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Abstract—This paper studies the problem of distributed com-
putation over a network of wireless sensors. While this problem
applies to many emerging applications, to keep our discussion
concrete, we will focus on sensor networks used for structural
health monitoring. Within this context, the heaviest computation
is to determine the singular value decomposition (SVD) to extract
mode shapes (eigenvectors) of a structure. Compared to collecting
raw vibration data and performing SVD at a central location,
computing SVD within the network can result in significantly
lower energy consumption and delay. Using recent results on
decomposing SVD, a well-known centralized operation, we seek to
determine a near-optimal communication structure that enables
the distribution of this computation and the reassembly of the
final results, with the objective of minimizing energy consumption
subject to a computational delay constraint. We show that this
reduces to a generalized clustering problem, and establishthat it
is NP-hard. By relaxing the delay constraint, we derive a lower
bound. We then propose an integer linear program (ILP) to
solve the constrained problem exactly as well as an approximate
algorithm with a proven approximation ratio. We further pre sent
a distributed version of the approximate algorithm. We present
both simulation and experimentation results to demonstrate the
effectiveness of these algorithms.

Index Terms—Networked Computing, Wireless Sensor Net-
works, Structural Health Monitoring, Clustering, Degree-
Constrained Data Collection Tree, Singular Value Decomposition.

I. I NTRODUCTION

Over the past decade, tremendous progress has been made
in understanding and using wireless sensor networks. Of
particular relevance to this paper are extensive studies onin-
network processing, e.g., finding efficient routing strategies
when data compression and aggregation are involved. How-
ever, many emerging applications, e.g., body area sensing,
structural health monitoring, and various other cyber-physical
systems, require far more sophisticated data processing in
order to enable real-time diagnosis and control.

This leads to the question of how to perform arbitrary
(and likely complex) computational tasks using a distributed
network of wireless sensors, each with limited resources
both in energy and in processing capability. Previous results
on establishing the communication structure for in-network
computation mostly consider relatively simple functions like
max, min, averages and sums, see e.g., [1]–[7] that cannot fully
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represent the complex computational requirements demanded
by many practical engineering applications. Results on more
general functions, e.g., the family ofsymmetric functions
studied in [8]–[10], are often in the form of delivery equiv-
alent representation of the data rather than a communication
structure that would allow the in-network computation of the
function. (A more extensive discussion on related work is
presented in Section VII.)

This study is motivated by critical in-network computational
needs that arise in structural health monitoring (SHM). SHM
is a rapidly growing application area for wireless sensor
network technologies [11]–[13] and cyber-physical system
approaches [13] because of (i) the increasing need to pro-
vide low-cost and timely monitoring and inspection of the
deteriorating national infrastructure, and (ii) the advances in
integrated wireless sensing technologies.

Within this context, the most common approach to monitor
fatigue or detect damage is to collect vibration data using a
set of wireless sensors in response to white/free input to the
structure and then compute the FFT of each individual sensed
stream; this is then followed by the procedure of singular value
decomposition (SVD) on these FFTs to determine a set of
modes [14]–[16]. Amodeis a combination of a frequency and
a shape (in the form of a vector); the mode shape describes the
expected curvature (or displacement) of a surface vibrating at
the corresponding modal frequency. The mode shapes convey
useful information as to whether the structure is behaving
normally, and can thus be used to detect damage.

To obtain these modes, a straightforward way is to have all
sensor nodes transmit raw vibration data in the form of time
series of certain size, or the Fast Fourier Transform (FFT) of
the raw data, to a central controller or the base station. This
collection can be done either via single hop communication if
the sensor network has a star topology surrounding the base
station, or via multi-hop communication if the network spans
a large area (e.g., along a highway bridge). This form of data
collection can be very expensive: a single 4000-point FFT
can translate into 8K bytes of data [17]. With 10s or 100s
of sensors monitoring a large civil infrastructure, this data
collection methodology can be a huge burden on the battery
power of the wireless sensors. Instead, if we perform the
SVD computation within the network, then we can potentially
achieve a significant reduction in the amount of data that needs
to be transmitted because the output of the SVD computation
is a set of vectors much smaller in size compared to the FFTs
(on the order of 10s of bytes [17]). It is therefore highly
desirable to be able to perform the SVD computation within
the network.
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There are a number of challenges in performing a complex
matrix operation like SVD, a classical centralized procedure,
in a distributed way over a network of resource-constrained
sensors. A single sensor may be limited in its processing
capability which in turn limits the size of the matrix operation
it can handle, either due to lack of memory or excessive delay.
In addition, the input FFTs originate from sensors at different
locations, which makes it critical to find the right combination
of a computation mechanism and a communication structure.

In this paper we present a method of obtaining the optimal
communication structure for the distributed computation of
SVD, by utilizing a functional decomposition of SVD recently
developed by Zimmermanet al. [17]. Here optimality is de-
fined with respect to minimizing energy consumption subject
to a computational delay constraint. We show that this method
seeks to construct an optimal data forwarding and computing
structure, which turns out to be a certain type of tree. The
construction of this tree structure may also be viewed as a
generalized form of clustering as we detail in Section III. It
is worth mentioning that SVD is an essential computational
need in a very broad class of signal processing algorithms,
including classification, identification and detection [17]–[22].
So the results obtained here can potentially be applied to many
other signal processing applications beyond structural health
monitoring. In this paper, to make our discussion concrete,we
will focus on the SHM application. This allows us to select
system parameters, constraints and network topologies based
on real systems.

While the analysis and results presented here are framed
within the context of SVD, they illustrate a general approach to
the distributed in-network computation of complex objectives.
Under this approach, a centralized operation is first decom-
posed into a number of computational elements (or operators)
each operating on a set of inputs. This is then followed
by an optimization procedure to determine on which nodes
these elements should be placed (computed), which in turn
determines to whom a node should send its data input. This is
the main novelty of our approach. By using this method and
the unique features of SVD computation we can dramatically
reduce the amount of data transmission required. The main
results and contributions of this paper are summarized as
follows.

1) We formally define the above networked computing
problem for SVD for the objective of minimizing energy
consumption subject to a delay constraint, and establish
that it is NP-hard.

2) We derive a lower bound on the energy consumption by
relaxing the delay constraint and show that the optimal
communication and computation for the unconstrained
problem has a simple structure: the communication
occurs along a shortest-path tree, where each non-leaf
node performs a local SVD operation.

3) We develop an integer linear program (ILP) to solve
the constrained problem, and introduce an approximate
algorithm, along with its distributed implementation,
with a proven approximation ratio. We also discuss
modifications to our algorithms in the presence of noisy
sensor measurements.

4) We use both simulations and testbed experiments to
evaluate our algorithms and compare our results to a
routing algorithm which does not use in-network compu-
tation as well as to a randomly generated communication
structure.

It is also worth mentioning that in the process of deriving
the approximation algorithm, we also propose a solution to the
degree-constrained shortest path routing problem which isan
important problem in its own right and has other applications
in wireless sensor systems, like building a data collection
tree to minimize interference when multiple channels are
available for scheduling [23]. Results for this problem are
known only for complete graphs whose weights satisfy the
triangle inequality [24], [25]. Hence, our result here is the first
to propose approximation algorithms and analytically derive
their approximation factors for this problem in graphs induced
by a communication network.

