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Optimality of Myopic Sensing in Multichannel
Opportunistic Access
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Abstract—This paper considers opportunistic communication
over multiple channels where the state (“good” or “bad”) of
each channel evolves as independent and identically distributed
(i.i.d.) Markov processes. A user, with limited channel sensing
capability, chooses one channel to sense and decides whether to
use the channel (based on the sensing result) in each time slot. A
reward is obtained whenever the user senses and accesses a “good”
channel. The objective is to design a channel selection policy that
maximizes the expected total (discounted or average) reward
accrued over a finite or infinite horizon. This problem can be cast
as a partially observed Markov decision process (POMDP) or a
restless multiarmed bandit process, to which optimal solutions
are often intractable. This paper shows that a myopic policy that
maximizes the immediate one-step reward is optimal when the
state transitions are positively correlated over time. When the
state transitions are negatively correlated, we show that the same
policy is optimal when the number of channels is limited to two
or three, while presenting a counterexample for the case of four
channels. This result finds applications in opportunistic transmis-
sion scheduling in a fading environment, cognitive radio networks
for spectrum overlay, and resource-constrained jamming and
antijamming.

Index Terms—Cognitive radio, Gittins index, myopic policy,
opportunistic access, partially observed Markov decision process
(POMDP), restless bandit, Whittle’s index.
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Fig. 1. The Markov channel model.

I. INTRODUCTION

W E consider a communication system in which a sender
has access to multiple channels, but is limited to sensing

and transmitting only on one at a given time. We explore how a
smart sender should exploit past observations and the knowl-
edge of the stochastic properties of these channels to maxi-
mize its transmission rate by switching opportunistically across
channels.

We model this problem in the following manner. As shown
in Fig. 1, there are channels, each of which evolves as an in-
dependent and identically distributed (i.i.d.), two-state discrete-
time Markov chain. The two states for each channel—“good”
(or state ) and “bad” (or state )—indicate the desirability of
transmitting over that channel at a given time slot. The state
transition probabilities are given by , , . In each
time slot, the sender picks one of the channels to sense based on
its prior observations, and obtains some fixed reward if it is in
the good state. The basic objective of the sender is to maximize
the reward that it can gain over a finite or infinite horizon. This
problem can be described as a partially observed Markov de-
cision process (POMDP) [1] since the states of the underlying
Markov chains are not fully observed. It can also be cast as a
special case of the restless bandit problems [2]; more discus-
sion on this is given in Section VII.

This formulation is broadly applicable to several domains. It
arises naturally in opportunistic spectrum access (OSA) [3], [4],
where the sender is a secondary user, and the channel states de-
scribe the occupancy by primary users. In the OSA problem, the
secondary user may send on a given channel only when there
is no primary user occupying it. It pertains to communication
over parallel fading channels as well, if a two-state Markovian
fading model is employed. Another interesting application of
this formulation is in the domain of communication security,
where it can be used to develop bounds on the performance of
resource-constrained jamming. A jammer that has access to only
one channel at a time could also use the same stochastic dynamic
decision making process to maximize the number of times that it
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can successfully jam communications that occur on these chan-
nels. In this application, the “good” state for the jammer is pre-
cisely when the channel is being utilized by other senders (in
contrast with the OSA problem).

In this paper, we examine the optimality of a simple my-
opic policy for the opportunistic access problem outlined above.
Specifically, we show that the myopic policy is optimal for arbi-
trary when . We also show that when , it is
optimal for while presenting a finite horizon counterex-
ample showing that it is in general not optimal for . We
further generalize these results to related formulations involving
discounted and average rewards over an infinite horizon.

These results extend and complement those reported in prior
work [5]. Specifically, it has been shown in [5] that for all ,
the myopic policy has an elegant and robust structure that ob-
viates the need to know the channel state transition probabili-
ties and reduces channel selection to a simple round-robin pro-
cedure. Based on this structure, the optimality of the myopic
policy for was established and the performance of the my-
opic policy, in particular, the scaling property with respect to ,
analyzed in [5]. It was conjectured in [5] that the myopic policy
is optimal for any . This conjecture was partially addressed in
a preliminary conference version [6], where the optimality was
established under certain restrictive conditions on the channel
parameters and the discount factor. In the present paper, we sig-
nificantly relax these conditions and formerly prove this con-
jecture under the condition . We also provide a coun-
terexample for .

