Major Combinational
Automatic Test-Pattern
Generation Algorithms

Definitions
D-Algorithm (Roth) -- 1966
D-cubes
Bridging faults
Logic gate function change faults
PODEM (Goel) -- 1981
X-Path-Check
Backtracing
Summary

Backward Implication

Unique determination of all gate inputs when the
gate output and some of the inputs are given

Forward Implication

Results in logic gate inputs
that are significantly
labeled so that output is
uniquely determined

AND gate forward
implication table:

olle = jalle ol

Implication Stack

Push-down stack. Records:
Each signal set in circuit by ATPG
Whether alternate signal value already tried
Portion of binary search tree already searched

Implication Stack after
Backtrack

Almive brod

W

YES

YES

Unexplored
Present Assignment
Searched and Infeasible

01 01

Branch-and-Bound Search

Efficiently searches binary search tree
Branching - At each tree level, selects
which input variable to set to what value
Bounding - Avoids exploring large tree
portions by artificially restricting search
decision choices

Complete exploration is impractical

Uses heuristics

Objectives and Backtracing
of ATPG Algorithm

Objective - desired signal value goal for ATPG
Guides it away from infeasible/hard solutions

Backtrace - Determines which primary input and
value to set to achieve objective

Use testability measures

(5D, SO

D-Algorithm -- Roth
IBM
(1966)

Fundamental concepts invented:
First complete ATPG algorithm
D-Cube
D-Calculus
Implications - forward and backward
Implication stack
Backtrack
Test Search Space

Singular Cover Example D-Cube

Minimal set of logic signal assignments to show

essential prime implicants of Karnaugh map Collapsed truth table entry to characterize logic

Use Roth’s 5-valued algebra
Can change all D’s to D’s and D’s to D’s (do both)
AND gate:

L |A B

B
1
D
D
D
D
1

Rows 1 & 3
Reverse inputs
And two cubes _

Interchange D and D

D-Cube Operation of Primitive D-Cube of
D-Intersection Failure

Y - undefined (same as @) — Models circuit faults:
p or A - requires inversion of D and D Stuck-at-0

D-intersection: 0 N 0=0MN X=XN0=0 Stuck-at-1
1N1=1NX=XN1=1 Bridging fault (short circuit)
XN X=X Arbitrary change in logic function
AND Output sa0: “1 1 D”
AND Outputsal: “0 X D ”
“XO0 D"~
D-containment - Wire sa0: “D”
Cube a contains Propagation D-cube - models conditions
Cube b ifb is a under which fault effect propagates
subset of a through gate

Implication Procedure Bridging Fault Circuit

Model fault with appropriate primitive Shorf ot
D-cube of failure (PDF) (Bridging Faull] .
Select propagation D-cubes to
propagate fault effect to a circuit
output (D-drive procedure)

Select singular cover cubes to justify
internal circuit signals (Consistency
procedure)

Put signal assignments in test cube
Regrettably, cubes are selected very
arbitrarily by D-ALG

Construction of Primitive Bridging Fault D-Cubes
D-Cubes of Failure of Failure

Make cube set al when good machine
output is 1 and set a0 when good machine
output is O

Make cube set 1 when failing machine
output is 1 and B0 when it is O

Change a1l outputs to O and D-intersect
each cube with every BO. If intersection
works, change output of cube to D
Change a0 outputs to 1 and D-intersect
each cube with every B1. If intersection
works, change output of cube to D

@)
C
o
®
]
D
—
X O
(=3
I
*
o
¥

PDFs for
Bridging fault

EEE
R XXk

X kRO~ X|o X
R Rlo|XRr|IX o
R RO~ X|o X

Gate Function Change
D-Cube of Failure

cwbese]a b o] _cwese [<7
X 0

D-Algorithm - D-drive

while (untried fault effects on D-frontier)

select next untried D-frontier gate for propagation;
while (untried fault effect fanouts exist)
select next untried fault effect fanout;
generate next untried propagation D-cube;
D-intersect selected cube with test cube;
if (intersection fails or is undefined) continue;
if (all propagation D-cubes tried & failed) break;
if (intersection succeeded)
add propagation D-cube to test cube -- recreate D-frontier;
Find all forward & backward implications of assignment;
save D-frontier, algorithm state, test cube, fanouts, fault;
break; -
else if (intersection fails & D and D in test cube) Backtrack ();
else if (intersection fails) break;
if (all fault effects unpropagatable) Backtrack ();

