COURSE ANNOUNCEMENT: WINTER 2002 EECS 527: CAD Techniques for VLSI Layouts 3 Credits, Mon, Wed 12:00-1:30 p.m.

Instructor: P. Mazumder, EECS Department

Contents: General theory and concepts of VLSI, FPGA, MCM and PCB layouts; Floor-planning, partitioning and placement techniques; High-performance wire routing; Layout compaction techniques; Custom layout techniques: Field-programmable gate arrays (FPGA's), sea-of-gates and gate arrays, gate matrix and PLA's.

Prerequisite: Instructor's Consent

Goal: This course examines the fundamental optimization algorithms that are employed in the design of high-performance CAD layout tools for VLSI and PCB systems. Commercial VLSI chips such as Intel's Pentium and Digital's Alpha chips now contain several million transistors, and, by another decade or so as per SIA Roadmap, the scale of device integration is likely to exceed 1 billion transistors per chip. This spectacular growth of VLSI integration technology cannot be economically viable unless suites of high-quality CAD tools are available for developing chip layouts in reasonable time.

In modern high-performance VLSI system design, physical layout design and the system architectural design are often interlinked in a complex way, and, consequently, the VLSI system designers must be fully conversant with the capabilities of CAD tools that perform layout tasks such as partitioning, floorplanning, placement, wire routing and chip compaction. Signal delays in numerous paths, which critically affect computing speed and system performance, depend as much on the placement and floorplanning styles as they are decided by the appropriate choice of system architecture and circuit design styles. For such applications, the commercial tools do not provide high-quality layouts; frequently, the designers are required to develop new tools or to refine the existing layout tools by adding appropriate add-on features so that the best performance of the VLSI chip can be achieved. In order to be a good VLSI engineer, you ought to learn the core design principles of VLSI layout tools and how they can be augmented to enhance and expedite your chip design projects.

Computer Usage: Some programming knowledge in C and/or C++ is required.

Evaluation: Homework (30%), Examinations (20%) and Project (50%)

Schedule - Part 1: pre-Spring Break

Date	Торіс	Book Sec	HomeWork	Exam/Quizz
7-Jan	Introduction; Basics of Semicustom Design	Sec. 1.1, 1.2, 1.3		
9-Jan	Full Custom Design v. Semicustom Design	Sec. 1.3, 1.4, 1.5		
14-Jan	Introduction to Partitioning	Sec 2.1, 2.2, 2.3		
16-Jan	Kernighan and Lin Partitioning Algorithm	Sec 2.3, 2.4.1		
21-Jan	MLK Day			
23-Jan	Fidducia-Matheyese Algorithm	Sec 2.4.2		
28-Jan	Gain Look Ahead Technique	Paper 1 (suppl)		
30-Jan	Ratio Cut and Other Methods	Paper 2 (suppl)		
4-Feb	Exam (20 mts); Introduction to Floorplanning	Sec 3.1, 3.2		Quizz #1 (20 mts)
6-Feb	Dual Graph Method of Floorplanning	Sec 3.3.4		
11-Feb	Simulated Annealing for Floorplanning	Sec 3.3.1	HW 1 (Due)	
13-Feb	Introduction to Placement	Sec 4.1, 4.2, 4.3		
18-Feb	Simulated Annealing for Std. Cell Placement	Sec 4.4.3		
20-Feb	Force-Directed Placement	Sec 4.4.4		
4-Mar	Passive Resistive Network Optimization	Paper 3 (suppl)		
6-Mar	Other Placement Techniques	Sec 4.5	HW 2 (Due)	

Homework is individual ; Quiz is of 20 minutes ; Final Project is individual

Semi-Custom Design Methodologies

VLSI Design Methodology

Structural Description

Specifies the system's architectural components and their interconnections.

Functional or Behavioral Description

Specifies the system behavior, instruction set, logic functions, I/O behavior at pins etc.

Geometric Description

 Specifies the physical implementation of the system such as floorplan, placement of cells, routing of blocks and layout of the cells.

