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Abstract

This paper describes a new approach for estimating term
weights in a document, and shows how the new weighting
scheme can be used to improve the accuracy of a text clas-
sifier. The method uses term co-occurrence as a measure of
dependency between word features. A random-walk model
is applied on a graph encoding words and co-occurrence
dependencies, resulting in scores that represent a quan-
tification of how a particular word feature contributes to
a given context. Experiments performed on three stan-
dard classification datasets show that the new random-walk
based approach outperforms the traditional term frequency
approach of feature weighting.

1 Introduction

Term frequency has long been used as a major factor for
estimating the probabilistic distribution of features in adoc-
ument, and it has been employed in a broad spectrum of
tasks including language modeling [18], feature selection
[29, 24], and term weighting [13, 20]. The main drawback
associated with the term frequency method is the fact that it
relies on a bag-of-words approach. It implies feature inde-
pendence, and disregards any dependencies that may exist
between words in the text. In other words, it defines a ”ran-
dom choice,” where the weight of the term is proportional
to the probability of choosing the term randomly from the
set of terms that constitute the text. Such an approach might
be effective for capturing the relevance of a term in a local
context, but it fails to account for the global effect that the
term’s existence exerts on the entire text segment.

We argue that the bag-of-words model may not be the
best technique to capture term importance. Instead, given
that relations in the text could be preserved by maintaining
the structural representation of the text, a method that takes
into account the structural properties of the context could
lead to a better term weighting scheme. Previous work has
shown that a higher but costly performance can be achieved

by incorporating such dependencies [22].
In this paper we introduce a system that models

the weighting problem as a ”random-walk” rather than
”random-choice.” We assume an imaginary reader (or
“walker”) who steps through the text on a term by term ba-
sis. In this setting, the importance of the term is determined
by the probability of the random-walker to encounter the
target term in the text during the walk.

The new measure of term weighting integrates both the
locality of a term and its relation to the surrounding context.
We model this local contribution using a co-occurrence re-
lation in which terms that co-occur in a certain context are
likely to share between them some of their importance (or
significance). Note that in this model the relation between a
given term and its context is not linear. A given term relates
to a context, and the context, in turn, relates to a collec-
tion of terms. In order to model this recursive relation, we
use a graph-based ranking algorithm, namely the PageRank
random-walk algorithm [2], and its TextRank adaptation to
text processing [15]. In this paper, we show how TextRank
can be used to model the probabilistic distribution of word
features in a document. Through experiments performed
on a text classification task, we show that the random-walk
scores outperform the traditional term frequencies, typically
used to model feature weights for this task.

In the following, we first overview the basic principles
behind random-walk algorithms, and briefly describe the
TextRank application for text processing. We then show
how these random-walk models can be adapted to term
weighting, and demonstrate that the new weighting scheme
can be used to significantly improve the accuracy of a text
classification system, as compared to the traditional term
frequency weighting scheme. Finally, we conclude with a
discussion and directions for future work.

2 Random-Walk Algorithms

The basic idea implemented by a random-walk algorithm
is that of “voting” or “recommendation.” When one ver-
tex links to another one, it is basically casting a vote for
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that other vertex. The higher the number of votes that are
cast for a vertex, the higher the importance of the vertex.
Moreover, the importance of the vertex casting a vote deter-
mines how important the vote itself is, and this informa-
tion is also taken into account by the ranking algorithm.
While there are several random-walk algorithms that have
been proposed in the past, we focus on only one such al-
gorithm, namely PageRank [2], as it was previously found
successful in a number of applications, including Web link
analysis [2], social networks [8], citation analysis, and more
recently in several text processing applications [15, 9].

Given a graphG = (V,E), let In(Va) be the set of ver-
tices that point to vertexVa (predecessors), andOut(Va)
be the set of vertices that vertexVa points to (successors).
The PageRank score associated with the vertexVa is de-
fined using a recursive function that integrates the scores of
its predecessors:

S(Va) = (1 − d) + d ∗
∑

Vb∈In(Va)

S(Vb)

|Out(Vb)|
(1)

whered is a parameter that is set between 0 and 11.
The score of each vertex is recalculated upon each iter-

ation based on the new weights that the neighboring ver-
tices have accumulated. The algorithm terminates when the
convergence point is reached for all the vertices, meaning
that the error rate for each vertex falls below a pre-defined
threshold.