We end this introduction with a simple example to illustrate
that different computational objectives will have different
optimal communication structures. We compare the optimal
routing for data compression, and for computing SVD. As-
sume that compression converts 2 input streams of sizeR bits
each to an output stream ofR+ r where r < R [26]. The
SVD operator, as discussed in detail in Section IV, convertsk
input streams of sizeR bits each, intok eigenvectors of size
r bits each withr < R. Consider the simple 4-node topology
of Figure 1 and the two possible communication structures,
with node 0 being the base station and assume all links
are of unit length/cost. As derived in [26], data compression
requires an exchange of 3R+3r (using successive encoding)
and 4R+ r bits respectively for the communication structures
(a) and (b). Hence, ifR> 2r, then (a) is better. On the other
hand, in the case of SVD if we do not perform in-network
computation, then sending all raw data to node 0 results in a
cost of 6R and 5R over the two structures, respectively. If we
perform in-network computation, then as detailed in Section
IV, the resulting costs are 3R+ 6r and 3R+ 3r for the two
structures, respectively. Hence (b) is always better for the SVD
computation.

Fig. 1. In-network computation and compressed sensing can have a different
optimal communication structure. (a) and (b) represent thetwo possible
communication structures for a simple 4-node topology.

The remainder of this paper is organized as follows. In
Section II, we formally present the distributed SVD problem.
A lower bound and the optimal solution to the unconstrained
problem are provided in Section III. Section IV presents an
exact ILP solution for the constrained problem, a number
of approximate algorithms with proven approximation ratios,
and a distributed implementation of one of these approximate
algorithms. In Section V, we discuss various relaxations and
extensions, including alternative energy models and noisein
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sensor measurement. In Section VI we evaluate our algorithm
through both numerical simulation and testbed experiments.
Related work is discussed in Section VII, and we conclude
the paper in Section VIII.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we first give the relevant background on
structural health monitoring, then present the network model
and formally introduce the problem.

A. Background on Structural Health Monitoring

During the past two decades, the SHM community has
become increasingly focused on the use of the structural vibra-
tion data to identify degradation or damage within structural
systems. The first step in determining if the vibration data col-
lected by a set of sensors represents a healthy or an unhealthy
structure is to decompose the spectral density matrix into aset
of single-degree-of-freedom systems. Assuming a broadband
white input to the system, this can be accomplished by first
obtaining an estimate of the output power spectral density
(PSD) matrix for each discrete frequency by creating an array
of frequency response functions using the Fast Fourier Trans-
form (FFT) from each degree of freedom. Early studies in
this field focused on identifying changes in modal frequencies
or the eigenvalues of the PSD matrix using the peak picking
method [27] to detect damage in large structural systems [28].
More recent studies have observed that viewing changes in
modal frequencies in combination with changes in mode
shape information (eigenvector of the PSD matrix) makes it
increasingly possible to both detect and locate damage within a
variety of structural types and configurations [14]–[16]. One of
the most widely used method for mode shape estimation is the
frequency domain decomposition (FDD) method proposed by
Brinckeret al. [29]. This method involves computing the SVD
of the PSD matrix to extract the eigenvectors/mode shapes.

The most common implementation of the FDD method over
a wireless sensor network is to have each sensor send its
vibration data to a central sensor node which computes the
SVD of the PSD matrix. This method requires significant
computational power and memory at the central node as
well as significant energy consumption in the network to
communicate all this data to the central node. For example, if
there are 100 sensor nodes in the network, this implementation
requires the central sensor node to compute the SVD of a
100×100 PSD matrix as well as having each of the 100 sensor
nodes send all their vibration data to one central node.

Zimmermanet al. [17] proposed an alternative implemen-
tation by decomposing the computation of SVD (graphically
represented in Figure 2). Each sensor node is assumed to be
aware of the eigenvalues of the PSD matrix (which have been
determined using the peak-picking method1) and the FFT of
its own sensed data stream. Denoting the entire set of nodes
as V, if a sensor has the FFT ofN ⊂ V, |N| > 1 sensors
and all the eigenvalues, then it can compute the SVD of the

1Peak picking can be done in a separate process preceding the SVD
calculation, and does not require transmissions of FFTs; itinvolves only
sending peaks which can be represented in very few bytes.

PSD matrix using|N| sets of FFT results and determine|N|
eigenvectors. Let another sensor node be in possession of the
FFT of N′ ⊂ V, |N′| > 1 sensors. It can perform a similar
computation to determine|N′| eigenvectors. To be able to
combine results from these two computations to construct the
|N∪N′| eigenvectors, one needs to be able to determine the
appropriate scaling factors so that the common eigenvectors
has the same constant in bothN and N′. This notion is
precisely given in the following.

Definition 1: Two computations are calledcombinableif
one can determine the appropriate scaling factors to combine
them. A computation onN nodes and another computation
on N′ nodes is combinable if and only if eitherN∩N′ 6= φ
(that is, there is at least one common sensor inN andN′), or
there exists another computation on a set ofN′′ nodes which
is combinable with bothN andN′.

Fig. 2. Decomposing the computation of SVD using in-networkcomputation.
Fi( jω) and φi ,0≤ i ≤ 6 denote the FFTs and the eigenvectors respectively.

If R denotes the size in bits required to represent the FFT
of a sensor stream andr denotes the size in bits to represent a
eigenvector, each SVD computation which combines the FFT
of k sensor streams reduces the number of bits fromkR to kr.
Note that the size of the output stream does not depend onR
but only onr, which depends on the size of the network.

B. Network Model and Problem Definition

With the above decomposition, the associated communica-
tion problem may also be viewed as ageneralized clustering
problem: the solution lies in determining which subset of
sensors (cluster) should send their FFTs to which common
node (cluster head), who then computes the SVD for this
subset, such that these subsets have the proper overlap to
allow individual SVDs to be scaled and combined. This
specific overlapping requirement makes it different from most
clustering studies in the literature; see a detailed discussion in
Section VII.

We proceed to assume a network model of an undirected
graph denoted asG(V,E). Each (sensor) node inV acts as both
a sensor and a relay. If two nodes can successfully exchange
messages directly with each other, there exists a weighted edge
e∈E between them, with weight denotedwe≥ 0. Without loss
of generality, we take node 0 to be the central node or the
base station. We also assume that all sensors (including the
base station) are identical in their radio capability (and hence
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have the same energy consumption per bit). This is done to
keep the presentation simple and can be easily relaxed.

Each node has a local input vibration stream. The goal is
to evaluate the SVD of the PSD matrix formed by the input
vibration streams of all the sensors. We define asensing cycle
to be the time duration in which each sensor performs the
sensing task to generate a vibration stream, the SVD is then
computed and the mode shapes are made known at the base
station. The length of this cycle as well as how this procedure
may be used in practice are discussed in Section V. Our
objective is to determine the optimal communication structure
to minimize the energy consumption in a sensing cycle under
a constraint on the maximum duration of a sensing cycle.

The two metrics of interest, namely energy consumption
and computational delay are precisely defined as follows.

Energy consumptionis defined as the total communication
energy consumed in the network in one sensing cycle. Let
ETx andERx denote the energy consumed in transmitting and
receiving a bit of data, and denote byEb =ETx+ERx. We will
assume that the energy consumed in transmitting a packet of
B bits over an edgee is given by weBEb. The edge weight
we allows us to take into account physical layer factors like
link quality, e.g., by using as weight the expected number of
retransmissions.

Computational delayis defined as the time it takes to
compute a designated function at a sensor node. As observed
in [17], [30], the computational time is the chief contributor to
delay as packet sizes in sensor systems tend to be very small.
Thus, the duration of a sensing cycle depends primarily on
the maximum computational delay amongst all sensor nodes.
A constraint on the computational delay essentially translates
into a constraint on the maximum number of FFT’s which can
be combined at a node.

