
Automatically Generating Custom Instruction Set Extensions

Nathan Clark
ntclark@umich.edu

Wilkin Tang
tangw@umich.edu

Scott Mahlke
mahlke@umich.edu

Advanced Computer Architecture Lab
Department of Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, MI 48109-2122

ABSTRACT
General-purpose processors that are utilized as cores are of-
ten incapable of achieving the challenging cost, performance,
and power demands of high-performance audio, video, and
networking applications. To meet these demands, most sys-
tems employ a number of hardware accelerators to off-load the
computationally demanding portions of the application. As an
alternative to this strategy, we examine customizing the com-
putation capabilities of a core processor for a particular ap-
plication. Our goal is to enable some or all of the compu-
tation that is off-loaded to the accelerators to be taken over
by the customized core. The computation capabilities of the
core processor are extended with hardware in the form of a set
custom function units and new instructions. The compiler is
responsible for analyzing the target application and identify-
ing a set of cost-effective custom function units. In this paper,
we provide an overview of the system that we are developing
to automatically identify instruction set extensions and report
some preliminary analysis of four media benchmarks.

1. INTRODUCTION
In recent years, the markets for PDAs, cellular phones, digi-
tal cameras, network routers and other high-performance but
special-purpose devices has grown explosively. Many of these
devices perform computationally demanding processing of im-
ages, sound, video, or packet streams. In these systems, appli-
cation specific hardware design is used to meet the challenging
cost, performance, and power demands. The most popular de-
sign strategy is to build a system consisting of a number of
special-purpose ASICs coupled with a low cost core proces-
sor, such as an ARM. The ASICs are specially designed hard-
ware accelerators to execute the computationally demanding
portions of the application that would run too slowly if imple-
mented on the core processor. While this approach is effective,
ASICs are costly to design and offer only a hardwired solution
that permits almost no postprogrammibility.

An alternative design strategy is to augment the core processor
with special-purpose hardware to increase its computational
capabilities in a cost effective manner. The instruction set of
the core processor is extended to feature an additional set of
operations. Hardware support is added to execute these oper-
ations in the form of new function units or co-processor sub-

systems. There are a couple of benefits to this approach. First,
the system is postprogrammable and can tolerate changes to
the application. Though the degree of application change is
not arbitrary, the intent is the customized processor should
achieve similar performance levels with modest changes to the
application, such as bug fixes or incremental modifications to
a standard. Second, some or all of the ASICs become unnec-
essary if the augmented core can achieve the desired level of
performance. This lowers the cost of the system and the over-
all design time.

The key questions with this approach are whether the aug-
mented core can achieve the desired level of performance and
how to design an efficient set of extensions for the processor
core. For this paper, we focus on the latter question wherein
the goal is to define a set of instruction set extensions to ac-
celerate a target application in a cost-effective manner. This
process can be as time consuming and expensive as designing
an ASIC if done manually, thus we believe automation is a key
to making this strategy successful. Our approach is to use the
compiler to identify the critical computation subgraphs in the
application. The subgraphs are analyzed to determine the de-
sirability of using specialized hardware to accelerate them. A
number of issues must be considered to determine desirability,
including estimated performance gain, estimated cost of the
custom hardware, encoding of the new operation in the core
processors instruction format, and expected usability of the
custom hardware. With this data in place, a set of hardware ex-
tensions to processor are selected and the compiler generates
code with the selected subgraphs replaced by new instructions.

This paper presents a work-in-progress of the customized pro-
cessor design system that is being developed at the University
of Michigan. We focus on the issues associated with design-
ing application-specific instruction set extensions and give an
overview of our current system. We also present several case
studies of embedded applications to illustrate the cost / perfor-
mance tradeoffs of augmenting a core processor.

1.1 Related Work
A large body of research has gone into the automatic design
of instruction sets. The earliest work focused on generating
CISC-like instructions to more effectively support high-level
languages and increase code density [1] [2]. Efficient algo-
rithms for instruction selection for processors with CISC in-
structions have also been proposed [3] [4]. High-level synthe-



sis systems address the issue of automatically designing spe-
cialized datapaths to suit an application [5]. Instruction set
synthesis identifies the best instruction set for a fixed datapath
[6]. The ASIA system extends the previous work to integrate
instruction set synthesis and code generation [7].