This vertex scoring scheme is based on a random-walk
model, where a walker takes random steps on the graph,
with the walk being modeled as a Markov process. Under
certain conditions (the graph is aperiodic and irreducible),
the model is guaranteed to converge to a stationary distribu-
tion of probabilities associated with the vertices in the graph
[10]. Intuitively, the stationary probability associatedwith
a vertex represents the probability of finding the walker at
that vertex during the random-walk, and thus it represents
the importance of the vertex within the graph.

Particularly relevant for our work is the application of
random-walks to text processing, as done in the TextRank
system [15]. TextRank has been successfully applied to
three natural language processing tasks: document summa-
rization, word sense disambiguation, and keyword extrac-
tion, with results competitive with those of state-of-the-art
systems. The strength of the model lies in the global rep-
resentation of the context and its ability to model how the
co-occurrence between features might propagate across the
context and affect other distant features. Our approach fol-
lows similar steps as used in the TextRank keyword extrac-
tion application, which derives term weights using a graph
representation that accounts for the co-occurrence depen-
dencies between words in the text. We are however incor-

1The typical value ford is 0.85 [2], and this is the value we are using
in our implementation.

porating a larger number of lexical units, and use different
window sizes, as we will show in the following section.

3 Random-Walks for Term Weighting

Starting with a given document, we determine a rank-
ing over the words in the document by using the following
models.

3.1 Random-walk Models

In our work, we experimented with several variations of
PageRank that incorporate additional information and vari-
ables into the traditional version shown in (Equation 1). We
summarize the best PageRank-based term ranking models
as follows:
↔

rwo : It represents the basic or original model, as described
in (Equation 1) in which we use an undirected graph with
a constant damping factor that adheres strictly to the tradi-
tional formula of PageRank.

↔

rwe.idf : This model represents an undirected graph ap-
proach that uses the weighted edge version of PageRank
with a variable damping factor. The edge weight is calcu-
lated by the following formula:

EV1,V2
= tf.idfV1

∗ tf.idfV2
(2)

whereEV1,V2
is the edge connectingV1 to V2, andtf.idf

represents the term frequency multiplied by the inverse doc-
ument frequency.

The damping factor is expressed as a function of the in-
coming edges’ weight, calculated as follows:

dEV1,V2

= EV1,V2
/Emax (3)

wheredEV1,V2
is the damping function andEmax represents

the highest weight for an edge in the graph. The resulting
node ranking formula is:

S′(Va) =
(1 − d)

|N |
+

∑

Vb∈In(Va)

C ∗
dEVb,Va

∗ S(Vb)

|Out(Vb)|
(4)

whereN represents the total number of nodes in the graph
and d is the damping constant,C is a scaling constant2,
In order to address the cases where there are no incom-
ing edges, we set the vertex scores in our experiments to
Vmin = (1 − d)/N .

The model biases the random walker toward nodes with
stronger edges compared to nodes with weaker edges.

↔

rwe.oc: This model is similar to the above approach how-
ever the damping factor for an edge is estimated in terms of
the bigram co-occurrence frequency of the two nodes con-
nected by the edge (equation 5). For example, if the bigram
”‘free software”’ occurred four times in a document then
the weight of the edge connecting ”‘free”’ and ”‘software”’
is four.

2C is a scaling constant which is set to 0.95
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EV1,V2
= tf(V1V2

) (5)

Figure 1. Convergence graphs for the
random-walk models

3.2 Term Weighting

Given a document, the following steps are applied to de-
rive a weight associated with the words in the text:

First, the document is tokenized for punctuation, special
symbols, and word abbreviations. Common words are also
removed, using a list of approximately 500 frequently used
words.3

Next, the resulting text is processed to extract both term
frequency (tf ) and random-walk (rw) weights for each
term in the document. Note that we do not apply any syntac-
tic filters, as it was previously done in applications of Text-
Rank. Instead, we consider each word as a potential feature.
To determinetf , we simply count the frequencies of each
word in the document. To determinerw, all the terms are
added as vertices in a graph representing the document. A
co-occurrence scanner is then applied to the text to relate
the terms that co-occur within a given window size. For a
given term, all the terms that fall in the vicinity of this term
are considered dependent terms. This is represented by a set
of edges that connect the term to all the other terms in the
window. Experiments are performed for window sizes of 2,
4, 6, and 8. Once the graph is constructed and the edges
are in place, the random-walk algorithm is applied.4 The
result of the ranking is a list of all the input terms and their
correspondingrw scores.

