
1

Combinational Logic Design 
Techniques

Introduction to Digital Systems

Lecture #5

Prepared by
Pinaki Mazumder

Professor of Computer Science & Engineering 
University of Michigan

Digital System Design Principles

1. Problem Statement

2. Canonical Implementation

3. Minimization by Boolean Algebra

4. Scaling of Problem Size
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Today’s Lecture Addresses

1. How to design a digital system when the
design specs are given in plain English

2.   Other Representations  - Equation, 
Truth Table, & Input-Output Waveforms

3. Minterm Expansion, Maxterm Expansion, 
Canonical SOP, Canonical POS, Self-Duality

4. Verilog Modeling and Design using Verilog

Reading Assignment: Lecture Slides, Textbook Chapter 2, 
Sec. 2.6-2.8; pp. 61-83;  Chapter 9, Sec. 9.2-9.4; pp. 489-511.  

Objectives of Today’s Lecture
Given a Problem in English Statement

1.How to assign Boolean variables
2.How to obtain Truth Table
3.How to write the 

• canonical sum of products (SOP)
• canonical product of sums (POS) 

4.How to minimize logic expressions 
using Boolean algebra
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Objectives of Today’s Lecture

5.How to Implement SOP in
AND-OR, NAND-NAND, 
OR-NAND, NOR-OR Gates

6.How to Implement POS in 
OR-AND, NOR-NOR, 
AND-NOR, NAND-AND Gates

Altogether EIGHT (4 SOP and 4 POS) 
2-level logic gate 
implementations can be done
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In a 3-story building, there is 
a lamp to illuminate a 
stairwell. 

The lamp can be 
independently turned ON and 
OFF from each floor by 
flipping an electrical switch on 
that floor. Design the logic 
circuit for the problem.

PROBLEM STATEMENT
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Step #1: ASSIGN BOOLEAN VARIABLES 
AND DEFINE THEIR VALUES
with respect to the PROBLEM

Let  L be the Boolean variable denoting the lamp,
and A, B, and C are switches on the first, the 
second and the third floors, respectively.

Let each switch, X ε {A, B, C} has two positions –
Up and Down.

Let X = 1  switch X is in Up position
X = 0  switch X is in Down position

Let L = 0  lamp L is Off
L = 1  lamp L is On

C

B

A

L
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Note that Lamp can be either On or Off
But Switches can be either Up or Down. By flipping switches 
Up or Down,  the Lamp can be turned On or Off.

Step #2: WRITE THE TRUTH TABLE

The TRUTH TABLE Shows the Input-Output 
Relationships between Boolean variables.

• Input Boolean Variables: A, B, and C
• Output Boolean Variable: L

• Boolean Function:  L(A,B,C)

Number of Input Variables = 3 →
Number of Rows = 8.
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Switch and Lamp
States

Switch
A

Switch
B

Switch
C

Lamp
L

A=B=C=DOWN, 
L is OFF

0 0 0 0

C=UP, A=B=DOWN
L is ON

0 0 1 1

A=C=DOWN, B=UP
L is ON

0 1 0 1

B=C=UP, A=DOWN
L is OFF

0 1 1 0

B=C=DOWN, A=UP
L is ON

1 0 0 1

A=C=UP, B=DOWN
L is OFF

1 0 1 0

C=DOWN, A=B=UP
L is OFF

1 1 0 0

A=B=C=UP
L is ON

1 1 1 1

All 3 switches DOWN, 
Lamp is OFF.

2 switches DOWN, 1
UP, Lamp is ON.

1 switch DOWN, 2 UP
Lamp is OFF.

All 3 switches UP, 
Lamp is ON.

001, 010, 100

011, 101, 110

111

Therefore, L is ON (1) iff (A is DOWN (0) & B is DOWN (0) & C is 
UP (1)) OR   (A is DOWN (0) & B is UP (1) & C is DOWN (0))   OR   
(A is in UP (1) & B is DOWN (0) & C is DOWN (0))  OR (A is UP (1) & 
B is UP (1) & C is UP (1))
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Hence, L=1 iff (A=B=0,C=1) OR (A=C=0, B=1) OR (A=1, B=C=0) OR (A=B=C=1)

L (A, B, C) = A’B’C + A’BC’ + AB’C’ + ABC

Note that each Product term has all three 
inputs in True or Complement form. 
These inputs are called Literals, 
and each product term is called a Minterm.
The output function can be written as a sum
of minterms, L(A,B,C) = (1,2,4,7) which is
called the Minterm Expansion for L(A,B,C).