The use of custom instructions is common in reconfigurable
computing. Large functional blocks are identified and mapped
to reconfigurable hardware in the PRISM and GARP systems
[8] [9]. A more fine-grained approach is taken in the PRISC
and DISC projects wherein smaller units of work are identified
and the reconfigurable hardware is utilized as specialized func-
tion units [10] [11]. Some recent systems propose the auto-
mated design of application-specific VLIW processors. These
systems focus on customizing the function unit mixture, cache
subsystem, instruction format, and fetch / decode path [12]
[13]. Cryptomaniac is one specific example of a VLIW appli-
cation specific processor targeted to the security domain that
achieves around a 30% performance gain utilizing specialized
instructions [14].

Previous work in the area of compiler identification of cus-
tom instructions looked for sequences of operations that were
suitable for chaining [15]. In [16], a large set of potential
chainable operations are identified during compiler analysis.
Then, the instruction scheduler makes the final chaining de-
cisions. Our work is probably most similar to Arnold who
investigated application-specific instruction set extensions for
the MOVE architecture [17]. He identified commonly occur-
ring operation patterns, created specialized function units, and
generated code to make use of the new function units. Our
work differs from Arnold’s in that we consider more gener-
alized subgraphs, use a compiler-driven approach rather than
a trace-driven approach, and examine more cost/performance
tradeoffs involved with selecting custom instructions.

2. CUSTOMIZATION ISSUES
We loosely define a custom function unit (CFU) to be the hard-
ware implementation of a set of primitive operations that are
connected in a dataflow graph. Primitive operations are assem-
bly operations for a generic RISC architecture, such as Add,
Or, Load. No assumptions are made regarding the connection
of the graph nodes, so linear, tree shaped, or even cyclic graphs
can be implemented as custom function units. Disconnected
graphs are not considered, however. Each primitive operation
has three values associated with it (delay, cost, and IO format)
that are used to identify candidate CFUs. The delay is propa-
gation time through the longest path in the preferred hardware
realization of the opcode. Operation delays are summed and
combined with the clock frequency to determine an estimate
of the latency of a CFU in terms of clock cycles. Cost is an
area estimate for the hardware cell that implements the op-
code. Lastly, IO format are the input/output requirements and
restrictions for the source and destination operands of the op-
code.

In selecting a set of CFUs for an application, as with any engi-
neering problem, it is important to balance several trade-offs.
We characterize the trade-offs associated with CFUs in four
categories: performance, cost, IO requirements, and usability.
In this section, we discuss these trade-offs and illustrate each

with an example from the dataflow graph (DFG) in Figure 1.
While this example is contrived, it is similar to dataflow graphs
we saw in several encryption benchmarks.

Performance: The most compelling reason for adding CFUs
to a processor is the potential for increased performance. The
realization of performance gain is determined by two factors.
First, the implementation of the DFG as a CFU must require
fewer cycles than if the primitive operations are executed in-
dividually. This is not a problem for many operations as their
hardware implementation is simple. For instance, logical op-
erations are one level of logic, thus it is trivial to chain several
of them into one cycle and still meet timing constraints. Many
arithmetic operations are also strong candidates for chaining
as processor cycle times are not often constrained by the ALU
speed. The second factor that must occur to achieve perfor-
mance gain is that the critical dependence path(s) of the target
code block must be reduced with the introduction of CFUs.
CFUs that reduce non-critical portions of the code will have
little effect on overall performance. This is a more important
consideration for processors that exploit instruction-level par-
allelism.

Assuming each node in Figure 1 has a latency of one cycle, the
DFG takes a minimum of eight cycles to execute (i.e., the crit-
ical dependence path is nodes 1, 2, 3, 4, 7, 8, 9, 10). Consider
creating a CFU for nodes 5 and 6. This is a poor choice be-
cause this graph would still take at least 8 cycles to execute as
nodes 5 and 6 are not on the critical path. Further, variable bit
shifts (node 6) typically have a large delays as barrel shifters
are complicated hardware cells. As a result, it is likely that
the CFU for nodes 5 and 6 would not reduce the two-cycle
latency required to just execute the primitive operations. A
better CFU choice is nodes 1, 2, 3, 4. This subgraph is ideal
from the performance perspective because it occurs on the crit-
ical path and all its constituent operations are relatively simple
(subtract, shift by constant, and logical). Thus, its highly likely
to reduce this four cycle subgraph into a one cycle CFU.

