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ABSTRACT

In this paper we study the asymptotic connectivity of a low
duty-cycled wireless sensor network, where all sensors are
randomly duty-cycled such that they are on/active at any
time with a fixed probability. A wireless network is often said
to be asymptotically connected if there exists a path from ev-
ery node to every other node in the network with high prob-
ability as the network density approaches infinity. Within
the context of a low duty-cycled wireless sensor network,
the network is said to be asymptotically connected if for all
realizations of the random duty-cycling (i.e., the combina-
tion of on and off nodes) there exists a path of active nodes
from every node to every other node in the network with high
probability as the network density approaches infinity. With
this definition, we derive conditions under which a low duty-
cycled sensor network is asymptotically connected. These
conditions essentially specify how the nodes’ communica-
tion range and the duty-cycling probability should scale as
the network grows in order to maintain connectivity.

I. INTRODUCTION

The Army’s Future Combat Systems potentially rely heavily
on the efficient use of unattended sensors to detect, identify
and track targets in order to enhance situation awareness,
agility and survivability. Among different types of sensors,
the unattended ground sensors (UGS) are typically deployed
and left to self-organize and carry out various sensing, mon-
itoring, surveillance and communication tasks. These sen-
sors are operated on battery power, and energy is not al-
ways renewable due to cost, environmental and form-size
concerns. This imposes a stringent energy constraint on the
design of the communication architecture, communication
protocols, and the deployment and operation of these sen-
sors. It is thus critical to operate these sensors in a highly
energy efficient manner.

It has been observed that low power sensors consume signif-
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icant amount of energy while idling in addition to that con-
sumed during transmission and reception. Consequently, it
has been widely considered a key method of energy conser-
vation to turn off sensors that are not actively involved in
sensing or communication. By functioning at a low duty
cycle, i.e., by reducing the fraction of time that a sensor
is active/on, sensors are able to conserve energy, which
consequently leads to prolonged lifetime. This is partic-
ularly applicable in scenarios where sensors are naturally
idle for most of the time (e.g., detection of infrequent events
such as fire, fault, etc., and transmission of very short mes-
sages). However, as sensors alternate between sleep and
wake modes, its coverage and communication capability are
inevitably disrupted. Duty-cycling sensory devices directly
leads to loss of sensing coverage, while duty-cycling radio
transceivers directly leads to loss of network connectivity. It
is therefore crucial to understand the performance degrada-
tion as a result of duty-cycling the sensor nodes, and to de-
sign good networking mechanisms that work well with low
duty-cycled sensor networks.

In this paper we aim at understanding the fundamental re-
lationship between duty-cycling the radio transceivers and
the resulting network connectivity. Specifically we will con-
sider random duty-cycling where sensor nodes are on/awake
with a certain probability (called the wake/active probabil-
ity). The definition of connectivity refers to the existence of
a route (consisting of active nodes) from each active node
to every other active node in the network. While intuitively
increasing nodes’ transmission radius and decreasing nodes’
active probability have opposite effects on the connectivity,
it is less clear how they are related quantitatively to ensure
connectivity. We will focus on understanding how these
quantities scale as the network density increases, by study-
ing the asymptotic connectivity of the network. Asymptotic
connectivity in this context refers to the existence of a route
(consisting of active nodes) from each active node to every
other active node in the network, as the number of nodes
approaches infinity.

More precisely, we consider the network with n nodes uni-
formly and independently placed in a unit square in <2.
Each node is awake with probability p(n) and is connected
to active neighbors within the range of transmission R(n)
when it is active. The problem under consideration is how
p(n) and R(n) are related to ensure that the network is con-
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nected with high probability as n goes to infinity. An impor-
tant prior work is [1]. Our network model is essentially the
same as that studied in [1], with the only difference that in
[1] the wake/active probability p(n) is always 1. [1] showed
that it is sufficient and necessary for each node to be con-
nected to Θ(log n) nearest neighbors to achieve asymptotic
connectivity as n approaches infinity. Building on this re-
sult, in this study we show that the above randomly duty-
cycled network is asymptotically connected with probability
one if and only if the average number of active neighbors a
node has is on the order of log (np(n)). It has to be men-
tioned that this result cannot be obtained as a straightforward
extension to [1] as discussed in more detail in subsequent
sections.

The rest of the paper is organized as follows. We present the
network model and our main result in the next section, along
with a discussion on its relationship to the related work. In
Section III we give a number of preliminary results, and Sec-
tion IV outlines the proof of the main result. Section V con-
cludes the paper. Due to space limit, most of the proofs are
not included, but they can be found in [2].