We would like to emphasize that compared to earlier work
[5], [6], the approach used in this paper relies on a coupling ar-
gument, which is the key to extending the optimality result to
the arbitrary case. Earlier techniques were largely based on
exploiting the convex analytic properties of the value function,
and were shown to have difficulty in overcoming the
barrier without further conditions on the discount factor or tran-
sition probabilities. This observation is somewhat reminiscent
of the results reported in [7], where a coupling argument was
also used to solve an -queue problem while earlier versions
[8] using value function properties were limited to a two-queue
case. We invite the interested reader to refer to [9], an impor-
tant manuscript on monotonicity in Markov decision processes
(MDPs) which explores the power as well as the limitation of
working with analytic properties of value functions and dynamic
programming operators as we had done in our earlier work.
In particular, [9, Sec. 9.5] explores the difficulty of using such
techniques for multidimensional problems where the number of
queues is more than ; [9, Ch. 12] contrasts this proof tech-
nique with the stochastic coupling arguments, which our present
work uses.

The remainder of this paper is organized as follows. We for-
mulate the problem in Section II and illustrate the myopic policy
in Section III. In Section IV, we prove that the myopic policy is
optimal in the case of , and show in Section V that it
is in general not optimal when this condition does not hold. Sec-
tion VI extends the results from finite horizon to infinite horizon.
We discuss our work within the context of restless bandit prob-
lems as well as some related work in this area in Section VII.
Section VIII concludes the paper.

II. PROBLEM FORMULATION

We consider the scenario where a user is trying to access the
wireless spectrum to maximize its throughput or data rate. The
spectrum consists of independent and statistically identical
channels. The state of a channel is given by a two-state discrete
time Markov chain shown in Fig. 1.

The system operates in discrete time steps indexed by ,
, where is the time horizon of interest. At time

, the channels (i.e., the Markov chains representing them)
go through state transitions, and at time the user makes the
channel sensing and access decision. Specifically, at time , the
user selects one of the channels to sense, say channel . If the
channel is sensed to be in the “good” state (state ), the user
transmits and collects one unit of reward. Otherwise, the user
does not transmit (or transmits at a lower rate), collects no re-
ward, and waits until to make another choice. This process
repeats sequentially until the time horizon expires.

This abstraction is primarily motivated by the following mul-
tichannel access scenario, where a secondary user seeks spec-
trum opportunity in between a primary user’s activities. Specif-
ically, time is divided into frames and at the beginning of each
frame there is a designated time slot for the primary user to re-
serve that frame and for secondary users to perform channel
sensing. If a primary user intends to use a frame it will simply
remain active in a channel (or multiple channels) during that
sensing time slot (i.e., reservation is by default for a primary
user in use of the channel), in which case a secondary user will
find the channel(s) busy and not attempt to use it for the duration
of that frame. If the primary user is inactive during this sensing
time slot, then the remainder of the frame is open to secondary
users. Such a structure provides the necessary protection for the
primary user as channel sensing (in particular active channel
sensing that involves communication between a pair of users)
conducted at arbitrary times can cause undesirable interference.

Within such a structure, a secondary user has a limited
amount of time and capability to perform channel sensing,
and may only be able to sense one or a subset of the channels
before the sensing time slot ends. And if all these channels are
unavailable then it will have to wait till the next sensing time
slot. In this paper, we will limit our attention to the special
case where the secondary user only has the resources to sense
one channel within this slot. Conceptually, our formulation is
easily extended to the case where the secondary user can sense
multiple channels at a time within this structure, although the
corresponding results differ, see, e.g., [10].

Note that we have assumed in this formulation we do not
explicitly model the cost of channel sensing; it is implicit in the
fact that the user is limited in how many channels it can sense at a
time. Alternative formulations have been studied where sensing
costs are explicitly taken into consideration in a user’s sensing
and access decision, see, e.g., [11] and [12].

In this formulation, we have assumed that sensing errors are
negligible. Techniques used in this paper may be applicable in
proving the optimality of the myopic policy under imperfect
sensing. The reason behind this is that our proof exploits the
simple structure of the myopic policy, which continues to hold
when sensing is subject to error as shown in [13].
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Note that the system is not fully observable to the user, i.e., the
user does not know the exact state of the system when making
the sensing decision. Specifically, a channel goes through state
transition at time (or any time between ), thus, when
the user makes the channel sensing decision at time , it does not
have the true state of the system at time , which we denote by

. Furthermore, even
after its action (at time ) it only gets to observe the true state of
one channel, which goes through another transition at or before
time . The user’s action space at time is given by
the finite set , and we will use to denote
that the user selects channel to sense at time . For clarity,
we will denote the outcome/observation of channel sensing at
time following the action by , which is essentially
the true state of channel at time since we assume
channel sensing to be error free.

