
1

Combinational Logic Design
Techniques

Introduction to Digital Systems

Lecture #5

Prepared by
Pinaki Mazumder

Professor of Computer Science & Engineering
University of Michigan

Digital System Design Principles

1. Problem Statement

2. Canonical Implementation

3. Minimization by Boolean Algebra

4. Scaling of Problem Size

Copyrighted Materials © Prof. Pinaki Mazumder

Today’s Lecture Addresses

1. How to design a digital system when the
design specs are given in plain English

2. Other Representations - Equation,
Truth Table, & Input-Output Waveforms

3. Minterm Expansion, Maxterm Expansion,
Canonical SOP, Canonical POS, Self-Duality

4. Verilog Modeling and Design using Verilog

Reading Assignment: Lecture Slides, Textbook Chapter 2,
Sec. 2.6-2.8; pp. 61-83; Chapter 9, Sec. 9.2-9.4; pp. 489-511.

Objectives of Today’s Lecture
Given a Problem in English Statement

1.How to assign Boolean variables
2.How to obtain Truth Table
3.How to write the

• canonical sum of products (SOP)
• canonical product of sums (POS)

4.How to minimize logic expressions
using Boolean algebra

Copyrighted Materials © Prof. Pinaki Mazumder

2

Objectives of Today’s Lecture

5.How to Implement SOP in
AND-OR, NAND-NAND,
OR-NAND, NOR-OR Gates

6.How to Implement POS in
OR-AND, NOR-NOR,
AND-NOR, NAND-AND Gates

Altogether EIGHT (4 SOP and 4 POS)
2-level logic gate
implementations can be done

Copyrighted Materials © Prof. Pinaki Mazumder

In a 3-story building, there is
a lamp to illuminate a
stairwell.

The lamp can be
independently turned ON and
OFF from each floor by
flipping an electrical switch on
that floor. Design the logic
circuit for the problem.

PROBLEM STATEMENT

Copyrighted Materials © Prof. Pinaki Mazumder

Step #1: ASSIGN BOOLEAN VARIABLES
AND DEFINE THEIR VALUES
with respect to the PROBLEM

Let L be the Boolean variable denoting the lamp,
and A, B, and C are switches on the first, the
second and the third floors, respectively.

Let each switch, X ε {A, B, C} has two positions –
Up and Down.

Let X = 1 switch X is in Up position
X = 0 switch X is in Down position

Let L = 0 lamp L is Off
L = 1 lamp L is On

C

B

A

L

Copyrighted Materials © Prof. Pinaki Mazumder

Note that Lamp can be either On or Off
But Switches can be either Up or Down. By flipping switches
Up or Down, the Lamp can be turned On or Off.

Step #2: WRITE THE TRUTH TABLE

The TRUTH TABLE Shows the Input-Output
Relationships between Boolean variables.

• Input Boolean Variables: A, B, and C
• Output Boolean Variable: L

• Boolean Function: L(A,B,C)

Number of Input Variables = 3 →
Number of Rows = 8.

Copyrighted Materials © Prof. Pinaki Mazumder

3

Switch and Lamp
States

Switch
A

Switch
B

Switch
C

Lamp
L

A=B=C=DOWN,
L is OFF

0 0 0 0

C=UP, A=B=DOWN
L is ON

0 0 1 1

A=C=DOWN, B=UP
L is ON

0 1 0 1

B=C=UP, A=DOWN
L is OFF

0 1 1 0

B=C=DOWN, A=UP
L is ON

1 0 0 1

A=C=UP, B=DOWN
L is OFF

1 0 1 0

C=DOWN, A=B=UP
L is OFF

1 1 0 0

A=B=C=UP
L is ON

1 1 1 1

All 3 switches DOWN,
Lamp is OFF.

2 switches DOWN, 1
UP, Lamp is ON.

1 switch DOWN, 2 UP
Lamp is OFF.

All 3 switches UP,
Lamp is ON.

001, 010, 100

011, 101, 110

111

Therefore, L is ON (1) iff (A is DOWN (0) & B is DOWN (0) & C is
UP (1)) OR (A is DOWN (0) & B is UP (1) & C is DOWN (0)) OR
(A is in UP (1) & B is DOWN (0) & C is DOWN (0)) OR (A is UP (1) &
B is UP (1) & C is UP (1))

Copyrighted Materials © Prof. Pinaki Mazumder

Hence, L=1 iff (A=B=0,C=1) OR (A=C=0, B=1) OR (A=1, B=C=0) OR (A=B=C=1)

L (A, B, C) = A’B’C + A’BC’ + AB’C’ + ABC

Note that each Product term has all three
inputs in True or Complement form.
These inputs are called Literals,
and each product term is called a Minterm.
The output function can be written as a sum
of minterms, L(A,B,C) = (1,2,4,7) which is
called the Minterm Expansion for L(A,B,C).