3We use the list of common words distributed with the Smart system
ftp://ftp.cs.cornell.edu/pub/smart.

4Unless otherwise stated, throughout this paper we refer to arandom-
walk implementation where the damping factor is set to 0.85, andthe con-
vergence threshold to 0.0001. Each graph node is assigned aninitial weight
of 0.25.

3.3 An Example

To understand why therw weights might be a good re-
placement for the traditionaltf weights, consider the exam-
ple in Figure 2, which models a sample document. Starting
with this text, a graph is constructed as follows. If a term
has not been previously seen, then a node is added to the
graph to represent this term. A term can only be represented
by one node in the graph. An undirected edge is drawn be-
tween two nodes if they co-occur within a certain window
size. Figure 3 shows the graph constructed for this text,
assuming a window size of 2, corresponding to two consec-
utive terms in the text (e.g.Londonis linked tobased).

London-based sugar operator Kaines Ltd confirmed it sold twocargoes of
white sugar to India out of an estimated overall sales total of four or five
cargoes in which other brokers participated. The sugar, forApril/May and
April/June shipment, was sold at between 214 and 218 dlrs a tonne cif, it
said.

Figure 2. Sample document

London

based

sugar

operator

Kaines

confirmed

sold

cargoes

white

Indiaestimatedsales

total

brokers

participated

April

MayJune

shipment

dlrs

tonne

cif

Figure 3. Sample graph

Term rw tf Term rw tf
sugar 16.88 3 participated 3.87 1
sold 14.15 2 april 3.87 2
based 7.39 1 india 1.00 1
confirmed 6.90 1 estimated 1.00 1
Kaines 6.81 1 sales 1.00 1
operator 6.76 1 total 1.00 1
London 4.14 1 brokers 1.00 1
cargoes 4.01 2 may 1.00 1
shipment 4.01 1 june 1.00 1
dlrs 4.01 1 tonne 1.00 1
white 3.87 1 cif 1.00 1

Table 1. tf & rw scores for a sample text

After the graph is constructed, the random-walk model
is applied on the graph, resulting in a set of scores associ-
ated with the vertices (words). Table 1 shows thetf andrw
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weights. By analyzing therw weights, we can observe a
non-linear correlation with thetf weights, with an empha-
sis given to terms surrounding important key-terms such as
e.g. sugar or cargoes. This spatial locality has resulted
in higher ranks for terms likeoperatorcompared to other
terms likelondon.5

4 Experimental Setup

To evaluate the random-walk based approach to feature
weighting, we integrate it in a text classification algorithm,
and evaluate its performance on several standard text clas-
sification datasets.

Text classification is a problem typically formulated as
a machine learning task, where a classifier learns how to
distinguish between categories in a given set by using fea-
tures automatically extracted from a collection of training
documents.

We use thetf andrw feature weights (and their alterna-
tives, as described below) to create feature vectors for the
Support Vector Machines (SVM) and the Naı̈ve Bayes clas-
sifiers. Following standard practice in term weighting for
a Rocchio classifier, we use thetf.idf andrw.idf feature
weights in our initial evaluation of the models (Tables 2, 3,
5, 6).6 In the final experiments (Tables 7 and 8) we report
tf andtf.idf results separately. The results obtained using
tf will act as a baseline for all the evaluations.

4.1 Text Classifiers

We compare the results obtained with three frequently
used text classifiers – Rocchio, Naı̈ve Bayes, and SVM, se-
lected based on their performance and diversity of learning
methodologies.
Näıve Bayes. The basic idea in a Naı̈ve Bayes text clas-
sifier is to estimate the probability of a category given a
document using joint probabilities of words and documents.
Näıve Bayes text classifiers assume word independence, but
despite this simplification, they were shown to perform sur-
prisingly well [11, 23].
Rocchio.The Rocchio text classification method uses stan-
dard term weighted vectors to represent documents, and
builds a prototype vector for each category by summing up
the vectors of the training documents in each category. Test
documents are then assigned to the category with the closest
prototype vector, based on cosine similarity. Classification
experiments with different versions of the algorithm showed
competitive results on standard benchmarks [11, 16].
SVM. SVM [27] is a state-of-the-art machine learning ap-
proach based on decision plans. The algorithm defines the

5All the missing words e.g.Ltd, it, not shown in the graph are common
words that were eliminated during pre-processing.