It can be shown (see, e.g., [1], [14], [15]) that a sufficient
statistic of such a system for optimal decision making, or the
information state of the system [14], [15], is given by the condi-
tional probabilities of the state each channel is in given all past
actions and observations. Since each channel can be in one of
two states, we denote this information state or belief vector by

, where is the con-
ditional probability that channel is in state at time given
all past states, actions, and observations.1 Throughout the paper

will be referred to as the information state of channel at
time , or simply the channel probability of at time .

Due to the Markovian nature of the channel model, the future
information state is only a function of the current information
state and the current action; i.e., it is independent of past history
given the current information state and action. It follows that the
information state of the system evolves as follows. Given that
the state at time is and action is taken,
can take on two values: 1) if the observation is that channel

is in a “good” state ( ); this occurs with probability
; 2) if the observation is that

channel is in a “bad” state ; this occurs with prob-
ability . For any other channel

, the corresponding can only take on one value
(i.e., with probability ): where the oper-
ator is defined as

(1)

These transition probabilities are summarized in the fol-
lowing equation for :

with prob. if
with prob. if
with prob. if ,

(2)

Also note that denotes the initial condition
(information state in the form of conditional probabilities)

1Note that this is a standard way of turning a POMDP problem into a classic
MDP problem by means of information state, the main implication being that
the state space is now uncountable.

of the system, which may be interpreted as the user’s initial
belief about how likely each channel is in the good state before
sensing starts at time . For the purpose of the optimization
problems formulated below, this initial condition is considered
given, which can be any probability vector.2

It is important to note that although in general a POMDP
problem has an uncountable state space (information states
are probability distributions), in our problem the state space
is countable for any given initial condition . This is be-
cause as shown earlier, the information state of any channel
with an initial probability of can only take on the values

, where and
, which is a countable set.

For compactness of presentation, we will further use the op-
erator to denote the above probability distribution of the in-
formation state (the entire vector)

(3)

by noting that the operation given in (2) is applied to ele-
ment-by-element. We will also use the following to denote the
information state given observation outcome

(4)

(5)

The objective of the user is to maximize its total (discounted
or average) expected reward over a finite (or infinite) horizon.
Let , , and denote, respectively, these cost
criteria (namely, finite horizon, infinite horizon with discount,
and infinite horizon average reward) under policy starting in
state . The associated optimization problems
((P1)–(P3)) are formally defined as follows.

(P1):

(P2):

(P3):

where ( for (P1) and for (P2))
is the discount factor, and is the reward collected
under state when channel is selected and

is observed. This reward is given by
with probability (when ), and otherwise.

2That is, the optimal solutions are functions of the initial condition. A reason-
able choice, if the user has no special information other than the transition prob-
abilities of these channels, is to simply use the steady-state probabilities of chan-
nels being in state “ ” as an initial condition (i.e., setting ).
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The maximization in (P1) is over the class of deterministic
Markov policies.3 An admissible policy , given by the vector

, is thus such that specifies a mapping
from the current information state to a channel selection
action . This is done without
loss of optimality due to the Markovian nature of the under-
lying system, and due to known results on POMDPs. Note that
the class of Markov policies in terms of information state are
also known as seperated policies (see [15]). Due to finiteness of
(unobservable) state spaces and action space in problem (P1),
it is known that an optimal policy (over all random and deter-
ministic, history-dependent and history-independent policies)
may be found within the class of separated (i.e., deterministic
Markov) policies (see, e.g., [15, Theorem 7.1, Ch. 6]), thus jus-
tifying the maximization and the admissible policy space.

In Section VI, we establish the existence of a stationary sepa-
rated policy , under which the supremum of the expected dis-
counted reward as well as the supremum of expected average
cost are achieved, hence justifying our use of maximization in
(P2) and (P3). Furthermore, it is shown that under this policy the
limit in (P3) exists and is greater than the limsup of the average
performance of any other policy (in general history-dependent
and randomized). This is a strong notion of optimality; the in-
terpretation is that the most “pessimistic” average performance
under policy is greater
than the most “optimistic” performance under any other policy

. In much of the literature on MDP, this is
referred to as the strong optimality for an expected average cost
(reward) problem; for a discussion on this, see [16, p. 344].

III. OPTIMAL POLICY AND THE MYOPIC POLICY

A. Dynamic Programming Representations

Problems (P1)–(P3) defined in the previous section may be
solved using their respective dynamic programming (DP) repre-
sentations. Specifically, for problem (P1), we have the following
recursive equations:

(6)

for , where is known as the value
function, or the maximum expected future reward that can
be accrued starting from time when the information state is

. In particular, we have , and an op-
timal deterministic Markov policy exists such that
achieves the maximum in (6) (see, e.g., [16, Ch. 4]). Note
that since is a conditional probability distribution (given in
(3)), is taken to be the expectation over this
distribution when its argument is , with a slight abuse of
notation, as expressed in (6).

