Combinational Logic Design Techniques

Introduction to Digital Systems

Lecture #5

Prepared by Pinaki Mazumder Professor of Computer Science & Engineering University of Michigan

Copyrighted Materials © Prof. Pinaki Mazumder

Today's Lecture Addresses 1. How to design a digital system when the design specs are given in plain English 2. Other Representations - Equation, Truth Table, & Input-Output Waveforms 3. Minterm Expansion, Maxterm Expansion, Canonical SOP, Canonical POS, Self-Duality 4. Verilog Modeling and Design using Verilog

Reading Assignment: Lecture Slides, Textbook Chapter 2, Sec. 2.6-2.8; pp. 61-83; Chapter 9, Sec. 9.2-9.4; pp. 489-511.

Digital System Design Principles

- 1. Problem Statement
- 2. Canonical Implementation
- 3. Minimization by Boolean Algebra
- 4. Scaling of Problem Size

Copyrighted Materials © Prof. Pinaki Mazumder

Objectives of Today's Lecture Given a Problem in English Statement 1.How to assign Boolean variables 2.How to obtain Truth Table 3.How to write the • canonical sum of products (SOP) • canonical product of sums (POS) 4.How to minimize logic expressions using Boolean algebra

Objectives of Today's Lecture

5.How to Implement SOP in AND-OR, NAND-NAND, OR-NAND, NOR-OR Gates 6.How to Implement POS in OR-AND, NOR-NOR, AND-NOR, NAND-AND Gates

Altogether EIGHT (4 SOP and 4 POS) 2-level logic gate implementations can be done

Copyrighted Materials © Prof. Pinaki Mazumder

PROBLEM STATEMENT

In a 3-story building, there is a lamp to illuminate a *stairwell*.

The lamp can be independently turned **ON** and **OFF** from each floor by flipping an electrical switch on that floor. Design the logic circuit for the problem.

Copyrighted Materials © Prof. Pinaki Mazumder

Savings due to Minimization

Gate Cost = (5-2)/5 = 60% Literal Cost = (12-3)/12 = 9/12 = 75% No. of Transistors = (42-12)/42 = 30/42 = 75%

How many Minterms appear in the Expression? (Exponential Growth of the Output Expression)

For n = 3, # of minterms or product terms = 4 For n = 11, # of minterms or product terms = 1024.

Copyrighted Materials © Prof. Pinaki Mazumder

Combinational Logic Design Techniques

Introduction to Digital Systems

Lecture #5 contd.

Prepared by Pinaki Mazumder Professor of Computer Science & Engineering University of Michigan

Copyrighted Materials © Prof. Pinaki Mazumder

Exclusive OR and Exclusive NOR (or Equivalence) gates are used in such pathological cases when the minterms cannot be combined to yield smaller product terms.

GENERAL SOLUTION: For an *n*-story building, the Lamp equation will be given by:

 $L(S_0, S_1, S_2, \square, S_{n-1}) = S_0 \oplus S_1 \oplus S_2 \oplus \square \oplus S_{n-1}$

Copyrighted Materials © Prof. Pinaki Mazumder

Digital System Design

- 1. Majority Gate
- 2. Canonical SOP Implementation
- 3. Minimization of SOP by Boolean Algebra
- 4. Canonical POS Implementation
- 5. Minimization of POS by Boolean Algebra
- 6. Self-Duality of Majority Function

Copyrighted Materials © Prof. Pinaki Mazumder

Therefo	ore, <u>Z is ON</u> (<u>& C=1</u>) OR	1) iff (<u>A=0 & B</u> (<u>A=1 & B=1 &</u>	<u>=1 & C =1</u>) OR (<u>A</u> <u>C=0</u>) OR (<u>A=1 & B</u>	<u>=1 &</u> =1 & C=1
Step (STAN FOR TH	#3: Write C Dard Sop) He output e	CANONICAL SI OR MINTERM OOLEAN VAR	JM OF PRODUCTS EXPANSION IABLE	
	Z (A, B, C)	$P = A'BC + A' = \Sigma m($	B'C + ABC' + A (3,5,6,7)	BC
No in ca Mi th	ote that ead true or co lled literal interm. The Minterm	ch Product to mplement fo s, and each p ne expression n Expansion	for Σ (A, B, C) for Z (A, B, C)	e inputs s are alled a is calle
	Copyright	ed Materials © P	of. Pinaki Mazumder	

Step #2: WRITE THE TRUTH TABLE							
The TRUTH TABLE	Minterm and Maxterm	Α	В	С	Z		
shows the Input-Output relationships between	m0 = A'B'C' M0 = A+B+C	0	0	0	0		
Boolean variables.	m1=A'B'C M1 = A+B+C'	0	0	1	0		
Input Boolean Variables:	m2 = A'BC' M2 = A+B'+C	0	1	0	0		
	m3 = A'BC M3 = A+B'+C'	0	1	1	1		
Variable: Z	m4 = AB'C' M4 = A'+B+C	1	0	0	0		
	m5 = AB'C M5 = A'+B+C'	1	0	1	1		
	m6 = ABC' M6 = A'+B'+C	1	1	0	1		
	m7 = ABC M7 = A' +B'+C'	1	1	1	1		
Copyrighted Materials © Prof. Pinaki Mazumder							

ALTERNATIVE IMPLEMENTATION

CANONICAL PRODUCT OF SUMS OR MAXTERM EXPANSION

 $\begin{array}{l} \mbox{Alternatively, } \underline{Z \ is \ OFF} \ (0), \ i.e., \ \underline{Z' \ is \ ON} \ (1) \ iff \ (\underline{A=0 \ \& \ B=0 \ \&} \\ \underline{C=0} \ OR \ (\underline{A=0 \ \& \ B=0 \ \& \ C=1}) \ OR \ (\underline{A=0 \ \& \ B=1 \ \& \ C=0} \\ OR \ (\underline{A=1 \ \& \ B=0 \ \& \ C=0}) \end{array}$