Our algorithms and analysis do not depend on the exact
model used for energy consumption, provided that it remains
a function of the number of bits transmitted. On the other hand,
the above choice of energy model does not take into account
energy consumed in idle listening, which is often observed
to be on the same order as active receiving. The difficulty
in incorporating idle listening lies in the fact that it is heavily
dependent on the MAC layer used; a MAC protocol with good
sleep scheduling mechanisms may consume significantly less
energy in idle listening mode than another. The above energy
model thus may be interpreted as capturing an ideal MAC with
zero idle listening. Alternatively it may also be interpreted as
capturing a MAC that never puts nodes to sleep; this is because
with active reception and idle listening consuming energy on
the same order, the difference between one scheme and another
becomes dominated by energy consumed in transmission,
which is a function of the total number of bits transmitted. To
summarize, the intention behind this energy model is so that
we can analyze the optimal communication/routing structure at
the network layer without having to make specific assumptions
on the underlying MAC layer. With this model, the total energy
consumption is effectively translated into the total number of
bits communicated.

Also note that the above energy model only concerns com-
munication but not processing. This is because in general pro-

cessing can occur without turning on the radio, and consumes
much less energy by comparison. In addition, operations like
FFT is required by each node no matter what communication
schemes we use. Therefore not including it in the model will
not affect the resulting optimal solution.

We now formally introduce the problem.
Problem P1: Find (1) the setS of sensor nodes on which

the SVD computation will take place, (2) for eachs∈ S, their
corresponding setNs of sensor nodes whose FFT will be made
available ats, and (3) a routing structure, so as to minimize
E, the total energy consumed, subject to the constraint that
|Ns| ≤ ns, ∀s∈ S, wherens denotes the maximum cluster size
allowed at nodes that corresponds to its computational delay
constraint, and that the computations on all pairss1,s2 ∈S are
combinable.

The setS will also be referred to as the set of cluster
heads, and setNs the cluster associated with head nodes.
In the above description we have imposed individual delay
constraints. Note that the computational delay of one round
of SVD is dominated by the largest delay among all nodes
if the computations of successive rounds are pipelined. One
could also try to minimize the maximum computational delay
with a constraint on the energy consumption. Indeed, it can
be shown that the dual of the linear programs we propose will
optimally solve this alternative formulation.

Theorem 1:There is no polynomial time algorithm that
solves P1, unlessP= NP.
This can be shown through a reduction from set cover. The
proof is omitted due to space constraints. The interested reader
is referred to [31].

III. A L OWER BOUND ON THE VALUE OF P1

To simplify presentation, in this section we will assume
that the weights of all edges are equal. This is not restrictive
as all bounds derived in this section can be easily modified to
incorporate different weights. With this assumption, the energy
consumed in sending data from one node to another merely
depends on the number of hops on the path between them.

Definition 2: A data collection tree (DCT)for G(V,E) is
the spanning tree such that the path from each nodev∈V to
the base station has the minimum weight.

Compared to a minimum spanning tree (MST), a DCT is
a shortest-path tree that offers minimum weight on each path
to the root rather than over the entire tree. Since all weights
are equal, a path of minimum weight is equivalent to that of
minimum hop count. Letd0(v) denote the hop count of node
v∈V in the DCT.

The following lemma provides a lower bound on the mini-
mum energy consumption for P1 given any choice ofS.

Lemma 1:Consider P1 defined on graphG(V,E), and a
set of cluster headsS 6= φ , then a lower bound on the optimal
energy consumption, denoted byE(S), is given by

E(S)≥

(

(|V|−1)R+ ∑
v∈V

(d0(v)−1)r + |S|r

)

Eb. (1)

Proof: For all nodesv ∈ V\S, a message of sizeR
(containing the FFT) needs to be transmitted fromv to some
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node inS. This message goes over at least one hop to reach this
node, after which the size reduces tor (the eigenvector). Since
the minimum hop count fromv to the base station isd0(v), if
the message of sizeR goes over one hop, the message of size
r will go over at leastd0(v)−1 hops. AsR> r, the amount of
transmission required includes|V|− |S| transmissions of size
R and∑v∈V\S(d0(v)−1) transmissions of sizer.

In addition to the above, each of the|S| computations
needs to be combinable. This means that∀s1,s2 ∈ S, either
Ns1 ∩Ns2 6= φ or there exists another nodes3 ∈ S such that the
computations at nodess1 ands3, as well as that at nodess2 and
s3 are combinable, respectively. To understand how many extra
messages are needed to satisfy this constraint, we construct the
following graphGS(S,ES): an edge is added toES between
nodess1 ands2, s1,s2 ∈ S, only if Ns1 ∩Ns2 6= φ . Each edge in
this graph thus represents at least one common node between
Ns1 andNs2; each common node needs to transmit a message
of sizeR to boths1 ands2.

It follows that each edge implies at least one extra transmis-
sion of sizeR in addition to the|V|− |S| transmissions of size
R computed earlier. Two nodes ins1,s2 ∈ S are combinable if
and only if there exists a path betweens1 ands2 in GS(S,ES).
For a path to exist between every pair of nodes,GS(S,ES)
needs to have at least|S|−1 edges. This means at least|S|−1
extra transmissions of sizeR are required for all pairss1,s2 ∈S
to be combinable. Taking this into account, at least|V| − 1
transmissions of sizeR and ∑v∈V\S(d0(v)− 1) transmissions
of size r have to take place.

Finally, computed eigenvectors from nodesv∈ S each goes
through at leastd0(v) hops. Combining all of the above yields

E(S) ≥

(

(|V|−1)R+ ∑
v∈V\S

(d0(v)−1)r + ∑
v∈S

d0(v)r

)

Eb

=

(

(|V|−1)R+ ∑
v∈V

(d0(v)−1)r + |S|r

)

Eb . (2)

An interesting observation is that the lower bound only
depends on the size ofS and not its membership. One way to
get close to this bound is to limit the delivery of any FFT to a
single hop and route the FFT and the subsequent eigenvector
along shortest paths. This motivates a particular solutionfor
any given tree structure.

Definition 3: Consider a graphG(V,E) and a routing tree
T. Define a communication structureAP2(T) as follows: (1)
All non-leaf nodes inT constitute the setS, (2) clusterNs,s∈S
consists of all immediate children ofs∈ S, and (3) each node
sends its own FFT to its parent node onT, and a nodes∈ S
sends eigenvectors for itself and its children alongT to the
base station. This will be referred to astree solution T.

We next consider an unconstrained version of P1, i.e., by
removing the computational delay constraint. We refer to this
unconstrained problem asP2.

Lemma 2:Consider P2 defined on a graphG(V,E), and a
routing tree denoted byT defined on the same graph. LetdT(v)
denote the hop count of nodev∈V in T. Then tree solution

AP2(T) is feasible and has an energy consumption

EAP2(T) =

(

(|V|−1)R+ ∑
v∈V

(dT(v)−1)r + |S|r

)

Eb . (3)

Proof: We first show feasibility, i.e., each pair of nodes
s1,s2 ∈Sare combinable. SinceSconsists of all non-leaf nodes
on a tree, there exists a path between any pair of these nodes.
ThusAP2(T) is feasible.

Next since each node (except for the base station) sends its
FFT to its parent, this results in a cost of(|V|−1)REb; each
non-leaf node computes the SVD from its children’s FFT and
its own, and then sends the eigenvectors to the base station,
resulting in∑v∈V (dT(v)−1)r + |S|r bits. Putting everything
together yields the lemma.

This lemma suggests that of all solutions given by a tree
structure, the one that minimizes bothdT(v) and |S| will
result in the smallest energy consumption. This motivates the
construction of a DCT (which minimizesdT(v)) that has a
minimum number of non-leaf nodes (which minimizes|S|).

Definition 4: A minimum non-leaf node data collection
tree, or MDCT, defined on graphG(V,E) is a DCT that has the
smallest number of non-leaf nodes among all DCTs defined
on G(V,E). We will denote this tree asTM.

A key property of an MDCT is that it is impossible to move
all the children of non-leaf nodev∈V on TM to othernon-leaf
nodesof height≤ dT(v). This is because if this could be done
then we can effectively reduce the number of non-leaf nodes
on TM, which is a contradiction. Figure 3 gives an example:
both (a) and (b) are DCTs on the same graph, but the former
is not a MDCT while the latter is.