Similar dynamic programming representations hold for (P2)
and (P3) as given below. For problem (P2) there exists a

3A Markov policy is a policy that derives its action from the current (infor-
mation) state, rather than the entire history of states, see, e.g., [15].

unique function satisfying the following fixed point
equation:

(7)

We have that , and that a stationary sep-
arated policy is optimal if and only if achieves
the maximum in (7) [17, Theorem 7.1].

For problem (P3), we will show that there exist a bounded
function and a constant scalar satisfying the following
equation:

(8)

The boundedness of and the immediate reward implies that
, and that a stationary separated policy

is optimal in the context of (P3) if achieves the
maximum in (8) [17, Theorems 6.1–6.3].

Solving (P1)–(P3) using the above recursive equations is in
general computationally heavy. Therefore, instead of directly
using the DP equations, the focus of this paper is on examining
the optimality property of a simple, greedy policy. We define
this algorithm next and show its simplicity in structure and im-
plementation.

B. The Myopic Policy

A myopic or greedy policy ignores the impact of the
current action on the future reward, focusing solely on max-
imizing the expected immediate reward. Myopic policies
are thus stationary. For (P1), the myopic policy under state

is given by

(9)

In general, obtaining the myopic action in each time slot requires
the successive update of the information state as given in (2),
which explicitly relies on the knowledge of the transition prob-
abilities as well as the initial condition . However,
due to monotonicity, the myopic policy requires only the knowl-
edge of the initial condition and the order of and , but not
the precise values of these transition probabilities. To make the
present paper self-contained, below we briefly describe how this
policy works; more details may be found in [5].

Specifically, when , the conditional probability up-
dating function is a monotonically increasing function,
i.e., for . Therefore, the ordering
of information states among channels is preserved when they
are not observed. If a channel has been observed to be in state
“ ” (respectively, “ ”), its probability at the next step becomes

(respectively, ) for any . In
other words, a channel observed to be in state “ ” (respectively,
“ ”) will have the highest (respectively, lowest) possible infor-
mation state among all channels.
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These observations lead to the following implementation of
the myopic policy. We take the initial information state ,
order the channels according to their probabilities , and
probe the highest one (top of the ordered list) with ties broken
randomly. In subsequent steps, we stay in the same channel if
the channel was sensed to be in state “ ” (good) in the previous
slot; otherwise, this channel is moved to the bottom of the or-
dered list, and we probe the channel currently at the top of the
list. This in effect creates a round-robin style of probing, where
the channels are cycled through in a fixed order. This circular
structure is exploited in Section IV to prove the optimality of
the myopic policy in the case of .

When , we have an analogous but opposite situa-
tion. The conditional probability updating function is now
a monotonically decreasing function, i.e., for

. Therefore, the ordering of information states among
channels is reversed at each time step when they are not ob-
served. If a channel has been observed to be in state “ ” (respec-
tively, “ ”), its probability at the next step becomes
(respectively, ) for any . In other words,
a channel observed to be in state “ ” (respectively, “ ”) will
have the lowest (respectively, highest) possible information state
among all channels.

As in the previous case, these similar observations lead to
the following implementation. We take the initial information
state , order the channels according to their probabilities

, and probe the highest one (top of the ordered list) with
ties broken randomly. In each subsequent step, if the channel
sensed in the previous step was in state “ ” (bad), we keep this
channel at the top of the list but completely reverse the order
of the remaining list, and we probe this channel. If the channel
sensed in the previous step was in state “ ” (good), then we com-
pletely reverse the order of the entire list (including dropping
this channel to the bottom of the list), and probe the channel
currently at the top of the list. This alternating circular structure
is exploited in Section V to examine the optimality of the my-
opic policy in the case of .

IV. OPTIMALITY OF THE MYOPIC POLICY IN THE CASE OF

In this section, we show that the myopic policy, with a simple
and robust structure, is optimal when . We will first
show this for the finite horizon discounted cost case, and then
extend the result to the infinite horizon case under both dis-
counted and average cost criteria in Section VI.

The main assumption is formally stated as follows.

Assumption 1: The transition probabilities and are
such that

(10)

The main theorem of this section is as follows.

Theorem 1: Consider Problem (P1). Define
, i.e., the value of the value func-

tion given in (6) when action is taken at time followed by an
optimal policy. Under Assumption 1, the myopic policy is op-
timal, i.e., for , , and

(11)
if , for .