6We refer to this results asRocchioidf

best hyper-plan that separates the set of points associated
with different class labels with a maximum-margin. The un-
labeled examples are then classified by deciding on which
side of the hyper-surface they reside.

In our evaluations we useSV MTorch [5] with a linear
kernel, since it was proved to be as powerful as other kernels
in text classification experiments [28]. This SVM imple-
mentation is also observed to be the fastest when compared
to SV Mlib andWeka′s SMO [12].

4.2 Datasets

We use three standard datasets:WebKB, LingSpam,
and20Newsgroups – commonly used in text classification
evaluations [26, 1, 23].
WebKB7 is a data set collected from computer science
departments of various universities. The dataset contains
seven class labels: Project, Student, Department, Faculty,
Staff, Course, and Other. The Other label was removed
from the dataset for evaluation purposes. Most of the evalu-
ations in the literature have been performed on only four of
the categories (Project, Student, Faculty, and Course) since
they represent the largest categories. However, since we
wanted to see how our system behaves when only a few
training examples are available, we also considered the Staff
and the Department classes which have only a few training
documents available. We performed our evaluations on two
versions ofWebKB: one with the four categories version
(WebKB4) and one with the six categories (WebKB6).
20Newsgroups8 is a collection of 20,000 messages from 20
newsgroups, corresponding to different topics or subjects.
Each newsgroup has about 1000 message split into 400 test
and 600 train documents.
LingSpam9 is a spam corpus [1], consisting of email mes-
sages organized in 10 sets to allow for 10-fold cross valida-
tion. Each collection has roughly 300 spam and legitimate
messages. There are four versions of the corpus standing
for bare, stop-word filtered, lemmatized, and stop-word and
lemmatized. We use the bare collection with a standard 10-
fold cross validation.

5 Evaluation and Discussion

As a first step, we evaluate each of the random-walk
models presented in Section 3 (

↔

rwo,
↔

rwe.idf , and
↔

rwe.oc).
Tables 2 and 3 show the micro-average and macro-average
accuracy figures for each model, classifier, and dataset for
a window size of2. The tf column shows the results ob-

7http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
8http://people.csail.mit.edu/jrennie/20Newsgroups
9http://boole.cs.iastate.edu/book/acad/bag/data/lingspam
9∗ indicates a statistically significant result where0.05 > ρ > 0.001.

The result is marked by∗∗ whenρ ≤ 0.001.
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dataset tf
↔

rwe.oc
↔

rwe.idf
↔

rwo

Näıve Bayes
WebKB4 84.2 86.1* 85.8* 86.1**
WebKB6 81.3 82.4 81.9 83.3*
LSpam 99.2 99.3 99.2 99.3
20NG 89.3 91.5** 91.7** 90.6**
Rocchioidf

WebKB4 84.3 87.5** 87.7** 86.9**
WebKB6 80.1 84.3** 84.2** 83.4**
LSpam 98.1 98.5 98.3 98.2
20NG 91.5 94.3** 93.8** 93.0**
SVM
WebKB4 81.3 94.1** 93.2** 80.3
WebKB6 79.3 90.7** 90.4** 78.9
LSpam 93.6 98.9** 99** 92.1
20NG 90.1 94.4** 94.4** 86.9

Table 2. Micro-Average results for different
random-walk models

dataset tf
↔

rwe.oc
↔

rwe.idf
↔

rwo

Näıve Bayes
WebKB4 82.5 83.5* 82.9* 84.2**
WebKB6 68.1 66.5 65.5 70.0*
LSpam 98.6 98.8 98.6 98.8
20NG 89.3 91.4** 90.6** 90.5**
Rocchioidf

WebKB4 84.3 86.7** 86.7** 86.1**
WebKB6 71.6 75.8** 75.3** 75.1**
LSpam 96.7 97.3 97.1 96.9
20NG 91.5 94.3** 93.7** 93.0**
SVM
WebKB4 77.4 93.2** 93.2** 80.3
WebKB6 68.2 81.1** 81.5** 65.2
LSpam 86.3 97.9** 98.1** 81.2
20NG 90.6 94.4** 94.4** 88.1

Table 3. Macro-average results for different
random-walk models

tained using the term frequency weighting scheme, which,
as stated before, acts as a baseline throughout all our exper-
iments.

