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ABSTRACT
Compressed Sensing is a new paradigm for acquiring the
compressible signals that arise in many applications. These
signals can be approximated using an amount of informa-
tion much smaller than the nominal dimension of the signal.
Traditional approaches acquire the entire signal and process
it to extract the information. The new approach acquires
a small number of nonadaptive linear measurements of the
signal and uses sophisticated algorithms to determine its
information content. Emerging technologies can compute
these general linear measurements of a signal at unit cost
per measurement.

This paper exhibits a randomized measurement ensem-
ble and a signal reconstruction algorithm that satisfy four
requirements:

1. The measurement ensemble succeeds for all signals,
with high probability over the random choices in its
construction.

2. The number of measurements of the signal is optimal,
except for a factor polylogarithmic in the signal length.

3. The running time of the algorithm is polynomial in the
amount of information in the signal and polylogarith-
mic in the signal length.

4. The recovery algorithm offers the strongest possible
type of error guarantee. Moreover, it is a fully polyno-
mial approximation scheme with respect to this type
of error bound.

Emerging applications demand this level of performance.
Yet no other algorithm in the literature simultaneously achieves
all four of these desiderata.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Algorithm design and anal-
ysis
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1. INTRODUCTION
Compressed Sensing is a new paradigm for acquiring sig-

nals, images, and other types of compressible data. These
data have the property that they can be approximated using
much less information than their nominal dimension would
suggest. At present, the standard approach to signal ac-
quisition is to measure a complete copy of the signal and
then process it to extract the important information. For
example, one typically measures an image in the pixel basis
and then applies JPEG compression to obtain a more effi-
cient representation. Instead, the new approach collects a
small number of carefully chosen (but nonadaptive) linear
measurements that condense the information in the signal.
Sophisticated algorithms are used to approximately recon-
struct the signal from these measurements.

Some exciting new technological applications are driving
the theoretical work on Compressed Sensing. In these ap-
plications, it is possible to compute general linear measure-
ments of the signal with unit cost per measurement. There-
fore, the acquisition cost is proportional to the number of
signal measurements that we take. (This setting stands in
contrast with the digital computation of a dot product com-
ponent by component.)

In traditional signal acquisition models, measurements of
the signal have a straightforward interpretation. On the
other hand, Compressed Sensing uses measurements that
have no real meaning. In particular, there is no simple map
from measurement data back to the signal domain. As a
result, we are also very concerned about the time it takes to
reconstruct signals from measurements.

Scientists and engineers are developing technologies where
the computational model of Compressed Sensing applies.
They are building cameras [15, 18], analog-to-digital con-
verters [8, 13, 12], and other sensing devices [20, 19] that can
obtain a general linear measurement of a signal at unit cost.
Compressive imaging cameras use a digital micro-mirror ar-
ray to optically compute inner products of the image with
pseudorandom binary patterns. The image is digitally re-
constructed from the projections. Popular media have show-
cased this application. See Business Week (Oct. 16, 2006)



and The Economist (Oct. 28, 2006).
In fact, certain types of Compressed Sensing devices are

already widespread, namely CT and MRI scanners. The
detector in a Computed Tomography (CT) scanner takes
a number of snapshots or profiles of an attenuated X-ray
beam as it passes through a patient. The profiles are used
to reconstruct a two-dimensional image. Each snapshot of
the X-ray beam is, in essence, the line integral of the X-ray
beam through the patient (i.e., an inner product).

1.1 Desiderata for Compressed Sensing
Our premise is that, if one measures a highly compressible

signal, it is pointless to reconstruct a full-length copy of the
signal because it will include a huge number of small, noisy
components that bear no information. Instead, a recovery
algorithm should directly identify those few components of
the signal that are significant. The algorithm should out-
put this compressed representation directly, and its runtime
should be roughly proportional to the size of the represen-
tation.

Let us be more formal. We are interested in acquiring sig-
nals in Rd that are well approximated by sparse signals with
m nonzero components, where m � d. The measurement
process can be represented by an n × d matrix Ψ, where n
is roughly proportional to m rather than d. Each signal f
yields a sketch v = Ψf . The recovery algorithm uses the
sketch and a description of the measurement matrix to con-
struct a signal approximation bf that has only O(m) nonzero
components. We want the measurements and the algorithm
to satisfy the following properties:

1. One (randomly generated) measurement matrix Ψ is
used to measure all signals. With high probability over
the random choices in its construction, it must succeed
for all signals.

2. The number of measurements is nearly optimal, namely
n = m polylog(d).

3. The algorithm must run in time poly(m, log d).

4. Given the sketch of an arbitrary input signal, the al-
gorithm must return a nearly optimal m-term approx-
imation of that signal.

1.2 Our results
We present a linear measurement procedure that takes

a near-optimal number of measurements of a signal. We
also present HHS Pursuit,1 a fully polynomial approxima-
tion scheme that uses these measurements to construct a
sparse estimate of the signal with an optimal error bound.
Moreover, this algorithm is exponentially faster than known
recovery algorithms that offer equivalent guarantees.

This section states our major theorem and two important
corollaries. We establish these results in Section 4 (and the
appendices). We discuss the error bounds in Sections 1.3
and 1.4. Section 1.5 provides a comparison with related
work.

Given a signal f , we write fm to denote the signal ob-
tained by zeroing all the components of f except the m com-
ponents with largest magnitude. (Break ties lexicographi-
cally.) We refer to fm as the head of the signal; it is the best
1The initials HHS stand for “Heavy Hitters on Steroids,”
which reflects the strong demands on the algorithm.

approximation of the signal using at most m terms with re-
spect to any monotonic norm (such as `p). The vector f−fm

is called the tail of the signal since it contains the entries
with small magnitude.

