packets. For example, recent
works such as [6] and [8] have proposed enhancing the multi-
rate capabilities of the IEEE 802.11 RTS/CTS handshake mech-
anism to obtain channel information. In particular, [8] proposes
the Receiver Based Auto Rate (RBAR) protocol in which the
receivers use physical-layer analysis of received RTS packets to
find out the maximum possible transmission rate that achieves
less than a specific bit error rate. The receiver then controls
the sender’s transmission rate by piggybacking this information
into the CTS packet. In cognitive radio systems, channel probing
may be accomplished by using a spectrum sensor at the phys-
ical layer (see, for example, [5]), whereby at the beginning of
each time slot, the spectrum sensor detects whether a channel
is available. This detection may be imperfect, and energy/hard-
ware constraints might limit the number of channels sensed in
a given slot.

In all these scenarios, channel probing can help the trans-
mitter obtain useful information and therefore make better deci-
sions about which channel to use for transmission. On the other
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hand, channel measurement and estimation consume valuable
resources; the exchange of control packets or spectrum sensing
consumes energy and decreases the amount of time available to
send actual data. Thus, channel probing must be done efficiently
to balance the tradeoff between the two.

In this paper, we study optimal strategies for a joint channel
probing and transmission problem. Specifically, we consider a
transmitter with multiple channels of known state distributions.
It can sequentially probe any channel with channel-dependent
costs. The goal is to decide which channels to probe, in what
order, when to stop, and upon stopping, which channel to use
for transmission. Similar problems have been studied in [3], [6],
[7], [9], and [10]. The commonality and differences between our
study and previous work are highlighted within the context of
our main contributions, summarized as follows.

First, we derive key properties of the optimal strategy for the
problem outlined above and show that it has a threshold property
and can only take on one of a few structural forms. In contrast to
[3], [9], and [10], we do not restrict the channels to take a finite
number of states; our work also applies to the case of (uncount-
ably) infinite channel states. This generalization is useful if one
uses the probability of successful transmission as channel state.

Second, we explicitly derive the optimal strategy for a number
of special cases of practical interest. In [6] and [7], variants of
the problem outlined above were studied. In particular, [7] ana-
lyzed a problem where channels can only be used immediately
after probing (i.e., no recall of past channel probes) and un-
probed channels cannot be used for transmission. Under these
conditions, the problem reduces to an optimal stopping time
problem for a given ordering of channels to be probed. In this
paper, we allow both recall and transmitting in unprobed chan-
nels; the resulting problem is thus quite different from the op-
timal stopping time problem. [6] assumes independent Rayleigh
fading channels and, because all channels are independent and
identically distributed, does not focus on which channels should
be probed and in what order. In contrast, we consider channels
that are not necessarily statistically identical.

Finally, based on the key structural properties of the optimal
strategies, we present an algorithm that computes the optimal
strategy in a finite number of steps even when the channel has
an uncountably infinite state space. We also propose compu-
tationally efficient strategies that, although potentially subop-
timal, perform well for an arbitrary number of channels and ar-
bitrary number of channel states (finite or infinite). To the best
of our knowledge, these are the first channel probing algorithms
for the combined scenario of an arbitrary number of channels,
arbitrary channel distributions, statistically nonidentical chan-
nels, and possibly different probing costs.

The remainder of this paper is organized as follows. We
formulate two channel probing problems in Section II and
present important structural results on the optimal strategy in
Section III. Three algorithms for the first problem are then
presented in Section IV and are shown to be optimal for
a number of special cases. The incorporation of additional
regulatory constraints into the first problem is discussed in
Section V. These results are then extended to the second
problem in Section VI. Section VII provides numerical results,
and Section VIII concludes the paper.

II. PROBLEM FORMULATION

We consider a wireless system consisting of channels, in-
dexed by the set , and a single transmitter
who wants to send a message (to a receiver) using exactly one of
the channels. (While there may be multiple transmitters and re-
ceivers present in the network, we limit our attention to a single
transmitter–receiver pair in this paper.)

With each channel , we associate a reward of transmission
denoted by , which is a random variable (discrete or contin-
uous) with some distribution over some bounded interval
where . We call this the channel reward. The may
represent either the probability of transmission success or the
data rate of using channel . The randomness of the transmis-
sion probability or data rate comes from the time-varying and
uncertain nature of the wireless medium. It is assumed that the
transmitter knows a priori1 the distribution of for all ,
and by probing channel , it finds out the exact realization2 of

.
We assume are independent random variables, thus

probing channel does not provide any information about the
state of any other channel in . If channels are correlated,
then one can update the distributions of these random variables
every time a channel is probed. However, this leads to a very
different problem than the one presented below and is therefore
not further considered in the present paper. Note that the in-
terchannel independence assumption does not necessarily mean
that the transmitter can only use one channel at a time. This
is because we can think of each channel as a family of chan-
nels and probing simply determines the values of representa-
tive channels. For example, in an OFDM system, probing one
OFDM tone may reveal the value of all tones within a coher-
ence bandwidth of (the channel family). In this case, could
represent the reward of the best channel in the channel family
(for single-channel access) or the collective reward of the entire
family (for multichannel access).

Note that in reality, channel probes may only allow the trans-
mitter to measure the received signal-to-noise ratio (SNR) [6],
[7]. This measured SNR, however, essentially affects the prob-
ability of transmission success or data rate and translates into a
measured valued of . Thus, can be thought of as an ab-
straction of the information obtained through probing. We will
associate a cost , where , with probing channel .

The system proceeds as follows. The transmitter first decides
whether to probe a channel in or to transmit using one of the
channels, based only on its a priori information about the distri-
bution of . If it transmits over one of the channels, the process
is complete. Otherwise, the sender probes some channel
and finds out the value of . Based on this new information, the
sender must now decide between using channel for transmis-
sion, probing another channel in (will also be denoted
simply as for the rest of the paper), or using a channel in

for transmission even though it has not been probed. This

1Many techniques can be used to estimate the distributions of , e.g., via
a moving average [7].

2It should be noted that this is assumed without loss of generality: When
channel probing gives partial (or noisy) information about the channel state,
we can let denote the expected probability of transmission success (or data
rate).
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decision process continues until the user decides which channel
to use for transmission.

The system thus operates in discrete steps. At each step, the
transmitter has a set of unprobed channels and has found
out the states of channels in through probing. It must de-
cide between the following actions: 1) probe a channel in ;
2) use the best previously probed channel in , for which
we say the user retires; or 3) use a channel in for transmis-
sion, which we call guessing (also referred to as using a backup
channel in [3]). Note that actions 2) and 3) can be seen as stop-
ping actions that complete the process. The sequence of deci-
sions on whether to continue to probe and which channel to
probe or transmit in will be called a strategy or channel selec-
tion policy.