Step #3: WRITE CANONICAL SUM OF
PRODUCTS (STANDARD SOP) FOR THE
OUTPUT BOOLEAN VARIABLE(s)

Copyrighted Materials © Prof. Pinaki Mazumder

A'
B'
C

A'
B
C'

A

B'
C'

A
B
C

L

Cost of Implementation

No. of Gates = Gate cost=
4 X 3-input AND + 1 X 4-
input OR

No. of Literals = Literal Cost =
3 X 4 = 12
(3 literals per gate)

No. of Transistors = 4 x (6+2)
+ (8+2) = 32 + 10 = 42

Step #4: DIRECT IMPLEMENTATION OF THE
CANONICAL SOP EXPRESSION

Copyrighted Materials © Prof. Pinaki Mazumder

Step #5: MINIMIZATION OF THE CANONICAL
SOP

Use Boolean Algebra to Simplify the
Canonical Expression

L (A, B, C) = AB’C’ + A’BC’ + A’B’C + ABC
= (AB’+A’B).C’ + (A’B’ + AB).C (Law of Distribution)
= (A B).C’ + (A B)’.C (Def. of Ex-Or Equivalence)
= (A B) C = A B C.

A

B

C

L

Cost of Implementation

Gate cost= 2 X 2-input Ex-OR

Literal Cost = 3

No of Transistors = 6 x 2 = 12

Copyrighted Materials © Prof. Pinaki Mazumder

4

Savings due to Minimization

Gate Cost = (5-2)/5 = 60%
Literal Cost = (12-3)/12 = 9/12 = 75%
No. of Transistors = (42-12)/42 = 30/42 = 75%

How many Minterms appear in the
Expression?

(Exponential Growth of the
Output Expression)

For n = 3, # of minterms or
product terms = 4
For n = 11, # of minterms or
product terms = 1024.

Copyrighted Materials © Prof. Pinaki Mazumder

Exclusive OR and Exclusive
NOR (or Equivalence) gates
are used in such pathological
cases when the minterms
cannot be combined to yield
smaller product terms.

10 2 1 0 1 2 1, , , ,)(n nL S S S S S S S S

GENERAL SOLUTION:
For an n-story building,
the Lamp equation will be given by:

Copyrighted Materials © Prof. Pinaki Mazumder

Combinational Logic Design
Techniques

Introduction to Digital Systems

Lecture #5 contd.

Prepared by
Pinaki Mazumder

Professor of Computer Science & Engineering
University of Michigan

Copyrighted Materials © Prof. Pinaki Mazumder

Digital System Design
1. Majority Gate

2. Canonical SOP Implementation

3. Minimization of SOP by Boolean Algebra

4. Canonical POS Implementation

5. Minimization of POS by Boolean Algebra

6. Self-Duality of Majority Function

Copyrighted Materials © Prof. Pinaki Mazumder

5

An n-input Majority Gate has an output Z = 1 iff
at least inputs are 1. Otherwise, Z = 0./ 2 1n

For a 3-input (A, B, and C) Majority Gate, at least
2 inputs must be 1 in order that output Z(A,B,C) = 1.

DESIGN OF A MAJORITY GATE
A

B

C

Z(A,B,C)GATE

Step #1: IDENTIFY BOOLEAN VARIABLES

Input Variables = A, B, C
Output Variable = Z

Copyrighted Materials © Prof. Pinaki Mazumder

Step #2: WRITE THE TRUTH TABLE

The TRUTH TABLE
shows the Input-Output
relationships between
Boolean variables.

Input Boolean Variables:
A, B, and C;

Output Boolean
Variable: Z

Minterm
and

Maxterm

A B C Z

m0 = A’B’C’
M0 = A+B+C

0 0 0 0

m1=A’B’C
M1 = A+B+C’

0 0 1 0

m2 = A’BC’
M2 = A+B’+C

0 1 0 0

m3 = A’BC
M3 = A+B’+C’

0 1 1 1

m4 = AB’C’
M4 = A’+B+C

1 0 0 0

m5 = AB’C
M5 = A’+B+C’

1 0 1 1

m6 = ABC’
M6 = A’+B’+C

1 1 0 1

m7 = ABC
M7 = A’ +B’+C’