Fig. 3. Two data collection trees for the same network. The solid lines
represent the edges of the tree.TM is the tree in (b).

Theorem 2:Consider P2 defined onG(V,E), and an asso-
ciated MDCTTM with cluster head setS. Under the condition
R> 2r, an optimal solution to P2 is given byAP2(TM).2

Proof: From Lemma 2 we know thatEAP2(TM) matches
exactly the lower bound given in (2). Consider any other
solution with a cluster head setS′ such that|S′| ≥ |S|. By
Lemma 1E(S′) ≥ EAP2(T) so any solution with a larger set
S′ is no better.

Consider next any solution with a setS′′ such that|S′′|< |S|.
By Lemma 1, usingS′′ instead ofS reduces the energy by no
more than(|S|− |S′′|) rEb. On the other hand, consider a node
v∈ S andv 6∈ S′′. By the property of the MDCTTM, there are
only three possibilities in how the children ofv can send their

2The conditionR> 2r is easily satisfied in SVD computation for SHM.
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FFT under the new solutionS′′: (1) each child ofv sends its
FFT to some nodev′′ ∈ S′′ with d0(v′′) = d0(v) via a single
hop; (2) at least one child ofv sends its FFT to av′′ ∈ S′′

with d0(v′′) > d0(v) via a single hop; (3) at least one child
of v sends its FFT over at leastd ≥ 2 hops to reachv′′ ∈ S′′

with d0(v′′)+d ≥ d0(v)+1. Denote these sets asV1, V2 and
V3, respectively. Note that|S|= |S∩S′′|+ |V1|+ |V2∪V3|.

In case (1), at least one suchv′′ ∈ S′′ cannot be inS, and
thesev′′ nodes will be distinct for differentv∈ S, 6∈ S′′ nodes,
for otherwise it contradicts the definition of an MDCT. Thus
for each suchv ∈ S, 6∈ S′′ there corresponds av′′ ∈ S′′, 6∈ S.
Therefore case (1) does not contribute to any reduction in
energy consumption compare solutionS′′ to S. Thus,|S′′|< |S|
can only be true if either (2) or (3) is true for somev∈S, 6∈S′′;
in other words,|S|−|S′′|= |V2∪V3|. For each suchv, if it falls
under case (2) then there is an energy increase (fromS to S′′)
of at leastrEb due to the height increase ofv′′ over v; if it
falls under case (3), the energy increase is at least(R− r)Eb >
rEb by the condition stated in the theorem. Thus the total
energy increase is at leastrEb for eachv∈V2∪V3; therefore
the increase is at least(|S|− |S′′|) r. Hence any solution with
a smaller setS′′ is no better, completing the proof.

To summarize, an MDCT yields the optimal solution for P2,
which also serves as a lower bound to the value of P1. Note
that in this solution the overlap between clusters is through
cluster heads; all cluster heads (except for the base station) is
a member of another cluster.

IV. EXACT AND APPROXIMATE ALGORITHMS

We next present an integer linear program (ILP) to solve P1
exactly and aO(log(|V|)) approximation algorithm for P1.

A. An Exact ILP for P1

We first introduce optimization variables used in the ILP.
The set of variablesxi j , i, j ∈V define both the setsS and

Ns,∀s∈ Sas follows.xi j := 1 if the FFT of nodei is evaluated
at node j (i.e. i ∈ Nj ), and 0 otherwise.xii := 1 if i ∈ S and 0
otherwise.

pi jk := 1 if the FFT of nodek is evaluated at both nodesi
and j. This notation is used for convenience of presentation
only as it is completely determined byxi j , i, j ∈V.

Finally, the variablesci jn recursively verifies the combin-
ability relationship between two nodesi, j ∈ S as follows:

ci jn =















1 if n= 0 and ∑k∈V pi jk ≥ 1,
1 if 0 < n< |V| and

∑k∈V cik(n−1).c jk(n−1)+ ci j (n−1) ≥ 1,
0 otherwise.

(4)

Thusci j 0 = 1 if the pair i, j ∈ S share common nodes in their
respective clusters,ci j 1 = 1 if the pairi, j either share common
nodes directly or each shares common nodes with a common
third cluster, and so on. If the pairi, j ∈ S are combinable, we
will have ci j (|V|−1) = 1.

Finally, Wi j denotes the sum weight of all edges along the
shortest path from nodei to node j.

The ILP below solves P1 exactly, where the minimization
is over the choice ofxi j ,∀i, j ∈V.

(ILP P1) min ∑i∈V, j∈V xi j Eb
(

RWi j + rWj0
)

(5)

s.t.

∑ j∈V, j 6=i
xji
V ≤ xii ≤ ∑ j∈V, j 6=i x ji ,∀i ∈V (6)

∑ j∈V xi j ≥ 1,∀i ∈V (7)

pi jk ≤
xki+xk j

2 ,∀i, j,k ∈V (8)

ci j 0 ≤ ∑k∈V pi jk ,∀i, j ∈V (9)

ci j (|V|−1)) ≥ xii + x j j −1,∀i, j ∈V (10)

ti jkn ≤
cik(n−1)+cjk(n−1)

2 ,∀i, j,k ∈V,0< n< |V| (11)

ci jn ≤ ci j (n−1)+∑k∈V ti jk(n−1),∀i, j ∈V,0< n< |V| (12)

ciin = 0,∀i ∈V,0≤ n< |V| (13)

∑i∈V xi j ≤ n j ,∀ j ∈V (14)

xi j ,ci jk , pi jk , ti jkn ∈ {0,1}∀i, j,k∈V,0≤ n< |V| (15)

The objective (Eqn (5)) is fairly straightforward: if the FFT
of node i is sent to nodej, it costsRWi j Eb. The FFT fromi
produces a unique eigenvector of sizer at node j as a result
of this SVD computation, which costsrWj0Eb to send to the
base station.

The first constraint (Eqn (6)) sets the value ofxii to 1 if Ni 6=
φ , and 0 otherwise (note that ifNi 6= φ , then 1≤∑ j∈V, j 6=i x ji ≤
|V|). Eqn (7) ensures that the FFT of every sensor node is sent
to at least one node. Eqn (8) ensures thatpi jk = 1 if the FFT
from nodek is sent to both nodesi and j.

The next five constraints ensure the combinability of the
solution by limiting the value ofci jn . Eqn (9) ensures that
ci j 0 = 1 if there is at least one node common toNi and Nj .
Eqn (10) states that if bothi, j ∈S, the computations ati and j
should be combinable. Eqns (11) and (12) populate the value
of ci jn . Note thatti jkn is a temporary variable introduced to
express the quadratic condition in Equation (4) as a linear
function. Note that the presence of Eqn (10) forces Eqns (8),
(9), (11), and (12) to assign the maximum possible value to
the LHS; similarly, the presence of the latter forces (10) to
assign the minimum possible value to the LHS.

Eqn (13) sets the value ofciin to zero for everyi ∈V,0≤ n<
|V|. This prohibits a corner case whereci jn is set to 1 by setting
cii(n−1) to 1 without ensuring that the computation ati and j
are combinable. Finally, Eqn (14) imposes the computational
delay constraint at each sensor node.

B. Degree-Constrained DCT: Problem P3

In this and the next two subsections we will develop a
O(log(|V|)) approximation to the optimal solution of P1.
To simplify the presentation, we will again assume that all
edge weights are equal, an assumption easily relaxed without
affecting the approximation ratios.