In practical situations, it could be the case that only a subset
of channels in may be guessed or retired to. For example, the
transmitter may be allowed to transmit in the industrial, scien-
tific, and medical (ISM) radio band without probing (perhaps
within a power limit), but may be required to probe a TV band
immediately before using it. In this paper, we will start by as-
suming that all channels may be guessed and retired to. We then
show in Section V how the results derived under this assump-
tion apply to the case where only a subset of can be guessed
or retired to and where the user is penalized for guessing on a
busy channel.

The description above outlines a one-shot problem in that we
are trying to make a decision for a one-time transmission. In this
context, we will assume that the time it takes to go through the
probing-transmission process (referred to as a decision epoch)
is within the channel coherence time, which ensures that the re-
alizations of ’s remain constant in this time period. Later in
Section V-A, we discuss how to handle fast fading channels in
this framework. Since the problem is within a single decision
epoch, we do not make any assumption on the temporal depen-
dence of these channels from one epoch to another. If they are
independent, then the same procedure can be repeated in each
epoch; if they are not, then the distributions of ’s will first
need to be updated (e.g., using Bayesian methods) at the begin-
ning of each epoch based on past observations and any informa-
tion on the underlying correlation, and then the same procedure
can be repeated.3

With the above assumptions, we now formulate two optimiza-
tion problems corresponding to two different objectives. Justifi-
cation and interpretation follow each formulation.

A. Problem P1

We start by describing the objective for our first problem, and
then we provide justification for considering this problem.

Problem 1: Given a set of channels, their probing costs, and
statistics on the channel transmission success probabilities, the
sender’s objective is to choose the strategy that maximizes trans-
mission reward less the sum of probing costs, i.e., achieving the
following maximum:

(1)

3This essentially results in a greedy approach that optimizes associated objec-
tives for each epoch; one can also try to optimize over a finite or infinite horizon
(of these epochs) through a Markov decision process (MDP).

where denotes a strategy that probes channels in the sequence
, then transmits over channel at time

. denotes the set of all possible strategies for Problem 1
(referred to as P1 below), and the right-hand sum in (1) is set
to 0 if .

Note that is a random stopping time that, in general, de-
pends on the result of channel probes, and

since the longest strategy is to probe all channels and then
use one for transmission. For the rest of this paper, we will let

denote the strategy that achieves in (1) and will refer to
as the optimal (P1) strategy. Such a strategy is guaranteed

to exist since there are a finite number of strategies due to the
finite number of channels.

We now provide two interpretations of P1.
Data maximization given constant data time (P1-DM): P1

may be seen as maximizing the total amount of data transmitted
over a fixed amount of transmission time , where each probe
takes amount of time not included in .4 To see this inter-
pretation, let the random variable denote the data rate asso-
ciated with channel . Thus, under strategy , the user success-
fully transmits units of data after probing for
amount of time.

Now, consider a baseline strategy that forgoes channel
probing and in return gets to transmit at some constant data
rate over the same amount of time the it takes to probe
and transmit under . The total amount of data this baseline
strategy transmits is . Suppose the user wants
to maximize its advantage over the baseline strategy

The above objective function reflects the desire to balance be-
tween obtaining a high rate through probing (the first term) and
minimizing probing time (second term). Note that since the user
has a constant transmission time , simply maximizing
will produce a trivial solution: The best strategy would be to
probe every channel and use the best one.

It can be seen that since the term in is the
same for all strategies , by letting , the
strategy maximizing also maximizes in P1, and

.
Throughput maximization given constant data (P1-TM): P1

can also be seen as maximizing throughput for a fixed amount
of data. To see this interpretation, consider transmitting one
unit of data and let again denote the data rate associated
with channel . The throughput under a strategy is given by

. Maximizing this quantity is equiv-
alent to maximizing , which in turn is
equivalent to solving P1 by setting for each and re-
placing random variables with .

Thus we have shown that P1 is equivalent to a data maximiza-
tion problem and a throughput maximization problem, respec-
tively. Due to this equivalence, in the rest of the paper, we will
not make the distinction and will simply refer to this problem as
P1.

4This is also called the constant data time (CDT) problem in [7].
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Because the ’s are bounded rewards in P1, then is also
upper-bounded by . Thus, we will assume
for all . This is because if , then it is always
optimal to use channel without probing, and if ,
then channel is never probed or used; the optimal strategy
becomes trivial if these assumptions are violated.

It can be shown that at any step, a sufficient information state
(see, e.g., [12, ch. 6, pp. 82–84]) is given by the pair ,
where is the set of unprobed channels and
is the highest probed value among channels in . The dy-
namic programming representation of the decision process is as
follows. Let denote the value function, i.e., maximum
expected remaining reward given the system state is . This
can be written mathematically as

(2)

where all of the above expectations are taken with respect to
random variable . The three terms on the right-hand side
of (2) represent, respectively, the expected reward of probing
the best channel in , of using the best-probed channel, and of
guessing the best unprobed channel. denotes the ex-
pected total reward of the optimal strategy.

B. Problem P2

An alternative formulation of the problem seeks to maximize
the total amount of data transmitted within a fixed amount of
time available for both probing and transmission, when each
probe takes amount of time.5 We assume so that the
transmitter has the option of probing every channel. Since the
total amount of time is fixed, this can be equivalently viewed as
throughput maximization.

Problem 2: We seek the strategy maximizing the following:

(3)

where is the channel that strategy uses for transmission
after probes, and is the set of all possible P2 policies. We
will denote by the strategy that maximizes the expectation
given by (3).

Unlike in P1 where the information state is given by the pair
, in P2 the value function also depends on , or equiva-

lently, the amount of time left, denoted by .
Consequently, the information state is the triple , while
noting that is obtainable from if is also given. The max-
imum expected remaining reward , analogous to (2),
is given by

(4)

5This is also called the constant access time (CAT) problem in [7].

where the three terms represent, respectively, the reward of re-
tiring, using channel without probing, and probing followed
by the optimal strategy.

Note that while the dynamic programs are readily available
in both P1 and P2, computing the value function and

for every state is very difficult and practically impos-
sible because the state space is potentially infinite and uncount-
able since can be any real number in if the ’s are
continuous random variables.6 Rather than directly computing
these values, the approach we take in this paper is to first derive
fundamental properties of optimal strategies and then use them
to construct simpler algorithms in Section IV.

For P1, any strategy can be defined by the set of actions it
takes with respect to its entire set of information states,

. We let , , and , , de-
note the three options that the sender has and must choose from.
We let denote the action taken by strategy when the
state is . We use similar notations for P2: denotes the
strategy, and denotes the action under the strategy in
state .