1 1 1 1

Copyrighted Materials © Prof. Pinaki Mazumder

Therefore, Z is ON (1) iff (A=0 & B=1 & C =1) OR (A=1 &
B=0 & C=1) OR (A=1 & B=1 & C=0) OR (A=1 & B=1 & C=1)

Step #3: WRITE CANONICAL SUM OF PRODUCTS
(STANDARD SOP) OR MINTERM EXPANSION
FOR THE OUTPUT BOOLEAN VARIABLE

 Z (A, B, C) = A’BC + AB’C + ABC’ + ABC
= m(3,5,6,7)

Note that each Product term has all three inputs
in true or complement form. These inputs are
called literals, and each product term is called a
Minterm. The expression m(3,5,6,7) is called
the Minterm Expansion for Z (A, B, C)

Copyrighted Materials © Prof. Pinaki Mazumder

A'

C

A'
B
C'

A

B'
C'

A
B
C

L

Implementation Cost:

No. of gates = 5

No. of literals = 4 x 3 = 12

No. of transistors =
4 x [3x2 (NAND) + 2 (NOT)]
+ 1 x [4x2 (NOR) + 2 (NOT)]
= 42

Step #4: DIRECT IMPLEMENTATION OF THE
CANONICAL SOP EXPRESSION

B’

Rule: In standard CMOS technology logic gates generally have
negated outputs. In order to implement an N-input NAND or
NOR gate, 2N transistors are required. In order to implement an
AND or OR gate, an additional NOT gate using 2 transistors is
needed. Hence, NAND and NOR gates are more commonly used
(instead of AND and OR gates) in CMOS implementation of
Boolean functions.

Property of Boolean gates

NOR = OR +NOT
OR = NOR + NOT
NAND = AND + NOT
AND = NAND + NOT

Copyrighted Materials © Prof. Pinaki Mazumder

6

 A

 B

B

C

A

C

L

Z (A, B, C) = A’BC + AB’C + ABC’ + ABC

= A’BC + ABC + AB’C + ABC + ABC’ + ABC (Idempotent Laws)
= (A+A’)BC + A(B+B’)C + AB(C+C’) (Distributive Laws)
= 1.BC + A.1.C + AB.1 (Laws of Complementarity)
= BC + CA + AB (since, Y.1 = Y; Commutative Laws)

Implementation Cost:

No. of gates = 4 (Savings = 20%)
No. of literals = 3 x 2 = 6 (Savings = 50%)
No. of transistors =
3 x [2x2 (NAND) + 2 (NOT)]
+ 1 x [3x2 (NOR) + 2 (NOT)]
= 26 (Savings = 16%)

MINIMIZATION OF THE CANONICAL SOP

Use Boolean Algebra to Simplify the Canonical Expression

Copyrighted Materials © Prof. Pinaki Mazumder

ALTERNATIVE IMPLEMENTATION
CANONICAL PRODUCT OF SUMS
OR MAXTERM EXPANSION
Alternatively, Z is OFF (0), i.e., Z’ is ON (1) iff (A=0 & B=0 &
C =0) OR (A=0 & B=0 & C=1) OR (A=0 & B=1 & C=0)
OR (A=1 & B=0 & C=0)

Z’(A, B, C) = A’B’C’ + A’B’C + A’BC’ + AB’C’ = m(0,1,2,4)

Z(A,B,C) = [A’B’C’ + A’B’C + A’BC’ + AB’C’]’

 Z(A,B,C) = (A’B’C’)’ . (A’B’C)’ . (A’BC’)’ . (AB’C’)’
(applying De Morgan’s Laws)

Z(A,B,C) = (A+B+C).(A+B+C’).(A+B’+C).(A’+B+C)

 Z(A,B.C) = M0.M1.M2.M4 = M(0,1,2,4)

Copyrighted Materials © Prof. Pinaki Mazumder

The above expression for Z(A,B,C) is called
CANONICAL PRODUCT OF SUMS, or PRODUCT OF
MAXTERMS, or MAXTERM EXPANSION FORM.
Note that Z(A,B,C) = m(3,5,6,7) = M(0,1,2,4)
Hence, the SOP and POS implementations are
functionally equivalent.

Step #4’: DIRECT IMPLEMENTATION OF
THE CANONICAL POS EXPRESSION

A'
B
C

A
B'
C

A

B
C'

A
B
C

L

Copyrighted Materials © Prof. Pinaki Mazumder

Canonical POS expression for Z(A,B,C) is given by:

Z(A,B,C) = (A+B+C).(A+B+C’).(A+B’+C).(A’+B+C)
Z(A,B,C) = [(A+B+C).(A+B+C’)].[(A+B+C).(A+B’+C)].

