Logic Simulation

What is simulation?

Design verification

Circuit modeling

True-value simulation algorithms
Compiled-code simulation
Event-driven simulation

Summary

Simulation for Verification

Y A4

Response o Design
analysis (netlist)

Y

v
v

Simulation Defined

Definition: Simulation refers to modeling of a
design, its function and performance.
A software simulator is a computer program,;
an emulator is a hardware simulator.
Simulation is used for design verification:

Validate assumptions

Verify logic

Verify performance (timing)
Types of simulation:

Logic or switch level

Timing

Circuit

Fault

Modeling for Simulation

Modules, blocks or components described by
Input/output (1/0) function
Delays associated with 1/O signals
Examples: binary adder, Boolean gates, FET,
resistors and capacitors

Interconnects represent
ideal signal carriers, or
ideal electrical conductors

Netlist: a format (or language) that describes

a design as an interconnection of modules.
Netlist may use hierarchy.

responses simulation Input stimuli

Logic Model of MOS Circuit

Example: A Full-Adder

HA;

inputs: &, b; pMmos FETs Vop

outputs: c, f; a m

AND: Al, (a, b), (c); \, c
AND: AZ, (d, e), (f); a—eqd A O m

OR: 01, (a, b), (d); b m

NOT: N1, (c), (e); (o]

|

1 D, and Dy are

nMOS FETs interconnect or
propagation delays

FA;

inputs: A, B, C;
outputs: Carry, Sum; —| e
HA: HAL, (A, B), (D, E);

HA: HAZ2, (E, C), (F, Sum);
OR: 02, (D, F), (Carry);

D, is inertial delay
Cy. Cpand C. are of gate
parasitic capacitances

Options for Inertial Delay Signal States

(simulation of a NAND gate) Two-states (0, 1) can be used for purely

a | T';_:"?:‘nt combinational logic with zero-delay.
> g Three-states (0, 1, X) are essential for
. timing hazards and for sequential logic
initialization.
Four-states (0, 1, X, Z) are essential for MOS
¢ (zero delay) |_ devices. See example below.

Analog signals are used for exact timing of
~ digital logic and for analog circuits.

b

c (CMOS) |

¢ (unit delay) |

c (multiple delay) | X rise=5, fall=5

z
Unknown (X) (hold previous value)

¢ (minmax delay) | min =2, max =5 0
) Time units 0

Logic simulation

Modeling Levels True-Value Simulation
Algorithms

Modeling Circuit Signal Timing Application Compiled-code simulation
level description values - A A .
ArCRTESCERa] Applicable to zero-delay combinational logic
Function, Programming 0,1 Clock and flunct?onal Also used for cycle-accurate synchronous sequential
behavior, RTL language-like HDL boundary verification circuits for logic verification
T Logic Efficient for highly active circuits, but inefficient for
Boolean gates, andz Unitdelay, verification low-activity circuits
flip-flops and multiple- and test A
transistors delay High-level (e.g., C language) models can be used

Transistor size 01 Logic Event-driven simulation

ze Zero-delay Jic L
and connectivity, and X verification Only gates or modules with input events are
node capacitances

evaluated (event means a signal change)

Timing Transistor technology Analog Fine-grain Timing Delays can be accurately simulated for timing
data, connectivity, voltage 4iming verification verification

node capacitances Efficient for | tivit . it
. T icient for low-activity circuits
Circuit o Continuous Digital timing) .
Tech. Data, active/ ~ Analog <0 and analog Can be extended for fault simulation
" circuit
verification

Logic Connectivity of 0,1, X Zero-delay

p: p g
connectivity current

Compiled-Code Algorithm Event-Driven Algorithm
(Example)

Scheduled Activity

- - - . events ([54
Step 1: Levelize combinational logic and v '

encode in a compilable programming language =0 d.e
Step 2: Initialize internal state variables (flip-
flops)
Step 3: For each input vector

Set primary input variables

Repeat (until steady-state or max. iterations)
Execute compiled code

Report or save computed variables

Time stack

Time Wheel (Circular Stack)

Current
time
pointer

Summary

Logic or true-value simulators are essential
tools for design verification.

Verification vectors and expected responses
are generated (often manually) from
specifications.

A logic simulator can be implemented using

either compiled-code or event-driven method.

Per vector complexity of a logic simulator is
approximately linear in circuit size.

Modeling level determines the evaluation
procedures used in the simulator.

Problem and Motivation

Fault simulation Problem: Given
A circuit
A sequence of test vectors
A fault model
Determine
Fault coverage - fraction (or percentage) of
modeled faults detected by test vectors
Set of undetected faults
Motivation
Determine test quality and in turn product quality
Find undetected fault targets to improve tests

Efficiency of Event-
driven Simulator

Simulates events (value changes) only
Speed up over compiled-code can be ten
times or more; in large logic circuits about
0.1 to 10% gates become active for an input

Large logic
Steady 0
28y 9| plock without

“0to 1 event activity

Fault Simulation

Problem and motivation

Fault simulation algorithms
Serial
Parallel
Deductive
Concurrent
Random Fault Sampling
Summary

Fault simulator in a VLSI
Design Process

Verified design Verification
netlist input stimuli

{ v
l—bl Fault simulator |4—| Test vectors |
'y

Modeled Remove Test Delete

fault list | tested faults compactor [vectors

Y
Test
generator Add vectors

Fault Simulation Scenario

Circuit model: mixed-level

Mostly logic with some switch-level for high-
impedance (Z) and bidirectional signals

High-level models (memory, etc.) with pin faults
Signal states: logic

Two (0, 1) or three (0, 1, X) states for purely
Boolean logic circuits

Four states (0, 1, X, Z) for sequential MOS circuits
Timing:

Zero-delay for combinational and synchronous

circuits

Mostly unit-delay for circuits with feedback

Fault Simulation
Algorithms

Serial
Parallel
Deductive
Concurrent
Differential

Serial Algorithm (Cont.)

