Major Combinational Automatic Test-Pattern Generation Algorithms

- Definitions
- D-Algorithm (Roth) -- 1966
" D-cubes
- Bridging faults
- Logic gate function change faults
- PODEM (Goel) -- 1981
- X-Path-Check
- Backtracing
- Summary

Forward Implication

- Results in logic gate inputs that are significantly labeled so that output is uniquely determined
- AND gate forward implication table:

\[

\]

Backward Implication

- Unique determination of all gate inputs when the gate output and some of the inputs are given

Implication Stack

- Push-down stack. Records:
" Each signal set in circuit by ATPG
- Whether alternate signal value already tried
- Portion of binary search tree already searched

	Signal	Wowne	Al\|orutive tiod
Susck pir 0	A	1	NO
	C	1	NO
	E	f	NO
	8	0	YES

Objectives and Backtracing of ATPG Algorithm

- Objective - desired signal value goal for ATPG
- Guides it away from infeasible/hard solutions
- Backtrace - Determines which primary input and value to set to achieve objective
- Use testability measures

Branch-and-Bound Search

- Efficiently searches binary search tree
- Branching - At each tree level, selects which input variable to set to what value
- Bounding - Avoids exploring large tree portions by artificially restricting search decision choices
- Complete exploration is impractical
- Uses heuristics

D-Algorithm -- Roth IBM
 (1966)

- Fundamental concepts invented:
" First complete ATPG algorithm
- D-Cube
- D-Calculus
- Implications - forward and backward
- Implication stack
- Backtrack
- Test Search Space

Singular Cover Example

- Minimal set of logic signal assignments to show essential prime implicants of Karnaugh map

Gate			Inputs			Output	Gate				nputs			Output
AND	A	B	d	NOR	d	e	F							
1	0	X	0	1	1	X	0							
2	X	0	0	2	X	1	0							
3	1	1	1	3	0	0	1							

D-Cube Operation of D-Intersection

- ψ - undefined (same as ϕ)
- μ or λ - requires inversion of D and \bar{D}
- D-intersection: $0 \cap 0=0 \cap \mathrm{X}=\mathrm{X} \cap 0=0$

$$
\begin{aligned}
& 1 \cap 1=1 \cap x=x \cap 1=1 \\
& x \cap x=x
\end{aligned}
$$

- D-containment Cube a contains Cube b if b is a subset of a

\cap	0	1	X	D	$\overline{\mathrm{D}}$
0	0	ϕ	0	Ψ	Ψ
1	ϕ	1	1	Ψ	ψ
X	0	1	X	D	D
D	Ψ	Ψ	D	μ	λ
D	Ψ	Ψ	D	λ	μ

D-Cube

- Collapsed truth table entry to characterize logic
- Use Roth's 5-valued algebra
- Can change all D's to $\overline{\text { D's }}$ and $\overline{\text { D's }}$ to D's (do both)
- AND gate:

	A	B	d
Rows 1 \& 3	D	1	D
Reverse inputs	1	D	D
And two cubes	$\frac{D}{2}$	$\frac{D}{D}$	$\frac{D}{D}$
Interchange D and D	$\frac{D}{D}$	$\frac{D}{D}$	
	$\frac{1}{D}$	1	$\frac{D}{D}$

Primitive D-Cube of Failure

- Models circuit faults:
- Stuck-at-0
- Stuck-at-1
- Bridging fault (short circuit)
- Arbitrary change in logic function
- AND Output sa0: "1 1 D"
- AND Output sa1: "0 $\begin{array}{lll} & X & \bar{D} \\ & \text { " } & 0 \\ D\end{array}$
- Wire sa0: "D"
- Propagation D-cube - models conditions under which fault effect propagates through gate

Implication Procedure

1. Model fault with appropriate primitive D-cube of failure (PDF)
2. Select propagation D-cubes to propagate fault effect to a circuit output (D-drive procedure)
3. Select singular cover cubes to justify internal circuit signals (Consistency procedure)

- Put signal assignments in test cube
- Regrettably, cubes are selected very arbitrarily by D-ALG

Bridging Fault Circuit

Construction of Primitive D-Cubes of Failure

1. Make cube set $\alpha 1$ when good machine output is 1 and set $\alpha 0$ when good machine output is 0
2. Make cube set $\beta 1$ when failing machine output is 1 and $\beta 0$ when it is 0
3. Change $\alpha 1$ outputs to 0 and D-intersect each cube with every $\beta 0$. If intersection works, change output of cube to D
4. Change $\alpha 0$ outputs to 1 and D-intersect each cube with every $\beta 1$. If intersection works, change output of cube to \bar{D}