An important is issue to consider during the CFU selection
process is that once a CFU is selected, the critical path could
potentially change. For example, if we instantiated CFUs 1
and 2 from Figure 1 and were able to execute them in one
cycle each, the critical path would change to go through nodes
5 and 6. Any attempt to create new CFUs for patterns along
the old critical path would be fruitless and it would still take
four cycles to execute the code.

Cost: We consider cost to be the die area impact on the pro-
cessor from adding the CFU. This metric should be the sum of
the area of the CFU, the additional inter-connect and control
logic, the impact on decode logic, and the change in register
file area to support the CFU. Register file cost increases can
be amortized across multiple CFUs, though, and it is difficult
to measure the impact on decode and control logic. Because
of this, we make the simplifying assumption that CFU area
is the dominant term of the equation. Further, the estimated
code of the CFU is the sum of the hardware implementation
costs of each primitive operation that comprises the CFU. The
goal with respect to cost is to maximize the other design con-
straints for a given cost. Therefore, when selecting CFUs, pat-



Reg 1
Reg 2

Output 1

Output 2

Output 3

Output 4

Reg 3

Reg 4

Custom Opcode 1

Custom Opcode 3

Custom Opcode 2

SUB : 1

XOR : 4 ADD : 5

SUB : 7

XOR : 10

16

16

LSL : 2

AND : 3

LSL : 6

LSL : 8

AND : 9

Figure 1: Example dataflow graph.

terns that contain mostly inexpensive operations are the ideal
candidates. Custom Opcodes 1 and 2 in Figure 1 are a good
example of this: there are two logical operations, a subtracter,
and one shift by a constant, none of which require very much
area. Compare this with the cost of implementing Custom Op-
code 3, with its expensive barrel shifter in node 6, and it is
easy to pick which CFU is better to implement assuming they
both give you the same speedup and you are optimizing for
performance.

IO requirements: The IO requirement for a CFU is the num-
ber of inputs and outputs needed for the CFU. This property
has ramifications in three areas. First, instructions with large
number of inputs and/or outputs are difficult to represent in a
conventional instruction set, because the number of bits nec-
essary to encode a large number of sources and destinations.
The processor fetch and decode paths may not be capable of
handling a new instruction format that differs greatly from its
baseline instruction formats. Large numbers of inputs and out-
puts may also require an increased number of ports on the reg-
ister file. The cost of register files increase with the square of
the number of ports, so this can have a major impact on the
cost of the overall processor. Lastly, if you have two operation
graphs you want to generate CFUs for that are identical except
for the number of inputs or outputs, it is necessary to decide
whether you want to create two separate CFUs, or one CFU
that has the maximum inputs and maximum outputs over the
two instances.

As an example, if we pick Custom Opcode 1 and Custom Op-

code 2 from Figure 1, Custom Opcode 1 will have two inputs
and two outputs, whereas Custom Opcode 2 will have two in-
puts and one output. A decision has to be made whether to
implement both of these on a single CFU with two inputs and
two outputs, or implement them separately. In this case, it
would probably make more sense to create one CFU, but what
if Custom Opcode 2 had three inputs? If we were implement
Custom Opcode 3 instead of 1 and 2, the number of inputs
and outputs will increase to four each, and we would probably
have to add ports to the register file to support the custom op-
code. The encoding four sources and four destinations in an
instruction may be prohibitive in cost or not even possible and
thus must be considered.

Usability: The most abstract and difficult of the issues to
quantify is the usability of the CFU. Usability refers to the de-
gree to which the compiler can recognize candidate subgraphs
to execute on the CFU. This issue is important because we are
striving for a postprogrammable system in which the CFU can
be utilized by either similar applications or future generations
of the analyzed application. Usability generally has an inverse
relationship to the size and regularity of the DFG. Thus, larger
and more irregular CFUs are more difficult to make use of by
the compiler.