The basic idea is to first use a DCT to find a feasible solution
to P1. A feasible solution requires that each cluster is size-
limited due to the computational delay constraint: a nodev
cannot have more thannv−1 immediate children. This leads
to the following definition.
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Definition 5: A degree-constrained data collection tree, or
DDCT, is a treeT which minimizes∑v∈V dT(v) under the
constraint that a nodev∈V has no more thannv−1 immediate
children, wherenv,∀v∈V are given constants.

Problem P3: Find a DDCT for G(V,E), which in turn
determines the setS, clusters Ns,∀s ∈ S, and the routing
structure.

That a solution to P3 is feasible for P1 is obvious, but it
may not be optimal for P1, even if it has the fewest non-leaf
nodes among all DDCTs because a node may no longer be on
its shortest path.

It is worth noting that P3 is also NP-hard; it is APX-
hard even when weights on edges satisfy the triangle inequal-
ity [24]. Results on P3 are known only for complete graphs
whose weights satisfy the triangle inequality [24], [25]. To the
best of our knowledge our work here is the first to propose
algorithms with proven approximation ratios for P3 in graphs
induced by a communication network.

We proceed as follows. We first present an ILP (ILPP3)
to solve P3 exactly. This ILP has much fewer variables and
constraints than ILPP1, and hence takes less time to solve. We
then relax ILPP3 to an LP and solve it via appropriate round-
ing of fractional values. This rounding algorithm, referred to as
algorithmLPR, is thus an approximation algorithm for P3, and
therefore also an approximation algorithm for P1. We derive
the approximation factor for LPR with respect to problem P1
in Theorem 3. Finally, based on the intuition derived while an-
alyzing LPR, we present a simpler, distributed approximation
algorithm with the same asymptotic approximation factor.

C. An ILP for Problem P3

We define the following variables used in the ILP in finding
a DDCT. For a givenG(V,E), define a graphḠ(V, Ē) with
directed edges, by replacing each undirected edge inE with
two directed edges, one in each direction. LetOv,v∈V denote
the set of outgoing edges from nodev in Ē. Similarly, let
Iv,v∈V denote the set of incoming edges into nodev in Ē.

The set of variablesxe,e∈ Ē define whether an edge is on
the DCT as follows.xe := 1 if edgee is on the DCT, and 0
otherwise. The variablefe,e∈ Ē will be referred to as theflow
value over the edgee; it denotes the number of nodes using
edgee to reach the base station on the DCT.fe = 0 if edgee
is not on the DCT.

The following ILP solves P3 exactly, where the minimiza-
tion is over the choice ofxe,∀e∈ Ē.

(ILP P3) min ∑e∈Ē fe (16)

∑e∈I0 fe−∑e∈O0
fe = |V|−1 (17)

∑e∈Iv fe−∑e∈Ov fe =−1,∀v∈V\{0} (18)

fe ≤ (|V|−1)xe,∀e∈ Ē (19)

∑e∈Ē xe = |V|−1 (20)

∑e∈Ov xe = 1,∀v∈V\{0} (21)

∑e∈Iv xe ≤ nv−1,∀v∈V (22)

xe ∈ {0,1},∀e∈ Ē (23)

fe ∈ {0,1, . . . , |V|−1},∀e∈ Ē (24)

The objective function minimizes the total flow, which essen-
tially minimizes∑v∈V dT(v).

The first two constraints ensure that each node sends a unit
flow towards the base station. The third constraint forcesfe
to be 0 if xe is 0, otherwise, it is redundant. Eqn (20) ensures
that the output has exactly|V|−1 edges. Eqns (21) and (22))
ensure that there is no more than one outgoing edge per vertex
(other than the base station) and no more thannv−1 incoming
edges into vertexv. Eqns (20) and (21) together ensure that
the output is a tree and Eqn (22) ensures that a nodev has no
more thannv−1 immediate children.

D. Algorithm LPR: an LP Rounding Approximation

We next present a polynomial-time approximation algorithm
which relaxes ILPP3 to a linear program (LP), by allowing
0 ≤ xe ≤ 1 and fe ≥ 0 to be fractional and appropriately
rounding the fractional values. This algorithm is referredto
as LPR and shown in Figure 4.

LPR is an iterative algorithm. At each iteration, we solve
the fractional ILP along with the additional constraints that
the edges for whomxe was set to 1 in the previous iteration,
remains set to 1. At iterationh, we add the nodes which will
be h hops away from the root in the final DCT. For every
node at heighth−1, if there are more thannv−1 incoming
edges with non-zeroxe, choose the largestnv−1 values and set
them to 1 and the remaining to zero; and if there are less than
nv−1 such edges, set all of them to 1. Also, add the nodes
from which these edges (whosexe’s were set to 1) emanate,
to the DCT at heighth.

NV = {0}, NE = φ, h= 0, assign hv =−1, ∀v∈V\{0} and
h0 = 0
while (NV! =V) do

h= h+1
Solve fractional ILP_P3 + constraint
xe = 1,∀e∈ NE
For ∀v∈ NV, hv = h−1

/* For v∈V, define Sv to be the set of
incoming edges at v with xe > 0 */
If |Sv|> nv−1

S′v = Sort(Sv)
/* Sort() will sort according to xe in a
descending order */
Sv = Extract(S′v,nv−1)
/* Extract(S,n) will extract the first n
edges from S */

∀e∈ Sv
xe = 1
Add(NE,e) /* Add(X,y) adds y to X */
v = Outgoing(e)
/* Outgoing(e) returns the vertex from
which edge e emanates */
Add(NV,v)
hv = h

Fig. 4. Algorithm LPR: The LP rounding approximation algorithm for P3.

E. The Approximation Factor of LPR

Even though LPR makes no assumptions on the network,
our derivation of the approximation factor assumes the follow-
ing: (1)nmin≥ 3, wherenmin=minv∈Vnv, (2) the unconstrained
MDCT constructed overG(V,E) has a height ofO(log(|V|)),
and (3) nodes can transmit to each other if the distance
between them is less than a transmission rangeRtx.
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To understand (1), note that ifnv = 2,∀v ∈ V, then each
node has at most 1 child and the constructed tree is thus linear
(a chain). The problem subsequently reduces to the traveling
salesman problem. Similarly, if most nodes disallow more than
1 child, the resulting tree will be close to linear, which is not
a very interesting routing structure to study. Finally, andmore
importantly, most existing sensor platforms have sufficient
computational power to quickly combine FFT’s from at least
3 nodes, easily satisfying this assumption. Assumption (2)is
also easily satisfied as sensor networks used for SHM are in
general not very sparse. Assumption (3) is very commonly
adopted for analytical tractability. However, our analysis is
not heavily dependent on this assumption (more is discussed
in the footnote in the proof of Lemma 4) and the same
approximation factor also holds under more realistic physical
layer assumptions.

We next derive the approximation factor of LPR with respect
to P1. The analysis is based on the observation that the
approximation factor is essentially the ratio between the height
of the DDCT constructed using LPR and the height of the
MDCT (discussed in more detail in the proof of Theorem 3).

Denote the height of the MDCT byhorig and the height of
the DDCT generated by algorithm LPRhddct. Define anon-
full node to be a nodev at heighth < hddct which has less
than nv−1 children. A height 1≤ h< hddct is defined to be
a non-full heightif there exists at least one non-full node at
heighth. We then have the following lemma.

Lemma 3:Consider running algorithm LPR on a set ofm
nodes with a randomly selected base station and a topology
such that the maximum set of nodes that cannot transmit to
each other has a sizep. Then the resulting DDCT cannot have
more thanp non-full heights.

Proof: We prove this by contradiction. Let there bep+1
non-full heights:h1 < .. . < hp+1. Let vi be a non-full node at
heighthi ,1≤ i ≤ p+1. Then,vi ,v j , 1≤ i < j ≤ hp+1 cannot
transmit to each other, for otherwise LPR would have labeled
v j as the child ofvi . Thus none of the nodesv1, . . . ,vp+1 can
transmit to each other. However, by assumption we cannot
have more thanp nodes which cannot transmit to each other,
thus a contradiction.