As seen in the tables, most of the models presented
perform better than thetf baseline. Both the

↔

rwe.oc and
↔

rwe.idf models stand out as the best performing models
with noticeable improvements, especially for the SVM and
the Rocchio classifiers.

The
↔

rwe.idf and
↔

rwe.oc models redefine the random jump
component of PageRank, by considering the damping factor
as a function that can be estimated per edge. A highly con-
nected node with relatively strong edges would tend to en-
courage the random-walker to following its outgoing links
rather than randomly jumping out. The consideration given
to the relative weight of the edges signifies the encapsula-
tion of global information in the biasing factor. This allows

us, in a sense, to steer the random-walker toward useful
nodes more effectively, which is valuable in emphasizing
the discriminative power of central features.

In addition to accuracy, we also evaluated the efficiency
of the new models. By comparing the processing time for
1000WebKB4 documents using the proposed models, we
notice a small overhead of 53 seconds for the

↔

rwo model
and 26 seconds for the

↔

rwe.oc and
↔

rwe.idf , as compared to
the tf baseline.10 This is due to the fast convergence of
these models in approximately15 iterations (Figure 1). We
believe that this small increase in processing time is a rea-
sonable cost for achieving significantly higher accuracies.

tf
↔

rwe.oc
↔

rwe.idf
↔

rwo

112 138 138 165

Table 4. Running time in seconds for the pro-
cessing of 1000 documents from WebKB4,
on a Pentium-IV machine with 2Gb RAM.

5.1 Different Window Sizes

Among the various models, the
↔

rwe.oc model seems
to consistently outperform the other models. To take a
closer look at this model, we further analyze it under dif-
ferent window sizes. Table 5 and 6 show the

↔

rwe.oc clas-
sification results forWebKB4, WebKB6, LingSpam,
20Newsgroups respectively. Therw2, rw4, rw6, andrw8

represent the accuracies achieved using the
↔

rwe.oc weight-
ing scheme under window sizes of 2, 4, 6, and 8 respec-
tively.

dataset tf rw2 rw4 rw6 rw8

Näıve Bayes
WebKB4 84.2 1186.1∗ 85.8∗ 85.8∗ 85.7∗

WebKB6 81.3 82.4∗ 81.9∗ 81.8 76.6
LSpam 99.2 99.3 99.3 99.3 99.3
20NG 89.3 91.5 91.2 91.2 91.2
Rocchioidf

WebKB4 84.3 87.5∗∗ 87.5∗∗ 87.4∗∗ 87.6∗∗

WebKB6 80.1 84.3∗∗ 84.0∗∗ 84.3∗∗ 84.4∗∗

LSpam 98.1 98.5 98.3 98.4 98.3
20NG 91.5 94.3** 94.3** 94.2** 94.2**
SVM
WebKB4 81.3 94.1∗∗ 93.6∗∗ 93.5∗∗ 93.7∗∗

WebKB6 79.3 90.7∗∗ 90.6∗∗ 90.7∗∗ 90.6∗∗

LSpam 93.6 98.9∗∗ 99.1∗∗ 99.1∗∗ 99.0∗∗

20NG 90.1 94.4** 94.5** 94.5** 94.6**

Table 5. Micro-average results for the
↔

rwe.oc

random-walk model for different window
sizes

10This time includes tokenization and stopword removal.
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dataset tf rw2 rw4 rw6 rw8

Näıve Bayes
WebKB4 82.5 1283.5∗ 83.0∗ 82.9∗ 82.6∗

WebKB6 68.1 66.5∗ 66.0∗ 65.6 62.1
LSpam 98.6 98.8 98.8 98.8 98.8
20NG 89.3 91.4 91.2 91.1 91.1
Rocchioidf

WebKB4 83.4 86.7∗∗ 86.6∗∗ 86.5∗∗ 86.7∗∗

WebKB6 71.6 75.8∗∗ 75.5∗∗ 75.7∗∗ 76.2∗∗

LSpam 96.7 97.3 97.1 97.3 97.1
20NG 91.5 94.3** 94.2** 94.2** 94.2**
SVM
WebKB4 77.4 93.2∗∗ 92.9∗∗ 92.7∗∗ 92.9∗∗