Usability concerns must counterbalance performance concerns.
From the performance angle, large subgraphs are the most de-
sirable as they offer the best potential for speedup. The ability
to collapse many nodes onto a single CFU leads to the largest
reductions in the critical path length. In Figure 1, this code



segment would execute most efficiently if the entire subgraph
was converted into a CFU, thereby selecting Custom Opcode 3
as a CFU. However, finding repeated occurrences of this sub-
graph is a difficult task for the compiler due to its complexity.
Further, larger subgraphs are more susceptible to small source
code changes that could obsolete a carefully designed CFU.
For example if node 5 is converted from an Add to a Multi-
ply with a new version of the algorithm, a CFU for Custom
Opcode 3 would be worthless. In our current system, we have
empirically seen that a good indication of usability is CFU uti-
lization. A CFU that is not used effectively within the target
application is often a poor choice for a CFU. Obviously, it is
easy to find exceptions to this behavior and we are investigat-
ing more precise ways to quantify usability.

3. CASE STUDIES
We ran four benchmarks through our automated CFU gener-
ation system to demonstrate the potential performance gains
an application specific processor can achieve with CFUs. The
first three benchmarks we used are all part of the MediaBench
[18] program suite. G721encode is an implementation of the
CCITT (International Telegraph and Telephone Consultative
Committee) G.711, G.721, and G.723 voice compression al-
gorithms. Rawdaudio is an audio decompresser and part of the
ADPCM family of speech compression algorithms. The AD-
PCM algorithms are more complicated than the G721 ones,
and convert 16-bit linear PCM samples to 4-bit samples. The
djpeg benchmark is a utility for jpeg format image decompres-
sion. Our final benchmark is an encryption algorithm that is
part of the MiBench [19] suite. Blowfish is a symmetric block
cipher that is meant as an alternative to DES or IDEA. All of
these benchmarks are computationally intense and spend most
of their execution time in a small number (usually one to three)
of functions, which make them prime candidates for CFUs.

Since our CFU generation system is still in its infancy, the fo-
cus of this section will not be on what types of CFUs are being
generated or how they are selected, so much as it will deal with
the potential of CFUs in application specific processors. De-
spite this, we should address this point briefly. As one might
expect, ADD-LOAD and ADD-STORE were commonly gen-
erated CFUs, because of the prominence of base plus displace-
ment memory accesses. ADD followed by a COMPARE in-
struction was also fairly common. Many of the CFUs gener-
ated were not so obvious, however. For example, the one CFU
generated for blowfish was a chain of the following ten oper-
ations: ADD-XOR-ADD-AND-XOR-SHIFT (by a constant)-
AND-ADD-SHIFT (by a constant)-ADD. This chain only had
six inputs and two outputs, and occurred in 35 unique loca-
tions in blowfish’s DFG. This accounted for almost seven mil-
lion cycles of the critical path. These operations can be com-
pressed from ten down to two cycles according to our timing
models, which could potentially yield a tremendous speedup.
Clearly, even with our naive pattern recognition system, CFUs
could yield major performance benefits.

In each of our experiments, we show speedup of a baseline ma-
chine plus CFUs compared with the baseline machine alone.
Our baseline machine is a four-wide, pipelined VLIW, ma-
chine with predication support, single cycle L1 cache latency,
and a 300 MHz clock. It is necessary to assume some clock

speed in order to determine how many cycles a CFU will need
to execute. The baseline machine can issue at most one integer,
one floating point, one memory, and one branch instruction
per cycle, but since all of our benchmarks are integer based
this is essentially a three issue machine. We make the assump-
tion that CFUs do not add parallelism to the baseline machine;
that is CFUs use an integer execution slot, and compete for
the same register ports as all the other instructions in the ma-
chine. A convincing argument could be made that by using
an integer execution slot for CFUs such as ADD-LOAD, we
are actually increasing the parallelism of the machine by us-
ing a second memory unit through the integer issue slot. The
benchmarks we experimented on tended to be computationally
bound (not memory bound), though, so using a memory issue
slot for this type of CFU made a negligable difference in our
measured speedups. When there was a difference, using the
memory issue slot, actually tended to improve our measured
speedup slightly. Performance of the benchmarks is measured
by multiplying the profile weights of each basic block by the
number of cycles it takes to execute the block and summing
the number of cycles over the entire program.

Figure 2 shows the results for our set of benchmarks. The
left four graphs in the figure vary the maximum number of
operations allowed in the CFU, while allowing generation of
an unlimited number of unique CFUs. The right four graphs
vary the number of CFU generated, while allowing them to be
any number of operations in length. Cost of the CFUs and the
speedup of the program are represented as the two curves each
graph.