The detailed analysis in this paper primarily deals with P1
due to space limitation and its relative simplicity in presentation.
Then, in Section VI, we show how our results on P1 strategies
apply to P2 strategies.

III. PROPERTIES OF THE OPTIMAL STRATEGY

In this section, we establish key properties of the optimal
P1 strategy. Unless otherwise stated, all proofs are given in the
Appendix.

A. Threshold Property of the Optimal Strategy

We first note that for all and any ,
, i.e., is nondecreasing. This inequality follows

from (1) and (2). In particular, any channel selection strategy
cannot have smaller reward when starting from rather
than since the set of unprobed channels is the same for
both cases, while the best probed channel for the latter case is
better than that of the former scenario. Thus, is a nonde-
creasing function. Similarly, it can be established that is
a nondecreasing function, i.e., for all and any :

. We have the following.
Lemma 1: Consider any state . If , then

for all .
Lemma 2: Consider any state . If for

some , then for all .
Proof of Lemma 1 can be found in [13]. Lemma 2 follows

directly from (2) and being nondecreasing since these
equations imply . Its
proof is therefore not included in the Appendix.

The above two lemmas imply that for fixed , the optimal
strategy has a threshold structure with respect to . In particular,
for any set , we can define the following:

(5)

some (6)

6The direct computation of such problems usually involves approximation
and discretizing the state space.
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where the right-hand side of (5) is nonempty since
is always true. We set if the set on the right-hand

side of (6) is empty. Note that both and are completely
determined given the set . It follows from Lemmas 1 and 2 that

. Thus, we have the following corollary.
Corollary 1: For any state , there exists an optimal

strategy and constants satisfying

if
if
if .

It should be noted for completeness7 that at ,
if ; otherwise, . Also, note

that the optimal channel to probe, , in general depends on the
value of . This corollary indicates that there exists an optimal
strategy with the described threshold structure. It remains to de-
termine these thresholds, which can be difficult especially for
large . It also remains to determine which channel should be
probed in the “probe” region above.

To help overcome the difficulty in determining and for
a general , we first focus on quantities and (subse-
quently simplified as and ) for a single element ,
which can be determined relatively easily from (5) and (6), re-
spectively, as shown below. These are thresholds (also referred
to as indices below) concerning channel that are independent
of other channels. We will see that they are very useful for re-
ducing the complexity of the problem.

We now take a closer look at and . Note that at
state , results in expected reward

since there are no more channels to probe after
. Action gives the expected reward , while

retiring gives reward . The assumptions
and imply that, for sufficiently small , the probing
reward becomes less than the guessing reward. By comparing
the rewards of these three options, it can be seen that guessing
is optimal if and , where

is the indicator function. We will adopt the notation that,
for any random variable , .

Similarly, when is sufficiently large, the probing and
guessing reward become less than the reward for retiring, .
Thus, for any we have the following:

(7)

(8)

Note that . In addition, if and only if
. It also follows that for , probing

is strictly an optimal strategy. It can be seen from the above that
essentially controls the width of this probing region; for larger
, and will be closer to .
The above discussion is depicted in Fig. 1, where we have

plotted the expected reward of the three actions

7It can be shown that is a continuous function. If , then by
definition for all , which implies by con-
tinuity that for some . Thus, . If

, then it can be shown there exists such that
for some and all . Then, by continuity of , we

have .

Fig. 1. As described in Section III-A, when is the only unprobed channel and
is uniformly distributed in [0,1], the expected reward from actions ,

, and as functions of . Note that (the crossing
point of solid and dotted lines) and (the crossing point of solid and
dashed lines).

(dashed line), (solid line), and (dotted line)
as functions of when is uniformly distributed in [0,1]
and . In this case, and . Note
that increasing (decreasing) would shift the solid curve
down (up), thus decreasing (increasing) the width of the middle
region where is the optimal action.

This example demonstrates a method for computing and
for any channel . Notice that to determine these two con-

stants, we simply need to take the intercepts between the fol-
lowing three functions of : , , and

. Thus, regard-
less of whether is continuous or discrete, computing and

is not very complex.
In the rest of this section, we derive properties of the optimal

strategy expressed in terms of individual indices and .

B. Structure of the Optimal Strategy

We first present an algorithm to sort any set of channels
based on indices , which will help describe properties
of the optimal strategy throughout this paper.

Algorithm 1: (Sorting Algorithm):

Initially: . Let . The algorithm proceeds as
follows:

1) Compute and according to the following equations:

(9)

(10)

Let ; ; .
2) If , repeat Step 1; otherwise, stop and return the

sorted set .
3) Relabel the sorted set as .
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We see that Algorithm 1 takes any set of channels and re-
places it with an equivalent sorted set , which is
then relabeled . The channels are sorted in de-
creasing order of . Whenever , then sorting pro-
ceeds according to (10), where the tiebreaker essentially sorts
channels according to their one-step reward of probing/guessing
channel when and is the only remaining channel.

We use this sorting to describe the following important result
on the optimal strategy, which will be proven throughout various
parts of this section, as described below.

Theorem 1: For any set of channels sorted according to Al-
gorithm 1, there exists a constant such that
and the following holds:

1) For all , . If then
.

2) For all , .
3) For all , exactly one of the following holds:

a) ;
b) ;
c) , ;

where channel does not vary with .
We note that indicates the highest value of such that one of
the cases 3a, 3b, 3c of Theorem 1 holds. When case 3b is true,

and coincide. For cases 3a and 3c, we have
since it is not optimal to guess for all .

The proof of Theorem 1 is broken down separately in subse-
quent sections and in the Appendix as follows. Part 1 of The-
orem 1 is proven in Section III-C. This result provides both a
necessary and sufficient condition for the optimality of retiring
and using a previously probed channel. A very appealing feature
of this result lies in the fact that it allows us to decide when to re-
tire based only on individual channel indices that are calculated
independent of other channels, thus reducing the computational
complexity.

Part 2 of Theorem 1 is also proven in Section III-C. This result
implies that by first ordering the individual channels by func-
tions of the indices , we can determine the optimal channel to
probe for in the interval .

Finally, Part 3 of Theorem 1 gives three possibilities on
the structure of the optimal strategy. Parts 3a and 3c, proven
in Section III-C, indicate that the optimal channel to probe
does not vary with in the region . Meanwhile, part 3b
narrows down the set of possible channels we can guess. The
channel in with the highest value of and sorted according
to (10), which we have called 1, is the only possible channel
we can guess. This result is proven in Sections III-D. A key
result in that section is that if there are multiple channels in ,
then we can easily check whether is true in order to
determine whether probing or guessing is the optimal action.
Section III-D also provides some necessary and sufficient
conditions for guessing to be optimal.

