
c Copyright by Scott Alan Mahlke, 1996

EXPLOITING INSTRUCTION LEVEL PARALLELISM
IN THE PRESENCE OF CONDITIONAL BRANCHES

BY

SCOTT ALAN MAHLKE

B.S., University of Illinois, 1988
M.S., University of Illinois, 1991

THESIS

Submitted in partial ful�llment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1996

Urbana, Illinois

EXPLOITING INSTRUCTION LEVEL PARALLELISM
IN THE PRESENCE OF CONDITIONAL BRANCHES

Scott Alan Mahlke, Ph.D.
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, 1996

Wen-mei W. Hwu, Advisor

Wide issue superscalar and VLIW processors utilize instruction-level parallelism (ILP) to

achieve high performance. However, if insu�cient ILP is found, the performance potential of

these processors su�ers dramatically. Branch instructions, which are one of the major lim-

itations to exploiting ILP, enforce strict ordering conditions in programs to ensure correct

execution. Therefore, it is di�cult to achieve the desired overlap of instruction execution with

branches in the instruction stream. To e�ectively exploit ILP in the presence of branches

requires e�cient handling of branches and the dependences they impose.

This dissertation investigates two techniques for exposing and enhancing ILP in the presence

of branches, speculative execution and predicated execution. Speculative execution enables an

ILP compiler to remove dependences between instructions and prior branches. In this manner,

the execution of instructions and predicted future instructions may be overlapped. Compiler-

controlled speculative execution is employed using an e�cient structure called the superblock .

The formation and optimization of superblocks increase ILP along important execution paths by

systematically removing constraints due to unimportant paths. In conjunction with superblock

optimizations, speculative execution is utilized to remove control dependences in the superblock

to aggressively reorder instructions across branches to achieve a high degree of execution overlap.

For many applications, speculative execution alone is not su�cient to achieve high per-

formance. The fundamental limitation is that speculation only removes dependences between

branches and other instructions. The branches themselves remain in the code, which causes

iii

di�cult problems. This motivates the second technique investigated in this dissertation, pred-

icated execution, which is an architectural capability that enables the conditional execution

of instructions based on the value of a Boolean source operand. Predicated execution allows

a compiler to eliminate branch instructions using this conditional execution support. Addi-

tionally, predicated execution provides an e�cient interface for the compiler to overlap the

execution of multiple paths of control. Predicated execution is exploited in the compiler via

a generalized form of a superblock, called the hyperblock . Hyperblocks provide the framework

for the compiler to selectively eliminate branches using predicated execution as well as apply

speculative execution to exploit ILP.

iv

DEDICATION

Dedicated to the fond memory of my grandfather, Richard Bannon.

v

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Professor Wen-mei Hwu, for his

guidance throughout my graduate studies. Most importantly, I would like to thank him for his

patience. I think I truly tested the limits of this patience on several occasions. But through

everything, he provided me with continued encouragement and support.

Next, I would like to extend my gratitude to the members of my dissertation committee,

Professor Janak Patel, Dr. Bob Rau, and Professor Pen-Chung Yew. Their numerous com-

ments, questions, and suggestions improved the quality of this work immensely. Also, I would

like to thank Vinod Kathail, Bob Rau, and Mike Schlansker at Hewlett-Packard Laboratories.

Their teaching and suggestions had a strong inuence on the directions of this work.

This research truly would not have been possible without the support, hard work, and

friendship of the members of the IMPACT research group. Members of the group were always

there to discuss ideas, debate solutions, practice talks, and develop software. I feel extremely

fortunate to have been a part of this group. I would �rst like to thank two members of the group,

Pohua Chang and William Chen. Pohua put a great deal of time and e�ort in to educating

me in the area of ILP compilation. His energy and endless supply of ideas provided a strong

motivation for my work. William was a close friend and colleague throughout graduate school.

He was always there to discuss research, brainstorm new ideas, and provide helpful suggestions.

The group members for which I owe many thanks to are those who worked on hyperblocks

and predicated execution. The research really began with David Lin, who helped formulate

most of the original ideas for hyperblocks and predicate compilation. Rick Hank, John Gyl-

vi

lenhaal, and Roger Bringmann contributed to almost every aspect of the research with their

ideas, insight, and suggestions. Rick's work on code generation, dataow analysis, register al-

location, and emulation was central to this research. John's work on emulation, pro�ling, and

simulation was equally important. Roger's research provided the scheduling framework used

in this dissertation. Dave Gallagher was a willing sounding board for all of my ideas and was

always there to debate any issue. He also provided important work on the predicate analysis

modules. Jim McCormick contributed his thoughts and e�ort in the area of partial predication.