Theorem 1. Fix an integer m and a number ε ∈ (0, 1).
With probability at least 0.99, the random measurement ma-
trix Ψ has the following property. Suppose that f is a d-
dimensional signal, and let v = Ψf be the signal sketch.
Given m, ε, and v, the HHS Pursuit algorithm produces a
signal approximation bf with O(m/ε2) nonzero entries. The
approximation satisfies‚‚f − bf‚‚

2
≤ ε√

m
‖f − fm‖1 .

The signal sketch has size (m/ε2) polylog(d/ε), and HHS
Pursuit runs in time (m2/ε4) polylog(d/ε). The algorithm
uses working space (m/ε2) polylog(d/ε), including storage of
the matrix Ψ.

In particular, note that the algorithm recovers every m-term
signal without error.

The first corollary shows that we can construct an m-
term signal approximation whose `2 error is within an an
additive `1 term of the optimal `2 error. One can show that
this corollary is equivalent with the theorem.

Corollary 2. Let bfm be the best m-term approximation
to the output bf of HHS Pursuit. Then‚‚f − bfm

‚‚
2
≤ ‖f − fm‖2 +

2ε√
m
‖f − fm‖1 .

This result should be compared with Theorem 2 of [2],
which gives an analogous bound for the (superlinear) `1 min-
imization algorithm. A second corollary provides an `1 error
estimate.

Corollary 3. Let bfm be the best m-term approximation
to the output bf of HHS Pursuit. Then‚‚f − bfm

‚‚
1
≤ (1 + 3ε) ‖f − fm‖1 .

The error bound in Corollary 3 is more intuitive but sub-
stantially weaker than the bound in Theorem 1. One may
check this point by considering a signal whose first compo-
nent equals m−1/4 and whose remaining components equal
d−1. The `1 error bound holds even if an algorithm fails
to identify the first signal component, but the mixed-norm
error bounds do not.

1.3 Compressible signals
A compressible signal has the property that its compo-

nents decay when sorted by magnitude. These signals arise
in numerous applications because one can compress the wavelet
and Fourier expansions of certain classes of natural signals
[7]. A common measure of compressibility is the weak-`p

norm, which is defined for 0 < p <∞ as

‖f‖w`p

def
= inf{r : |f |(k) ≤ r · k−1/p for k = 1, 2, . . . , d}.

The notation |f |(k) indicates the kth largest magnitude of
a signal component. When the weak-`p norm is small for



some p < 2, the signal can be approximated efficiently by a
sparse signal because

‖f − fm‖1 ≤ m1−1/p ‖f‖w`p

Theorem 1 shows that the computed approximation bf sat-
isfies the error bound‚‚f − bf‚‚

2
≤ ε m1/2−1/p ‖f‖w`p

.

In particular, when p = 1, the error decays like m−1/2.

1.4 Optimality of error bounds
The error guarantees may look strange at first view. In-

deed, one might hope to take (m/ε2) polylog(d) measure-
ments of a signal f and produce an m-sparse approximationbf that satisfies the error bound‚‚f − bf‚‚

2
≤ (1 + ε) ‖f − fm‖2 .

It has been established [9] that this guarantee is possible if
we construct a random measurement matrix for each sig-
nal. On the other hand, Cohen, Dahmen, and DeVore have
shown [4] that it is impossible to obtain this error bound
simultaneously for all signals unless the number of mea-
surements is Ω(d).

The same authors also proved a more general lower bound
[4]. For each p in the range [1, 2), it requires Ω(m(d/m)2−2/p)
measurements to achieve‚‚f − bf‚‚

2
≤ Cp m1/2−1/p ‖f − fm‖p (1.1)

simultaneously for all signals. This result holds for all pos-
sible recovery algorithms. It becomes vacuous when p = 1,
which is precisely the case delineated in Theorem 1.

It is not hard to check that the number of measurements
required by our algorithm is within a polylogarithmic factor
of the lower bound.

Proposition 4. Fix p in the range [1, 2). With
m(d/m)2−2/p polylog(d) measurements, the HHS Pursuit al-
gorithm produces for every signal f an m-term estimate bf
such that (1.1) holds.

1.5 Related work
The major difference between our work and other algo-

rithms for Compressed Sensing is that we simultaneously
provide (i) a uniform guarantee for all signals, (ii) an op-
timal error bound, (iii) a near-optimal number of measure-
ments, and (iv) a sublinear running time. We discuss these
points in turn and summarize this discussion in Table 1.
Some additional comments on this table may help clarify
the situation. If the signal is f and the output is bf , let
E = E(f) = f − bf denote the error vector of the output and
let Eopt = Eopt(f) = f − fm denote the error vector for the
optimal output. Also, let Copt,p denote maxg

‚‚Eopt(g)
‚‚

p
,

where g is the worst possible signal in the class where f
lives. The two results in [5] refer to the two determinis-
tic constructions which are uniform on a class of functions
(noted in the result). LP(md) denotes resources needed to
solve a linear program with Θ(md) variables, plus minor
overhead. We suppress big-O notation for legibility.

First, we focus on the algorithm’s guarantees, both a uni-
form guarantee for all signals and an optimal error bound.

Typically, randomized sketches guarantee that “on each sig-
nal, with high probability, the algorithm succeeds.” When
the application involves adaptiveness or iteration, it is much
better to have a uniform guarantees of the form “with high
probability, on all signals, the algorithm succeeds.” Most ap-
proaches to Compressed Sensing yield uniform guarantees—
exceptions include work on Orthogonal Matching Pursuit
(OMP) due to Tropp–Gilbert [16] and the randomized al-
gorithm of Cormode–Muthukrishnan [5] which achieves the
strongest error bounds. Our algorithm achieves a uniform
bound because, unlike “for each” algorithms, HHS uses a
stronger estimation matrix and a combination of sifting and
noise reduction matrices (see below) tailored to the mixed-
norm bound of Theorem 1. (We include in Table 1 uniform
results only.)