Step #3: WRITE CANONICAL SUM OF 
PRODUCTS (STANDARD SOP) FOR THE 
OUTPUT BOOLEAN VARIABLE(s)

Copyrighted Materials © Prof. Pinaki Mazumder

A'
B'
C

A'
B
C'

A

B'
C'

A
B
C

L

 

Cost of Implementation

No. of Gates = Gate cost=
4 X 3-input  AND + 1 X 4-
input OR 

No. of Literals = Literal Cost =  
3 X 4 = 12
(3 literals per gate)

No. of Transistors = 4 x (6+2) 
+ (8+2) = 32 + 10 = 42

Step #4: DIRECT IMPLEMENTATION OF THE 
CANONICAL SOP EXPRESSION
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Step #5: MINIMIZATION OF THE CANONICAL 
SOP

Use Boolean Algebra to Simplify the 
Canonical Expression 

L (A, B, C) = AB’C’ + A’BC’ + A’B’C + ABC
= (AB’+A’B).C’ + (A’B’ + AB).C     (Law of Distribution)
= (A   B).C’ + (A   B)’.C      (Def. of Ex-Or Equivalence) 
= (A    B)    C = A   B   C.

A

B

C

L

Cost of Implementation

Gate cost= 2 X 2-input  Ex-OR 

Literal Cost =  3 

No of Transistors = 6 x 2  = 12
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Savings due to Minimization

Gate Cost = (5-2)/5 = 60%
Literal Cost = (12-3)/12 = 9/12 = 75%
No. of Transistors = (42-12)/42 = 30/42 = 75%

How many Minterms appear in the 
Expression?   

(Exponential Growth of the 
Output Expression)

For n = 3, # of minterms or 
product terms = 4
For n = 11, # of minterms or 
product terms = 1024.
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Exclusive OR and Exclusive 
NOR (or Equivalence) gates 
are used in such pathological 
cases when the minterms 
cannot be combined to yield 
smaller product terms. 

10 2 1 0 1 2 1, , , , )( n nL S S S S S S S S     

GENERAL  SOLUTION:
For an n-story building, 
the Lamp equation will be given by:     
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Combinational Logic Design 
Techniques 

Introduction to Digital Systems

Lecture #5 contd.

Prepared by
Pinaki Mazumder

Professor of Computer Science & Engineering 
University of Michigan
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Digital System Design 
1. Majority Gate

2. Canonical SOP Implementation

3. Minimization of SOP by Boolean Algebra

4. Canonical POS Implementation

5. Minimization of POS by Boolean Algebra

6. Self-Duality of Majority Function

Copyrighted Materials © Prof. Pinaki Mazumder
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An n-input Majority Gate has an output Z = 1 iff
at least inputs are 1. Otherwise,  Z = 0./ 2 1n   

For a 3-input (A, B, and C) Majority Gate, at least
2 inputs must be 1 in order that output Z(A,B,C) = 1.

DESIGN OF A MAJORITY GATE
A

B

C

Z(A,B,C)GATE

Step #1: IDENTIFY BOOLEAN VARIABLES

Input Variables = A, B, C
Output Variable = Z
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Step #2: WRITE THE TRUTH TABLE

The TRUTH TABLE 
shows the Input-Output 
relationships between 
Boolean variables.

Input Boolean Variables: 
A, B, and C;

Output Boolean 
Variable: Z

Minterm
and

Maxterm                       

A B C Z

m0 = A’B’C’
M0 = A+B+C

0 0 0 0

m1=A’B’C
M1 =  A+B+C’

0 0 1 0

m2 = A’BC’
M2 = A+B’+C

0 1 0 0

m3 = A’BC
M3 = A+B’+C’

0 1 1 1

m4 = AB’C’
M4 = A’+B+C

1 0 0 0

m5 = AB’C
M5 = A’+B+C’

1 0 1 1

m6 = ABC’
M6 = A’+B’+C

1 1 0 1

m7 = ABC
M7 = A’ +B’+C’

1 1 1 1
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Therefore, Z is ON (1) iff (A=0 & B=1 & C =1)  OR   (A=1 &
B=0  & C=1)   OR   (A=1 & B=1 & C=0)  OR (A=1 & B=1 & C=1)