WebKB6 68.2 81.1∗∗ 81.5∗∗ 81.3∗∗ 81.3∗∗

LSpam 86.3 97.9∗∗ 98.3∗∗ 98.4∗∗ 98.2∗∗

20NG 90.6 94.4** 94.5** 94.5** 94.6**

Table 6. Macro-average results for the
↔

rwe.oc

random-walk model for different window
sizes

The system displays consistent performance across dif-
ferent window sizes. By further analyzing the results using
statistical t-tests we notice that windows of size 2 and 4 sup-
ply the most significant results across all the classifiers and
the datasets.

Comparing thetf and rw weighting schemes for the
WebKB6 dataset, we found that both schemes failed to
predict the class Staff. However, a significant improvement
was obtained over the class Department, in which ourrw
model scores an accuracy of 47% compared to 4% when
usingtf . This could be due to the ability of the model to
extract more realistic and smoother distribution of terms,
hence reducing the feature bias imposed by the limited num-
ber of training examples.

Figure 4. Correlations of the tf and rw mod-
els for the WebKB4 collection

We also notice a positive impact of using our model with

the Rocchio classifier. In order to reach a deeper under-
standing of the correlation between the two models in the
context of the Rocchio classifier, we macro-averaged the
tf.idf and therw.idf term scores over all theWebKB4
documents, in a manner similar to the construction of pro-
totype classification vectors but taking into account the en-
tire corpus rather than individual classes. The resulting term
scores are plotted in Figure 4. Polynomial approximations
are used to visualize the trends of the plotted points, where
each trendline represents a different window size.

By analyzing the graph we can distinguish three interest-
ing properties:

1. A clear non-linear correlation between thetf andrw
models.

2. An increasing drift from thetf model as we increase
the window size.

3. A smoothing effect associated with therw model, with
a growth rate of thetf values clearly faster thanrw.

5.2 Other Weighting Scheme Policies

We also compared our models to other reported state-of-
the-art weighting schemes:

tf.idf : since its introduction [25],tf.idf has been one of
the most extensively studied weighting schemes [21, 17].It
served as a standard baseline in term weighting studies
[4, 13] and proved hard to beat in [7].

itf : defined as one minus the inverse term frequency, was
found to have an excellent performance when used with an
SVM linear kernel [14, 6].

log(tf): first introduced in [3], it was recently used with
the purpose of smoothing term frequencies and hence
minimizing the feature bias [19, 4].

log(tf).idf : this scheme was suggested in [3], and it
showed superior performance in [4]. In this scheme, the
smoothed term frequency is scaled by its idf to confer
higher weights to domain relevant features.

√

tf : due to the interesting trends observed in figure 4, we
introduced an approximation of therw/tf correlation using
the square root

√

tf function, which exhibits the general
behavior of the plotted curves.

For each of the schemes, we also introduce therw alter-
native, by replacingtf in all of the presented schemes with
the rw values calculated using our random-walk model.
For instance, for thetf.idf scheme, we introduce arw.idf
scheme; forlog(tf), we introducelog(rw); and so forth.

6



dataset tf rw tf.idf rw.idf
√

tf
√

rw log(tf) log(rw) itf irw log(tf).idf log(rw).idf
Näıve Bayes
WebKB4 84.2 86.1* 81.6 83.8* 85.2 85.9 85.1 85.9 83.3 83.3 83.2 83.8
WebKB6 81.3 82.4 78.8 81.5* 81.5 81.9 81.6 81.9 77.3 77.7 80.4 81.7
LSpam 99.2 99.3 99.1 99.1 99.3 99.3 99.3 99.4 99.3 99.4 99.0 99.1
20NG 89.3 91.5** 86.9 88.6** 90.8 91.4 77.3 91.4* 91.2 91.5 76.7 88.4**
Rocchio
WebKB4 74.9 83.5** 84.3 87.5** 81.2 84.5** 80.6 84.2** 82.9 84.7* 86.5 87.8
WebKB6 70.1 78.6** 80.1 84.3** 76.3 79.9** 75.3 79.5** 78.1 80.1* 82.9 84.3
LSpam 96.5 97.8** 98.1 98.5 97.4 98.1 97.3 97.9 97.6 98.1 98.2 98.5
20NG 90.5 94.8** 91.5 94.3** 94.1 94.8* 67.0 94.9** 94.6 94.7 76.1 94.4**
SVM
WebKB4 81.3 94.1** 88.1 90.4 92.0 93.8* 91.4 94.0* 92.6 92.9 89.8 90.6
WebKB6 79.3 90.7** 87.1 88.7* 89.7 90.8 89.9 90.9* 89.9 89.6 88.1 88.6
LSpam 93.6 98.9** 93.6 93.9 98.2 99.1* 97.6 99.1** 98.6 98.7 94.5 94.7
20NG 90.1 94.4** 92.5 93.2* 92.0 93.9 77.6 94.5** 94.6 94.7 93.1 93.3