Theorem 1 significantly reduces the number of possibilities
on the structure of the optimal strategy, but it remains to deter-
mine when cases 3a, 3b, 3c of Theorem 1 hold along with the
value of . In general, this structure will depend on the spe-
cific values of and the indices , . One can use the results
of Sections III-C and III-D to determine some necessary or suf-
ficient conditions for any particular case of the above theorem

Fig. 2. Summary of main results from Section III. Figure depicts optimal
strategy as a function of . For the middle and right regions of the
line, the optimal strategy is well-defined for any . For the left region, the
optimal action may depend on .

to hold. In Section IV, we will propose a suboptimal algorithm,
based on these three possible forms, which we show to be op-
timal under a number of special cases of interest.

Fig. 2 summarizes the main results from Theorem 1. For
all , i.e., right region of the line, is optimal.
For , i.e., the middle region of the line,
probe(1) is optimal. Note that it is possible this region may be
empty if the probing costs become too high. Finally, the optimal
action in the left region will depend on and thus remains to
be determined. Note that guess(1) is the only possible guessing
action for this region, as proven in Lemma 6 and Corollary 2.

C. Optimal Retiring and Probing

In this subsection, we prove Parts 1, 2, 3a, and 3c of The-
orem 1 by deriving conditions under which it is optimal to retire
or probe a channel.

We begin with the following lemma.
Lemma 3: For any , if and only

if . Equivalently, .
Proof of this lemma can be found in [13, Appendix 9.2]. This

lemma provides both a necessary and sufficient condition for the
optimality of retiring and using a previously probed channel.
This lemma proves Part 1 of Theorem 1. As previously men-
tioned, a very appealing feature of this lemma lies in the fact
that it allows us to decide when to retire based only on indi-
vidual channel indices that are computed independent of other
channels.

We now examine when it is optimal to probe and which chan-
nels to probe. In order to shed light on the best channels to
probe, we present the optimal strategy for a separate but related
problem. It will be seen that analysis on this problem is crucial
for deriving useful properties of the optimal strategy.

No Guessing (NG) Problem: Consider Problem 1 with the
following modification: At each step, the user must choose be-
tween the two actions: 1) probe an unprobed channel; or 2) retire
and use the best probed channel. Therefore, the user is not al-
lowed to transmit using an unprobed channel.

The NG Problem can be seen as a generalization of [3, Sec-
tion IV, Theorem 4.1], which restricted to be discrete random
variables. Note that even though guessing is removed as a pos-
sible action, the resulting problem is still very different from
the classical optimal stopping problem for two reasons. First,
we allow recall in this problem, while it is typically not allowed
in the latter. Second and more importantly, the NG problem is
not only trying to decide when to stop, but also trying to figure
out the best probing sequence. By contrast, in a classical stop-
ping problem, the sequence is considered (randomly) given and
not controlled. For instance, in [14], a multiuser single-channel
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access problem was considered, where users competing for the
channel decide when to use the channel when they gain the ac-
cess depending on their perceived channel quality. This is in a
sense “probing” the users (as opposed to probing the channels)
to decide when to stop and let a user transmit, but in this case,
the “probing” sequence is random (each user has a fixed prob-
ability of gaining access) and not up to the decision process.
Interestingly, the problem studied in [14] was shown to reduce
to an optimal stopping problem.

To describe the theorem, we use the following notation for
any channel :

(11)

where if the above set is empty. Note that from (7) and
(8), we see that if . If , then we have

for all , and thus by (11).
We use these indices in the following theorem, which can be
seen as a generalization of [3, Theorem 4.1].

Theorem 2: For state , the optimal strategy for the
NG Problem is described as follows:

1) If , then .
2) Otherwise, sort the set according to Algorithm 1 by re-

placing with for all . Then, .
Even though the NG Problem is different from Problem 1, its

optimal strategy will also be optimal for Problem 1 if guessing
becomes nonoptimal for all future time steps. From Lemma 3
and definition of , guessing is nonoptimal for all future time
steps, and probing occurs if .
Thus, we have proven the following lemma.

Lemma 4: For any set sorted according to Algorithm 1,
for all .

This result completes the proof of Part 2 in Theorem 1 for
.

To prove Parts 3a and 3c of Theorem 1, we prove the fol-
lowing result.

Lemma 5: Consider any sorted according to Algorithm 1.
If for some and , then

for all .
Proof of Lemma 5 can be found in [13, Appendix 9.4]. This

result implies that if for some and
, then for all and .

We note that in Theorem 1 satisfies due
to the following. From Lemma 4, we know that

for all . In addition,
from Lemma 5, if for some we have

where , then for all
. For , we know that

due to Lemmas 1 and 2. Thus, it is only
possible that for .
Therefore, 3a and 3c are the only possible forms for the optimal
strategy that involve probing a channel.

D. Optimal Guessing

We now prove Part 3b of Theorem 1 by deriving conditions
for guessing to be optimal. Note that implies guessing
is not optimal for all .

Lemma 6: Given a set of unprobed channels , define as
in (9). Then, we have:

1) If there exists such that and
, then .

2) If there exists such that , then
.

Proof of this lemma can be found in [13, Appendix 9.5].
Conditions 1) and 2) of the lemma provide separate necessary
and sufficient conditions for guessing to be optimal. Note that
this lemma also has further implications. When , and

for at least one , then condition 2) of Lemma 6 is
always satisfied. Thus, in this case. Otherwise,
for all , and condition 1) of Lemma 6 is always satisfied.

On the other hand, when and letting , suppose
for some . This implies

, which leads to condition 1) of Lemma 6
if . This lemma implies that we have , which
contradicts the assumption that . Thus, if

, then for . Similarly, if
and again , then we have

, which is again a contradiction to .
This leads to the following corollary.

Corollary 2: Given a set , define as in (9). Then, if
and for at least one , then . Otherwise,

. If , let . Then,
for all and .

This corollary and its preceding lemma narrow the set of pos-
sible channels we can guess to a single channel, i.e., the channel

with the highest value of . If there are multiple channels
achieving this maximum, then we can easily check whether

in order to determine whether probing or guessing is
the optimal action.

In order to complete the proof of Part 3b in Theorem 1, it
remains to show that if (i.e., for
some ), then for all and .
This is easily proven by using Lemma 2 and the contrapositive
of Lemma 5.