II. NETWORK MODEL, MAIN RESULT AND DISCUSSION

Consider a unit square in <2, where n nodes are deployed
uniformly and independently. Time is slotted. In each time
slot, a node has a probability p(n) of being awake or active,
referred to as the active probability. An active node is con-
nected to its active neighbors within a circle of radius R(n),
referred to as the transmission range. Such a network is said
to be asymptotically connected if there exists a path of active
nodes between any pair of two active nodes with high prob-
ability as the density n approaches infinity. In order to study
the conditions under which such a network is asymptotically
connected, we will utilize a number of results derived for a
similar, but not duty-cycled network (i.e., where p(n) = 1
for all n). We begin by introducing the following types of
networks/graphs that will be used in this paper.

• Gp(n,R(n)) denotes the duty-cycled network men-
tioned above, i.e., a network formed in a unit square
where n nodes are deployed uniformly and indepen-
dently. In this network a node is active with probability
p(n) and when active is connected to its active neigh-
bors within a circle of radius R(n).

• G(n,R(n)) denotes a non-duty-cycled network formed
in a unit square with n nodes deployed uniformly and
independently. In this network a node is always active
and is connected to neighbors within a circle of radius
R(n).

• Gλ(n,R(n)) denotes a network formed as a Poisson

point process with intensity n. In this network a node
is always active and is connected to neighbors within a
circle of radius R(n).

• F(n, φn) denotes a network formed in a unit square
with n nodes deployed uniformly and independently.
In this network a node is always active and is connected
to its φn nearest neighbors.

• Fλ(n, φn) denotes a network formed as a Poisson point
process with intensity n. In this network a node is al-
ways active and is connected to its φn nearest neigh-
bors.

The following notations are used throughout this paper. For
two functions f(n) and g(n) defined on some subset of
the real line, (1) f(n) = O(g(n)) implies that there exist
numbers n0 and M such that |f(n)| ≤ M · |g(n)| for all
n > n0 (asymptotic upper bound); (2) f(n) = Θ(g(n)) im-
plies that f(n) = O(g(n)) and g(n) = O(f(n)) (asymp-
totic tight bound); and (3) f(n) = o(g(n)) implies that
limn→∞ f(n)/g(n) = 0 (asymptotically negligible).

Our main result is shown in the following theorem.

Theorem 1 There exist two constants k1 and k2, 0 < k1 <
k2, such that:

1) for np(n)R2(n) = k2 log(np(n)), we have

lim
n→∞

Pr{Gp(n,R(n)) is connected } = 1 , (1)

2) for np(n)R2(n) = k1 log(np(n)), we have

lim
n→∞

Pr{Gp(n,R(n)) is disconnected } = 1 . (2)

Eqn. (1) is also commonly viewed as a sufficient condition
on connectivity and Eqn. (2) commonly viewed as a neces-
sary condition on connectivity. Put together, np(n)R2(n) =
Θ(log (np(n)) can be viewed as the sufficient and necessary
conditions for asymptotic connectivity. In subsequent sec-
tions we will also refer to these two equations as part I and
part II of the theorem.

Below we sketch the idea of the proof of the above theorem
and discuss this result within the context of other existing
results on asymptotic connectivity.

Figure 1 summarizes the main idea of the proof, and il-
lustrates where our technical contributions lie. The net-
work we are interested in, Gp(n,R(n)), is shown on the top
left. To prove the theorem, we first show that if a Pois-
son network with intensity np(n), i.e., Gλ(np(n), R(n)),
is asymptotically connected/disconnected given the con-
dition np(n)R(n)2 = k log(np(n)) for some k > 0,
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Fig. 1. Outline of the proof of Theorem 1.

then Gp(n,R(n)) is asymptotically connected/disconnected
given the same condition (for possibly different constants).

This process is illustrated by the arrow labeled with “A”
in the figure. Conceptually, because of the random duty-
cycling, there are only on average np(n) nodes awake in the
network at any instance of time. This makes the network
Gp(n,R(n)) behave like a Poisson network rather than one
with a fixed number of nodes. However, in order to study
asymptotic connectivity np(n) needs to approach infinity,
which renders inapplicable the standard result of approxi-
mating a binomial distribution with a Poisson distribution
(which assumes a finite intensity). Although this seems a
highly intuitive result, we were not able to find a prior proof.
We give one such proof in Lemma 3, where we establish
the Poisson approximation of a binomial distribution when
np(n) → ∞.