Table 7. Micro-average Results for different weighting schemes (
↔

rwe.oc)

dataset tf rw tf.idf rw.idf
√

tf
√

rw log(tf) log(rw) itf irw log(tf).idf log(rw).idf
Näıve Bayes
WebKB4 82.5 83.5* 78.9 81.2* 82.4 83.1 82.4 83.2 78.1 77.5 80.6 81.1
WebKB6 68.1 66.5 68.5 69.8* 66.3 65.6 66.9 65.7 52.6 52.3 69.4 70.2
LSpam 98.6 98.8 98.4 98.4 98.7 98.8 98.8 98.9 98.9 98.9 98.3 98.4
20NG 89.3 91.4** 86.8 88.5** 90.7 91.3 77.1 91.3* 91.1 91.4 76.5 88.4**
Rocchio
WebKB4 74.4 82.6** 83.4 86.7** 80.3 83.5** 79.7 83.2** 82.0 83.7* 85.7 86.9
WebKB6 62.7 71.9** 71.6 75.8** 69.6 73.2** 68.6 72.7** 71.5 73.1* 74.7 75.9
LSpam 94.1 96.2** 96.7 97.3 95.5 96.7 95.5 96.5 96.0 96.7 97.0 97.4
20NG 90.5 94.8** 91.5 94.3** 94.2 94.8* 68.1 94.9** 94.6 94.8 76.1 94.4**
SVM
WebKB4 77.4 93.2** 85.8 88.6** 90.8 93.0* 90.1 93.2* 91.7 91.9 87.9 88.8
WebKB6 68.2 81.1** 75.9 77.3* 81.0 82.0 80.0 81.7* 82.1 81.3 77.1 77.2
LSpam 86.3 97.9** 86.1 86.8 96.6 98.3* 95.4 98.3** 97.6 97.7 88.4 88.8
20NG 90.6 94.4** 92.6 93.1* 90.8 94.0 77.6 94.5** 94.6 94.7 93.1 93.3

Table 8. Macro-average results for different weighting schemes (
↔

rwe.oc)

The classification results obtained for the different
weighting schemes on the three datasets are shown in Ta-
bles 7 and 8. Statistical significance tests were run to com-
pare the performance of therw andtf alternatives for each
of the weighting schemes.

As seen in the tables, our random-walk models clearly
outperform the term frequency alternative in both micro
and macro averages under all datasets and classifiers. In
the worst case, the system performs as good as the baseline
model. The superiority of ourrw models indicate that the
use of dependencies between features can lead to signifi-
cant improvements, and these improvements are consistent
for different weighting schemes.

6 Conclusions and Future Work

In this paper, we introduced a random-walk approach for
term weighting that has the ability to capture term depen-
dencies in a text by accounting for the structural proper-

ties of the text. Through experiments performed on a text
classification task, we showed that the random-walk model
can achieve relative error rate reductions of 3.2–84.3%, as
compared to the traditional term frequency based approach.
The evaluation results have shown that the system’s perfor-
mance is consistent for various window sizes, and its run-
ning time is comparable to thetf.idf model.

Additionally, in experiments carried out using a vari-
ety of weighting scheme policies, the random-walk term
weighting was consistently found superior as compared to
the traditional term frequency weighting scheme.

We believe these results support our claim that random-
walk models can accurately estimate term weights by ac-
counting for term dependencies, and can be used as a tech-
nique to model the probabilistic distribution of features in a
document.

In future work we plan to extend the model and use it to
define a formal language model, in which we can estimate
the probability of longer n-gram sequences of words.
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