Chaining Pursuit is the only algorithm in the literature
that achieves the first three desiderata [10]. The error bound
in Chaining Pursuit, however, is less than optimal. Not only
is this error bound worse than the HHS error bound, but
also Chaining Pursuit is not an approximation scheme. Our
algoirthm achieves a mixed-norm approximation scheme be-
cause, unlike Chaining, HHS uses separate matrices for es-
timation, sifting, and noise reduction.

Next, we examine the number of measurements. A ma-
jor selling point for Compressed Sensing is that it uses only
m polylog(d) measurements to recover an entire class of com-
pressible signals. Candès–Romberg–Tao [2] and Donoho [6]
have shown that a linear programming algorithm achieves
this goal. The Chaining Pursuit algorithm of the current
authors [10] also has this property. On the other hand,
the algorithms of Cormode–Muthukrishnan that yield a uni-
form guarantee require Ω(m2) measurements [5]. The deter-
minism in [5] is an important desideratum not achieved by
HHS. Our algorithm manages with only m polylog(d) mea-
surements because, unlike [5], HHS recovers only a fraction
of spikes at a time (see below).

Finally, we discuss the running time of the different Com-
pressed Sensing algorithms. The major advantage of our
work is that most recovery algorithms for Compressed Sens-
ing have runtimes that are at least linear in the length of
the input signal. In particular, the linear programming tech-
nique has cost Ω(d3/2). Cormode–Muthukrishnan have de-
veloped some sublinear algorithms whose runtimes are com-
parable with HHS Pursuit [5]. The Chaining Pursuit al-
gorithm has running time m polylog(d), so it is even faster
than HHS Pursuit.

1.6 Roadmap
The next three sections give an overview of our approach.

Section 2 provides a detailed description of the measure-
ment matrix required by HHS Pursuit. Section 3 states
the HHS algorithm, along with implementation details and
pseudocode. Section 4 shows how to draw the corollaries
from the main theorem, and it explains how the analysis of
the algorithm breaks into two cases. The bulk of the proof
is deferred to the journal version of this extended abstract.

2. THE MEASUREMENTS
This section describes a random construction of a mea-

surement matrix Ψ. Afterward, we explain how to store
and apply the matrix efficiently. For clarity, we focus on the
case ε = 1. To obtain an approximation scheme, we substi-
tute m/ε2 for m, which increases the costs by (1/ε)O(1).



Approach, Refs Error bd. # Meas. Time

`1 min. + Gauss [3]
‚‚E

‚‚
2
≤ m−1/2

‚‚Eopt

‚‚
1

m log(d/m) LP(md)

`1 min. + Fourier
‚‚E

‚‚
2
≤ m−1/2

‚‚Eopt

‚‚
1

m log4 d d log d (empirical)

Combinatorial [5]
‚‚E

‚‚
2
≤ CCopt,p 0 < p < 1 m

3−p
1−p log2 d m

4−2p
1−p log3 d

Combinatorial [5]
‚‚E

‚‚
2
≤ CCopt,2 exp. decay m2 polylog d m2 polylog d

Chaining Pursuit [10]
‚‚E

‚‚
weak−1

≤
‚‚Eopt

‚‚
1

m log2 d m log2 d

HHS (this result)
‚‚E

‚‚
2
≤ ε · m−1/2

‚‚Eopt

‚‚
1

(m/ε2) polylog(d/ε) (m2/ε4) polylog(d/ε)

Table 1: Comparison of algorithmic results for compressed sensing

The matrix Ψ consists of two pieces: an identification
matrix Ω and an estimation matrix Φ. We view the matrix
as a linear map that acts on a signal f in Rd to produce a
two-part sketch.

Ψf =

24Ω
Φ

35f =

24vid

vest

35 .

The first part of the sketch, vid = Ωf , is used to identify
large components of the signal quickly. The second part,
vest = Φf , is used to estimate the size of the identified
components. Decoupling the identification and estimation
steps allows us to produce strong error guarantees.

2.1 Row tensor products
The identification matrix zeroes out many different sub-

sets of the signal components to isolate large components
from each other, and then it computes inner products be-
tween these restricted signals and a group testing matrix.
We construct this restriction map by applying several dif-
ferent restrictions in sequence. We introduce notation for
this operation.

If q and r are 0–1 vectors, we can view them as masks that
determine which entries of a signal appear and which ones
are zeroed out. For example, the signal q ◦ f is the signal
f restricted the components in q that equal one. (The no-
tation ◦ indicates the Hadamard, or componentwise, prod-
uct.) The sequential restriction by q and r can be written as
(r ◦q)◦f . Given 0–1 matrices Q and R, we can form a ma-
trix that encodes sequential restrictions by all pairs of their
rows. We express this matrix using the row tensor product,
as in [10, 5].

Definition 5. Let Q be a q × d matrix and R an r × d
matrix with rows {qi : 0 ≤ i < q} and {rk : 0 ≤ k < r},
respectively. The row tensor product A = Q⊗rR is a qr×d
matrix whose rows are {qi ◦ rk : 0 ≤ i < q, 0 ≤ k < r}.

2.2 The identification operator
The identification matrix Ω is a 0–1 matrix with dimen-

sions O(m log2(m) log(d/m) log2(d)) × d. It consists of a
combination of a structured deterministic matrix and en-
sembles of simple random matrices. Formally, Ω is the row
tensor product Ω = B ⊗r A. The bit-test matrix B has
dimensions O(log d) × d, and the isolation matrix A has
dimensions O(m log2(m) log(d/m) log d)× d.

2.2.1 The bit-test matrix
The matrix B is a deterministic matrix that contains a

row of 1s appended to a 0–1 matrix B0. The matrix B0 has
dimensions log2dde × d. Its kth column contains the binary
expansion of k. Therefore, the inner product of the ith row
of B0 with a signal fT sums the components of f that have
bit i equal to one. The bit-test matrix with d = 8 is

B =

2664
1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

3775 .