The idea to take away from the left four graphs is that as we in-
crease the maximum number of operations allowed in a CFU,
the speedup generally increases. This occurs because we have
more opportunities to combine operations into a single cycle.
After a certain point however, there is a diminishing return
on our cost (and even some decrease in speedup such as in
g721encode) when the number of operations becomes large.
This results because once we combine an instance of an op-
eration into a particular CFU, we can no longer execute that
operation it in a different one. In other words, if you select a
large CFU, you are taking away the opportunity to group its
constituent operations with operations that are not part of the
CFU. This is the tradeoff of generating one large CFU versus
several smaller ones. Speedup decreases when our CFU selec-
tion algorithm (described in Section 4) incorrectly chooses a
large CFU, when several smaller CFUs would have been the
better choice.

The right four graphs in Figure 2 demonstrate the obvious fact,
that as we increase the number of CFUs in the system, perfor-
mance increases. The more important point from these graphs
to note is how performance increases. This is a direct mea-
sure of the quality of our CFU selection algorithm. Ideally if
we could only select N CFUs, we would want to select the set
that gave us the best speedup. Since the biggest leaps in per-
formance speedup do not always occur in the first few CFUs
selected, we see that our selection algorithm needs some work.

Another interesting fact to note from the right set of graphs is
that djpeg did not see a incredibly large speedup until we went



Figure 2: Relative speedup and cost when varying the maximum operations allowed in a CFU, and the number of CFUs
allowed in an application. Cost is measured relative to the area of one 32-bit ripple-carry adder.



to a very large number of CFUs. This occurred because djpeg
made use of several smaller CFUs while the other benchmarks
got their greatest speedups from a few large CFUs.

4. OUR SYSTEM
The goal of our system is to automate the process of selecting
and synthesizing CFUs for an application specific processor.
This is accomplished in six stages, which are diagrammed in
Figure 3. This section of the paper describes both the cur-
rent functionality of the CFU discovery and selection process
(steps two - five), as well as where we envision this system
going in the future. The compilation and synthesis steps of the
process are beyond the scope of this paper.

Step1: The initial step of CFU generation is custom opcode
pattern recognition, to get an idea of what CFUs are potentially
useful. For all of our experiments, we take a profiled, assem-
bly language program (in the HPL-PD instruction set [20])
as input. Given this program, we construct a dataflow graph,
and initialize the set of custom opcode patterns to be each in-
dividual operation. Other pattern recognition techniques, such
as [7], further broke down the assembly code into what they
termed ‘micro-ops’ and did pattern recognition on those, but
this is unnecessary in our situation as each of the HPL-PD
primitives are sufficiently simple to build in hardware. If we
were using a more complex instruction set (e.g. x86), this
would not be the case.

After initialization, we then recursively expand the custom op-
code patterns along dataflow edges in a depth first manner.
For example, in Figure 1, if we were to start at node 7, we
would add a new pattern for nodes 7-8, nodes 7-8-9, nodes 7-
8-9-10, and nodes 7-10. Currently, we do not track data flow
through memory, as pointer chasing in C code is very diffi-
cult, but this is certainly possible when memory accesses are
all done through arrays. This optimization is left as a potential
improvement for the future.

Our depth first expansion terminates when there are no more
data flow edges from the operation (e.g. we reach a store in-
struction), the destination of the data flow edge is a branch, the
destination is a load, or there is a branch between the dataflow
edge’s source and destination operations. Terminating at load
instructions is done because the non-deterministic latency of
the memory system makes it impossible to determine what
other operations can be done to the result of the load while
still meeting cycle time limitations. Branch instructions cause
termination of the expansion because after the branch the in-
termediate operands are only conditionally used. That is, if
we have an instruction whose result feeds a second instruction
on the other side of a branch, we may need to write the result
of the first instruction to the register file, because the second
instruction will not always be executed. Exposing these in-
termediate results as outputs from our CFU could potentially
cause the register porting requirements to become unwieldy,
and would nullify the reduction in register pressure we gained
from not having to write intermediate results to the register
file. Regardless of this fact, if we had operations in a CFU
that spanned branches, it would be necessary to add control to
the CFU to conditionally execute operations that happened on
the other side of the branch. Terminating custom opcodes at

branch boundaries differentiates us from [6] and [17], as both
of these approaches do pattern matching on an execution trace,
instead of a control flow graph.