E. Decomposition of Problem 1

The following result on the structure of the optimal strategy
allows us to decompose Problem 1 into subproblems. To
begin, define , , to be the set of strategies
that do not guess any channel except possibly channel . Within
each set , we define the best strategy [achieves the value
function in (2)] by : ,
where is the expected remaining reward under policy

given the system state . We can show the optimal
strategy satisfies . This result was proven in
[3, Theorem 5.2] for a three-channel system and with discrete
channel rewards.

Lemma 7: For any , there exists an optimal strategy
, which also satisfies

.
That is, the optimal strategy will only guess one channel (if it

guesses at all) over all possible realizations of channel rewards.
Thus, the optimal strategy among all strategies is the best
among all . This result again reduces the number of pos-
sible optimal strategies. As the proof of this lemma is similar to
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that of [3, Theorem 5.2], it is omitted for brevity. It can be shown
that Lemma 7 can be extended to the case where the transmitter
is only allowed to guess a subset of the channels. In this
case, one can replace under the argmax in Lemma 7 with .

Finally, it remains to determine the structure of . We have
the following useful result.

Lemma 8: For any and , define as in (9), replacing
with [defined in (11)] for every channel except . If ,

then let . Otherwise, define 1 according to Algorithm 1,
again replacing with for all . Then, if , the
optimal strategy is

if
if .

It can be shown that Theorem 1 also holds for each strategy
. Thus, Lemma 8 can be seen as arising from Part 3a in The-

orem 1. Lemma 8 uniquely describes the optimal strategy for
any set of channels , if . When , then the optimal
strategy has a more complicated structure. In Section IV, we
propose a suboptimal algorithm that approximates the optimal
strategy when .

IV. JOINT PROBING AND TRANSMISSION STRATEGIES

As stated earlier, it is very difficult to recursively apply dy-
namic programming to evaluate all and solve for the
optimal strategy due to the uncountability of the state space. In
this section, we first demonstrate how Theorem 1 can be used
to derive a dynamic program that computes the optimal strategy
in a finite number of steps even when the channel rewards are
continuous random variables. This gives one possible method of
determining the optimal strategy. We further propose two faster
and more computationally efficient algorithms, motivated by the
properties derived in the previous section. We show that they are
optimal for a number of special cases of practical interest.

A. Value Function Parameterization

In this section, we show that Theorem 1 leads to a parameter-
ization of the value function which can help determine in
a finite number of steps even if channel rewards are continuous,
with the following corollary to Theorem 1.

Corollary 3: For any set sorted according to Algorithm 1,
let denote the
expected reward of probing 1 at state . Then, has
the following structure for some constant :

if ; if ; and
if .

We see that is uniquely determined by the constant
. Furthermore, for , is a constant. Thus, to

determine the optimal strategy, it only remains to determine this
constant for every . We now explain how to calculate for
each . From Theorem 1, if is determined for all

then for can be calculated by determining
as follows: , where

is defined in Corollary 3 by replacing 1 with .
Then, is the unique number satisfying the fol-

lowing: .
Therefore, determining simply requires taking the in-
tersection between constant and the function

. Note that computing
also determines . Thus, from Theorem 1,

for all , and we have computed
.

can thus be recursively determined by first calculating
for each singleton channel , then using the above pro-

cedure to determine for all , etc. This procedure
therefore gives a method to calculate the optimal strategy in a fi-
nite number of steps even if the channel rewards are continuous
random variables. Note that this procedure does require consid-
ering all combinations of subsets of , a total of of
them. Thus, in practice this procedure is only applicable when
the number of channels is not too large. In the next subsec-
tion, we propose faster algorithms which may be suboptimal but
avoid computing over the power set of and are thus computa-
tionally more efficient.

B. Channel Probing Algorithms

To motivate our first algorithm, recall that Theorem 1 shows
that for fixed , as varies there can be at most two possible
channels to probe, one of which must be 1. This gives rise to the
following two-step look-ahead policy that only considers the
two best channels 1 and 2 (i.e., pretending that ) and
decides on the action by comparing the constants , and

using Corollary 1. To describe it, we use the same notation
in the previous section: ,
which is the expected reward of probing 1 at state , and

is defined similarly by switching 1 and 2.
Algorithm 2: (A Two-Step Look-Ahead Policy for a Given

Set of Unprobed Channels ):

Step 1: Use Algorithm 1 to sort and determine 1,2.
Step 2: Define strategy as follows for state :

1) If , then .
2) If , then

.
3) If , then we have the following

cases:
a) If , then .
b) If either or

, .
c) Otherwise, there exists a unique

, where and
.

Then, for , we have
. For , we have
if .

Otherwise, .

It is worth describing this strategy in the context of results
derived in the previous section. For satisfying Case 1 of the
algorithm description, is optimal from Theorem 1, Part 1, and
Lemma 3. For values described in Case 2, if

, then is optimal from Theorem 1 and Lemma 4. For
Case 3a, is optimal from Theorem 1, Lemma 6, and Corol-
lary 2. Thus, is optimal for most values of . For Cases 3b
and 3c, the procedure essentially computes the expected probing
cost if we are forced to retire in two steps.
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We also propose a second two-step look-ahead algorithm,
called , that is motivated by Algorithm and Lemmas 7 and
8. Due to its similarity to , we present only a brief description.

Algorithm 3: (Two-Step Look-Ahead Policy ): For each
channel and the corresponding set of strategies
defined in Section III-B, first find the best two channels indexed
by 1 and 2 (analogous to Algorithm 2). If , then from
Lemma 7, we can set to be strategy of that lemma.
Otherwise, determine the best two-step strategy in using
the two channels 1 and 2, similar to Algorithm 2, but replacing

with and setting . Call this . After has been
determined for all , using Lemma 7 take the best strategy
among all to determine .

When the transmitter can only guess a subset of chan-
nels, we can modify Algorithm 3 by replacing with .

Note that determining algorithm requires running a similar
algorithm to for each channel in , thus requiring more com-
putation. However, this strategy generally performs better than

as we will show in Section VII. We next consider a few spe-
cial cases and show that is optimal in these cases. It can also
be shown that these results hold for as well.

C. Special Cases

We first consider a two-channel system. Since Algorithm 2 is
essentially a two-step look-ahead policy, we have the following.

Theorem 3: For any given set of unprobed channels , where
, is an optimal strategy.

The proof is omitted for brevity. We next consider the case of
statistically identical channels with different probing costs.

Theorem 4: Suppose , and all channels in are iden-
tically distributed, with possibly different probing costs. Then,
the optimal strategy is described as follows, with 1 being
a channel in satisfying . If , then

. For all we have two cases:
Case 1) If , then .
Case 2) If , then .