We next show that if the network Fλ(np(n), φnp), i.e.,
a Poisson network with intensity np(n) where each node
is connected to its φnp nearest neighbors, is asymptoti-
cally connected/disconnected given the condition φnp =
c log(np(n)), for some c > 0, then the network
Gλ(np(n), R(n)) is asymptotically connected/disconnected
given the condition np(n)R(n)2 = k log(np(n)) for some
k > 0.

This process is illustrated by the arrow labeled with “B”
in the figure. Here Fλ(np(n), φnp) is a Poisson network
with φnp neighbors for each node, and Gλ(np(n), R(n))
is a Poisson network with neighbors within a finite radius
R(n) of each node. Note that for the latter, the condition
np(n)R(n)2 = k log(np(n)) for some k > 0 is on the aver-
age number of neighbors a node has, whereas for the former
the condition φnp = c log(np(n)) for some c > 0 is on the
actual number of neighbors a node has.

The last step is to show that network Fλ(np(n), φnp) is
asymptotically connected/disconnected given the condition
φnp = c log(np(n)), for some c > 0. This network is
essentially the same as Fλ(n, φn) (with a different inten-
sity). This result is obtained in similar ways as in [3], which
showed the same result for F(n, φn). This step is illustrated
by the arrow labeled with “C” in the figure.

Two most relevant results to that studied in this paper are
from [1] and [3], respectively. In particular, as mentioned
above [1] studied a network of the type F(n, φn), and it was
shown that it is sufficient and necessary for each node to
be connected to its Θ(log n) nearest neighbors in order to
achieve asymptotic connectivity for this network. An imme-
diate thought was whether one could simply replace n with
np(n) in this result to obtain the conditions for a network
of the type Gp(n,R(n)), assuming np(n) → ∞. Although
intuitively appealing, there is a conceptual difference. Re-
placing n with np(n) in this result implies that the sufficient
and necessary conditions for asymptotic connectivity are for
every active node to be connected to np(n) nearest active
neighbors. However, these conditions are not directly guar-
anteed when the neighborhood of each node is defined by a
fixed radius R(n) with randomly deployed nodes, and when
the nodes are randomly duty-cycled. Instead, what Theorem
1 shows is that it is sufficient and necessary for each active
node to be connected to an average of Θ(log(np(n))) active
neighbors for asymptotic connectivity of a network of the
type Gp(n,R(n)).

In [3] a network of the type G(n,R(n)) was considered, and
it was shown that with πR2(n) = log n+c(n)

n , the network
is asymptotically connected with probability one if and only
if c(n) → ∞. This result is not directly used in our study.
However, throughout this paper we follow heavily the ba-
sic definitions and methods used by [1] and [3], as well as
use a number of (intermediate) results derived in them with
appropriate modifications. These will be pointed out in sub-
sequent sections.

[4] showed that the sufficient and necessary conditions for
asymptotic coverage with connectivity in a grid network are
p(n)R2(n) = Θ( log n

n ). Although mathematically similar,
these conditions are not the same as the ones given by Theo-
rem 1, since asymptotic coverage with connectivity is a dif-
ferent measure from asymptotic connectivity, and a grid net-
work is different from a random network. [4] also showed
that the sufficient condition for asymptotic connectivity in
the grid network is in the form of

np(n)e−
πp(n)R2(n)n

2 → 0 as n → ∞.

It can be shown that p(n)R2(n) = Θ( log n
n ) implies

np(n)e−
πp(n)R2(n)n

2 → 0 as n and np(n) both go to infin-
ity. The reverse is not necessarily true. Therefore, we see
that the condition for a randomly deployed network, i.e.,
p(n)R2(n) = Θ( log n

n ), is more restrictive than that for a
grid network. Other related work includes [5], which studied
the necessary and sufficient conditions of both asymptotic
coverage and connectivity for a network with fixed node
density λ but increasing area A. In addition, the concepts
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of k-connectivity and path connectivity were studied in [6]
and [7], respectively.

III. PRELIMINARIES

For the proof of Theorem 1, we need the following defini-
tions which were originally defined in [1], with slight gen-
eralization to account for p(n) < 1.

Definition 1 Square tessellation τnp
S . The unit square is

split equally into Mnp = d
√

np(n)
K log(np(n))e2 small squares

as depicted in Figure 2, where a constant K > 0 is a
tunable parameter, and dxe is the smallest integer larger
than or equal to x. This tessellation of the unit square
will be denoted by τnp

S . The small squares are denoted by
Snp

i , i = 1, 2, · · · ,Mnp, from left to right, and from top to
bottom.