Lemma 4:Under the assumption that the height of the
MDCT horig = O(log(|V|)), the height of the DDCT con-
structed by LPR ishddct = Θ(log(|V|)).

Proof: By the construction of the MDCT, the maximum
distance of a node from the base station ishorigRtx

3. Using
geometric arguments similar to the ones used in [34], it’s easy
to show that the set of nodes none of which can transmit
to each other has a size of no more than 2π

cos−1

(

1− 1
2h2

orig

) ≤

2π

cos−1
(

1− 1
2c2 log2(|V|)

) ≈ 2πclog(|V|), for some constantc, where

3Note that due to fading effects, the transmission range may not be a
constant. However, there will always exist distancesR0 and R1 such that
if two nodes are withinR0 of each other, they can transmit to each other with
negligible loss, and if they are more thanR1 apart, they cannot exchange
packets with each other [32], [33].R0 and R1 may be much smaller and
larger respectively than the actual transmission range; replacing Rtx by these
constants appropriately allows the same argument to go through for a more
general physical layer model.

the equality follows from the small angle approximation
cos(x)≈ 1− x2

2 .
Thus by Lemma 3, there are no more than 2πclog(|V|) non-

full heights. At the same time, the number of full heights is
Θ(log(|V|)) by definition. Hencehddct = Θ(log(|V|)).

Theorem 3:The approximation factor of LPR is
O(log(|V|)).

Proof: To derive the approximation factor, we compare
the energy consumed in the DDCT constructed using LPR
(given by Lemma 2) to the lower bound on the optimal
solution of P1 (given in Lemma 1). First, we note that
|S| ≥

(

V
nmax

)

in the optimal solution and|S| = c1

(

V
nmin

)

in

the DDCT (ashddct = Θ(log(|V|))) where c1 is a positive
constant,nmax = maxv∈Vnv and nmin = minv∈Vnv. Thus, the

approximation factor is≤
∑v∈V (dddct(v)−1)+c1

(

V
nmin

)

∑v∈V(d0(v)−1)+( V
nmax)

≤ log(|V|),

wheredddct(v) denotes the hop count of nodev in the DDCT.
The final inequality holds becausehorg ≤ c2 log(|V|) and
hddct = c3 log(|V|), for some positive constantsc2 and c3.
Hence the approximation factor isO(log(|V|)).

F. A Distributed Approximation Algorithm (DAA)

The approximation algorithm LPR is centralized as it re-
quires solving an LP globally. We now present a simpler,
distributed algorithm with the same asymptotic approximation
factor.

The proof of Lemma 3 uses the following observation from
LPR: at heighth, if there exists a nodev with more thannv−1
neighbors which are not yet a part of the tree, the algorithm
will add nv−1 children to it. Otherwise, all its neighbors not
yet a part of the tree will be added as its children.

Using this intuition, we propose a modified Dijkstra’s
shortest path algorithm DAA in Figure 5. This algorithm
satisfies the observation made in the previous paragraph, hence
Lemma 3 holds, and so do Lemma 4 and Theorem 3. Thus, the
approximation factor for DAA is alsoO(log(|V|)). The tree
is built top down from the root with each nodev choosing its
nv−1 children arbitrarily. Hence, like any shortest path algo-
rithm [35] it can be built by message exchanges only between
neighboring nodes. We will compare this modified Dijkstra’s
algorithm with LPR through simulation in Section VI.

NV = {0}, hv = ∞, ∀v∈V\{0}, h0 = 0, Cv = 0, ∀v∈V.
/* Cv denotes the number of children of node v */
while (NV! =V) do

/* Define E′ to be the set of edges which
connect nodes

in v∈ NV and v′ ∈V\NV and Cv < nv−1 */
∀e : v→ v′ ∈ E′

h′v = min(h′v,hv +1)
vmin = argminv{hv | ∀v∈V\NV}
Add(NV,vmin).
vparent = Parent(vmin)
/* Parent(v) returns the parent of v in NV */
Cvparent =Cvparent +1
hv = ∞, ∀v∈V\NV

Fig. 5. Algorithm DAA: Modified Dijkstra’s algorithm for P3.

V. D ISCUSSION

In this section we discuss ways to include additional con-
straints like accuracy if sensor measurements are noisy, as
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well as the applicability of distributed SVD computation in
practice.

The model and algorithms presented here can be easily
extended to include additional constraints, including accuracy
and storage. In our decentralized SVD computation, the eigen-
vectors are determined by linearly combining those computed
locally at different sensor nodes. If the sensors are noiseless,
then the eigenvectors computed using this decomposition will
exactly match the actual eigenvectors. However, the presence
of noise in the sensed values can lead to errors in the compu-
tation [36]. This is because in a centralized implementation, a
least-squares effect minimizes the error due to noise across all
eigenvectors, whereas the decentralized implementation allows
this error to accumulate through each combination of locally
computed eigenvectors.

The larger the number of FFT’s being combined at each
sensor node, the smaller this error. Hence a desired accu-
racy will impose a constraint on the minimum cluster size
|Ns|,s∈ S. This is the opposite of the delay constraint, and
incorporating it in our models is quite straightforward. Denote
this constraint byna, i.e., |Ns| ≥ na,∀s∈ S. Then in ILP P1,
the following constraint is added:∑i∈V xi j ≥ nax j j ,∀ j ∈ V.
Similarly, in ILP P3, we add (1)∑e∈Iv xe≥ (na−1)lv,∀v∈V,
where variablelv ∈ {0,1} is set to 1 ifv is a non-leaf node, and
(2) ∑e∈Iv xe/|V| ≤ lv ≤ ∑e∈Iv xe,∀v∈V, to ensure thatlv is set
1 only if v is a non-leaf node. Finally, the two approximation
algorithms, LPR and DAA, can both be easily modified to
maintain the number of children of each node in the data
collection to be greater thanna−1. The effect of an added
accuracy constraint will be examined in numerical studies
presented in Section VI.

As the number of FFT’s being computed at a node increases,
not only the delay but also the storage required increases [36].
A storage constraint acts in a way very similar to the de-
lay constraint: it essentially bounds the maximum number
of FFT’s that can be combined at a sensor. Therefore to
incorporate this constraint we simply need to upper bound
the value of|Ns| to be the lesser of the two, which results in
an identical problem.

While the proposed SVD computation can run continuously
as a stream process, in practice it suffices to schedule it several
times a day, each lasting on the order of minutes (the actual
duration of the sensing cycle depends on the size of the FFT
and the computation capacity of the sensors), as one does not
in general expect mode shapes of a structure to change rapidly
over time. Even though the task is performed infrequently,
the saving in each operation is indeed significant (see results
in Section VI), and the accumulated effect are undoubtedly
beneficial for a sensor network to have a lifetime on the order
of months or years.

One weakness common to many in-network processing
methods is that they typically deliversummariesor features
of data rather than raw data itself; thus we potentially losethe
ability to store and post-analyze the data (e.g., for an entirely
different purpose than originally intended). In this sense, this
type of operation is most advantageous when used in a real-
time setting concerning instantaneous detection and diagnosis.
For instance, a human inspector can use this approach (i.e.,

activate this SVD operation) to quickly check the mode shapes
of a structure before deciding whether and what more (manual)
inspection is needed.

VI. SIMULATION AND EXPERIMENTATION

We use both simulation and experimentation on a real
sensor platform to evaluate the performance of the proposed
algorithms.