Proof of Theorem 4 can be found in [13]. This theorem im-
plies that if we have a set of statistically identical channels ,
then the initial step of the optimal strategy is uniquely deter-
mined by and , where 1 is the channel with smallest probing
cost. If , then , and it is not worth
probing any channels. If , then we should first probe
1. Let denote the channel with the smallest probing cost in

. If the probed value of is higher than , then it is op-
timal to retire and use 1 for transmission. Otherwise, if ,
then probe is optimal; if then is the op-
timal action. This process continues until we retire, guess, or

, in which case the decision is straightforward by com-
paring with and , .

Note that the optimal strategy described above is the same as
strategy of Algorithm 2 applied to statistically identical chan-
nels. This is true because within Case 3 in the description of
Algorithm 2, 3b will occur whenever for statistically
identical channels, and Case 3a occurs whenever . Col-
lectively, Cases 1, 2, 3a, and 3b all describe the optimal strategy
of Theorem 4. Note that this theorem applies to all cases of sta-
tistically identical channels, regardless of their distribution or
probing costs. Changing the channel distribution and probing

costs will affect the values of or , but they do not alter the
general structure of the optimal strategy as given by the theorem.

Finally, we consider the case where the number of channels
is very large and not statistically identical.

Infinite Number of Channels (INC) Problem: Consider P1
with the following modification: We have different types of
channels, but an infinite number of each channel type.

Note that Theorem 4 solves this problem if . When
referring to the state space for this problem, we let denote the
set of available channel types. Then, we have the following.

Theorem 5: For any set of channels , the optimal strategy
for Theorem 4 is also optimal for the INC Problem.

This theorem implies that when the number of channels is
infinite, and there are an arbitrary number of channel types, then
we will only probe or guess one channel. Note that Algorithm 2
is also the optimal strategy for the INC Problem since it is also
the optimal strategy in Theorem 4.

Thus, we have shown Algorithm 2 is the optimal strategy for
the special cases based on Theorems 3–5.

V. POLICY CONSTRAINTS

In this section, we discuss three generalizations of P1 that
incorporate practical regulatory constraints. The first involves
channels that must be probed immediately before transmission
(i.e., cannot be recalled), the second involves channels that
cannot be guessed, and the last incorporates a random penalty
associated with guessing.

A. Probing Regulations

As mentioned in Section II, in practical systems it is possible
that some channels cannot be guessed or retired to unless they
were the last probed channel (i.e., no recall). This could be be-
cause these channels change conditions more rapidly and thus
must be probed immediately before transmission.

To incorporate this scenario, we modify the problem formu-
lation as follows. For any set , let and denote the fast and
slow fading channels, respectively; thus, . We as-
sume the coherence time for any channel in is very short such
that this channel’s probing result is only valid immediately after
probing. Beyond this, the channel reward is i.i.d, so the values
are independent of probing results from earlier in the cycle. The
user can probe this channel multiple times, with each probe re-
sulting in a different independently drawn value. Channels in
behave as in previous sections.

Letting denote the value function for this modified
problem, is the maximum of the three terms in (2) and
the additional term ,
where denotes the best probed slow fading channel thus far.
This equation can be explained as follows. The first three terms
in (2) correspond to the rewards of actions involving slow
fading channels: probing, retiring, or guessing, as described
in (2). The additional term describes the expected reward of
probing a fast fading channel because the user can either use
them for transmission immediately after probing or not transmit
on such channels, thus returning the system to state .
The set of channels remains because the user can probe fast
fading channels multiple times. We have the following result.
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Lemma 9: Consider any set of channels . If
for some , then .

This lemma can be proven as follows. Suppose at state ,
for some . Then:
. Comparing this to the definition of in

(11) yields , proving the result.
Comparing this lemma to (2), we have the following equiva-

lence. Suppose we replace any fast fading channel with
a slow fading such that . Because the
reward is constant, then an optimal strategy will never probe
channel , but might guess it and obtain a reward . If we re-
place all fast fading channels with slow fading channels, each
with a constant reward , the value function for this modified
problem is equivalent to the value function (2) for a system with
only slow fading channels. Therefore, ,
where and denotes the set of slow fading
channels created from fast fading ones. Thus, the original P1
formulation can solve a modified problem formulation that in-
cludes fast fading channels.

B. Guessing Constraints

As described in Section III-E, P1 can be extended to analyze
constraints where only a subset of channels may be guessed. We
summarize this extension in this subsection.

Recall that Lemma 7 describes how P1 can be decomposed
into subproblems. For each channel , we compute the
optimal strategy if no channel besides can be guessed.
Then, is the best strategy among . If, in Problem
1, only a subset of the channels can be guessed, then
Lemma 7 can be modified by only determining for each

and then taking the best among these strategies.
The results of Section III can be generalized for a subset of

guessable channels as follows. For each , define ,
as in (7) and (8). For each , set , where

was defined in (11), and . Then, it can be shown that the
results of Section III apply to this new scenario by using these
new channel indices. Similarly, one can modify the algorithms
of Section IV to use these new channel indices.

C. Guessing Penalty

In a practical system, not probing channels before trans-
mission—i.e., guessing—could lead the user to transmit on a
channel which is in fact busy, thereby causing interference to
other users. To model a penalty associated with this potential
scenario, we modify the problem formulation as follows.

For each channel , we associate a guessing penalty that
is a random variable that may depend on . The user receives
a reward from guessing. For example, consider when

, i.e., the channel is either available or
busy. To assign a penalty to the user for guessing on a busy
channel, can be defined as follows: ,

, which models a positive guessing
penalty that is incurred if and only if the channel is busy.
Note that implies no guessing penalty as in
the original P1 formulation.

For general , incorporating this guessing penalty only
adjusts the guessing reward in (2). It can be shown the results
of Sections II, –IV hold with each channel having new indices

, that replace , defined in (7) and (8):
, is the maximum

such that and .
Thus, the guessing penalty shifts the channel indices. Since the
change is only in the channel indices, but not in the structural
properties of the optimal strategy, the main results of Section IV
continue to hold by using these new indices.

VI. STRATEGIES FOR P2

In this section, we present results on the optimal P2 strategy.
Similarly to Corollary 1, we can show that for any state

, there exists an optimal strategy and constants
such that

if
if
if .

Thus, for each channel , we can define indices
and similar to (7) and (8). Even though these indices
are now time-variant, which makes the analysis signifi-
cantly more complex, we show a similarity between and

. For any , threshold is the smallest such that
. Thus, is the smallest such that

and . Index
can be calculated similarly. We have the following result.

Lemma 10: For any and : .
Thus, the index and the set of states where retirement is
optimal, can be determined using only individual channel in-
dices from time . Similar to P1, these indices do not depend
on other indices , which simplifies computation.