D-Algorithm - Top Level

Number all circuit lines in increasing level
order from Pls to POs;

Select a primitive D-cube of the fault to be
the test cube;

Put logic outputs with inputs labeled as
D (D) onto the D-frontier;

D-drive ();
Consistency ();
return ();

D-Algorithm -- Consistency

g = coordinates of test cube with 1's & O’s;

if (g is only Pls) B

for (each unjustified signal in g)
Select highest # unjustified signal z in g, not a PI;
if (inputs to gate z are both D and D) break;
while (untried singular covers of gate z)

select next untried singular cover;

if (no more singular covers)

If (no more stack choices) d
else if (untried alternatives in Consistency)

pop implication stack -- try alternate assignment;
else

Backtrack ();

D-drive ();

If (singular cover D-intersects with z) delete z from g, add
inputs to singular cover to g, find all forward and
backward implications of new assignment, and break;

If (intersection fails) mark singular cover as failed;

Circuit Example 7.1 and
Backtrack Truth Table

F

if (PO exists with fault effect) Consistency ();

else pop prior implication stack setting to try
alternate assignment;

if (no untried choices in implication stack)

else return;

a b
0O O
0O o
0O 1
0 1
1 0
1 0
1 1
1 1

PORPOFRPRORFROO
OO0OO0OO0OPrOO0OO0

Singular Cover & D-Cubes
ATE]C[d[e [F Steps for Fault d sa0

(0]
(0]

Singular cover - Used
for justifying lines

Prop. D-cube for NOR

Sing. Cover of NAND
Propagation D-cubes
- Conditions under
which difference
between good/failing
machines propagates

OrROO0O0OH

Example 7.2 Fault A sa0 Step 2 -- Example 7.2

Step 1 - D-Drive-SetA=1 Step 2 - D-Drive - Setf =0

Step 3 -- Example 7.2 Step 4 -- Example 7.2

Step 3-D-Drive-Setk=1 Step 4 - Consistency - Setg=1

Step 5 -- Example 7.2 Step 6 -- Example 7.2

Step 5 - Consistency - f = 0 Already set Step 6 - Consistency - Setc =0, Sete=0

Example 7.3 - Fault s sal

Primitive D-cube of Failure

D-Chain Dies -- Example 7.2

Step 7 - Consistency - Set B =0
D-Chain dies

Test cube: A,B,C,D, e, f,g,h, k, L |
B ey 1 1 e P GO0 - e O0) - B

Example 7.3 - Step 2 s sal

Propagation D-cube for v

]

LB ey Ve 1 S P G030 - maed O0) B

Example 7.3 - Step 3 s sal

Propagation D-cube for Z - test found!

LB ey Ve 1 S P G030 - maed O0) B

Example 7.3 - Step 2 s sal

Forward & Backward Implications
et

}L

]

B ey 1 1 e P GO0 - e O0) - B

Example 7.3 - Fault u sal

Primitive D-cube of Failure

B ey 1 1 e P GO0 - e O0) - B

Example 7.3 - Step 2 u sal

Propagation D-cube for v

LB ey Ve 1 S P G030 - maed O0) B

Inconsistent

d =0and m =1 cannot justifyr=1
(equivalence)

Backtrack

Remove B = 0 assignment

Example 7.3 - Step 2 u sal

Forward and backward implications

B ey 1 1 e P GO0 - e O0) - B

Example 7.3 - Backtrack

Need alternate propagation D-cube for v

B ey 1 1 e P GO0 - e O0) - B

10

Example 7.3 - Step 3 u sal

Propagation D-cube for v

]

LB ey Ve 1 S e GO0 - e G0

Example 7.3 - Step 4 u sal

and implications

Propagation D-cube for Z

- fr

:}L

LB ey Ve 1 S e GO0 - e G0

Example 7.3 - Step 4 u sal

Propagation D-cube for Z

]

B ey 1 1 e Pam GO0 - e O0)

PODEM -- Goel
IBM
(1981)

New concepts introduced:
Expand binary decision tree only
around primary inputs
Use X-PATH-CHECK to test whether
D-frontier still there

Objectives -- bring ATPG closer to
propagating D (D) to PO
Backtracing

11

Motivation

IBM introduced semiconductor DRAM
memory into its mainframes - late 1970’s

Memory had error correction and
translation circuits - improved reliability

D-ALG unable to test these circuits
Search too undirected
Large XOR-gate trees

Must set all external inputs to define
output

Needed a better ATPG tool

Example 7.3 Again

Select path s - Y for fault propagation

LB ey Ve 1 S e GO0 - e G0

PODEM High-Level Flow

Assign binary value to unassigned PI
Determine implications of all Pls
Test Generated? If so,