In coding theory, B is called the parity check matrix for the
extended Hamming code.
2.2.2 The isolation matrix

The isolation matrix A is a randomly constructed 0–1
matrix with a hierarchical structure. It consists of O(log2 m)

blocks A(j) labeled by j = 1, 2, 4, 8, . . . , J , where J = O(m).
See Figure 1.

Each block, in turn, has further substructure as a row
tensor product of two 0–1 matrices: A(j) = R(j) ⊗r S(j).
The second matrix S(j) is called the sifting matrix, and its
dimensions are O(j log(d/j)) × d. The first matrix R(j) is
called the noise reduction matrix, and its dimensions are
O((m/j) log(m) log d)× d.

2.2.3 The sifting matrix
The purpose of the sifting matrix S(j) is to isolate about

j distinguished signal positions from each other. It is a ran-
dom 0–1 block matrix, as shown in Figure 1. Each subma-
trix of S(j) has dimensions O(j) × d, and the number of
submatrices is Tj = O(log(d/j)).

The Tj submatrices are fully independent from each other.
Each of the submatrices encodes a O(j)-wise independent
random assignment of each signal position to a row. The
(i, k) entry of the matrix equals one when the kth signal
component is assigned to the ith row. Therefore, with high
probability, the componentwise product of the ith row of the
matrix with f generates a copy of the signal with d/O(j)
components selected and the others zeroed out. For exam-
ple,

S
(j)
t =

240 1 0 0 1 1 0
1 0 0 1 0 0 0
0 0 1 0 0 0 1

35 .

This submatrix can also viewed as a random linear hash
function from the space of d keys onto a set of O(j) buckets.



A =

26666664
A(1)

A(2)

...

A(J)

37777775 =

26666664
S(1) ⊗r R(1)

S(2) ⊗r R(2)

...

S(J) ⊗r R(J)

37777775 where S(j) =

26666664
S

(j)
1

S
(j)
2

...

S
(j)
Tj

37777775 and R(j) =

26666664
R

(j)
1

R
(j)
2

...

R
(j)
Uj

37777775

Figure 1: The structure of the isolation matrix A. See Section 2.2.2 for details.

2.2.4 The noise reduction matrix
The purpose of the noise reduction matrix R(j) is to atten-

uate the noise in a signal that has a single large component.
It is also a random 0–1 block matrix, as seen in Figure 1.
Each submatrix R

(j)
u has dimensions O(

p
(m/j) log m)× d,

and the total number of submatrices
Uj = O(

p
(m/j) log m log d).

The submatrices are fully independent from each other.
Each one encodes a pairwise independent assignment of each
signal positions to a row. The (i, k) entry of the matrix
equals one when the kth signal component is assigned to
the ith row, as in the sifting matrix. Each submatrix can
be viewed as a random linear hash function from d keys to
O(
p

(m/j) log m) buckets.

2.3 The estimation matrix
The estimation matrix Φ is a randomly constructed ma-

trix with complex entries. Let λ = O(log4 d) and L =
O(m

√
log m). Choose q ≥ λL. The estimation matrix con-

sists of q rows drawn independently at random from the d×d
discrete Fourier transform (DFT) matrix. The matrix Φ is
scaled by q−1/2 so its columns have unit `2 norm.

2.4 Storage costs
The bit test matrix requires no storage as it is straightfor-

ward to generate as needed. The isolation and estimation
matrices can be generated from short pseudorandom seeds,
as needed.

The total storage for the estimation matrix is q log(d) =
O(m

√
log m log5 d) because it takes log d bits to store the

index of each of the q rows drawn from the DFT matrix.
The total storage for the isolation matrix A is O(m log3 d),

which is negligible compared with the cost of the estimation
matrix. To obtain the bound for the isolation matrix, we ex-
amine the sifting matrices and the noise reduction matrices
separately.

First, observe that each block S
(j)
t of the sifting matrix re-

quires O(j log d) bits.2 Since there are Tj = O(log(d/j)) in-
dependent blocks for each j, we have a space bound O(j log2 d)

for S
(j)
t . Summing over j = 1, 2, 4, . . . , Cm, we find that the

sifting matrices require O(m log2 d) bits.
Meanwhile, each block R

(j)
u of the noise reduction matrix

requires O(log d) bits. There are Uj = O(
p

m/j log m log d)

blocks, giving a space bound O(
p

m/j log m log2 d) for R(j).
Summing on j, we see that the noise reduction matrices
require space O(m1/2+o(1) log2 d).

2We generate the random variables using a polynomial of
degree j over a field of size around d. Without loss of gen-
erality, we may assume that m and d are powers of two.

2.5 Encoding time
The encoding time depends on the technology for com-

puting measurements. If we can compute inner products
in constant time, the encoding time is proportional to the
number of measurements. This section focuses on the case
where the cost is proportional to the minimal sparsity of
the vectors that appear in the inner product. This analysis
plays a role in determining the runtime of the algorithm.

We show that the time required to measure a signal f that
has exactly one nonzero component is O(m

√
log m log4(d))

word operations. This analysis implies a time bound for
measuring a vector with more nonzeros. The time (in word
operations) to generate the estimation matrix Φ and to mul-
tiply Φ by f dominates the time (in bit operations) to gen-
erate the identification matrix Ω and to multiply Ω by f .

The time cost for measuring a nonzero component ` of a
signal with the estimation operator Φ is
q = O(m

√
log m log4 d), assuming column ` of Φ has been

computed. The (k, `) entry of Φ is simply
q−1/2 exp{−2πi tkω`/d}, which is computed from tk and ω`

in a constant number of word operations.
We now turn to the identification matrix Ω. Each of its

columns contains roughly
√

m nonzeros, so we can ignore
the cost to apply the matrix. To generate a column of Ω,
we form the sifting matrices and noise reduction matrices
and then compute their row tensor product. Afterward, we
form the row tensor product with the bit-test matrix. The
total cost is O(m log4 d) bit operations, as follows.