One limitation of our current pattern recognition algorithm is
that currently, we are only looking at straight-line chains of
operations; that is, an intermediate result is only forwarded to
one other operation within the CFU we generate. This restric-
tion is completely artificial, and we plan to remove it in the
future. A more concrete restriction of our system is that we
only recognize patterns that start with a single node. This re-
striction is an artifact from starting our pattern with a single
node and only growing with a depth first search. We do not
see this as a weakness in our algorithm, though. As discussed
in Section 2, ideally the CFUs we generate would have few
inputs; requiring a single starting operation is one way to arti-
ficially push our solutions in that direction.

Step2: After pattern recognition comes the CFU characteri-
zation phase, where we get a general idea of each CFU’s po-
tential utilization in the application, register port requirements,
cost (measured as die area), timing, and power characteristics.
A rough idea of CFU utilization can be garnered from the ex-
ecution profile weights of the operations that form the custom
opcode pattern in the control flow graph. To determine the
other characteristics, we need to actually generate the hard-
ware. Cost, timing, and power characteristics of most primi-
tive operations in the HPL-PD instruction set are stored in an
external macrocell library and fed into our system. The macro-
cells were synthesized using Synopsis Design Compiler and an
Artisan component library for a “typical 0.18 micron TSMC
process.” Currently, the characteristics of the CFU are defined
as the sum of the characteristics of its constituents (i.e. an
ADD-NOT custom would have the latency of an ADD primi-
tive followed by a NOT primitive), even though empirical evi-
dence shows this to be overly pessimistic. Because of this, our
performance results are definitely understated.

Step3: Once the characteristics of the CFUs are generated, we
send them to a filter function that removes any bad candidates.
A candidate could be considered bad for many potential rea-
sons, including but not limited to unreasonable register port
requirements, combining the operations did not yield any cy-
cle time decrease, potential utilization of the CFU would be
too low, or encoding the instruction in the ISA would require
too many bits. In the present implementation, we only filter
CFUs if there were no occurrences of them on the critical path
in the initial control flow graph. This restriction also poten-
tially understates our results, because implementing one CFU
might cause another path to become critical. We could have
potentially reduced the length of this new critical path, too, if
we had not filtered out its CFUs.

Step4: After filtering is performed we select which CFUs to
implement. Selection is fairly straight forward and can be a
function of any of the characteristics we have mentioned. For
example we could potentially select the CFUs that give us the
biggest speedup for a given cost, or the ones that improve our
energy-delay product most. In all our experiments we used
a greedy algorithm to select the CFUs with the greatest po-
tential speedup (measured as the product of the number of in-



Figure 3: The design flow of our CFU generation system.

stances of the custom opcode pattern on the critical path and
the number of cycles gained by combining the primitive oper-
ations into one CFU) for a given die area. In other words the
best performance improvement for the least cost.

Output: Next, the functionality of the selected CFUs is trans-
lated into both a hardware intermediate language and a C-level
description of each CFU’s functionality. Our simulator uses
the C-level descriptions to model how the CFU will function-
ally behave when we execute it. The hardware intermediate
language is used by the synthesizer to create hardware descrip-
tion language (HDL) code for a processor with these CFUs. In
addition to the HDL, the synthesizer also generates a machine
description of the processor that is fed back to the retargetable
compiler. Whenever we compile for this customized machine,
the same graph matching algorithm described above is used
to construct potential candidates. These candidates are then
compared to the graphs specified in the machine description,
and any matches are replaced by custom opcodes in the final
program. This technique allows us to take advantage of the
CFUs with no intrusion into the compiler’s code generation
algorithm.

5. CONCLUSION AND FUTURE WORK
Currently our CFU generation system recognizes and gener-
ates CFUs for linear acyclic graphs. Our vision is to extend
the system to recognize general acyclic graphs with more ex-
otic structures, and simple cyclic subgraphs. For example, one
application we looked at spent a considerable amount of time
in a loop that was simply counting the number of bits set in an
integer. This loop would be a prime candidate for replacement
with a single CFU, as we could easily implement this function-
ality with simple combinational logic. Adding residual state
to CFUs is also something we plan to investigate. Many CFUs
are utilized in loop bodies where their result is fed back into
them as an input for the next loop iteration. If the CFU were

to remember the last result it computed, we would not need to
communicate that value through the register file. A final im-
provement we are looking into is better selection algorithms.
From the graphs in Section 3, it is clear that our current greedy
selection method leaves something to be desired.