Elements of VLSI Physical Design in a Full Custom Approach

Full-Custom Design

Integration Terminologies

Discrete Comp: 1		Junction Transistors/Diodes
SSI: 1 - 10		Gates, Flip-flops
MSI: 10 - 100		Counters, Muxes, Adders
LSI: 100 - 20K	\longrightarrow	8-bit mP, ROM, RAM
VLSI: 20K - 500K		16/32-bit μΡ, DRAMs
ULSI: 500K - 10M		64-bit μP, Real-time image processors
GSI: > 10M	\longrightarrow	System on a Chip (SoC)

The Design Problem

A growing gap between design complexity and design productivity

Implementation Methodologies

Cell-based Design (or standard cells)

Standard Cell — Example

[Brodersen92]

Standard Cell - Example

Fanout 4x	0.5 μm	1.0 µm	2.0 μm
A1_tphl	0.595	0.711	0.919
A1_tplh	0.692	0.933	1.360
B1_tphl	0.591	0.739	1.006
B1_tplh	0.620	0.825	1.1.81
C1_tphl	0.5 74	0.740	1.029
C1_tplh	0.554	0.728	1.026

3-input NAND cell (from Mississippi State Library) characterized for fanout of 4 and for three different technologies

Automatic Cell Generation

Random-logic layout generated by CLEO cell compiler (Digital)

Module Generators — Compiled Datapath

Advantages: One-dimensional placement/routing problem

Macrocell Design Methodology

Floorplan:

Defines overall topology of design, relative placement of modules, and global routes of busses, supplies, and clocks

Macrocell-Based Design Example

Gate Array — Sea-of-gates

Uncommited Cell

Committed Cell (4-input NOR)

Sea-of-gate Primitive Cells

Using oxide-isolation

Using gate-isolation

Sea-of-gates

Prewired Arrays

Categories of prewired arrays (or fieldprogrammable devices):

- Fuse-based (program-once)
- Non-volatile EPROM based
- RAM based

Programmable Logic Devices

PLA

PROM

EPLD Block Diagram

Field-Programmable Gate Arrays Fuse-based

Interconnect

Field-Programmable Gate Arrays RAM-based

RAM-based FPGA Basic Cell (CLB)

Courtesy of Xilinx

Semi-Custom Design Flow

4-input NAND Gate

Example Gate: COMPLEX CMOS GATE

Standard Cell Layout Methodology

SERIES-PARAL GRAPH Logic Graph

X = [(A+B).C]' = A'.B' + C'

EULECONSISTENT Euler Pathates LINE OF DIFFUSION LAYOUT

EULE Example. x = a5 CREATES LINE OF DIFFUSION LAYOUT

Z = [A.B + C.D]'

Bit-Sliced Design

Layout Strategies for Bit-Sliced Datapaths

In Approach 1, the wells are oriented horizontally and are shared between neighboring slices. This requires the mirroring of even and odd slices around the horizontal axis. Vdd is also shared by slices.

> Local Power and Gnd are M1 in Approach 2, while the global Power and Gnd lines may be Horizontal in M2. These lines should be dimensioned so that they can carry the peak current

Layout of Bit-sliced Datapaths

Layout of Bit-sliced Datapaths

 (a) Datapath without feedthroughs and without pitch matching (area = 4.2 mm²).

(b) Adding feedthroughs (area = 3.2 mm²) (c) Equalizing the cell height reduces the area to 2.2 mm².

Vision for Design Closure

(*) Roadmap

DSM design issues : A closer look

- 10 100 M Gates by year 2004
 - System/s on Chip
- High Frequency Interconnect-centric design
 - Performance limited by dispersion of signals
 - Reliability strong function of Design
- IP incorporation and verification
- Power dissipation in 10-120 watt per IC part
- Gigabytes of design database
- Informal design flows with loss of information at each abstraction
- Designer inexperience with DSM electrical issues and design methods