In general, due to the time-varying nature of these indices, it
becomes very difficult to determine the structure of the optimal
strategy. However, the similarity in index properties between
P1 and P2 policies leads to the following two-step look-ahead
algorithm, similar to Algorithms and . For any and set of
channels , we first determine the two channels with the highest
indices . Then, the optimal strategy is computed if we are
forced to retire within two steps, similarly to Algorithm 2. We
evaluate this strategy’s performance in the next section.

VII. NUMERICAL RESULTS

In this section, we examine the performance of the proposed
algorithms under a practical class of channel models.

For both P1 and P2 policies, we consider a two-state channel
model where, for each channel

for some . This models, for example, when
channels are either on with available data rate or off.8 Under
this setting, the set of information states is .

We chose parameters , , for each channel as follows.
First, and were modeled as independent random variables,

8[9] has considered optimal P1 strategies for two-state channels, each with
identical data rate. When the parameters differ between different channels, it
can be shown the strategies of [9] are not necessarily optimal.
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Fig. 3. (Top) Average performance of optimal P1 strategy, algorithms and
of Section IV-B, and the optimal strategy without guessing. Rewards are nor-
malized by the average reward of the optimal strategy. (Bottom) Average per-
formance of these strategies for a four-channel system where the number of
channels that can be guessed varies between 0 and 4.

uniformly distributed in the interval9 (0,1). After the realization
of these parameters was chosen, the channel cost was uni-
formly chosen in the interval10 .

For each realization of , , , the expected rewards of the
following strategies were computed for P1: the optimal strategy
(determined via dynamic programming), algorithms and
from Section IV-B, and the optimal algorithm if guessing is
not allowed (no-guess), as described in Section III-C and The-
orem 2. A total of random realizations are generated and
then averaged for each value . Fig. 3 (top) depicts the perfor-
mance of these strategies as the number of channels varies.
The average rewards of these strategies are normalized by di-
viding the average reward of the optimal strategy. We note that
both Algorithm and perform very close to the optimal, with

performing slightly better. This is because Algorithm and
are optimal when Case 3a from Theorem 1 holds. In general,

this case holds for most values of , and . When Case 3b
or 3c of Theorem 1 holds, Algorithms and only differ with
the optimal algorithm in the parameter . Thus, in general they
are very close numerically to the optimal strategy.

As mentioned in Section II, it may be the case that some regu-
latory spectrum policies do not allow all channels to be guessed.

9The upper bound on of 1 is chosen for simplicity; it could be any positive
, which simply scales the reward and the cost simultaneously.
10This upperbound on ensures that some channels will be probed, as it can

be shown that if , then channel should never be probed
and only guessed. The additional 0.01 to is to ensure that some
channel will be guessed, but the value 0.01 is an arbitrary choice.

Fig. 4. (Top) Performance of optimal P2 strategy and a two-step look-ahead
P2 policy as the number of channels varies. (Bottom) Performance of the
two-step look-ahead, one-channel, two-channel, and four-channel algorithms of
Section VII, when all channels are statistically identical with
and different probing costs .

Fig. 3 (bottom) analyzes the performance when and only
a subset of these channels can be guessed. For this case,
we modify Algorithm as follows. If , we set as
given by (11), and set . For , the indices remain un-
changed. These changes remove as a possible action.
For Algorithm , we replace in its definition with . The rel-
ative performance between the optimal strategy, , and does
not change as , the number of channels that can be guessed,
varies. On the other hand, by definition the no-guess strategy is
optimal for but as expected its average reward decreases
as increases.

Similarly, Fig. 4 (top) analyzes the optimal strategy and a
two-step look-ahead algorithm (similar to , as described in the
previous section) for P2. As can be seen, the two-step look-
ahead algorithm performs similarly to the optimal strategy.

Fig. 4 (bottom) analyzes performance when channels are sta-
tistically identical with cdf for all and with
different probing costs . Performance of the two-
step look-ahead algorithm, which is optimal from Theorem 4,
is compared in the figure to the following algorithms. The one-
channel algorithm does not probe and simply transmits using
the “best” channel (lowest cost). Comparing the two-step looka-
head algorithm to this strategy gives an indication of the gain
from using probing. The two-channel (four-channel) algorithm
depicted in the figure probes the best two (four) channels and
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then uses the best channel (among those probed) for transmis-
sion. Thus, the results indicate the gain from using a more effi-
cient probing algorithm over simple heuristics.

In all cases, these results confirm that the two-step look-ahead
policy performs very similarly to the optimal strategy, even
though it has much less computational overhead. From the
dynamic programming formulation given in (2), even when
the channel rewards are discrete random variables, computing
the optimal strategy at state still requires us to take
combinations of all subsets of . By comparison, the two-step
look-ahead policy only considers the best two channels in .

VIII. CONCLUSION

In this paper, we analyzed the problem of channel probing and
transmission scheduling in wireless multichannel systems. We
derived some key properties of optimal channel probing strate-
gies and showed that the optimal policy has a threshold structure
and can only take one of a few forms. Using these properties, we
proposed two channel probing algorithms that we showed are
optimal for some cases of practical interest, including statisti-
cally identical channels, a few nonidentical channels, and a large
number of nonidentical channels. These algorithms were also
shown to perform very well compared to the optimal strategy
under a practical class of channel models.

APPENDIX

A. Proof of Theorem 2

The proof that for all
uses the same steps as proving Lemma 3 and is thus omitted for
brevity. For , we prove the result by induction
on the cardinality of .

Induction Basis: Suppose . Let . Then,
follows from the definition of .

Induction Hypothesis: Let . Suppose the result
holds for all such that . We proceed in steps to
show for all .

Step 1 (Show , for all
): First, we show for all all
by contradiction. Suppose there exists some ,

, such that , where satisfies
. By following the same exact steps as (16)–(17)

in [13], we arrive at a contradiction.
From Lemma 3, retiring cannot be optimal (removing

guessing does not change this result).
Therefore, for some . We show

the remainder of the proof by contradiction. Suppose
for some , . Note by defini-

tion of . Let denote the expected reward of probing
first; this probe incurs cost and then by the induction hy-

pothesis, at state , we probe 1 if ; otherwise, we
retire. Similarly, is the expected reward of probing 1
first, and then probing in the second step if . Since

, then . This in-
equality gives:

. Rearranging yields
an inequality that contradicts the definition of 1 in Theorem 2,

and thus contradicts . We have therefore
shown for all .