Finally, David August provided valuable contributions with his ideas and work on loop peeling

and hyperblock optimization. I would also like to thank him for all the invaluable comments

and suggestions he provided on this dissertation.

There are several other group members that I wish to thank. My o�cemates, Sadun Anik,

Tom Conte, Dave Gallagher, and Nancy Warter made o�ce life very enjoyable with their

thoughts and discussions. Grant Haab, Sabrina Hwu, Tokuzo Kiyohara, and Dan Lavery pro-

vided invaluable feedback on ideas, papers, and talks. Dan Connors, Brian Deitrich, Cheng-

Hsueh Hsieh, and Teresa Johnson provided helpful views and software tools.

Next, I would like to extend special thanks to my friends on Copper, Black Knight, Sojourn,

and Shayol-Ghul Dikumuds. Although at times mud bordered on an addiction, it provided a

much needed escape from the harsh realities of life. Many thanks to Mookie, Allenbri, Old,

Tryth, Tang, Orcus, Namu, Ima, Cucumber, Dragnar, Proteus, Cython, and Miax.

Last, I would like to acknowledge the support of some friends and family. Brian Upper,

Brad Gilbert, Tom Begnel, Jim Falling, and all the Groundhogs provided many good times

through my days in Illinois. My parents, Jeanne and Monte, and my sister, Laura, gave me the

encouragement and consistent support that I needed to make it through graduate school.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION : 1
1.1 Contributions : 5
1.2 Overview : 7

2 OVERVIEW OF THE IMPACT COMPILER : 9

3 SPECULATIVE EXECUTION USING SUPERBLOCKS : : : : : : : : : : : : : : : : 14
3.1 Superblock Formation : 15
3.2 Classical Optimizations Applied to Superblocks : : : : : : : : : : : : : : : : : : : 19

3.2.1 Local optimizations extended to superblocks : : : : : : : : : : : : : : : : 21
3.2.2 Loop optimizations extended to superblocks : : : : : : : : : : : : : : : : : 24

3.3 Superblock ILP Optimization : 27
3.3.1 Superblock enlarging optimizations : 28
3.3.2 Superblock dependence-removing optimizations : : : : : : : : : : : : : : : 31

3.4 Superblock Scheduling : 42
3.4.1 Superblock scheduling algorithm : 43
3.4.2 Speculative execution in superblocks : 44
3.4.3 Superblock scheduling example : 46

4 SENTINEL SPECULATION MODEL : 53
4.1 Background and Related Work : 53

4.1.1 Instruction boosting speculation model : 54
4.1.2 Writeback suppression speculation model : : : : : : : : : : : : : : : : : : 55
4.1.3 Partial ignoring of speculative exceptions : : : : : : : : : : : : : : : : : : 56

4.2 The Sentinel Speculation Model : 57
4.2.1 Model of execution : 58
4.2.2 Architectural support : 59
4.2.3 Sentinel superblock scheduling algorithm : : : : : : : : : : : : : : : : : : 61
4.2.4 Sentinel speculation example : 65
4.2.5 Handling uninitialized data : 66
4.2.6 Reporting multiple exceptions : 67

4.3 Exception Recovery : 68
4.3.1 Recovery model : 69
4.3.2 Restartable instruction interval : 70
4.3.3 Scheduler support : 73
4.3.4 Register allocator support : 79

4.4 Allowing Speculative Stores : 82
4.4.1 Additional architectural support : 82
4.4.2 Scheduling support for store movement : : : : : : : : : : : : : : : : : : : 85

viii

5 EXPERIMENTAL EVALUATION OF SPECULATIVE EXECUTION : : : : : : : : : 87
5.1 Experimental Methodology : 87

5.1.1 Emulation-driven simulation : 87
5.1.2 Benchmarks : 90
5.1.3 Processor model : 94

5.2 Results : 95
5.2.1 E�ectiveness of speculative execution : 96
5.2.2 E�ectiveness of superblock optimizations : : : : : : : : : : : : : : : : : : 103
5.2.3 Cache e�ects : 105
5.2.4 Limitations of speculative execution in superblocks : : : : : : : : : : : : : 112