A. Simulations

For simulation we use CPLEX [37] to solve the ILPs,
and all simulations are done on topologies generated by
randomly distributing nodes assuming a density of 8 nodes per
100 square meters. The transmission range is assumed to be
10m. For each simulation parameter, we generate 100 random
topologies and plot the average as well as error-bars showing
2× variance. (Note that the variance after averaging over 100
runs becomes negligible leading to very small error bars in all
figures.) For comparison, we also report (i) the performance
without in-network computation, and (ii) the performance
with in-network computation over randomly generated clusters
where the cluster-head for each node is chosen uniformly at
random, and once clusters have been thus formed, FFT’s are
exchanged between cluster-heads to ensure combinability.A
performance comparison with the method proposed in [8]–[10]
is discussed in Section VII. For the SVD computation, we use
R= 8192 bytes andr = 32 bytes [17]. We also assume that
the computational delay constraint is the same for all nodes:
nv = n,∀v∈V.

We first examine the effect of delay constraintn on energy
consumption by solving the optimization problem proposed
in Section II-B (without incorporating the accuracy constraint
in the formulation). Figure 6(a) compares the number of
bytes transmitted under the lower bound (Lemma 1), using the
optimal communication structures derived by solving ILPP1
(Section IV-A), and using the three approximation algorithms
ILP P3 (Section IV-C), LPR (Figure 4), and DAA (Figure 5),
for different values ofn4, with |V|= 6.

We observe that the approximation algorithms perform
very close to the optimal. It takes more than one hour of
computation to solve the ILPP1 for |V| > 6 on a 2.99 GHz
machine with 4 GB of RAM. Hence for larger values of|V|
we only compare the three approximation algorithms against
the lower bound, shown in Figure 6(b). We note that (i) all
approximation algorithms are within 1% of the optimal, and
(ii) DAA outperforms LPR. These results also demonstrate
the advantage of using the ILPP3 over ILP P1; it runs much
faster and converges within an hour up to|V|= 40.

For even larger value of|V|, we compare the performance
of DAA (as it consistently outperforms LPR) against the lower
bound in Figure 6(c). We observe that it is always within 2%
of the optimal. These results clearly demonstrate the advantage
of in-network computation as the number of bytes transmitted
over the network are reduced by more than a third. Finally,

4The values ofn chosen are typical for the Narada sensor platform and the
delay constraints associated with the SHM application.
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Fig. 6. Simulation Results. Ratio of the number of bits transmitted with different algorithms and the lower bound. (a)|V|= 6 (1.0,1.2). (b) |V|= 30 (1.5,1.5).
(c) |V| = 200 (3.1,3.1). The numbers in brackets denote the following ratios: (the ratio of number of bytes transmitted in the network withoutin-network
computation and the lower bound, the ratio of number of bytestransmitted in the network with random clustering and the lower bound). Simulation Results
with an accuracy constraint. (g)|V|= 5,n= 5. (h) |V|= 30. (i) |V |= 200.

Figure 6(c) also shows the trade-off between communication
energy and computational delay. The more delay allowed per
node (larger the value ofn), the smaller the energy consumed
in the network.

In Figures 6(d)-6(f) we compare the performance of dif-
ferent approximation schemes after incorporating an accuracy
constraint in the formulation for different values of|V|, n
and na

5. In this scenario, we observe that ILPP3 yields
results within 2% of the optimal while DAA yields values
within 45% of the optimal. And the advantage of using a
better centralized algorithm becomes more pronounced as the
value ofna increases as any sub-optimal local decision in this
scenario leads to an extra transmission of a FFT (R bits) and
not just an eigenvector (r bits).

We next evaluate the performance of the proposed algo-
rithms in a tri-linear topology of Figure 7(a). This topology
is representative of what is deployed over a highway bridge.
For such structures, the sensors are attached to the underside
of the bridge and typically the topology is such that sensors
are placed at regular spacings along the length of the bridge,
and a few such parallel lines span the width of the bridge
(typically about 2-4 traffic lanes). Such a topology would also
be applicable in the monitoring of tall buildings: in experiment
with model buildings, sensors are typically placed at the same
lateral positions on each floor, resulting in a few parallel lines
(vertically in a 3-D space).

5The value ofna depends on the noise level in the sensors and one needs
to calibrate the sensors to determine how large the cluster size needs to be.

Figure 7(b) compares the performance of ILPP3, LPR and
DAA for this tri-linear topology with |V| = 30. We again
observe that these approximation schemes are within 2% of
the optimal. In this topology, the ratio of the number of bits
transmitted without in-network computation and the lower
bound is 5.6, while the same ratio with random clustering
and the lower bound is 3.3. Thus, the improvements become
even more significant in this more realistic topology.

Our simulations have so far assumed a binary physical
layer without considering the effects of shadowing and ran-
dom fading which can cause packet losses. Incorporating
these effects in our model is quite straightforward as the
proposed algorithms allows each edge to have a different
weight. Choosing this weight to increase with the loss rate
will ensure that good links (with lower loss rates) are preferred
over bad ones for routing data. Figure 7(c) compares the
performance of DAA against the lower bound for a randomly
generated 30 node topology assuming log-normal shadowing
and Rayleigh fading at the physical layer. The weight of
an edgee is set to we = 1

1−le
where le is the loss rate

on edgee and is empirically measured. The choice of this
weight, which represents the expected amount of transmissions
required per packet, ensures that edges with low loss rate are
preferred by our routing algorithms. Again, we observe thatthe
approximation algorithm is within 30% of the optimal. In this
topology, the ratio of the number of bits transmitted without
in-network computation and the lower bound is 7.4, while the
same ratio with random clustering and the lower bound is 10.1.
Since physical layer losses cause extra transmissions of size
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Fig. 7. (a) The tri-linear topology. (b) Ratio of the number of bits transmitted with different algorithms and the lower bound in the tri-linear topology;
|V|= 30. (c) Ratio of the number of bits transmitted with different algorithms and the lower bound with a physical layer shadowing and fading;|V| = 30.

R, the improvement of using networked computation becomes
more significant in this scenario.

B. Experiments

We next evaluate the performance of DAA on a real sensor
platform, the Narada sensing unit developed at the University
of Michigan [11]. This wireless device is powered by an
Atmel ATmega 128 microprocessor. It is supplemented by
128 KB of external SRAM and utilizes the 4-channel, 16-
bit ADS8341 ADC for data acquisition. Narada’s wireless
communication interface consists of Chipcon CC2420 IEEE
802.15.4 compliant transceiver, which makes it an extremely
versatile unit for developing large-scale WSNs. This prototype
is powered by a constant DC supply voltage between 7 and 9
volts, and has an operational life expectancy of approximately
48 hours with 6 AA batteries, given constant communication
and data analysis demands.

We use a testbed of 12 Narada sensor nodes deployed in a
corridor in the Electrical Engineering and Computer Science
building at the University of Michigan. Each Narada wireless
sensor is programmed with DAA algorithm, and asked to
autonomously form computational clusters with varying values
of n. The root of the tree is randomly selected in each
experiment. In a manner similar to [36], the weight of an
edgee is set towe =

1−pCF
1+e−0.4(40+RSSI)

6, whereRSSIis the radio
signal strength indicator reported by the radio andpCF is the
probability that a communication link with perfect RSSI fails
due to unforeseen circumstances and is empirically measured
to be equal to 0.1 for the Narada platform.

The objective of our experiment is to study the time it takes
to construct the data collection tree using DAA, as well as the
cluster sizes and the corresponding sensing cycles as a function
of n in a real-world setting. Figures 8(a) and 8(b) plot the
time it takes to construct the tree as a function ofn and |V|
respectively7. We see that this time only depends on the size
of the network. Figure 8(c) shows the data collection trees
constructed forn= 3 andn= 5, respectively. To summarize,

6This weight is used as Narada provides access to the RSSI information.
If the RSSI information were not available, we would have to collect and
maintain loss rates and either usewe =

1
1−le

as before or some variant.
7Since each instance of the experiment is conducted at a different time and

the environment is dynamic, the weights are recomputed for each instance.

the implementation and the experimental results verify the
feasibility of DAA on a real SHM sensor platform.