To construct S
(j)
t , one can use a polynomial of degree

O(j) over a field of size approximately d to obtain O(j)-wise
independent random variables. This step must be repeated
Tj = O(log(d/j)) times, for a total of O(j log(d/j)) field
operations over a field of size around d. Therefore, to gen-
erate S(j) costs O(j log3 d) bit operations. To generate each
R

(j)
u requires log d operations, so the cost to generate R(j)

is roughly
√

m, which is negligible. To build R(j) ⊗r S(j)

from its factors costs Tj · Uj = O(
√

m log3 d), so it can also
be ignored. Summing on j, we find that the bit time to
construct A is O(m log3 d) bit operations. The row tensor
product with the bit-test matrix gives an additional factor
of O(log d) bit operations.

To summarize, the total time cost to use Ψ to measure
a signal with k nonzero entries is O(km polylog(d)). Dur-
ing the HHS Pursuit algorithm, we must encode a list L
of O(m

√
log m) signals with one nonzero component each.

The time cost for this encoding procedure is m2 polylog(d)
if we use the straightforward algorithm for matrix–vector
multiplication.3

3Note that encoding requires us to compute a partial dis-
crete Fourier transform with unequally-spaced points on the



3. THE HHS ALGORITHM
The HHS algorithm is an iterative procedure, where each

iteration has several stages. The first stage is designed to
identify a small set of signal positions that carry a constant
proportion of the remaining energy. The second stage es-
timates the values of the signal on these components. The
third stage adds the new approximation to the old approxi-
mation and prunes it so that it contains only O(m) nonzero
components. The fourth stage encodes the new approxima-
tion using the measurement matrix and subtracts it from
the initial sketch to obtain a sketch of the current residual
signal. See Figure 2 for pseudocode. For brevity, we use the
term spike to refer to the location and size of a single signal
component.

The algorithm also employs a preprocessing phase. The
preprocessing step encodes the signal with the Chaining Pur-
suit measurement matrix C and executes the Chaining Pur-
suit algorithm to produce a good initial approximation ainit

of the input signal. This initial approximation has at most
m nonzero components. We encode ainit with the HHS mea-
surement matrix and subtract it from the original chaining
sketch Ψf to obtain a sketch s of the initial residual f−ainit.
See Figure 3 for pseudocode.

The `2 norm of the residual after preprocessing is propor-
tional with m and the optimal `1 error with m terms. This
fact ensures the algorithm recovers sparse signals exactly
and that it requires only O(log m) iterations to reduce the
error by a polynomial factor in m. The correctness of the
preprocessing phase follows from our previous work [10].

If we do not run the optional preprocessing step, then
the initial residual sketch s and list L of spike locations
and values are Ψf and empty, respectively. In that case,
one can run the algorithm for O(log ∆) iterations, where
∆ = ‖f‖1 / ‖f − fm‖1 is the dynamic range of the problem
which we assume is known.
3.1 Implementation

The HHS Pursuit algorithm is easily implemented with
standard data structures. There are a few steps that re-
quire a short discussion. The Jacobi iteration is a standard
algorithm from numerical analysis.

The bit tests also require explanation. Each row of the
isolation matrix A effectively generates a copy of the input
signal with many locations zeroed out. The bit-test matrix
calculates inner products between its rows and the restricted
signal. The bit tests attempt to use these numbers to find
the location of the largest entry in the restricted signal.

Suppose that the bit tests yield the following log2dde+ 1
numbers:

c, b(0), b(1), . . . , b(log2dde − 1).

The number c arises from the top row of the bit test matrix,
so it is the sum of the components of the restricted signal.
We estimate a spike location as follows. If |b(i)| ≥ |c− b(i)|,
then the ith bit of the estimated location is zero. Otherwise,
the ith bit of the estimated location is one. It is clear that
that the estimated location is correct if the restricted signal
contains one large component, and the remaining compo-
nents have `1 norm smaller than the magnitude of the large
component.
domain and codomain of the transform. We are not aware
of any nontrivial algorithm for this problem, despite the ex-
istence of faster algorithms [1] for problems that are super-
ficially similar.

We encode the recovered spikes by accessing the columns
of the identification and estimation matrices corresponding
to the locations of these spikes and then re-scaling these
columns by the spike values. Note that this step requires us
to generate arbitrary columns.

3.2 Resource Requirements
In Section 2.4, we showed that we need space m polylog(d)

to store pseudorandom seeds from which columns of the
measurement operator can be generated as needed, in time
m polylog(d) each. We recall that we can apply Φ†

L′sest

via Jacobi iteration in time m2 polylog(d). It follows that
our algorithm requires just m polylog(d) working space and
m2 polylog(d) time. Our algorithm becomes an approxima-
tion scheme by substituting m/ε2 for m. This increases the
space to (m/ε2) polylog(d/ε) and the overall time cost to
(m2/ε4) polylog(d/ε).

4. ANALYSIS OF THE ALGORITHM
This section describes, at the highest level, why HHS

works. We establish the following result.

Theorem 6. Fix m. Assume that Ψ is a measurement
matrix that satisfies the conclusions of Lemmas 9 and 15.
Suppose that f is a d-dimensional signal. Given the sketch
v = Ψf , the HHS Pursuit algorithm produces a signal bf
with at most 8m nonzero entries. This signal estimate sat-
isfies ‚‚f − bf‚‚

2
≤ 20√

m
‖f − fm‖1 .

Let m and ε be fixed. Observe that we can apply the theo-
rem with m′ = m/ε2 to obtain a signal estimate bf with 8m′

terms that satisfies the error bound‚‚f − bf‚‚
2
≤ 20ε√

m
‖f − fm′‖1 .

The running time increases by a factor of (1/ε4) polylog(1/ε).
This leads to Theorem 1. We give an overview of the proof
in the next subsections.