The proof of this theorem is based on backward induction
on : given the optimality of the myopic policy at times

, we want to show that it is also optimal at time
. This relies on a number of lemmas introduced below. The

first lemma introduces a notation that allows us to express the
expected future reward under the myopic policy.

Lemma 1: There exist -variable functions, denoted by
, , each of which is a polynomial of order

4 and can be represented recursively in the following form:

(12)

where and .
Proof: The proof is easily obtained using backward induc-

tion on given the above recursive equation and noting that
is one such polynomial and the mapping is a linear

operation.

Corollary 1: When represents the ordered list of infor-
mation states with ,
then is the expected total reward obtained by the myopic
policy from time on.

Proof: This result follows directly from the description of
the policy given in Section III-B.

When is the ordered list of information states, the recursive
expression in (12) gives the expected reward of the following
policy: probe the th channel; for the next step, if the current
sensing outcome is “ ,” then continue to probe the th channel;
if the current sensing outcome is “ ,” then drop this channel to
the bottom of the list (it becomes the first channel) while moving
the th channel to the th position for all ;
repeat this process. (This is essentially the same description as
given in Section III for the case of .) To see that this is
the myopic policy, note that under the above policy, at any time
the list of channel probabilities are increasingly ordered. This is
because for any , we have when

. Furthermore, under the assumption ,
is a monotonically increasing function. Therefore, under this
policy, when starting out with increasingly ordered information
states, this order is maintained in each subsequent time step. As
expressed in (12), at each step it is always the th channel that
is probed. Since the th channel has the largest probability of
being available, this is the myopic policy.

Proposition 1: The fact that is a polynomial of order
and affine in each of its elements implies that

(13)

Similar results hold when we change the positions of and .

To see this, consider and
as functions of and , each having

an term, a term, an term, and a constant term. Since

4Each function is affine in each variable, when all other variables are held
constant.
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we are just swapping the positions of and in these two
functions, the constant term remains the same, and so does the

term. Thus, the only difference is the term and the term,
as given in the preceding equation. This linearity result will be
used later in our proofs.

The next lemma establishes a necessary and sufficient condi-
tion for the optimality of the myopic policy.

Lemma 2: Consider Problem (P1) and Assumption 1. Given
the optimality of the myopic policy at times ,
the optimality at time is equivalent to

for all

Proof: Since the myopic policy is optimal from on,
it is sufficient to show that probing followed by myopic
probing is better than probing any other channel followed by
myopic probing. The former is precisely given by the right-hand
side (RHS) of the above equation; the latter by the left-hand side
(LHS), thus completing the proof.

Having established that is the total expected reward
of the myopic policy for an increasingly ordered vector

, we next proceed to show that we do not decrease
this total expected reward by switching the order of two
neighboring elements and if . This is done
in two separate cases, when (given in Lemma 4) and
when (given in Lemma 5), respectively. The first case
is quite straightforward, while proving the second cased turned
out to be significantly more difficult. Our proof of the second
case (Lemma 5) relies on a separate lemma (Lemma 3) that es-
tablishes a bound between the greedy operation on two iden-
tical vectors but with a different starting position. The proof of
Lemma 3 is based on a coupling argument and is quite instruc-
tive. Below we present and prove Lemmas 3–5.

Lemma 3: For , we have the
following inequality for all :

(14)

Proof: We prove this lemma using a coupling argument
along any sample path. The LHS of the above inequality
represents the expected reward of a policy (referred to as L
below) that probes in the sequence of channels followed
by , and then again, and so on, plus an extra
reward of ; the RHS represents the expected reward of a
policy (referred to as R below) that probes in the sequence of
channels followed by , , and and then again,
and so on. It helps to imagine lining up the channels along a
circle in the sequence of , clock-wise, and thus
L’s starting position is , R’s starting position is , exactly
one spot ahead of L clockwise. Each will cycle around the
circle till time .

Now for any realization of the channel conditions (or any
sample path of the system), consider the sequence of “ ’s” and
“ ’s” that these two policies see, and consider the position they

are on the circle. The reward a policy gets along a given sample
path is for policy L, where

if L sees a “ ” at time , and otherwise; the reward for R is
with similarly defined.

There are two cases.
Case (1): The two eventually catch up with each other at some

time , i.e., at some point they start probing
exactly the same channel. From this point on, the
two policies behave exactly the same way along the
same sample path, and the reward they obtain from
this point on is exactly the same. Therefore, in this
case we only need to compare the rewards (L has an
extra ) leading up to this point.

