Problem 1.

Using Boolean Algebra, show that (Proofs by Truth Table are not acceptable):
(a) $(\mathrm{X} \oplus \mathrm{Y})^{\prime}=\mathrm{X} \oplus \overline{\mathrm{Y}}=\overline{\mathrm{X}} \oplus \mathrm{Y}=\mathrm{XY}+\overline{\mathrm{X}} \cdot \overline{\mathrm{Y}}$
(b) $\quad(\mathrm{X} \oplus \mathrm{Y}) \oplus \mathrm{Z}=\mathrm{X} \oplus(\mathrm{Y} \oplus \mathrm{Z})=\mathrm{X} \oplus \mathrm{Y} \oplus \mathrm{Z}$.
(c) $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}=(\mathrm{A}+\mathrm{B})(\mathrm{B}+\mathrm{C})(\mathrm{C}+\mathrm{A})$
(d) $X \bar{Y}+X Y Z+\bar{X} Z=(\bar{X} \bar{Z}+Y \bar{Z})^{\prime}$

Problem 2.

Simplify the following expressions as possible by using Boolean algegra:
(a) $X Y+\bar{X} Y \bar{Z}+Y Z$
(b) $X \bar{Y}+Z+(\bar{X}+Y) \bar{Z}$
(c) $\overline{\mathrm{X}} \mathrm{Y} \oplus \mathrm{YZ} \oplus \mathrm{XY} \oplus \overline{\mathrm{Y}} \overline{\mathrm{Z}}$
(d) $\bar{X} \bar{Y}+Y Z+X Z+X Y$

Problem 3.

(a) A combinational network has 4 inputs (A,B,C,D) and three outputs (X,Y,Z). XYZ represents a binary number whose value equals the number of 1's at the input. For example, if $\mathrm{ABCD}=1011, \mathrm{XYZ}=011$.
a. Find the minterm expansions for X, Y and Z .
b. Find the maxterm expansions for Y and Z .
(b) A switching network has 4 inputs as shown below. A and B represent the first and second bits of a binary number N_{1}. C and D represent the first and second bits of a binary number N_{2}. The output of the network is to be 1 only if the product $\mathrm{N}_{1} \times \mathrm{N}_{2}$ is greater than two. A and C are the most significant bits of N_{1} and N_{2}, respectively.
a. Find the minterm expansion for F .
b. Find the maxterm expansion for F.

Problem 4.

(a) Given the following network, write an expression for Z and simplify.

Assume that each gate has 1 unit of delay. (Delay time $=1$ on timing diagram.) Draw the output waveform (Z) for the given input values of $\mathrm{X} \& \mathrm{Y}$.

(b) Obtain an SOP (sum of products) expression for Z . Draw the output waveform (Z) for the given values of X and Y . Assume each gate has zero delay.

Problem 5. Textbook problem 4.46
Problem 6. Textbook problem 4.49
Problem 7. Textbook problem 4.55

ALL HOMEWORK MUST BE TURNED IN DURING LECTURE TIME, OTHERWISE IT WILL NOT BE GRADED.