The goal of the algorithm is to identify a small set of sig-
nal components that carry most of the energy in the signal
and to estimate the magnitudes of those components well.
We argue that, when our signal estimate is poor, the algo-
rithm makes substantial progress toward this goal. When
our estimate is already good, the algorithm does not make
it much worse. We focus on the analysis of the algorithm
in the case when our signal estimate is poor as this is the
critical case. The most important portion of the analysis is
the identification of the energetic signal components, and,
as such, we concentrate on this section of the analysis in the
Section 4.2. We omit many of the details of the rest of the
analysis from this extended abstract.

4.1 Preliminaries
In a given iteration, the performance of the algorithm de-

pends on the size of the residual. We establish that if the
approximation is poor then the algorithm improves it sub-
stantially. More precisely, assume that the current approxi-
mation a satisfies

‖f − a‖2 >
1√
m
‖f − fm‖1 . (Case 1)



Algorithm: HHS Pursuit

Inputs: The number m of spikes, the HHS measurement matrix Ψ,
the initial sketch v = Ψf, the initial list L of m spikes,
the initial residual sketch s

Output: A list L of O(m) spikes

For each iteration k = 0, 1, . . . , O(log m) {
For each scale j = 1, 2, 4, . . . , O(m) {

Initialize L′ = ∅.
For each row of A(j) {

Use the O(log d) bit tests to identify one spike location
}
Retain a list L′

j of the spike locations
that appear Ω(

p
m/j log m log(d/j) log d) times each

Update L′ ←− L′ ∪ L′
j

}
Estimate values for the spikes in L′ by forming Φ†

L′sest

with Jacobi iteration
Update L by adding the spikes in L′

If a spike is duplicated, add the two values together
Prune L to retain the O(m) largest spikes
Encode these spikes with measurement matrix Ψ
Subtract encoded spikes from original sketch v to form

a new residual sketch s
}

Figure 2: Pseudocode for the HHS Pursuit algorithm

Algorithm: (Optional) Chaining Pursuit Preprocessing

Inputs: The number m of spikes, the Chaining measurement matrix C,
the Chaining sketch w = Cf, the HHS measurement matrix Ψ,
the HHS sketch v = Ψf

Outputs: A list L of m spikes, the residual sketch s

Run ChainingPursuit(m, w, C) to obtain a list L of m spikes
Encode the spikes in L using the HHS measurement matrix Ψ.
Subtract the encoded spikes from v to form the residual sketch s.

Figure 3: Pseudocode for Chaining Pursuit Preprocessing

Then one iteration produces a new approximation anew for
which ‖f − anew‖2 ≤

1
2
‖f − a‖2.

On the other hand, when the approximation is good, then
the algorithm produces a new approximation that is not too
bad. Suppose that a satisfies

‖f − a‖2 ≤
1√
m
‖f − fm‖1 . (Case 2)

Then the next approximation anew satisfies ‖f − anew‖2 ≤
20√
m
‖f − fm‖1.

Suppose that (Case 1) is in force at the beginning of an
iteration. We describe some generic properties of signals
that are important in the analysis. We show that the `2
norm of the tail of a signal is much smaller than the `1
norm of the entire signal. The pruning step of the algorithm
ensures that we have the loop invariant ‖a‖0 ≤ 8m. We
abbreviate p = 8m to make the argument clearer.

Lemma 7. For any signal g, it holds that ‖g − gt‖2 ≤
1

2
√

t
‖g‖1. In particular, for g = f−fm, we have ‖f − fp‖2 ≤

1

2
√

7m
‖f − fm‖1 since p−m = 7m.

When the condition (Case 1) holds, most of the energy
in the signal is concentrated in its largest components. Let
r = f − a denote the residual signal. The number α is this
lemma in a constant that will be fixed later.

Lemma 8 (Heads and Tails). Suppose that (Case 1)
is in force. Fix a number α ≥ 1, and let M be the smallest
power of two that exceeds 16α2m + 9m. Then the following
bounds hold.

‖r‖2 ≥ α ‖r − rM‖2 and ‖r‖2 ≥
α√
M
‖r‖1 .

4.2 Identification
As the bulk of the innovation of our result is in the iden-

tification of significant signal components for Case 1, we
explain this portion of the analysis in more detail (at the
expense of the other portions). The identification matrix



Ω = B ⊗r A is a complicated thing and in this object lies
the majority of the analysis of the algorithm. We can best
understand its behavior by studying its pieces separately.

The isolation matrix A consists of log2 M blocks A(j),
where j = 1, 2, 4, . . . , M/2. Each block A(j) = R(j) ⊗r S(j)

where S(j) is the sifting matrix and R(j) is the noise re-
duction matrix. It is best to think about the action of the
isolation matrix A(j) in two phases.

1. First S(j) takes an input signal and generates a collec-
tion of output signals of the same length by zeroing out
different collections of components. The idea is that
most of the distinguished components will appear in
an output signal that contains no other distinguished
component.

2. Then R(j) takes each of these signals and generates
a further collection of output signals by zeroing out
additional subsets of components. The idea is that, in
many of the output signals, a distinguished component
will survive, but the `1 norm of the other components
will be substantially reduced.

Afterward, the bit-test matrix B forms the inner product
between each of its rows and each of the numerous output
signals. Whenever an output signal contains a distinguished
component and a small amount of noise, the log d bit tests
allow us to determine the location of the distinguished com-
ponent correctly. The bit test process can always identify
the largest component of a signal, provided that the `1 norm
of the remaining components is not too large.

Let us consider a fixed collection I of components in a
signal g, where j ≤ |I| < 2j. The next result shows that
A(j) succeeds in generating a lot of output signals where a
large proportion of the components in |I| are isolated from
each other. Moreover, the `1 norm of the other components
in these signals is small in comparison with the total norm
of the signal. The number ρ in this lemma is a constant
(depending only on α) that will be determined shortly.