6 PREDICATED EXECUTION : 121
6.1 Overview : 121

6.1.1 Predicated execution support in the Cydra 5 : : : : : : : : : : : : : : : : 123
6.1.2 Predicated execution support in ARM : 125
6.1.3 Limited predicated execution support in other systems : : : : : : : : : : : 125

6.2 Architectural Support for Predicated Execution : : : : : : : : : : : : : : : : : : : 127
6.2.1 IMPACT architecture model : 127
6.2.2 Instruction set extensions : 130
6.2.3 Microarchitecture extensions : 135
6.2.4 Predicated execution for out-of-order issue processors : : : : : : : : : : : 137

7 COMPILER SUPPORT FOR PREDICATED EXECUTION : : : : : : : : : : : : : : 142
7.1 Hyperblock Formation : 143
7.2 Extending Superblock Techniques to Hyperblocks : : : : : : : : : : : : : : : : : : 158

7.2.1 Predicate hierarchy graph : 160
7.2.2 Dataow analysis using the predicate CFG generator : : : : : : : : : : : : 171
7.2.3 Use of predicate information by the compiler backend : : : : : : : : : : : 184

7.3 Predicate-Speci�c Optimizations : 190
7.3.1 Predicate promotion : 190
7.3.2 Branch combining : 198
7.3.3 Predicated loop peeling : 203
7.3.4 Instruction merging : 213

8 EXPERIMENTAL EVALUATION OF PREDICATED EXECUTION : : : : : : : : : 217
8.1 Experimental Methodology : 217

8.1.1 Processor model : 217
8.1.2 Emulation of predicated execution : 218

8.2 Results : 220
8.2.1 Overall performance with predicated execution : : : : : : : : : : : : : : : 221
8.2.2 Branch resource e�ects : 226
8.2.3 Instruction stream e�ects : 229
8.2.4 Speculative execution e�ects : 238
8.2.5 Cache e�ects : 244
8.2.6 Predicate architecture issues : 249
8.2.7 Current level of performance : 254

ix

9 CONCLUSION : 262
9.1 Summary : 262
9.2 Future Research : 265

REFERENCES : 268

VITA : 277

x

LIST OF TABLES

Table Page

3.1 Superblock classical optimizations. : 20
3.2 Instruction latencies for all examples presented in this section. : : : : : : : : : : : : 32

4.1 Exception detection with sentinel speculation. : 59
4.2 Insertion of store into store bu�er. : 84

5.1 Benchmark set. : 90
5.2 Benchmark inputs used for pro�ling. : 91
5.3 Input for each benchmark used to do measurements. : : : : : : : : : : : : : : : : : : 92
5.4 Dynamic instruction mix for the benchmarks. : 93
5.5 Simulated processor architecture. : 94
5.6 Instruction latencies. : 95
5.7 E�ect of speculation on the dynamic instruction count for an issue-8 processor. : : : 101
5.8 Speculative load characteristics for an issue-8 processor. : : : : : : : : : : : : : : : : 102
5.9 E�ect of speculation on the instruction and data caches for an issue-8 processor. : : 109
5.10 E�ect of superblock ILP optimization on the instruction and data caches for an

issue-8 processor. : 111
5.11 Superblock characteristics. : 114
5.12 Dynamic instruction mix after superblock optimizations. : : : : : : : : : : : : : : : : 118

6.1 Predicate comparison truth table. : 131

8.1 E�ect of predicated execution on the dynamic instruction count for an issue-8 pro-
cessor. : 230

8.2 E�ect of predicated execution on the dynamic branch instruction count for an issue-8
processor. : 232

8.3 E�ect of predicated execution on the dynamic branch misprediction count for an
issue-8 processor. : 233

8.4 E�ect of predicated execution on the average distance between branches and mis-
predictions for an issue-8 processor. : 235