Step #3: WRITE CANONICAL SUM OF PRODUCTS 
(STANDARD SOP) OR MINTERM EXPANSION 
FOR THE OUTPUT BOOLEAN VARIABLE

 Z (A, B, C) = A’BC + AB’C + ABC’ + ABC  
=  m(3,5,6,7)

Note that each Product term has all three inputs 
in true or complement form. These inputs are 
called literals, and each product term is called a 
Minterm.  The expression m(3,5,6,7) is called 
the Minterm Expansion for Z (A, B, C) 
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A'

C

A'
B
C'

A

B'
C'

A
B
C

L

Implementation Cost: 

No. of gates = 5

No. of literals = 4 x 3 = 12

No. of transistors = 
4 x [3x2 (NAND) + 2 (NOT)]
+ 1 x [4x2 (NOR) + 2 (NOT)]
= 42

Step #4: DIRECT IMPLEMENTATION OF THE 
CANONICAL SOP EXPRESSION

B’

Rule: In standard CMOS technology logic gates generally have 
negated outputs. In order to implement an N-input NAND or 
NOR gate, 2N transistors are required. In order to implement an 
AND or OR gate, an additional NOT gate using 2 transistors is 
needed.  Hence, NAND and NOR gates are more commonly used 
(instead of   AND and OR gates) in CMOS implementation of 
Boolean functions.

Property of Boolean gates

NOR = OR +NOT
OR = NOR + NOT
NAND = AND + NOT
AND = NAND + NOT

Copyrighted Materials © Prof. Pinaki Mazumder
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 A

 B

B

C

A

C

L

Z (A, B, C) = A’BC + AB’C + ABC’ + ABC

= A’BC + ABC + AB’C + ABC + ABC’ + ABC (Idempotent Laws)
= (A+A’)BC + A(B+B’)C + AB(C+C’)  (Distributive Laws)
= 1.BC + A.1.C + AB.1  (Laws of Complementarity)
= BC + CA + AB  (since, Y.1 = Y; Commutative Laws)

Implementation Cost: 

No. of gates = 4 (Savings = 20%)
No. of literals = 3 x 2 = 6 (Savings = 50%)
No. of transistors = 
3 x [2x2 (NAND) + 2 (NOT)]
+ 1 x [3x2 (NOR) + 2 (NOT)]
= 26 (Savings = 16%)

MINIMIZATION OF THE CANONICAL SOP

Use Boolean Algebra to Simplify the Canonical Expression 
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ALTERNATIVE IMPLEMENTATION
CANONICAL PRODUCT OF SUMS 
OR MAXTERM EXPANSION
Alternatively, Z is OFF (0), i.e., Z’ is ON (1) iff (A=0 & B=0 & 
C =0)  OR   (A=0 & B=0  & C=1)   OR   (A=0 & B=1 & C=0) 
OR (A=1 & B=0 & C=0)

Z’(A, B, C) = A’B’C’ + A’B’C + A’BC’ + AB’C’ = m(0,1,2,4)

Z(A,B,C) = [A’B’C’ + A’B’C + A’BC’ + AB’C’]’

 Z(A,B,C) = (A’B’C’)’ . (A’B’C)’ . (A’BC’)’ . (AB’C’)’
(applying De Morgan’s Laws)

Z(A,B,C) = (A+B+C).(A+B+C’).(A+B’+C).(A’+B+C)

 Z(A,B.C) = M0.M1.M2.M4 = M(0,1,2,4)
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The above expression for Z(A,B,C) is called 
CANONICAL PRODUCT OF SUMS, or PRODUCT OF 
MAXTERMS, or MAXTERM EXPANSION FORM.
Note that  Z(A,B,C) = m(3,5,6,7) = M(0,1,2,4)
Hence, the SOP and POS implementations are 
functionally equivalent.

Step #4’: DIRECT IMPLEMENTATION OF
THE CANONICAL POS EXPRESSION

A'
B
C

A
B'
C

A

B
C'

A
B
C

L
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Canonical POS expression for Z(A,B,C) is given by:

Z(A,B,C) = (A+B+C).(A+B+C’).(A+B’+C).(A’+B+C)
Z(A,B,C) = [(A+B+C).(A+B+C’)].[(A+B+C).(A+B’+C)].