Lemma 9. Except with probability O(d−1 log m), the ran-
dom isolation operator A(j) satisfies the following property.
Let g be a signal, and let I be an arbitrary subset of {1, 2, . . . , d}
with j ≤ |I| < 2j. For at least (1− ρ) |I| of the components
i ∈ I, the operator A(j) generates at least

O(
p

(M/j) log M log(d/j) log d)

signals of the form giei + ν where

‖ν‖1 ≤
1

4 |I|

s
j

M log2 M
‖g‖1 .

The proof of this result takes several long steps and we
focus on the sifting and the noise reduction matrics to high-
light the necessary lemmas which form the significant steps
in the proof.

We can think about the action of one submatrix S
(j)
t as

S
(j)
t : g 7→

ˆ
h1 h2 . . . hN

˜
,

mapping each input signal to a collection of output signals.
The first result shows that one trial of sifting is very likely
to isolate all but a constant proportion of the distinguished
indices.

Lemma 10 (Sifting: One Trial). Let g be a signal,
and let I ⊂ {1, 2, . . . , d} with j ≤ |I| < 2j. Write k = |I|.
Suppose we apply the random operator S

(j)
t to g. Except

with probability e−1.7−ρk/5, for at least (1−ρ)k of the indices
i ∈ I, there is an output signal h of the form

h = giei + ν and ‖ν‖1 ≤
2

ρk
‖g‖1 .

Proof. We can think of the sifting operator as assigning
each of the k distinguished positions (balls) to one of the N
output signals (bins) uniformly at random. We hope that
the balls are isolated from one another. We will see that
if the number of bins satisfies N ≥ max{10kρ−1, 850ρ−1},
then the result holds.

For n = 1, 2, . . . , N , let Xn be the indicator variable for
the event that the nth bin is empty, and write X =

P
Xn

for the total number of empty bins. The symbols µ and
σ2 will denote the expectation and variance of X. To un-
derstand large deviations of X requires some effort because
the set of indicators {Xn} is not stochastically independent.
Nevertheless, X satisfies a rather strong tail bound.

Fact 11 (Theorem 6, [11]).

P {X ≥ E X + a} ≤ exp
n
−
`
σ2 + a

´
log
“
1 +

a

σ2

”
− a
o

.

This result is based on the surprising fact, due to Vatutin
and Mikhailov [17], that X can be expressed as a sum of
independent indicators.

The content of our argument is to develop explicit bounds
on the expectation and variance of X, which will allow us
to apply Janson’s result. By calculating the means and co-
variances of the variables Xn, we determine that

µ = N

„
1− 1

N

«k

< (N − k) +
k2

2N

and that

σ2 = N

„
1− 1

N

«k

+N(N−1)

„
1− 2

N

«k

−N2

„
1− 1

N

«2k

.

The variance bound takes some work. First, regroup terms
and factor and then apply Bernoulli’s inequality (1 + x)k ≥
1 + kx, which is valid for x ≥ −1. Finally, we obtain the
bound

σ2 ≤ k · h(1/N) ≤ k(k − 1)

N
<

k2

N

provided that N ≥ 2.
Depending on the size of k, we need to choose a different

number N of bins to obtain the required probabilities. First,
assume that 0.2ρk > 1.7. In this case, we select N ≥ 10k/ρ,
which yields the following estimates on the mean and vari-
ance of X:

µ ≤ (N − k) + 0.05ρk and σ2 < 0.1ρk.

We invoke Fact 11 with the value a = 0.2ρk to reach

P {X > (N − k) + 0.25ρk} < e−0.4ρk < e−1.7−0.2ρk (4.1)

using 0.2ρk > 1.7.
This estimate allows us to bound the number Y of balls

that fail to be isolated. It takes at least (N −X) balls to fill
the nonempty bins. The remaining (k− (N −X)) balls can



be placed in no more than (k−(N−X)) bins, where they will
result in no more than Y = 2(k−(N−X)) = 2(X−(N−k))
collisions. Using the deviation bound (4.1), we conclude that

P


Y >
ρk

2

ff
< e−1.7−0.2ρk.

Second, we assume that k is small. Precisely, consider the
case where 0.2ρk ≤ 1.7. Now, select N ≥ 100k2. The mean
and variance of X satisfy

µ ≤ (N − k) + 0.005 and σ2 ≤ 0.01

Apply Fact 11 with the value a = 0.995 to reach

P {X ≥ (N − k) + 1} < e−3.6 < e−1.7−0.2ρk

using 0.2ρk ≤ 1.7. When X < (N − k) + 1, the maximum
number of bins are empty, and so all k of the balls are iso-
lated. Furthermore, we observe that the number N of bins
required here satisfies N ≤ 850ρ−1.

Finally, we need to argue that few of the output signals
have a lot of noise. Let un denote the `1 norm of the nth
output signal. Since each position in the input signal g is
assigned to exactly one output signal,

P
n un = ‖g‖1. By

Markov’s inequality,

#


n : un ≥

2

ρk
‖g‖1

ff
≤ ρk

2 ‖g‖1

X
n

un =
ρk

2
.

In particular, no more than ρk/2 of the isolated balls can
appear in a bin whose `1 norm exceeds (2/ρk) ‖g‖1. There-
fore, the total number of positions in I lost to collisions or
noise is at most ρk except with probability e−1.7−0.2ρk.

The failure probability for one trial is not small enough
to take a union bound over all possible sets I. We perform
Tj = O(log(d/j)) repeated trials to drive down the failure
probability.

Lemma 12 (Sifting: All Trials). Except with prob-
ability exp(−j log d), the sifting operator S(j) has the fol-
lowing property. Let g be an arbitrary signal, and let I ⊂
{1, 2, . . . , d} satisfy j ≤ |I| < 2j. For some set of (1− ρ) |I|
indices i ∈ I, there are at least 0.5Tj output signals h of the
form h = giei + ν and ‖ν‖1 ≤

2
ρk
‖g‖1 .