8.5 Predicate promotion statistics. : 243
8.6 E�ect of predicated execution on the instruction and data caches for an issue-8

processor. : 247
8.7 Dynamic nulli�cation frequency for predicated instructions. : : : : : : : : : : : : : : 250
8.8 Dynamic usage distribution of predicate comparison instruction types. : : : : : : : : 251
8.9 Dynamic usage distribution of predicate registers. : 253
8.10 Hyperblock characteristics. : 255
8.11 Dynamic instruction mix with hyperblock compilation techniques. : : : : : : : : : : 258

xi

LIST OF FIGURES

Figure Page

2.1 The IMPACT compiler. : 10

3.1 Instruction scheduling across trace side entrances, (a) moving an instruction below
a side entrance, (b) moving an instruction above a side entrance. : : : : : : : : : : : 16

3.2 Applying copy propagation to an instruction trace, (a) before copy propagation, (b)
after copy propagation with bookkeeping code inserted. : : : : : : : : : : : : : : : : 17

3.3 Example of the superblock formation procedure, (a) after trace selection, (b) after
tail duplication. : 18

3.4 Example of superblock common subexpression elimination, (a) original program
segment, (b) program segment after superblock formation, (c) program segment
after common subexpression elimination. : 22

3.5 Example of superblock operation migration, (a) original program segment, (b) pro-
gram segment after operation migration. : 23

3.6 Example of superblock loop invariant code removal, (a) original program segment,
(b) program segment after loop invariant code removal. : : : : : : : : : : : : : : : : 25

3.7 An example of superblock loop global variable migration, (a) original program seg-
ment, (b) program segment after loop global variable migration. : : : : : : : : : : : 26

3.8 Example of branch target expansion, (a) original program segment, (b) program
segment after expansion. : 29

3.9 Example of loop unrolling and register renaming. All examples in this section assume
a superscalar processor with in�nite resources and no register renaming hardware.
Also, the issue times (IT) shown are for the code after code scheduling, but to
preserve clarity, the unscheduled code is shown. Sorting by issue time yields the
scheduled code. : 32

3.10 Algorithm for accumulator variable expansion. : 34
3.11 Example of accumulator variable expansion. : 35
3.12 Algorithm for induction variable expansion. : 36
3.13 Example of induction variable expansion. : 38
3.14 Example of operation combining. : 40
3.15 Example of tree height reduction. : 42
3.16 Example C source code segment. : 47
3.17 Assembly code segment. : 47
3.18 Loop portion of control ow graph after trace selection. : : : : : : : : : : : : : : : : 48
3.19 Loop portion of control ow graph after superblock formation and branch target

expansion. : 49
3.20 Assembly code of C segment after superblock formation and loop unrolling. : : : : : 50
3.21 Live-out sets for superblock loop branch instructions. : : : : : : : : : : : : : : : : : 50
3.22 Dependence graphs for the restricted and general speculation models. : : : : : : : : 51

xii

3.23 Code schedules and execution results obtained with the restricted and general spec-
ulation models. : 52

4.1 Algorithm to identify potential sentinel instructions. : : : : : : : : : : : : : : : : : : 63
4.2 Sentinel superblock scheduling algorithm. : 64
4.3 Example of sentinel speculation, (a) original program segment, (b) program segment

after scheduling. : 66
4.4 Example of exception detection using sentinel speculation. : : : : : : : : : : : : : : : 67
4.5 Algorithm to calculate live information for an instruction interval. : : : : : : : : : : 71
4.6 Instruction interval examples, (a) a restartable instruction interval, (b) a non-

restartable instruction interval. : 72
4.7 Algorithm to determine if an instruction is compatible with all active intervals. : : : 76
4.8 Algorithm to update all active intervals. : 77
4.9 Example of sentinel superblock scheduling to ensure recovery, (a) original program

segment, (b) program segment after scheduling. : 78

5.1 Simulation process. : 88
5.2 Performance comparison of three processor models using basic block compilation

support. : 96
5.3 Performance comparison of three processor models supporting the general percola-

tion model and using superblock compilation support. : : : : : : : : : : : : : : : : : 97
5.4 Performance comparison of an issue-2 processor with varying levels of compiler and

speculation support. : 98
5.5 Performance comparison of an issue-4 processor with varying levels of compiler and

speculation support. : 98
5.6 Performance comparison of an issue-8 processor with varying levels of compiler and

speculation support. : 99
5.7 E�ectiveness of superblock formation and optimization for an issue-8 processor. : : : 104
5.8 Code expansion of superblock formation and optimization. : : : : : : : : : : : : : : : 104
5.9 Performance comparison of three processor models with 64K caches supporting gen-

eral speculation and using superblock compilation support. : : : : : : : : : : : : : : 106
5.10 Performance comparison of perfect cache model and the 64K cache model for an

issue-8 processor. : 107
5.11 Average executed and unused instructions per cycle for an issue-8 processor using

superblock compilation techniques. : 113
5.12 E�ect of reducing the maximum number of branches executed per cycle for an issue-8

processor. : 117

6.1 Example of if-conversion, (a) source code segment, (b) assembly code segment, (c)
assembly code segment after if-conversion. : 122