Case (2): The two never manage to meet within the horizon
. In this case, we need to compare the rewards for

the entire horizon (from to ).
We will consider Case (1) first. There are only two possibil-

ities for the two policies to meet: (Case 1a) either L has seen
exactly one more “ ” than R in its sequence, or (Case 1b) R
has seen exactly more “ ’s” than L. This is because the
moment we see a “ ” we will move to the next channel on the
circle. L is only one position behind R, so one more “ ” will put
it at exactly the same position as R. The same with R moving

more positions ahead to catch up with L.
Case (1a): L sees exactly one more “ ” than R in its sequence.

The extra “ ” necessarily occurs at exactly time ,
, meaning that at , L sees a “ ” and

R sees a “ .” From to , if we write the sequence
of rewards (zeros and ones) under L and R, we ob-
serve the following: between and both L and
R have equal number of zeros, while for

, the number of zeros up to time
is less (or no more) for L than for R. In other words,
L and R see the same number of “ ’s,” but L’s is
always lagging behind (or no earlier). That is, for
every “ ” R sees, L has a matching “ ” that occurs
no earlier than R’s “ .” This means that if we de-
note by the rewards accumulated between

and , then for the rewards in , we
have , for , while

and . Finally by
definition we have .
Therefore, overall we have ,
proving the above inequality.

Case (1b): R sees more “ ’s” than L does. The compar-
ison is simpler. We only need to note that R’s “ ’s”
must again precedes (or be no later than) L’s since
otherwise we will return to Case (1a). Therefore,
we have , and thus is also
true.

We now consider Case (2). The argument is essentially the
same. In this case, the two do not get to meet, but they are on
their way, meaning that either L has exactly the same “ ’s” as R
and their positions are no earlier (corresponding to Case (1a)), or
R has more “ ’s” than L (but not up to ) and their positions
are no later than L’s (corresponding to Case (1b)). So either way
we have .

The proof is thus complete.
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Lemma 4: For all , , and all , we have

(15)

Proof: We prove this by induction over . The claim is ob-
viously true for , since both sides will be equal to ,
thereby establishing the induction basis. Now suppose the claim
is true for all . We have

(16)

where the inequality is due to the induction hypothesis, and
noting that is a monotone increasing mapping in the case
of .

Lemma 5: For all , we have

(17)

Proof: This lemma is proved inductively. The claim is ob-
viously true for . Assume it also holds for times

. We have by the definition of and due to its
linearity property

But from the induction hypothesis we know that

(18)

This means that

where the last inequality is due to Lemma 3 (note that in
that lemma we proved , which obviously implies

for that is used above). This, together
with the condition , completes the proof.

We are now ready to prove the main theorem.

Proof of Theorem 1: The basic approach is by induction
on . The optimality of the myopic policy at time is
obvious. So the induction basis is established. Now assume that
the myopic policy is optimal for all times ,
and we will show that it is also optimal at time . By Lemma 2
this is equivalent to establishing the following:

(19)
But we know from Lemmas 4 and 5 that

where the first inequality is the result of Lemma 5, while the
remaining inequalities are repeated applications of Lemma 4,
completing the proof.

We would like to emphasize that from a technical point of
view, Lemma 3 is the key to the whole proof: it leads to Lemma
5, which in turn leads to Theorem 1. While Lemma 5 was easy
to conceptualize as a sufficient condition to prove the main the-
orem, Lemma 3 was much more elusive to construct and prove.
This, indeed, marks the main difference between the proof tech-
niques used here versus that used in our earlier work [6]: Lemma
3 relies on a coupling argument instead of the convex analytic
properties of the value function.

V. THE CASE OF

In the preceding section we showed that a myopic policy is
optimal if . In this section we examine what hap-
pens when , which corresponds to the case when the
Markovian channel state process exhibits a negative autocorre-
lation over a unit of time. This is perhaps a case of less prac-
tical interest and relevance. However, as we shall see, this case
presents a greater degree of technical complexity and richness
than the previous case. Specifically, we first show that when the
number of channels is three or when the discount factor

, the myopic policy remains optimal even for the case of
(the proof for two channels in this case was given ear-

lier in [5]). We thus conclude that the myopic policy is optimal
for or regardless of the transition probabili-
ties. We then present a counterexample showing that the myopic
policy is not optimal in general when and . In
particular, our counterexample is for a finite horizon with
and .

A. or

We start by developing some results parallel to those pre-
sented in the previous section for the case of .

Lemma 6: There exist -variable polynomial functions of
order , denoted by , i.e., each function is
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linear in all the elements, and can be represented recursively in
the following form:

(20)

where .

Corollary 2: given in (20) represents the expected total
reward of the myopic policy when is ordered in increasing
order of .

Similar to Corollary 1, the above result follows directly from
the policy description given in Section III-B.