Bridging Fault D-Cubes of Failure

Cube-set	a	b	a*	b^{*}	Cube-set		a b a* b*
$\alpha 0$	0 \times	X 0	0 \times		PDFs for Bridging fault	$\begin{array}{llll} 1 & 0 & 1 & D \\ 0 & 1 & D & 1 \end{array}$	
$\alpha 1$	1 \times	$\begin{aligned} & \hline X \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & x \end{aligned}$	$\begin{aligned} & \hline X \\ & 1 \\ & \hline \end{aligned}$			
β	0	0	0	0			
$\beta 1$		1	1	1 1			

Gate Function Change D-Cube of Failure

Cube-set	a	b	c	Cube-set	a	b	c
$\alpha 0$	0	X	0				
α	0	0	PDFs for	0	1	D	
$\alpha 1$	1	1	1	AND changing			D
$\beta 0$	0	0	0	to OR	1	0	D
$\beta 1$	1	X	1				
	X	1	1				

D-Algorithm - D-drive

while (untried fault effects on D-frontier)
select next untried D-frontier gate for propagation;
while (untried fault effect fanouts exist)
select next untried fault effect fanout;
generate next untried propagation D-cube;
D-intersect selected cube with test cube;
if (intersection fails or is undefined) continue;
if (all propagation D-cubes tried \& failed) break;
if (intersection succeeded)
add propagation D-cube to test cube - recreate D-frontier;
Find all forward \& backward implications of assignment;
save D-frontier, algorithm state, test cube, fanouts, fault; break;
else if (intersection fails \& D and D in test cube) Backtrack (); else if (intersection fails) break;
if (all fault effects unpropagatable) Backtrack ();

D-Algorithm - Top Level

1. Number all circuit lines in increasing level order from Pls to POs;
2. Select a primitive D-cube of the fault to be the test cube;

- Put logic outputs with inputs labeled as D (D) onto the D-frontier;

3. D-drive ();
4. Consistency ();
5. return ();

D-Algorithm -- Consistency

$\mathrm{g}=$ coordinates of test cube with 1 's \& 0's;
if (g is only Pls)
for (each unjustified signal in g)
Select highest \#unjustified signal z in g, not a PI;
if (inputs to gate z are both D and D) break;
while (untried singular covers of gate z)
select next untried singular cover;
if (no more singular covers)
If (no more stack choices)
else if (untried alternatives in Consistency)
pop implication stack -- try alternate assignment; else

Backtrack ();
D-drive ();
If (singular cover D-intersects with z) delete z from g , add inputs to singular cover to g , find all forward and backward implications of new assignment, and break; If (intersection fails) mark singular cover as failed;

Backtrack

if (PO exists with fault effect) Consistency (); else pop prior implication stack setting to try alternate assignment;
if (no untried choices in implication stack)
else return;
Circuit Example 7.1 and Truth Table

Steps for Fault d sa0

Step	A	B	C	d	e	F	Cube type
1	1	1		D		PDF of AND gate	
2							
3	1	1		0	D	Prop. D-cube for NOR	

- Condation D-cube - Conditions under which difference between good/failing machines propagates
- Singular cover - Used for justifying lines

Example 7.2 Fault A sa0

- Step 1 - D-Drive - Set A = 1

- Step 3 - D-Drive - Set k = 1

Step 2 -- Example 7.2

- Step 2 - D-Drive - Set f = 0

Step 4 -- Example 7.2

- Step 4 - Consistency - Set g=1

Step 5 -- Example 7.2

- Step 5 - Consistency - f = 0 Already set

D-Chain Dies -- Example 7.2

- Step 7 - Consistency - Set B =0
- D-Chain dies

- Test cube: A, B, C, D, e, f, g, h, k, L

Step 6 -- Example 7.2

- Step 6 - Consistency - Set c $=0$, Set e $=0$

Example 7.3 - Step 2 s sa1

Example 7.3 - Step 2 s sa1

- Forward \& Backward Implications

Example 7.3 - Fault u sa1

- Primitive D-cube of Failure

Example 7.3 - Step 2 u sal

- Propagation D-cube for v

Example 7.3 - Step 2 u sa1

- Forward and backward implications

Inconsistent

- $d=0$ and $m=1$ cannot justify $r=1$ (equivalence)
- Backtrack
- Remove $B=0$ assignment