[(A+B+C).(A’+B+C)]
[X = X .X, Laws of Idempotence]

Z(A,B,C) = (A+B).(A+C).(B+C) [Laws of Complementarity,
(X+Y).(X+Y’) = X]

Copyrighted Materials © Prof. Pinaki Mazumder

Step #5: MINIMIZATION OF THE CANONICAL POS

Dual of POS= ZD (A,B,C) = A.B+B.C+C.A = Z(A,B,C) of SOP
 Majority Function (Z) is Self-Dual.

7

2-LEVEL LOGIC IMPLEMENTATION STYLES

Sum of Products (SOP)

)'A'(C')'C'(B')'B'(A' Z:OR-NOR 4.

)A').(C'C').(B'B'(A' Z:NAND-OR 3.

Inputs Inverted

)CA . BC . AB

CABCAB()Z(Z:NAND-NAND 2.

 CA BC AB Z:OR-AND 1.

(

)

Copyrighted Materials © Prof. Pinaki Mazumder

Product of Sums (POS)

)A'(C' .)C'(B' .)B'(A' Z :AND-NAND 4.

)(C'.A')C'.(B')B'.(A' Z :NOR- AND3.

Inputs Inverted

]' A)C).(CB(B).(A[)Z(Z :NOR-NOR 2.

 A)C).(CB(B).(A Z :AND-OR 1.

Therefore, given a Boolean expression, you can
implement the expression in 8 different styles.

=[(A+B)’ + (B+C)’ + (C + A)’]’

Copyrighted Materials © Prof. Pinaki Mazumder

Digital Design 2e
Copyright © 2010
Frank Vahid

27

Large Circuit Diagram Becomes Messy

• A drawing of a circuit, or
schematic, contains
graphical information about
a design
– Inverter is above the OR gate,

AND gate is to the right, etc.

• Such graphical information
may not be useful for large
designs

• Can use textual language
instead

9.1

si

g
toc
ont
r

atap
a

DoorOpener

c

h

p

f

Note: Slides with animation are denoted with a small red "a" near the animated items

28

• A drawing of a circuit,
or schematic, contains
graphical information
about a design

• Such graphical
information may not
be useful for large
designs

• Can use textual
language instead

8

Digital Design 2e
Copyright © 2010
Frank Vahid

29

Computer-Readable Textual Language for
Describing Hardware Circuits: HDLs

• Hardware description language (HDL)
– Intended to describe circuits textually, for a computer to

read

– Evolved starting in the 1970s and 1980s

• Popular languages today include:
– VHDL –Defined in 1980s by U.S. military; Ada-like

language

– Verilog –Defined in 1980s by a company; C-like
language

– SystemC –Defined in 2000s by several companies;
consists of libraries in C++

VERILOG CODE
`timescale 1ns/1ps
module probs(majority, lamp_on);

output reg majority; output reg lamp_on;
reg A; reg B; reg C;

always
begin

#5 C <= ~C;
end

always
begin

#10 B <= ~B;
end

always
begin

#20 A <= ~A;
end

always @ (A or B or C)
begin

if ((B && C) || (A && C) || (A && B))
majority = 1'b1;

else
majority = 1'b 0;

if ((~A && ((~B && C) || (B && ~C))) || (A && ((~B && ~C) || (B && C))))
lamp_on=1'b1;

else
lamp_on=1'b0;
end

initial
begin

$monitor("A:%b B:%b C:%b majority:%b lamp:%b ", A, B, C, majority, lamp_on);
A <= 0; B <= 0; C <= 0; #39; $finish;
end

endmodule

VERILOG Simulation Codes
are written for Designing
Large Digital Systems and
are Verified for Functional a
and Timing Correctness
before Hardware Implementation
is Made using FPGA or Discrete
Chips.

Copyrighted Materials © Prof. Pinaki Mazumder

/usr/caen/ius-8.2/tools/bin/ncverilog probs.v

ncsim> source /usr/caen/ius-8.2/tools/inca/files/ncsimrc
ncsim> run

A:0 B:0 C:0 majority:0 lamp:0
A:0 B:0 C:1 majority:0 lamp:1
A:0 B:1 C:0 majority:0 lamp:1
A:0 B:1 C:1 majority:1 lamp:0
A:1 B:0 C:0 majority:0 lamp:1
A:1 B:0 C:1 majority:1 lamp:0
A:1 B:1 C:0 majority:1 lamp:0
A:1 B:1 C:1 majority:1 lamp:1

Simulation complete via $finish(1) at time 39 NS + 0
./probs.v:46 $finish;

ncsim> exit

Majority = 1, if at least 2
inputs are 1.