[(A+B+C).(A’+B+C)]    
[X = X .X,  Laws of Idempotence]

Z(A,B,C) = (A+B).(A+C).(B+C) [Laws of Complementarity,  
(X+Y).(X+Y’) = X]
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Step #5: MINIMIZATION OF THE CANONICAL POS

Dual of POS= ZD (A,B,C) = A.B+B.C+C.A = Z(A,B,C) of SOP 
 Majority Function (Z) is Self-Dual.
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2-LEVEL LOGIC IMPLEMENTATION STYLES

Sum of Products (SOP) 

)'A'(C' )'C'(B' )'B'(A'  Z:OR-NOR   4.

)A').(C'C').(B'B'(A'    Z:NAND-OR   3.

Inputs Inverted

)CA . BC . AB                                             

CABCAB(  )Z(    Z:NAND-NAND  2. 

                                  CA        BC AB    Z:OR-AND  1. 










(

)
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Product of Sums (POS) 

)A'(C' . )C'(B' . )B'(A'  Z :AND-NAND 4.

)(C'.A')C'.(B')B'.(A'  Z  :NOR- AND3.

Inputs Inverted

]' A)C).(CB(B).(A[  )Z(  Z  :NOR-NOR  2. 

                                       A)C).(CB(B).(A  Z  :AND-OR  1. 









Therefore, given a Boolean expression, you can 
implement the expression in 8 different styles.

=[(A+B)’ + (B+C)’ + (C + A)’]’
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Digital Design 2e
Copyright © 2010
Frank Vahid
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Large Circuit Diagram Becomes Messy

• A drawing of a circuit, or 
schematic, contains 
graphical information about 
a design
– Inverter is above the OR gate, 

AND gate is to the right, etc. 

• Such graphical information 
may not be useful for large 
designs

• Can use textual language 
instead

9.1

si

g
toc
ont
r

atap
a

DoorOpener

c

h

p

f

Note: Slides with animation are denoted with a small red "a" near the animated items

28

• A drawing of a circuit, 
or schematic, contains 
graphical information 
about a design

• Such graphical 
information may not 
be useful for large 
designs

• Can use textual 
language instead
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Computer-Readable Textual Language for 
Describing Hardware Circuits: HDLs

• Hardware description language (HDL) 
– Intended to describe circuits textually, for a computer to 

read

– Evolved starting in the 1970s and 1980s

• Popular languages today include:
– VHDL –Defined in 1980s by U.S. military; Ada-like 

language

– Verilog –Defined in 1980s by a company; C-like 
language

– SystemC –Defined in 2000s by several companies; 
consists of libraries in C++

VERILOG CODE
`timescale 1ns/1ps
module probs( majority, lamp_on );

output reg majority;    output reg lamp_on;
reg       A;    reg       B;  reg       C;

always
begin

#5 C <= ~C;
end

always
begin

#10 B <= ~B;
end

always
begin

#20 A <= ~A;
end

always @ (A or B or C)
begin

if ( (B && C) || (A && C) || (A && B) )
majority = 1'b1;

else
majority = 1'b 0;

if ( (~A && ((~B && C) || (B && ~C))) || (A && ((~B && ~C) || (B && C))))
lamp_on=1'b1;

else
lamp_on=1'b0;
end

initial
begin

$monitor("A:%b B:%b C:%b majority:%b lamp:%b ", A, B, C, majority, lamp_on);
A <= 0;    B <= 0;    C <= 0;    #39;      $finish;
end

endmodule

VERILOG Simulation Codes
are written for Designing 
Large Digital Systems and 
are Verified for Functional a
and Timing Correctness 
before Hardware Implementation
is Made using FPGA or Discrete
Chips. 
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/usr/caen/ius-8.2/tools/bin/ncverilog     probs.v

ncsim> source /usr/caen/ius-8.2/tools/inca/files/ncsimrc
ncsim> run

A:0 B:0 C:0 majority:0 lamp:0 
A:0 B:0 C:1 majority:0 lamp:1 
A:0 B:1 C:0 majority:0 lamp:1 
A:0 B:1 C:1 majority:1 lamp:0 
A:1 B:0 C:0 majority:0 lamp:1 
A:1 B:0 C:1 majority:1 lamp:0 
A:1 B:1 C:0 majority:1 lamp:0 
A:1 B:1 C:1 majority:1 lamp:1 

Simulation complete via $finish(1) at time 39 NS + 0
./probs.v:46     $finish;

ncsim> exit

Majority = 1, if at least 2
inputs are 1.