Example 7.3 - Backtrack

- Need alternate propagation D-cube for v

Example 7.3 - Step 3 u sa 1

- Propagation D-cube for v

Example 7.3 - Step 4 u sa1

- Propagation D-cube for Z

Example 7.3 - Step 4 u sa1

- Propagation D-cube for Z and implications

PODEM -- Goel

 IBM (1981)- New concepts introduced:
- Expand binary decision tree only around primary inputs
- Use X-PATH-CHECK to test whether D-frontier still there
- Objectives -- bring ATPG closer to propagating $\mathrm{D}(\overline{\mathrm{D}})$ to PO
- Backtracing

Motivation

- IBM introduced semiconductor DRAM memory into its mainframes - late 1970's
- Memory had error correction and translation circuits - improved reliability
" D-ALG unable to test these circuits
- Search too undirected
-Large XOR-gate trees
- Must set all external inputs to define output
- Needed a better ATPG tool

PODEM High-Level Flow

1. Assign binary value to unassigned PI
2. Determine implications of all PIs
3. Test Generated? If so,
4. Test possible with more assigned PIs? If maybe, go to Step 1
5. Is there untried combination of values on assigned Pls? If not,
6. Set untried combination of values on assigned Pls using objectives and backtrace. Then, go to Step 2

Example 7.3 Again

- Select path s-Y for fault propagation

Example 7.3 -- Step 2 s sa1

- Initial objective: Set r to 1 to sensitize fault

Example 7.3 -- Step 6 s sal

- Initial objective: set r to 1

Example 7.3 -- Step 8 s sa1 - Set B to 1. Implications in stack: $\mathrm{A}=0, \mathrm{~B}=1$

Example 7.3 -- Step 9 s sal - Forward implications: $k=1, m=0, r=1, q=1$,

Step 11 -- s sal

- Set B = 0 (alternate assignment)

Step 13 -- s sal

- Set $\mathrm{A}=1$ (alternate assignment)

Step 14 -- s sal

- Backtrace from ragain

Step 15 -- s sal

- Set $\mathrm{B}=0$. Implications in stack: $\mathrm{A}=1, \mathrm{~B}=0$

Step 17 -- s sal

- Set $\mathrm{B}=1$ (alternate assignment)

Backtrack -- s sa1

- Forward implications: $d=0, X=1, m=1, r=0$.

Backtrace (s, v_{s}) Pseudo-Code

$\mathrm{v}=\mathrm{v}_{\mathrm{s}}$;
while (s is a gate output)
if (s is NAND or INVERTER or NOR) $v=\overline{\mathrm{v}}$;
if (objective requires setting all inputs)
select unassigned input a of s with hardest controllability to value v; else
select unassigned input a of s with easiest controllability to value v;
$\mathrm{s}=\mathrm{a} ;$
return (s, v) /* Gate and value to be assigned */;

PODEM Algorithm

while (no fault effect at POs)
if (xpathcheck (D-frontier)
($1, \mathrm{v}_{\mathrm{l}}$) = Objective (fault, $\mathrm{v}_{\text {fault }}$);
(pi, v_{pi}) = Backtrace ($\left(\mathrm{l}, \mathrm{v}_{\mathrm{l}}\right)$;
Imply (pi, $\mathrm{v}_{\text {pi }}$);
if (PODEM (fault, $\mathrm{v}_{\mathrm{faul}}$) $=$ SUCCESS) return (SUCCESS);
(pi, $v_{p i}$) = Backtrack ();
Imply (pi, vpi);
if (PODEM (fault, $\mathrm{v}_{\text {fault }}$) $=$ SUCCESS) return
(SUCCESS);
Imply (pi, "X");
return (FAILURE);
else if (implication stack exhausted)
return (FAILURE);
else Backtrack ();
return (SUCCESS);

Objective Selection Code

if (gate g is unassigned) return ($\mathrm{g}, \overline{\mathrm{v}}$); select a gate P from the D-frontier; select an unassigned input I of P; if (gate g has controlling value) $\mathrm{c}=\mathrm{controlling} \mathrm{input} \mathrm{value} \mathrm{of} \mathrm{g}$; else if (0 value easier to get at input of XOR/EQUIV gate) $\mathrm{c}=1$;
else c = 0; return (l, c);

Summary

- D-ALG - First complete ATPG algorithm
- D-Cube
- D-Calculus
- Implications - forward and backward
- Implication stack
- Backup
- PODEM
- Expand decision tree only around Pls
- Use X-PATH-CHECK to see if D-frontier exists
- Objectives -- bring ATPG closer to getting

D (D) to PO

- Backtracing