Test possible with more assigned PIs? If
maybe, go to Step 1

Is there untried combination of values on
assigned PIs? If not,

Set untried combination of values on
assigned Pls using objectives and
backtrace. Then, go to Step 2

Example 7.3 -- Step 2 s sal

Initial objective: Set r to 1 to sensitize fault

B ey 1 1 e Pam GO0 - e O0)

12

Example 7.3 -- Step 3 s sal

Backtrace from r

LB ey Ve 1 S P G030 - maed O0) B

Example 7.3 -- Step 5 s sal

Forward implications: d =0, X =1

LB ey Ve 1 S P G030 - maed O0) B

Example 7.3 -- Step 4 s sal

Set A = 0 in implication stack

B ey 1 1 e P GO0 - e O0) - B

Example 7.3 -- Step 6 s sal

Initial objective: setrto 1

B ey 1 1 e P GO0 - e O0) - B

13

Example 7.3 -- Step 7 s sal

Backtrace from r again

LB ey Ve 1 S P G030 - maed O0) B

Example 7.3 -- Step 9 s sal

Forward implications: k=1, m=0,r=1,q9=1,

LB e L 1 S e G030

Example 7.3 -- Step 8 s sal

Set B to 1. Implications in stack: A=0,B=1

: .

- R

B ey 1 1 e P GO0 - e O0) - B

Backtrack -- Step 10 s sal

X-PATH-CHECK shows paths s-Y and
s - u -V - Z blocked (D-frontier disappeared)
- Fem 1 1 _—

. 1]1'___:\;-':

B ey 1 1 e P GO0 - e O0) - B

14

Step 11 --s sal

Set B = 0 (alternate assignment)

LB ey Ve 1 S e GO0 - e G0

Step 13 --s sal

Set A = 1 (alternate assignment)

Backtrack -- s sal

Forward implications: d=0,X=1, m=1,r=0,

LB ey Ve 1 S e GO0 - e G0

B ey 1 1 e Pam GO0 - e O0)

Step 14 -- s sal

Backtrace from r again

B ey 1 1 e Pam GO0 - e O0)

15

Step 15 -- s sal

Set B = 0. Implications in stack: A=1,B=0

LB e L 1 S e G030

o CO) -

Step 17 --s sal

Set B = 1 (alternate assignment)

LB e L 1 S e G030

o CO) -

Backtrack -- s sal

Forward implications: d=0,X=1, m=1,r=0.

B ey 1 1 e P GO0 - e O0) - B

Fault Tested -- Step 18 s sal

Forward implications:_d=1,m=1,r=1,9=0,
s=D,v=D,X=0,Y=D

B ey 1 1 e P GO0 - e O0) - B

16

Backtrace (s, V)
Pseudo-Code

V = vg;
while (s is a gate output)
if (s is NAND or INVERTER or NOR) v = V;
if (objective requires setting all inputs)
select unassigned input a of s with
hardest controllability to value v;
else

select unassigned input a of s with
easiest controllability to value v;

s=a;
return (s, v) /* Gate and value to be assigned */;

PODEM Algorithm

while (no fault effect at POs)
if (xpathcheck (D-frontier)
(I v)) = Objective (fault, vi,);
(pi, Vpi) = Backtrace (I, v));
Imply (pi, v{,i):

if (PODEM (fault, v¢5 1) == SUCCESS) return (SUCCESS);

(pi, Vpi) = Backtrack ();
Imply (i, vpy;);
if (PODEM gault, Viault) == SUCCESS) return
(SUCCESS);

Imply (pi, “X”);
return (FAILURE);

else if (implication stack exhausted)
return (FAILURE);

else Backtrack ();

return (SUCCESS);

Objective Selection Code

if (gate g is unassigned) return (g, V);
select a gate P from the D-frontier;
select an unassigned input | of P;
if (gate g has controlling value)

c = controlling input value of g;

else if (O value easier to get at input of
XOR/EQUIV gate)

c=1;
elsec= 0;
return (I, c);

Summary

D-ALG - First complete ATPG algorithm
D-Cube
D-Calculus
Implications - forward and backward
Implication stack
Backup

PODEM
Expand decision tree only around Pls
Use X-PATH-CHECK to see if D-frontier exists
Objectives -- bring ATPG closer to getting
D (D) to PO
Backtracing

17