6.2 Example of if-then-else predication in the Cydra 5. : : : : : : : : : : : : : : : : : : : 124
6.3 IMPACT microarchitecture block diagram. : 128
6.4 Pipeline diagram for the IMPACT architecture. : 129
6.5 Example usage of OR-type predicate comparisons. : : : : : : : : : : : : : : : : : : : 133
6.6 Example of the tagging problem with out-of-order execution. : : : : : : : : : : : : : 138
6.7 Select instruction execution semantics for predicated instructions. : : : : : : : : : : : 139

xiii

7.1 Source code for the inner loop of wc. : 144
7.2 Inner loop segment of wc, (a) assembly code, (b) weighted control ow graph. : : : : 145
7.3 Backedge coalescing applied to the inner loop segment of wc, (a) before coalescing,

(b) after coalescing. : 147
7.4 Block selection algorithm. : 150
7.5 Block selection applied to the inner loop segment of wc. : : : : : : : : : : : : : : : : 152
7.6 Tail duplication applied to the inner loop segment of wc. : : : : : : : : : : : : : : : : 154
7.7 Localized control dependence calculation and predicate assignment for the inner loop

segment of wc. : 156
7.8 Inner loop segment of wc after if-conversion. : 157
7.9 Block diagram of the backend compilation path with hyperblocks. : : : : : : : : : : 160
7.10 Example hyperblock loop from wc, (a) assembly code for the �nal hyperblock, (b)

control ow graph before if-conversion. : 162
7.11 Predicate hierarchy graph for example hyperblock loop from wc. : : : : : : : : : : : 163
7.12 Algorithm to compute the ancestor relationship between two predicates. : : : : : : : 166
7.13 Algorithm to compute the control path relationship between two predicates. : : : : : 167
7.14 Algorithm to compute the implies relationship between two predicates. : : : : : : : : 169
7.15 Predicate hierarchy graph for example hyperblock loop from wc, (a) graph itself, (b)

enumeration of all predicate relations. : 171
7.16 Algorithm for marking the covered nodes in a predicate hierarchy graph. : : : : : : : 173
7.17 Algorithm to compute the immediate successors for an instruction in a hyperblock. : 175
7.18 Example of the computation of immediate successors from wc, (a) assembly code

for the hyperblock, (b) immediate successors for each instruction. : : : : : : : : : : : 177
7.19 Example of predicate CFG generation from wc, (a) instruction-level CFG represent-

ing implicit control ow for predicates, (b) �nal predicate CFG for the hyperblock. : 180
7.20 Example of an accurate and a conservative predicate CFG, (a) original CFG, (b) �rst

example code sequence for the hyperblock, (c) accurate predicate CFG for the �rst
hyperblock, (d) second example code sequence for the hyperblock, (e) conservative
predicate CFG for the second hyperblock. : 183

7.21 Example use of the predicate relations to perform local copy propagation. : : : : : : 187
7.22 Example use of the control path relation for hyperblock scheduling. : : : : : : : : : : 188
7.23 Algorithm for simple predicate promotion. : 192
7.24 Algorithm for multide�nition predicate promotion. : : : : : : : : : : : : : : : : : : : 193
7.25 Algorithm for renaming predicate promotion. : 194
7.26 Example of predicate promotion from qsort , (a) assembly code after hyperblock

formation, (b) schedule for hyperblock, (c) assembly code after predicate promotion,
(d) schedule for hyperblock after predicate promotion. : : : : : : : : : : : : : : : : : 197

7.27 Loop segment from grep, (a) assembly code, (b) weighted control ow graph. : : : : 200
7.28 Example of branch combining from grep, (a) assembly code after unrolling twice,