VII. R ELATED WORK

In this section, we review prior works most relevant to this
paper, in the areas of in-network computation, clustering,and
functional decomposition for SHM sensor networks.

A. In-network Computation

Prior works that study the communication structure for the
purpose of in-network computation generally fall into one of
three categories.

1) Delivering Equivalent Representation of Sensor Data:
Within the first category, there is a body of literature that
focuses on how to represent and deliver sensor data (in its
original or an equivalent form) in as few bits as possible
through well designed communication structures, so that a
certain function f (x1,x2, · · · ,xn), where xi originates from
sensor i, may be computed (near) error-free at a central
location, see e.g., [8]–[10]. The emphasis here is primarily on
the presentation and delivery of the set of data{xi}, rather than
the actual computation off () within the network. For instance,
in [8], [9] the class ofsymmetric functionsis considered, i.e.,
f () is invariant to any permutation of{xi}. It is observed that
due to the symmetry, for the purpose of computingf () an
equivalent representation of the data is its histogram, provided
that xi takes values from a finite set. Specifically, ifxi can
take onD different values, then representing the histogram
over n sensor inputs/measurementsx1,x2, · · · ,xn takes a total
of D logn bits (as opposed to directly representing the data
which takes a total ofnlogD bits), which becomes a very
attractive way of delivering equivalent input tof () when the
network (i.e.,n) is large. As a result, it is shown in [8], [9]
that the histograms can be collected at a rate of1

logn along
a suitably constructed tree. Similar results are also available
for sub-classes of symmetric functions, including the class of
type-sensitive functions and type-threshold functions, as well
as when the channels are noisy [8]–[10].

An obvious advantage of the model used in the above
studies lies in its generality; it applies to any symmetric
function f () (interestingly the centralized SVD computation
is a symmetric operation by the above definition). On the
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Fig. 8. (a) Time to construct the tree vsn; |V|= 12. (b) Time to construct the tree vs|V|; n= 4. (c) Data collection trees forn= 3 andn= 5.

other hand, this approach does not actually computef () within
the network (to do so one will need to exploit additional
features of f ()). This is the main difference between our
approach and those cited above. As a result of this difference,
in our case the data that ultimately reaches the base station
is no longer an equivalent representation of the original data
but rather the computed output off (). In particular, in the
case of SVD computation, a single measurementxi is of
size R bits (the FFT), which can take onD = 2R possible
values. If we use the histogram approach above, then the total
number of bits reaching the base station would be 2R logn
(or nlog2R= nR if we encode directly the values and not the
histogram). In contrast, under our distributed computation the
total number of bits reaching the base station isnr, r ≪ R,
which is significantly less, unlessn is very large compared to
R (note that this is only calculating the amount delivered to
the base station; there are also savings in the amount of data
transmitted within the network). Specifically, for networks like
the ones we study in Section VI, the ratio of the number of
bits transmitted over the network by the histogram approach
and the lower bound is more than 102400.

2) Information Theoretic Formulations:Within the second
category, there is a rich literature on information theoretic
formations of in-network data processing. In many cases,
the goal is to deliver an (near) equivalent representation of
the original data set{xi} to a central location by using a
combination of data compression and communication structure
(data collection) design, see e.g., the classical distributed
source coding [38], [39] and applied to sensor networks [26],
[40]–[45]. A typical application of these methods is the recon-
struction of a field image. In other cases, the goal is to compute
a function f () over correlated measurements{xi}, see e.g.,
[46], [47]. In both cases, the emphasis is on the exploitation of
the correlation structure among measurements to design good
encoders and decoders at successive sensor nodes as data is
being collected, and/or design good communication and data
collection structures that work well with the encoding.

It is possible for us to also exploit correlation to further re-
duce the amount of data transmitted in the SVD computation.
In particular, one could encode the FFTs and the computed
mode shapes (eigenvectors) using fewer number of bits. This

can be applied directly on top of the communication structure
derived in the paper; thus the two are orthogonal. A more
sophisticated approach can take correlation into account in
constructing the data collection tree, e.g., it may be beneficial
to send highly correlated FFTs to the same node for SVD
computation, in the hope that the computed eigenvectors may
also be correlated so fewer number of bits are needed to
encode them for further transmission. Both approaches require
the knowledge of the underlying correlation structure and
is out of the scope of the present paper; they are however
interesting directions of future research.

3) Distributed Computation:A third class of studies fo-
cuses on deriving explicit, distributed computational proce-
dures to be performed over a network; this category is the
closest in spirit to what we presented in this paper. A prime
example is the family of random gossip algorithms, see e.g.,
[3]–[5], [48] and the references therein. There are also various
deterministic algorithms, see e.g., [1], [2] for query aggrega-
tion and processing, [6] for complexity analysis, and [7] for the
computation of certain Boolean functions. A common feature
of these studies and the approaches developed therein is that
in most cases the computation is limited to relatively simple
functions like max, min, averages, and sums. These obviously
are not sufficient to represent the many complex computational
requirements demanded by practical engineering applications
like the one studied in this paper.

B. Clustering

In addition to the literature on in-network data processing,
another area very relevant to the work presented here is
clustering. Clustering algorithms have been developed fora
variety of purposes, see e.g., [49], [50] for routing in ad
hoc networks, [51]–[53] for the energy efficient operation and
data collection in wireless sensor networks, among others;
see also a survey [54] and the references therein. Driven
by different goals, different clustering algorithms vary in
their constructions, and we do not know of any existing
clustering algorithm that applies to the problem considered
in this paper. This is primarily due to the combination of the
delay constraint (which limits the size of a cluster) and the
unique combinability constraint (which requires the clusters
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to overlap in a specific way). Most prior work on clustering
does not explicitly require overlapping between clusters,with
the notable exception of [55]. In [55], a clustering algorithm
is presented to construct overlapping clusters that cover all
nodes and where all cluster heads are connected. However, the
overlapping condition in this case only requires that one cluster
must share a certain number of nodes withat least another
cluster; as a result, there need not be any overlap between two
sets of clusters that overlap within their respective sets.This
is quite different from the overlapping condition requiredin
our SVD computation, where one cluster is required to either
directly or indirectly (through a common, overlapping third
cluster) overlap withall other clusters. The resulting clustering
structures are also quite different.

C. Functional Decomposition for SHM

Finally, the studies on distributed computation of different
SHM algorithms [12], [17], [56] focus chiefly on the cor-
rectness of the functional decomposition and do not study
the routing problem. They assume a fully connected mesh of
sensor nodes and impose an arbitrary communication structure
to demonstrate the advantages of distributed computation.
To our knowledge, only one, [36], studies the determination
of a routing structure for a given topology; however, the
formulation in this paper does not have a clearly defined
optimization objective and the resulting algorithm has no
performance guarantee. In contrast, our work is more general
and systematic with a clearly defined performance objective,
and all the approximation algorithms proposed have proven
approximation factors.

VIII. C ONCLUSION

This paper studies the problem of networked computation
within the context of wireless sensor networks used for
structural health monitoring. It presents centralized ILPs and
distributed approximation algorithms to derive optimal com-
munication structures for the distributed computation of SVD.
Both simulations and implementations are used to evaluate
their performance. Our results demonstrate the advantage of
in-network computation as it significantly reduces the amount
of data transmitted over the network.

There are a number of open problems we are interested
in pursuing. One concerns combining this distributed compu-
tation approach with the compression of data, as discussed
in Section VII. A second problem is to seek automated
procedures to decompose a given computational task into
elements/operators at the right level granularity. Our present
approach relies on such a decomposition being available.
Such an automated decomposition procedure would make
the overall distribution computation framework much more
general and application-independent.
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