Lamp = 1, if odd number
of inputs are 1.
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Verilog Timing Diagrams to Verify the 
Functional Correctness of the Design 
and to Detect Timing Hazards and 
Potential Sources of Errors.
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T (of C) = 10 ns; T (of B) = 20 ns;  T (of A) = 40 nsalways
begin
#5 C <= ~C;
end

always
begin
#10 B <= ~B;
end

always
begin
#20 A <= ~A;
end

always @ (A or B or C)

majority = ( (B && C) || (A && C) || (A && B) )
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S A B Ci

Co AB BCi CiA

  
  

S A B Ci

Co AB BCi CiA

  
  

A

B
Ci
(Carry in)

S
(Sum)

Co
(Carry Out)

Full
Adder

ANOTHER EXAMPLE

 FULL ADDER that consists of 

3 inputs (A, B, Ci) and two outputs (S, Co)

A  Addend
B  Augend
Cin  Carry In

S  Sum
Cout  Carry Out

Before Digital Gates
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A[0:3]+B[0:3] = S[0:3], Co

Hierarchical Design of a 4-bit 
Ripple Carry Adder (RCA)

Hierarchical Design Method
Allows the Digital System to
Scale up Easily and
Reduces the Design
Complexity
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Digital Design 2e
Copyright © 2010
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Describing a Full-Adder in Verilog
• Module

– Declares inputs/outputs

– Described behaviorally (could 
have been described structurally)

– "always" procedure
• Sensitive to inputs

– Computes expressions, sets 
outputs

s = a xor b xor ci
co = bc + ac + ab

co

ciba

s

Full adder

module FullAdder(a, b, ci, s, co);
input a, b, ci;
output s, co;
reg s, co;

always @(a or b or ci)
begin

    s <= a ^ b ^ ci;
    co <= (b & ci) | (a & ci) | (a & b);
end

endmodule

Chapter 9
of Vahid

Digital Design 2e
Copyright © 2010
Frank Vahid
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Describing a Carry-Ripple Adder in Verilog

• Module
– Declares inputs/outputs

– Uses vectors for 4-bit 
inputs/outputs

– Described structurally by 
composing four full-
adders (could have been 
described behaviorally instead)

– Instantiates four full-
adders, connects 

• Note use of three internal 
wires for connecting 
carry-out of one stage to 
carry-in of next stage

a3

co s

FA

co

b3 a2b2

s3 s2 s1

ciba

co s

FA

ciba

a1b1

co s

FA

ciba

s0

a0 b0 ci

co s

FA

ciba

module CarryRippleAdder4(a, b, ci, s, co);
input [3:0] a;
input [3:0] b;
input ci;

 output [3:0] s;
output co;

wire co1, co2, co3;

  FullAdder FullAdder1(a[0], b[0], ci,
                       s[0], co1);
  FullAdder FullAdder2(a[1], b[1], co1,
                       s[1], co2);
  FullAdder FullAdder3(a[2], b[2], co2,
                       s[2], co3);
  FullAdder FullAdder4(a[3], b[3], co3,
                       s[3], co);
endmodule

co1co2co3
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High Level Functional Organization to 
Implement Addition and Subtraction

Additional functionality  will be required to implement absolute value

N Bit 
Adder

A

B  Cin2:1 Mux1s ~Sign ext

Sign ext
Arg 1

Arg 2

Output

Control Logic
Add/Subtract

Consider 3 – 1 = 2
What is the binary value on each data path segment?
For example

b011 b0011

b1110
b0001

Cin = 1 for 
Subtraction

Today’s Lecture Addresses

1. How to design a digital system when the
design specs are given in plain English

2.   Other Representations  - Equation, 
Truth Table, & Input-Output Waveforms

3. Minterm Expansion, Maxterm Expansion, 
Canonical SOP, Canonical POS, Self-Duality

4. Verilog Modeling and Design using Verilog

Reading Assignment: Lecture Slides, Textbook Chapter 2, 
Sec. 2.6-2.8; pp. 61-83;  Chapter 9, Sec. 9.2-9.4; pp. 489-511.  