Definition 2 k-filling event. Consider a structure composed
of 21 squares each of side length d/6 and placed in a larger
square of side length d: one at the center and the others at
the periphery of the larger square with distance d/4 between
the center square and the others. A k-filling event occurs if
there are at least k nodes in each of 21 small squares and no
nodes in the space between the center square and the others.

Definition 3 Disk tessellation τnp
D (a, b). Consider a unit

square with its bottom left corner being the origin, as shown
in Figure 3. Let r be such that πr2 = K log(np(n))

np(n) , where
K > 0 is a tunable parameter. Consider a grid of squares
of size 2r, with corners at (a mod 2r, b mod 2r). Inside
each square, we inscribe a disk of area K log(np(n))

np(n) . The set
of all disks intersecting the unit square are called the Disk
Tessellation τnp

D (a, b). The disks intersecting the unit square
are denoted by Dnp

i , i = 1 ≤ Mnp.

· · ·

· · ·
·
· · ·

· · ·

· · ·
(a,b)

o

npD1
npD2

npD3

Fig. 3. The disk tessellation τ
np

D .

Throughout our analysis, the asymptotic regime of interest
is where the duty cycle p(n) → 0, n → ∞ and np(n) → ∞.

Consider the network Gλ(np(n), R(n)), where 0 < p(n) <
1. Denote the number of nodes that fall into the unit square
by M̃np, and denote the number of nodes that fall into square
Snp

i by Ñnp
i .

Lemma 1 limnp(n)→∞ Pr{|M̃np − np(n)| ≤√
np(n) log(np(n))} = 1.

Consider Gp(n,R(n)). Denote the number of active nodes
in the unit square by M a

n , which is a random variable. De-
note the number of active nodes in square Snp

i by Na
i .

Lemma 2 limnp(n)→∞ Pr{|Ma
n − np(n)| ≤√

np(n) log(np(n))} = 1.

Lemma 3 Suppose that p(n) → 0 and np(n) → ∞ as n →
∞. For any nonnegative j ≤ n and sufficiently large n,
Pr{Ma

n = j} is approximated by Pr{M̃np = j}, i.e., in the
limit their difference goes to zero.

Proof: We have that

Pr{Ma
n = j} = (n

j )p(n)j(1 − p(n))n−j ,

P r{M̃np = j} =
(np(n))je−np(n)

j!
.

As Pr{Ma
n = j} is a binomial distribution determined by n

and p(n), we will denote it by b(j;n, p(n)). Thus

b(0;n, p(n)) = (1 − p(n))n. (3)

By the definition of the derivative of function log x, we have

lim
δ→0

log x − log(x − δ)

δ
=

1

x
. (4)
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Since p(n) → 0 as n → ∞, Eqn. (4) can be written as

lim
n→∞

log x − log(x − p(n))

p(n)
=

1

x
.

For x = 1, we have

lim
n→∞

− log(1 − p(n))

p(n)
= 1.

In other words, ∀ε1 > 0, there exists N1 > 0 such that
n > N1 implies |− log(1−p(n))

p(n) − 1| < ε1. Let ∆(n) ≡
− log(1−p(n))

p(n) − 1, such that ∆(n) ∈ [−ε1, ε1]. For all
ε1 > 0 and ε2 > 0, there exists N2 > 0 such that
n > max{N1, N2} implies

|(1 − p(n))n − e−np(n)|
= |(1 − p(n))

− 1
p(n)

·(−np(n)) − e−np(n)|
= |e

−1
p(n)

log(1−p(n))·(−np(n)) − e−np(n)|
= |e(1+∆(n))·(−np(n)) − e−np(n)|
= |e−np(n)(e−np(n)·∆(n) − 1)|. (5)

Because |∆(n)| is bounded by ε1, |e−np(n)·∆(n) − 1| is
bounded by some N3 > 0. Therefore, Eqn. (5) ≤ |e−np(n)| ·
N3 < ε2. Thus for sufficiently large n we have

b(0;n, p(n)) ≈ e−np(n).

Furthermore, for any fixed j we have

b(j;n, p(n))

b(j − 1;n, p(n))
=

np(n) − (j − 1)p(n)

j(1 − p(n))
.

Therefore for sufficiently large n, we have

b(j;n, p(n)) ≈ (np(n))j

j!
e−np(n) = Pr{M̃np = j}.