Lamp = 1, if odd number
of inputs are 1.

Copyrighted Materials © Prof. Pinaki Mazumder

Verilog Timing Diagrams to Verify the
Functional Correctness of the Design
and to Detect Timing Hazards and
Potential Sources of Errors.

Copyrighted Materials © Prof. Pinaki Mazumder

T (of C) = 10 ns; T (of B) = 20 ns; T (of A) = 40 nsalways
begin
#5 C <= ~C;
end

always
begin
#10 B <= ~B;
end

always
begin
#20 A <= ~A;
end

always @ (A or B or C)

majority = ((B && C) || (A && C) || (A && B))

9

S A B Ci

Co AB BCi CiA

S A B Ci

Co AB BCi CiA

A

B
Ci
(Carry in)

S
(Sum)

Co
(Carry Out)

Full
Adder

ANOTHER EXAMPLE

 FULL ADDER that consists of

3 inputs (A, B, Ci) and two outputs (S, Co)

A Addend
B Augend
Cin Carry In

S Sum
Cout Carry Out

Before Digital Gates

Copyrighted Materials © Prof. Pinaki Mazumder

A[0:3]+B[0:3] = S[0:3], Co

Hierarchical Design of a 4-bit
Ripple Carry Adder (RCA)

Hierarchical Design Method
Allows the Digital System to
Scale up Easily and
Reduces the Design
Complexity

Copyrighted Materials © Prof. Pinaki Mazumder

Digital Design 2e
Copyright © 2010
Frank Vahid

35

Describing a Full-Adder in Verilog
• Module

– Declares inputs/outputs

– Described behaviorally (could
have been described structurally)

– "always" procedure
• Sensitive to inputs

– Computes expressions, sets
outputs

s = a xor b xor ci
co = bc + ac + ab

co

ciba

s

Full adder

module FullAdder(a, b, ci, s, co);
input a, b, ci;
output s, co;
reg s, co;

always @(a or b or ci)
begin

 s <= a ^ b ^ ci;
 co <= (b & ci) | (a & ci) | (a & b);
end

endmodule

Chapter 9
of Vahid

Digital Design 2e
Copyright © 2010
Frank Vahid

36

Describing a Carry-Ripple Adder in Verilog

• Module
– Declares inputs/outputs

– Uses vectors for 4-bit
inputs/outputs

– Described structurally by
composing four full-
adders (could have been
described behaviorally instead)

– Instantiates four full-
adders, connects

• Note use of three internal
wires for connecting
carry-out of one stage to
carry-in of next stage

a3

co s

FA

co

b3 a2b2

s3 s2 s1

ciba

co s

FA

ciba

a1b1

co s

FA

ciba

s0

a0 b0 ci

co s

FA

ciba

module CarryRippleAdder4(a, b, ci, s, co);
input [3:0] a;
input [3:0] b;
input ci;

 output [3:0] s;
output co;

wire co1, co2, co3;

 FullAdder FullAdder1(a[0], b[0], ci,
 s[0], co1);
 FullAdder FullAdder2(a[1], b[1], co1,
 s[1], co2);
 FullAdder FullAdder3(a[2], b[2], co2,
 s[2], co3);
 FullAdder FullAdder4(a[3], b[3], co3,
 s[3], co);
endmodule

co1co2co3

10

High Level Functional Organization to
Implement Addition and Subtraction

Additional functionality will be required to implement absolute value

N Bit
Adder

A

B Cin2:1 Mux1s ~Sign ext

Sign ext
Arg 1

Arg 2

Output

Control Logic
Add/Subtract

Consider 3 – 1 = 2
What is the binary value on each data path segment?
For example

b011 b0011

b1110
b0001

Cin = 1 for
Subtraction

Today’s Lecture Addresses

1. How to design a digital system when the
design specs are given in plain English

2. Other Representations - Equation,
Truth Table, & Input-Output Waveforms

3. Minterm Expansion, Maxterm Expansion,
Canonical SOP, Canonical POS, Self-Duality

4. Verilog Modeling and Design using Verilog

Reading Assignment: Lecture Slides, Textbook Chapter 2,
Sec. 2.6-2.8; pp. 61-83; Chapter 9, Sec. 9.2-9.4; pp. 489-511.