Z'(A, B, C) = A'B'C' + A'B'C + A'BC' + AB'C' = Σm(0,1,2,4)

→Z(A,B,C) = [A'B'C' + A'B'C + A'BC' + AB'C']'

→ Z(A,B,C) = (A'B'C')'. (A'B'C)'. (A'BC')'. (AB'C')' (applying De Morgan's Laws)→Z(A,B,C) = (A+B+C).(A+B+C').(A+B+C).(A'+B+C)

 $\mathbf{N}_{(1,1)} = \mathbf{N}_{(1,1)} = \mathbf{N}$

→ Z(A,B.C) = M0.M1.M2.M4 = IIM(0,1,2,4)

Copyrighted Materials © Prof. Pinaki Mazumder

Step #5: MINIMIZATION OF THE CANONICAL POS

Canonical POS expression for Z(A,B,C) is given by:

Z(A,B,C) = (A+B+C).(A+B+C').(A+B'+C).(A'+B+C) Z(A,B,C) = [(A+B+C).(A+B+C')].[(A+B+C).(A+B'+C)]. [(A+B+C).(A'+B+C)] [X = X .X, Laws of Idempotence]

$$\label{eq:constraint} \begin{split} Z(A,B,C) &= (A+B).(A+C).(B+C) \mbox{ [Laws of Complementarity,} \\ (X+Y).(X+Y') &= X \mbox{]} \end{split}$$

Dual of POS= ZD (A,B,C) = A.B+B.C+C.A = Z(A,B,C) of SOP → Majority Function (Z) is Self-Dual.

Copyrighted Materials © Prof. Pinaki Mazumder

Product of Sums (POS)

1. OR-AND Z=(A+B)(B+C).(C+A)

- 2. NOR NOR $Z = \overline{(\overline{Z})} = \overline{[(A+B)(B+C).(C+A)]'}$
- Invertelinputs =[(A+B)' + (B+C)' + (C + A)']'

3.AND NOR $Z = \overline{(A:B') + (B:C') + (C'.A)'}$

$4.NANDANDZ = \overline{(AB')}.\overline{(BC')}.\overline{(C'A')}$

Therefore, given a Boolean expression, you can implement the expression in 8 different styles.

Copyrighted Materials © Prof. Pinaki Mazumder

A drawing of a circuit, or schematic, contains graphical information about a design
Such graphical information may not be useful for large designs
Can use textual language instead

28

Hardware description language (HDL)

- Intended to describe circuits textually, for a computer to read
- Evolved starting in the 1970s and 1980s
- Popular languages today include:
- VHDL –Defined in 1980s by U.S. military; Ada-like language
- Verilog –Defined in 1980s by a company; C-like language
- SystemC –Defined in 2000s by several companies; consists of libraries in C++

29

Digital Design 2e Copyright © 2010 Frank Vahid

/usr/caen/ius	-8.2/tools/bin/n	cverilog	probs.v
ncsim> sourc ncsim> run	e /usr/caen/ius	s-8.2/tools/i	nca/files/ncsimrc
A:0 B:0 C:0	majority:0	lamp:0	Majority = 1, if at least 2
A:0 B:0 C:1	majority:0	lamp:1	inputs are 1.
A:0 B:1 C:0	majority:0	lamp:1	
A:0 B:1 C:1	majority:1	lamp:0	Lamp = 1, if odd number
A:1 B:0 C:0	majority:0	lamp:1	of inputs are 1.
A:1 B:0 C:1	majority:1	lamp:0	•
A:1 B:1 C:0	majority:1	lamp:0	
A:1 B:1 C:1	majority:1	lamp:1	
Simulation co	omplete via \$fii	nish(1) at ti	me 39 NS + 0
./probs.v:46	\$finish;	.,	
ncsim> exit			
Copyria	hted Materials	© Prof. Pin	aki Mazumder

St Waveform 1 - Similision	
Elle Edit View Explore Format Windows Help	câdenc
	₩. + *** b
Search Names: Signal - 🔽 🍂 🌈 Search Times: Value - 🔽 🐘 🧌	
N TimeA + = 0 0 15 + 8.2	Time: 😤 0 : 39ns 🔽 🔍 🕇 🕇
Bushrer+0 Bushrer+0 Bushrer+0 Bushrer+0 Always @ (A Maax Durger+ Durger+ Durger+	or B or C)
always begin #5 C ca - C; end always begin #5 C (of C) = 10 ns; T (of B) = majority = ((B && C) (A)	20 ns; T (of A) = 40 ns A && C) (A && B))
#10 B c= -B; end Verilog Timing Diagra always Functional Correctness begin £20 A c= -A; end Potential Sources of E	ms to Verify the as of the Design Hazards and Frors.
Copyrighted Materials © Prof. Pin	aki Mazumder S objects select

Today's Lecture Addresses

- 1. How to design a digital system when the design specs are given in plain English
- 2. Other Representations Equation, Truth Table, & Input-Output Waveforms
- 3. Minterm Expansion, Maxterm Expansion, Canonical SOP, Canonical POS, Self-Duality
- 4. Verilog Modeling and Design using Verilog

Reading Assignment: Lecture Slides, Textbook Chapter 2, Sec. 2.6-2.8; pp. 61-83; Chapter 9, Sec. 9.2-9.4; pp. 489-511.