Lemma 4 For any K > 1
log(4/e) ,

limnp(n)→∞ Pr{maxi |Ñnp
i − K log(np(n))| ≤

µK log(np(n))} = 1,∀µ ∈ (µ∗, 1),
where µ∗ ∈ (0, 1) is the sole root of the equation
−µ∗ + (1 + µ∗) log(1 + µ∗) = 1

K .

IV. PROOF OF THEOREM 1

In this section, we prove both two parts of Theorem 1. For
simplicity we will ignore edge effect in our discussion, but
note that edge effect does not alter the main theorem (see

also [1,3]). The proof of each part consists of three steps. In
part I, the proof proceeds as follows:

(1) Given np(n)R(n)2 = k2 log(np(n)) for some
k2 > 0, we show Gp(n,R(n)) is asymptotically
connected if Gλ(np(n), R(n)) is asymptotically
connected.

(2) It is shown that if there exists c2 such
that Fλ(np(n), c2 log(np(n))) is asymptotically
connected, then there exists k2 such that
Gλ(np(n), R(n)) is asymptotically connected
with np(n)R(n)2 = k2 log(np(n)).

(3) We show that Fλ(np(n), c2 log(np(n))) is asymp-
totically connected for some c2 > 0.

For the first step, note that R(n) is bounded and that n → ∞
implies np(n) → ∞. For sufficiently large n,

Pr{Gp(n,R(n)) is connected}

=
n∑

j=0

Pr{Gp(n,R(n)) is connected|M a
n = j}

· Pr{Ma
n = j}

= (
∑

|j−np(n)|≤
√

(np(n) log(np(n)))

+
∑

otherwise

)

Pr{Gp(n,R(n)) is connected|M a
n = j}

· Pr{Ma
n = j}

=
∑

|j−np(n)|≤
√

(np(n) log(np(n)))

Pr{Gp(n,R(n)) is

connected|Ma
n = j} · Pr{Ma

n = j} + o(1)

=
∑

|j−np(n)|≤
√

(np(n) log(np(n)))

Pr{Gλ(np(n), R(n))

is connected|M̃np = j} · Pr{M̃np = j}
· (1 + o(1)) + o(1) , (6)

where the third equality is based on Lemma 1. The fourth
equality is based on Lemma 3 and the fact that Gp(n,R(n))
given j active nodes is the same as Gλ(np(n), R(n)) given
j nodes are in the network. From Lemma 2 we have that
Eqn. (6) can be written as

(1 + o(1)) · (Pr{Gλ(np(n), R(n)) is connected}
+o(1)) + o(1).

Therefore if

lim
n→∞

Pr{Gλ(np(n), R(n)) is connected} = 1,

then

lim
n→∞

Pr{Gp(n,R(n)) is connected} = 1 ,
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thus completing the first step.

In Step 2 we show that if there exists c2 for
Fλ(np(n), c2 log(np(n))) to be asymptotically connected,
then there exists k2 for Gλ(np(n), R(n)) to be asymptot-
ically connected with np(n)R(n)2 = k2 log(np(n)). To
prove this, let us tessellate Gλ(np(n), R(n)) by τnp

S , with
K , µ satisfying Lemma 4. Consider some nodes whose
radius is R(n) =

√
2K log(np(n))

np(n) on τnp
S , as shown in Figure

4. Every circle contains a small square. From Lemma 4,
we know that each circle contains more than or equal to
K(1 − µ) log(np(n)) nodes with high probability, where
µ ∈ (µ∗, 1). We construct another graph by connecting
each node with its nearest K(1 − µ) log(np(n)) − 1
neighbors, which is Fλ(np(n),K(1 − µ) log(np(n)) − 1).
If Fλ(np(n),K(1 − µ) log(np(n)) − 1) is asymp-
totically connected, then Gλ(np(n), R(n)) with
np(n)R(n)2 = 2K log(np(n)) is asymptotically con-
nected. Thus there exists k2 = 2K when c2 = K(1 − µ).
This completes the second step.

Finally, we want to prove that Fλ(np(n), c2 log(np(n))) is
asymptotically connected for c2 > 2

log(4/e) . It suffices to
show that for some δ > 0,

lim
n→∞

Pr{Fλ(np(n), (2/ log(4/e) + δ) log(np(n))) is

connected} = 1.

This proof is similar to that in [1] and is thus not detailed
here.