We have shown in this paper that even with naive graph recog-
nition techniques, large speedups (as high as 2.2) are possi-
ble by using automatically designed custom function units.
This technology provides engineers with a quick, cost effec-
tive way to meet the ever increasing demand on computational
resources in embedded spaces.

6. REFERENCES
[1] P. Bose and E. S. Davidson, “Design of instruction set

architctures for support of high-level languages,” in
Proceedings of the 11th Annual International Symposium on
Computer Architecture, June 5–7, 1984.

[2] J. P. Bennett, A Methodology for Automated Design of
Computer Instruction Sets. PhD thesis, University of
Cambridge, 1988.

[3] S. Liao, S. Devadas, K. Keutzer, and S. Tjiang, “Instruction
selection using binate covering for code size optimization,” in
International Conference on Computer-Aided Design,
pp. 393–399, 1995.

[4] R. Leupers and P. Marwedel, “Instruction selection for
embedded DSPs with complex instructions,” in Eurpoean
Design Automation Conference, Sept. 1996.

[5] W. Geurts, F. Catthoor, S. Vernalde, and H. D. Man, Accelerator
Data-Path Synthesis for High-Throughput Signal Processing
Applications. Boston, MA: Kluwer Academic Publishers, 1996.

[6] B. Holmer, Automatic Design of Computer Instruction Sets.
PhD thesis, University of California, Berkeley, 1993.

[7] I. Huang, Co-Synthesis of Instruction Sets and
Microarchitectures. PhD thesis, University of Southern
California, 1994.

[8] P. M. Athanas and H. S. Silverman, “Processor reconfiguration
through instruction set metamorphosis,” IEEE Computer,
vol. 11, no. 18, 1993.



[9] J. R. Hauser and J. Wawrzynek, “GARP: A MIPS processor
with a reconfigurable coprocessor,” in Symposium on FPGAs
for Custom Computing Machines, Apr. 1997.

[10] R. Razdan and M. D. Smith, “A high-performance
microarchitecture with hardware-programmable function units,”
in Proceedings of the 27th Annual International Symposium on
Microarchitecture, pp. 172–180, Nov. 30–Dec. 2, 1994.

[11] M. J. Wirthlin and B. L. Hutchings, “DISC: The dynamic
instruction set computer,” in Field Programmable Gate Arrays
for Fast Board Development and Reconfigurable Computing,
pp. 92–103, 1995.

[12] J. A. Fisher, P. Faraboschi, and G. Desoli, “Custom-fit
processors: Letting applications define architectures,” in
Proceedings of the 29th Annual International Symposium on
Microarchitecture, pp. 324–335, Dec. 2–4, 1996.

[13] S. Aditya and B. R. Rau, “Automatic architecture synthesis and
compiler retargeting for VLIW and EPIC processors,” Tech.
Rep. HPL-1999-93, HP Laboratories, 1999.

[14] L. Wu, C. Weaver, and T. Austin, “Cryptomaniac: A fast
flexible architecture for secure communication,” in Proceedings
of the 28th Annual International Symposium on Computer
Architecture, pp. 110–119, June 2001.

[15] F. Onion, A. Nicolau, and N. Dutt, “Compiler feedback in ASIP
design,” tech. rep., University of California, Irvine, Sept. 1994.

[16] M. Sivaraman and S. Aditya, “Cycle-time aware architecture
synthesis of custom hardware accelerators,” in Proceedings of
the 2002 International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems, Oct. 2002.

[17] M. Arnold, Instruction Set Extensions for Embedded
Processors. PhD thesis, Delft University of Technology, 2001.

[18] C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench:
A tool for evaluating and synthesizing multimedia and
communications systems,” in Proceedings of the 30th Annual
International Symposium on Microarchitecture, Dec. 1997.

[19] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown, “MiBench: A free, commercially
representative embedded benchmark suite,” in IEEE 4th Annual
Workshop on Workload Characterization, Dec. 2001.

[20] V. Kathail, M. Schlansker, and B. Rau, “HPL PlayDoh
architecture specification: Version 1.0,” Tech. Rep. HPL-93-80,
Hewlett-Packard Laboratories, Feb. 1993.