It follows that the function also has the same linearity
property presented earlier, i.e.,

(21)

Similar results hold when we change the positions of and .
In the next lemma and theorem, we prove that the myopic

policy is still optimal when if or . In
particular, Lemma 7 below is the analogy of Lemmas 4 and 5
combined.

Lemma 7: At time , for all , we
have the following inequality for if either

or :

(22)

Proof: We prove this by induction on . The claim is obvi-
ously true for . Now suppose it is true for .
Due to the linearity property of

(23)

Thus it suffices to show that

We treat the case when and separately.
Indeed, without loss of generality, let (the proof
follows exactly for all with more lengthy notations).
At time we have

where the last inequality is due to the induction hypothesis.

Now we will consider the case when .

(24)

Next we show that if or , the RHS of (24) is
nonnegative.

If , then

If , then

where the first inequality is due to the fact that
and the last inequality is given by the induction hypoth-

esis.

Theorem 2: Consider Problem (P1). Assume that .
The myopic policy is optimal for the case of and the
case of with arbitrary . More precisely, for these two
cases, , , we have

(25)

if for .
Proof: We prove by induction on . The optimality of the

myopic policy at time is obvious. Now assume that the
myopic policy is optimal for all times ,
and we want to show that it is also optimal at time . Suppose
at time the channel probabilities are such that for

. The myopic policy is optimal at time if
and only if probing followed by myopic probing is better
than probing any other channel followed by myopic probing.
Mathematically, this means

for all

But this is a direct consequence of Lemma 7, completing the
proof.

B. A Four-Channel Counter Example

The following example shows that the myopic policy is not,
in general, optimal for when .

Example 1: Consider an example with the following
parameters: , , , and

. Now compare the following two poli-
cies at time : play myopically (I), or play the channel
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first, followed by the myopic policy (II). Computation reveals
that

which shows that the myopic policy is not optimal in this case.

It remains an interesting question as to whether such coun-
terexamples exist in the case when the initial condition is
such that all channel are in the good state with the stationary
probability.

VI. INFINITE HORIZON

Now we consider extensions of results in Sections IV and V
to (P2) and (P3), i.e., to show that the myopic policy is also op-
timal for (P2) and (P3) under the same conditions. Intuitively,
this holds due to the fact that the stationary optimal policy of the
finite horizon problem is independent of the horizon as well as
the discount factor. Theorems 3 and 4 below concretely estab-
lish this.

We point out that the proofs of Theorems 3 and 4 do not rely
on any additional assumptions other than the optimality of the
myopic policy for (P1). Indeed, if the optimality of the myopic
policy for (P1) can be established under weaker conditions, The-
orems 3 and 4 can be readily invoked to establish its optimality
under the same weaker condition for (P2) and (P3), respectively.

Theorem 3: If myopic policy is optimal for (P1), it is also
optimal for (P2) for . Furthermore, its value function
is the limiting value function of (P1) as the time horizon goes to
infinity, i.e., we have .

Proof: We first use the bounded convergence theorem
(BCT) to establish the fact that under any deterministic sta-
tionary Markov policy , we have .
We prove this by noting that

(26)

where the second equality is due to BCT for

This proves the second part of the theorem by noting that due
to the finiteness of the action space, we can interchange maxi-
mization and limit. Let denote the myopic policy. We now
establish the optimality of for (P2). From Theorem 1, we
know

Taking limit of both sides, we have

(27)

Note that (27) is nothing but the dynamic programming equa-
tion for the infinite horizon discounted reward problem given
in(7). From the uniqueness of the dynamic programming solu-
tion, then, we have

hence, the optimality of the myopic policy.

Theorem 4: Consider (P3) with the expected average reward
and under the ergodicity assumption . Myopic
policy is optimal for problem (P3) if it is optimal for (P1).

Proof: We consider the infinite horizon discounted cost for
under the optimal policy denoted by

(28)

This can be written as

Notice that the boundedness of the reward function and
compactness of information state implies that the sequence of

is bounded, i.e., for all

(29)

Also, applying Lemma 2 from [6] (which provides an upper
bound on the difference in value functions between taking two
different actions followed by the optimal policy) and noting that

, we have that there exists some positive
constant such that

(30)

By Bolzano–Weierstrass theorem, (29) and (30) guarantee the
existence of a converging sequence such that

(31)

and (32)

where is the steady-state belief (the limiting
belief when channel is not sensed for a long time).

As a result, (31) can be written as

In other words

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 23, 2009 at 11:46 from IEEE Xplore.  Restrictions apply. 