Step 2 (Show for all
): Again, let denote the

expected reward of probing first at state . By the
induction hypothesis, if , then we retire; otherwise,
we continue. Letting denote the expected reward
of probing 1 first, it suffices to show for all and ,

does not depend on . If this holds, then
for all since we have already

shown for all .
By the induction hypothesis,

, where
is the value function for Problem 2, defined similarly to (2),
is the event , is its complement,
and is the event . can be calculated
similarly by interchanging 1 and 2, and replacing with
the event . We see that is
invariant to (only the term with contains , and
this cancels out during the subtraction by conditioning the
expectations on events and ). Similar steps can be taken
for other , by calculating until only channels

are left, and showing that
does not change with . Therefore, for all

, and we have shown
for all .

B. Proof of Lemma 8

From Lemma 3, if and only if
. We thus need to prove for .

From Corollary 2, we know that . Thus, it
only remains to determine which channel to probe for .
Given a fixed channel , we prove the result by backward
induction on the cardinality of .

Induction Basis: Suppose . Then where
and from the conditions of the lemma.

Lemma 5 implies that for .
It can be shown similar to the proof in Appendix A that for all

, the difference in expected reward in probe(1)
and probe(2) is invariant to . Thus, .
Meanwhile, the expected reward of probe(1) does not depend
on if Since is nondecreasing, then

for all .
Induction Hypothesis: Suppose for some and

the lemma holds for all such that . Sort according
to Algorithm 1, i.e., . From the conditions
stated in the lemma, for some , where . We
prove the induction hypothesis by further backward induction
on , i.e., we first prove the result for and then show this
implies the result for , etc.

Step 1 (Prove the Result for ): Suppose ,
which implies for all , and consider any

. From Lemma 4, . We can
show similarly to the proof of Theorem 2 in Appendix A that
the difference in expected reward in probe(1) and is in-
variant to for , implying .
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From the induction hypothesis, the optimal strategy after
probing 1 is to retire if ; otherwise, probe(2). Then,
retire if ; otherwise, probe(3) and con-
tinue until the transmitter retires or is the last channel, in
which case the optimal strategy is given by Corollary 1 with

and . Note the optimal
expected reward is constant for all , because the
transmitter never retires and collects , since action
yields higher reward. Thus, being nondecreasing and

collectively imply
for all . This proves the result when .

Step 2 (Prove the Result for , ): Now,
suppose for some and the hypothesis holds for
all values of in . We prove
by contradiction.

First, we prove . A strategy that first
probes never guesses, and from Theorem 2 cannot do better
than first probing 1. Thus, .

We now prove by contradiction that for
some . Suppose for .

Case 1: . From the induction hypothesis,
after probing the optimal strategy probes 1 if

, otherwise retires. Because and
, the optimal strategy obtains expected reward:

. Now, consider the modi-
fied strategy that acts similarly to the optimal strategy, except
that it exchanges the roles of 1 and . Its expected reward is:

, where
is the event that and denotes its complement.

Since from the definition of and , the mod-
ified strategy obtains higher expected reward than the optimal
one. This contradicts the definition of optimal strategy, proving
case 1.

Case 2: . In this case, .
For any , let denote the expected reward of
probing and then proceeding optimally. As assumed,
for all . Since , then .

We modify the original scenario (called scenario 1) to gen-
erate a modified problem (scenario 2). Under scenario 2, all
channels have the same rewards and probing costs as scenario 1,
except for channel , whose probing cost (denoted by ) is de-
creased to satisfy , where
the inequalities are strict because and
as assumed. Let denote the new index of channel under sce-
nario 2. We see that . Thus, because
for all , we can apply the induction hypothesis to show

for scenario 2.
Now, we prove a contradiction, first for . Let denote

the expected reward of probing under scenario 2, and then
proceeding according to the optimal strategy. It can be seen that

, . Because , then
. Thus, is also optimal for scenario 2. However, this

contradicts as shown earlier. Thus we
have shown for .

Finally, we show contradiction for . Suppose
for some . The induction hy-

pothesis gives the optimal strategy after probing . We can use
a similar proof to Theorem 2 in Appendix A to show that this

strategy’s expected reward is less than reward obtained by first
probing 1. Thus, for these .

C. Proof of Theorem 5

For the INC problem, the available channel types are not
changing. Let and denote the maximum expected re-
ward and a strategy, respectively, given the best probed channel
has value . We prove the result for different .

Case 1 : We first prove that is optimal if
. Let denote the expected reward after time-steps

of a strategy that retires if . From Lemma 3, there
exists a strategy that retires if and . Both
and converge because they are monotonically increasing in

and bounded above by . Thus, .
However, the left- and right-hand sides of this inequality are the
expected rewards of a strategy that retires if and ,
respectively. Since this holds for all , we have shown
there exists an optimal strategy that retires if .

Case 2 ( , ): Suppose , and consider
the strategy such that: if , otherwise

. From Corollary 2, this strategy is optimal
for a finite number of channels. Let denote the expected
reward after time-steps of a strategy that probes a channel
instead of guessing. Since is monotonically increasing in

and bounded above by , it converges as . Mean-
while, from Corollary 2 we have for all . Thus,

, which says is optimal.
Case 3 ( , ): When , proving that

probe(1) is optimal uses the same steps as proving Lemma 6
and Theorem 2. The proof is omitted for brevity.

D. Proof of Corollary 3

Parts 1) and 2) of Theorem 1 imply for and
. Thus, we only need to prove the corollary for

. We use induction on the cardinality of .
Induction Basis: Consider when , i.e. a single

channel. From (7) and (8), the corollary holds with .
Induction Hypothesis: Fix any , and suppose the

corollary holds for all , . We prove the corollary holds
for all three possibilities of given by Theorem 1.

Step One: Suppose for some
. Lemma 5 implies that for :

. Thus, for all
, which implies is a constant for all . It

can be shown is continuous (for fixed ), which implies
. However, is the ex-

pected reward of probing 1 first, as given in the corollary; thus,
for

all .
Step Two: If for all , then

, which is also a constant function with re-
spect to . Therefore, we similarly have .

Step Three: Suppose for all .
Then, for :

. The
second equality holds because
for all by the induction hypothesis.
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E. Proof of Lemma 10

Step 1: We first show that for any , , , ,

(12)

where , and . We prove (12) for the
three possible values of in (4).

Case 1: If , then (12) follows
from , as given in (4).

Case 2: If for some ,
then . From (4), . Therefore,

, where
the last inequality follows from . Thus, (12) holds.

Case 3: If we have
, then
. Thus,

. Conditioning on
and using induction,

.
Step 2: Using (12), we prove the lemma by contradiction on

two cases. Let be any channel achieving .
Case 1 : Fix any ; thus,

and . At the same
time, implies: , which
contradicts the assumption .

Case 2 : Fix any . Suppose
for some . We know

.
On the other hand,

. Combining these equations
gives

, which implies

, a contradiction to (12).
If , then , and thus .
Therefore, we again have a contradiction to .
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