The proof of the second part of Theorem 1 follows a very
similar procedure, consisting of three steps:

(1) Given np(n)R(n)2 = k1 log(np(n)) for some
k1 > 0, we show Gp(n,R(n)) is asymptoti-
cally disconnected if Gλ(np(n), R(n)) is asymp-
totically disconnected.

· · ·

· · ·

· · ·

· · · ·

· · ·
· · ·
· · ·

·

··
1'S 2'S 3'S

Fig. 5. Nodes with radius of transmission R(n) =
q

K′ log(np(n))
np(n)

on
τ

np

S′ .

(2) It is shown that if there exists c1 such that
Fλ(np(n), c1 log(np(n))) is asymptotically dis-
connected, then there exists k1 such that
Gλ(np(n), R(n)) is asymptotically disconnected
with np(n)R(n)2 = k1 log(np(n)).

(3) We show that Fλ(np(n), c1 log(np(n))) is asymp-
totically disconnected for some c1 > 0.

In the first step, similar to part I we will use the fact that
n → ∞ implies np(n) → ∞. With slight modification
from connectivity to disconnectivity on the argument used
in part I of the proof given early, one can easily show that if
limn→∞ Pr{Gλ(np(n), R(n)) is disconnected} = 1, then
limn→∞ Pr{Gp(n,R(n)) is disconnected} = 1. This com-
pletes the first step of the proof of part II.

In the second step we show that if there exists c1 such
that Fλ(np(n), c1 log(np(n))) is asymptotically discon-
nected, then there exists k1 such that Gλ(np(n), R(n)) with
np(n)R(n)2 = k1 log(np(n)) is asymptotically discon-
nected. To prove this, we tessellate Gλ(np(n), R(n)) by
τnp
S , with K , µ satisfying Lemma 4. Furthermore, we

split each square into d
√

9·21(1+µ)
1−µ e2 smaller squares. De-

note by τnp
S′ the new tessellation with d

√
np(n)

K log(np(n))e2 ·

d
√

9·21(1+µ)
1−µ e2 squares and let Ñ∗

i be the number of nodes in
each smaller square S ′

i. Thus Ñ∗
i is a Poisson random vari-

able with mean K(1−µ)
9·21(1+µ) log(np(n)). Similarly to Lemma

4, for K ′ > 1
log(4/e) , we have

lim
n→∞

Pr{max
i

Ñ∗
i ≤ (1 + µ)K ′ log(np(n))} = 1,

∀µ ∈ (µ∗∗, 1), (7)

where K ′ = 1−µ
9·21(1+µ)K and µ∗∗ is the root of −µ∗∗ + (1 +

µ∗∗) log(1 + µ∗∗) = 1
K′ .
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Consider some nodes with radius R(n) =
√

K′ log(np(n))
np(n) ,

the side length of each smaller square on τ np
S′ as shown in

Figure 5. Every circle is included in a group of at most
9 small squares. From Eqn. (7), each circle contains less
than or equal to K(1−µ)

21 log(np(n)) nodes with high prob-
ability. We can thus construct another graph by connecting
each node with its nearest K(1−µ)

21 log(np(n))−1 neighbors,
which results in Fλ(np(n), K(1−µ)

21 log(np(n))−1). Conse-
quently, if Fλ(np(n), K(1−µ)

21 log(np(n))−1) is asymptoti-
cally disconnected, Gλ(np(n), R(n)) with np(n)R(n)2 =

1−µ
9·21(1+µ)K log(np(n)) is asymptotically disconnected.
Note that for large np(n), K(1−µ)

21 log(np(n)) � 1. Thus
there exists k1 = 1−µ

9·21(1+µ)K when c2 = K(1−µ)
21 . This

completes the second step of the proof.

Finally, we want to prove that Fλ(np(n), c1 log(np(n))) is
asymptotically disconnected for c1 < (1−µ)K

21 . It suffices to
show that for some ε > 0,

lim
n→∞

Pr{Fλ(np(n), ε log(np(n)))) is connected} = 0.

Again this proof is similar to that in [1] and is not detailed
here.

V. CONCLUSION

In this paper we studied the asymptotic connectivity of a low
duty-cycled wireless sensor network where sensor nodes are
randomly duty-cycled according to a fixed active probabil-
ity. We derived the sufficient and necessary conditions for
the network to be connected as the number of node grows to
infinity. These conditions are in the form of the joint scaling
behavior of the number of nodes in the network as well as
the active probability. Thus such results reveal how duty-
cycling should be scaled as the network gets denser in order
to maintain network connectivity.1
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