Proof. Let g be a signal, and fix a set I ⊂ {1, 2, . . . , d}
that contains k or more indices. Lemma 10 shows that each
isolation trial succeeds for at least (1 − ρ) |I| of the dis-
tinguished indices, except with probability p = e−1.7−0.2ρk.
We repeat this experiment Tj times. Let Xt be the indicator
variable for the event that trial t fails, so E Xt ≤ p. Then
the random variable X =

P
Xt counts the total number

of trials in which ρk balls fail to be isolated, and its mean
satisfies µ ≤ pTj . Chernoff’s bound shows that

P {X > 0.5Tj} <

»
e

0.5Tj/(pTj)

–Tj

< e−0.2ρkTj

Choose Tj = 15ρ−1 log(ed/j), and use the fact that k ≥ j to
obtain

P {X > Tj} < e−3j log(ed/j).

Next, we must count the total number of subsets whose
size is between j and (2j − 1). We bound
2j−1X
r=j

 
d

r

!
≤

2j−1X
r=j

er log(ed/r) ≤
Z 2j

j

ex log(ed/x) dx ≤ e2j log(ed/j).

Finally, we take a union bound over all sets I with size
between j and (2j − 1) to obtain a failure probability of

e2j log(ed/j) · e−3j log(ed/j) = e−j log(ed/j).

In other words, for every such I, the sifting matrix S(j)

isolates at least (1− ρ) |I| of the distinguished indices in at
least half the trials.

We establish that, if g contains a single distinguished com-
ponent (a spike) plus noise, then a large number of the out-
put signals contain that spike along with a reduced amount
of noise.

Lemma 13 (Noise Reduction). Except with probabil-
ity d−1, the noise reduction matrix R(j) has the following
property. Let g be an input signal that satisfies (i) g = δ+ν,
(ii) ‖δ‖0 = 1, and (iii) supp(δ) ∩ supp(ν) = ∅. Then there
are at least 0.5Cr log d output signals h of the form h = δ+µ
where

‖µ‖1 ≤
10

Cr
‖ν‖1 =

√
j

8ρ−1
p

M log2 M
‖ν‖1 .

Proof. Let g be a signal of the form g = δ + ν, where δ
is a spike at position i. Consider the submatrix X of R(j)

constructed by extracting the rows of R(j) where the index i
appears and then removing the ith column. This submatrix
contains exactly Cr log d rows and (d − 1) columns. Let ν′

be the vector ν without its ith component (which equals
zero by hypothesis). Note that ν′ has the same `1 norm as
ν.

Let x be a column of X. The entries of x are independent
binary random variables with mutual expectation (Cr)−1

because each one comes from a different submatrix. There-
fore, E ‖x‖1 = Cr log d

Cr
= log d. Chernoff’s bound shows that

P
˘
‖x‖1 > 5 log d

¯
≤
h

e4

55

ilog d

< d−3. Applying the union

bound over all (d−1) columns of X, P
n
‖X‖1,1 > 5 log d

o
≤

d−2.
Therefore, the number of output signals in which position

i appears and where the noise is large satisfies

#{n :
˛̨
(Xν′)n

˛̨
>

10 ‖ν′‖1
Cr

} ≤ 0.1Cr
‖Xν′‖1
‖ν′‖1

≤ 0.5Cr log d.

Since position i appears in exactly Cr log d output signals,
we discover that the number of output signals where position
i appears and the noise is less than (10/Cr) ‖ν‖1 is at least
0.5Cr log d.

So far, we have only established the result for a single
spike location i. To complete the proof, we perform a union
bound over the d possible locations for the spike to obtain
a final failure probability of d−1.

Combine Lemma 12 and Lemma 13 to obtain the an-
nounced Lemma 9.

Let us instantiate our fixed collection I of signal compo-
nents as those which fall in a significant band Bs. Let s be
a power of two between 1 and M/2, and note that s takes
log2 M values. We define the sth band of the residual to be
the set Bs =

˘
i : 1

2s
‖r‖1 < |ri| ≤ 1

s
‖r‖1

¯
. We say that the

sth band is significant if
‚‚‚r˛̨

Bs

‚‚‚
2

> α−1√
log2 M

‖r‖2 . First, we

check that Bs meets our size constraints. Next, we use our
guarantee on the isolation operator A(j) to conclude that



1. the identification process finds at least (1 − ρ) |Bs| of
the components in the band at least
O(
p

(M/j) log M log(d/j) log d) times each;

2. the total `2 norm of the lost components is at most
α−1 ‖r‖2; and

3. the final list of identified components contains
O(M

√
log M) items.

Now we argue that the signal positions in the list of iden-
tified components carry most of the energy in the resid-
ual signal. This fact ensures that the iteration is making
progress toward finding significant signal positions. More-
over, it guarantees that the estimation step can accurately
predict the values of the signal positions listed in L. The
parts of the residual that we miss fall into several categories.
The challenging piece requires some serious work which we
presented above. The remaining pieces follow from the head-
tail relationships and the definition of significant band.

4.3 Estimation
The estimation step produces an approximation b to the

residual r that lies relatively close to the residual, even
though it contains O(M

√
log M) nonzero entries. There are

two technical results that are essential to the proof. The
first appeared in the work of Rudelson and Vershynin [14].

Lemma 14 (Restricted Isometry). The estimation
matrix Φ has the property that every |L|-column submatrix
A satisfies for every vector x, 1

2
‖x‖2 ≤ ‖Ax‖2 ≤

3
2
‖x‖2 .

Lemma 15. The estimation matrix Φ has the property
that for every vector x, ‖Φx‖2 ≤

3
2

h
‖x‖2 + 1√

M
‖x‖1

i
.
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