Disadvantage: Much repeated computation;
CPU time prohibitive for VLSI circuits

Alternative: Simulate many faults together

| Test vectors Fault-free circuit |——>| Comparator |—> f1 detected?

Circuit with fault f1 —T

Circuit with fault f2
[

[] ->| Comparator |—> fn detected?

Circuit with fault fn

—hl Comparator |—> f2 detected?
I

Fault Simulation Scenario
(continued)

Faults:
Mostly single stuck-at faults

Sometimes stuck-open, transition, and path-delay
faults; analog circuit fault simulators are not yet in
common use

Equivalence fault collapsing of single stuck-at
faults

Fault-dropping -- a fault once detected is dropped
from consideration as more vectors are simulated;
fault-dropping may be suppressed for diagnosis

Fault sampling -- a random sample of faults is
simulated when the circuit is large

Serial Algorithm

Algorithm: Simulate fault-free circuit and save
responses. Repeat following steps for each
fault in the fault list:

Modify netlist by injecting one fault

Simulate modified netlist, vector by vector,
comparing responses with saved responses

If response differs, report fault detection and
suspend simulation of remaining vectors
Advantages:

Easy to implement; needs only a true-value
simulator, less memory

Most faults, including analog faults, can be
simulated

Parallel Fault Simulation

Compiled-code method; best with two-
states (0,1)

Exploits inherent bit-parallelism of logic
operations on computer words

Storage: one word per line for two-state
simulation

Multi-pass simulation: Each pass simulates
w-1 new faults, where w is the machine
word length

Speed up over serial method ~ w-1

Not suitable for circuits with timing-critical
and non-Boolean logic

Parallel Fault Sim.
Example

Bit O: fault-free circuit
Bit 1: circuit with ¢ s-a-0
Bit 2: circuit with f s-a-1

c s-a-0 detected
[2]o]4]

Deductive Fault Sim.
Example

Notation: L is fault list for line k
kp is s-a-n fault on line k

{ag} Le=La UL U{eg}

={ap.bg. Cp . €}
i {bg , Co}
{bo}

Lg = (Le NLf) U {go}

{bg . dg . f1} ={ap . co. €0 9o}

Faults detected by
the input vector

Conc. Fault Sim. Example

Deductive Fault Simulation

One-pass simulation

Each line k contains a list L of faults
detectable on k

Following true-value simulation of each
vector, fault lists of all gate output lines
are updated using set-theoretic rules,
signal values, and gate input fault lists
PO fault lists provide detection data
Limitations:

Set-theoretic rules difficult to derive for non-
Boolean gates

Gate delays are difficult to use

Concurrent Fault Simulation

Event-driven simulation of fault-free circuit and
only those parts of the faulty circuit that differ in
signal states from the fault-free circuit.

A list per gate containing copies of the gate from
all faulty circuits in which this gate differs. List
element contains fault ID, gate input and output
values and internal states, if any.

All events of fault-free and all faulty circuits are
implicitly simulated.

Faults can be simulated in any modeling style or
detail supported in true-value simulation (offers
most flexibility.)

Faster than other methods, but uses most
memory.

Fault Sampling

A randomly selected subset (sample) of
faults is simulated.

Measured coverage in the sample is used
to estimate fault coverage in the entire
circuit.

Advantage: Saving in computing resources
(CPU time and memory.)

Disadvantage: Limited data on undetected
faults.

Motivation for Sampling

Complexity of fault simulation depends on:
Number of gates
Number of faults
Number of vectors
Complexity of fault simulation with fault
sampling depends on:
Number of gates
Number of vectors

Probability Density of
Sample Coverage, c

p(x)=Prob(x<c<x+dx)= -
g (2m)12
CcC(@-co
Variance, GZ=
Sampling

Mean = C

C -30 c X C +30 1.0
Sample coverage

Summary

Fault simulator is an essential tool for test development.
Concurrent fault simulation algorithm offers the best
choice.

For restricted class of circuits (combinational and
synchronous sequential with only Boolean primitives),
differential algorithm can provide better speed and
memory efficiency (Section 5.5.6.)

For large circuits, the accuracy of random fault sampling
only depends on the sample size (1,000 to 2,000 faults)
and not on the circuit size. The method has significant
advantages in reducing CPU time and memory needs of
the simulator.

Random Sampling Model

Detected Undetected
fault fault

All faults with \ /
(]

a fixed but Random
unknown g o []

coverage

N, = total number of faults Ng = sample size

p
Ng << Np

C = fault coverage (unknown) c = sample coverage
(a random variable)

(population size)

Sampling Error Bounds

c@-cC) 1/2
|x»C|:3[»-»]
NS
Solving the quadratic equation for C, we get the

3-sigma (99.7% confidence) estimate:

4.5
Cgg=Xzk-——[1+0.44 Ngx (1-x)]
Ng
Where Ng is sample size and x is the measured fault
coverage in the sample.
Example: A circuit with 39,096 faults has an actual
fault coverage of 87.1%. The measured coverage in
a random sample of 1,000 faults is 88.7%. The above
formula gives an estimate of 88.7%% 3%. CPU time for
sample simulation was about 10% of that for all faults.

1/2