AHMAD et al.: OPTIMALITY OF MYOPIC SENSING IN MULTICHANNEL OPPORTUNISTIC ACCESS 4049

From (32), we can write this as

(33)

Note that (33) is nothing but the DP equation as given by
(8). In addition, we know that the immediate reward as well as
function are both bounded by . This implies that

is the maximum average reward, i.e.,
(see [17, Theorems 6.1–6.3]).

On the other hand, we know from Theorem 3 that the myopic
policy is optimal for (P2) if it is for (P1), and thus we can take

in (28) to be the myopic policy. Rewriting (28) gives the
following:

Repeating steps (31)–(33) we arrive at the following:

(34)

which shows that is a canonical triplet [17, The-
orems 6.2]. This, together with boundedness of and imme-
diate reward, implies that the myopic policy is optimal for
(P3) [17, Theorems 6.3].

VII. DISCUSSION AND RELATED WORK

The problem studied in this paper may be viewed as a special
case of a class of MDPs known as the restless bandit problems
[2]. In this class of problems, controlled Markov chains (also
called projects or machines) are activated (or played) one at a
time. A machine when activated generates a state-dependent re-
ward and transits to the next state according to a Markov rule.
A machine not activated transits to the next state according to a
(potentially different) Markov rule. The problem is to decide the
sequence in which these machines are activated so as to maxi-
mize the expected (discounted or average) reward over an infi-
nite horizon. To put our problem in this context, each channel
corresponds to a machine, and a channel is activated when it is
probed, and its information state goes through a transition de-
pending on the observation and the underlying channel model.
When a channel is not probed, its information state goes through
a transition solely based on the underlying channel model.5

In the case that a machine stays frozen in its current state
when not played, the problem reduces to the multiarmed bandit
problem, solved by Gittins in his 1970 seminal work [18]. Git-
tins showed that there exists an index associated with each ma-
chine that is solely a function of that individual machine and its
state, and that playing the machine currently with the highest
index is optimal. This index has since been referred to as the
Gittins index due to Whittle [19]. The remarkable nature of this
result lies in the fact that it essentially decomposes the -di-
mensional problem into -dimensional problems, as an index

5The standard definition of bandit problems typically assumes finite or count-
ably infinite state spaces. While our problem can potentially have an uncount-
able state space, it is nevertheless countable for a given initial state. This view
has been taken throughout the paper.

is defined for a machine independent of others. The basic model
of multiarmed bandit has been used previously in the context
of channel access and cognitive radio networks. For example,
in [20], Bayesian learning was used to estimate the probability
of a channel being available, and the Gittins indices, calcu-
lated based on such estimates (which were only updated when
a channel was observed and used, thus giving rise to a multi-
armed bandit formulation rather than a restless bandit formula-
tion), were used for channel selection.

On the other hand, relatively little is known about the struc-
ture of the optimal policies for the restless bandit problem in
general. It has been shown that the Gittins index policy is not in
general optimal in this case [2], and that this class of problems
is PSPACE-hard in general [21]. Whittle, in [2], proposed a Git-
tins-like index (referred to as the Whittle’s index policy), shown
to be optimal under a constraint on the average number of ma-
chines that can be played at a given time, and asymptotically op-
timal under certain limiting regimes [22]. There has been a large
volume of literature in this area, including various approxima-
tion algorithms, see for example [23] and [24] for near-optimal
heuristics, as well as conditions for certain policies to be op-
timal for special cases of the restless bandit problem, see, e.g.,
[25], [26]. The nature of the results derived in the present paper
is similar to that of [25], [26] in spirit. That is, we have shown
that for this special case of the restless bandit problem an index
policy is optimal under certain conditions. For the indexability
(as defined by Whittle [2]) of this problem, see [27].

Recently, Guha and Munagala [28], [29] studied a class of
problems referred to as the feedback multiarmed bandit prob-
lems. This class is very similar to the restless bandit problem
studied in the presentpaper,with the difference that channels may
have different transition probabilities (thus this is a slight gener-
alization to the one studied here). While we identified conditions
underwhichasimplegreedy indexpolicy isoptimal in thepresent
paper, Guha and Munagala in [28], [29] looked for provably
good approximation algorithms. In particular, they derived a

-approximate policy using a duality-based technique.

VIII. CONCLUSION

The general problem of opportunistic sensing and access
arises in many multichannel communication contexts. For cases
where the stochastic evolution of channels can be modelled as
i.i.d. two-state Markov chains, we showed that a simple and ro-
bust myopic policy is optimal for the finite and infinite horizon
discounted reward criteria as well as the infinite horizon av-
erage reward criterion, when the state transitions are positively
correlated over time. When the state transitions are negatively
correlated, we showed that the same policy is optimal when the
number of channels is limited to two or three, and presented a
counterexample for the case of four channels.
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