(b) assembly code after branch combining. : 201
7.29 Example loop segment from the function elim lowering in 008.espresso. : : : : : : : 207
7.30 Example loop segment from 008.espresso, (a) original assembly code, (b) weighted

control ow graph. : 208
7.31 Example loop segment from 008.espresso after hyperblock formation with predicated

loop peeling; the inner loop is peeled twice. : 209

xiv

7.32 Example loop segment from 008.espresso after hyperblock formation with predicated
loop peeling and ILP optimizations. This �gure shows just one iteration of the outer
loop. In the actual compiled code, the outer loop is unrolled six times to achieve
performance. : 211

7.33 Performance summary for example loop segment from 008.espresso. : : : : : : : : : 212
7.34 Example of instruction merging, (a) original assembly code, (b) original control

ow graph, (c) assembly code after hyperblock formation, (d) assembly code after
instruction merging. : 215

8.1 An example of predicated execution emulation, (a) target processor assembly code,
(b) HP PA-RISC assembly code. : 219

8.2 Performance improvement achieved with predicated execution for an issue-2, one-
branch processor. : 222

8.3 Performance improvement achieved with predicated execution for an issue-4, one-
branch processor. : 222

8.4 Performance improvement achieved with predicated execution for an issue-8, one-
branch processor. : 223

8.5 Performance improvement achieved with predicated execution for an issue-8, two-
branch processor. : 227

8.6 Performance improvement achieved with predicated execution for an issue-8 proces-
sor with no constraints on branches. : 228

8.7 E�ect of predicated execution on the distribution of the distance between branches
for an issue-8 processor. : 237

8.8 E�ect of predicated execution on the distribution of the distance between branch
mispredictions for an issue-8 processor. : 237

8.9 Performance comparison of predicated execution and speculative execution for an
issue-8, one-branch processor. : 240

8.10 Performance comparison of predicated execution and speculative execution for an
issue-4, one-branch processor. : 241

8.11 Performance comparison of perfect cache model and the 64K cache model for an
issue-8 processor with predicated execution support. : : : : : : : : : : : : : : : : : : 245

8.12 E�ect of reducing the maximum number of branches executed per cycle for an issue-8
processor with predicated execution support. : 257

8.13 Average executed and unused instructions per cycle for an issue-8, one-branch pro-
cessor using hyperblock compilation techniques. : 260

xv

CHAPTER 1

INTRODUCTION

Superscalar and very long instruction word (VLIW) processors can potentially provide large

performance improvements over their scalar predecessors by providing multiple data paths and

functional units. The parallel resources are exploited by concurrently executing independent

instructions from the instruction stream. However, conditional branch instructions pose di�cult

problems for all types of processors that exploit instruction-level parallelism (ILP). Recent

studies have shown that by using conventional code optimization and scheduling methods,

superscalar and VLIW processors cannot produce a sustained speedup of more than two for

nonnumeric programs [1],[2],[3]. For such programs, conventional architectural and compilation

methods do not provide enough support to utilize these processors.

Branch instructions are the major impediment to exploiting ILP in nonnumeric applications.

There are several reasons this occurs. First, the amount of ILP within basic blocks is extremely

limited due to the small number of instructions in each block. For nonnumeric benchmarks,

researchers report that approximately 20% to 30% of the dynamic instructions are branches.

This results in an average basic block size for these programs of three to �ve instructions. As a

result, compiler and/or hardware ILP techniques must look beyond the basic block boundaries

to �nd su�cient parallelism.

Branch prediction is the most widely applied technique to extract ILP across basic blocks.

There are two basic classes of branch prediction strategies: static and dynamic. Static branch

prediction utilizes information available at compile time to make predictions. Several example

1

static prediction schemes are branch direction (backward taken, forward not taken) [4]; heuris-

tics based on the program structure [5],[6]; and pro�le information [7],[8],[9]. For compilers

employing scheduling techniques such as trace scheduling [10], static branch prediction is used

to identify likely sequences of basic blocks that can be scheduled as single units. Dynamic

branch prediction utilizes run-time behavior to make predictions. Example dynamic branch

prediction schemes are the branch target bu�er (BTB) with a 2-bit saturating counter [11]

and two-level adaptive training [12],[13],[14]. For processors employing hardware scheduling,

dynamic branch prediction is used to identify a continuous window of instructions from which

instructions are selected for execution.

Regardless of the prediction strategy employed, the software or hardware scheduler is pre-

sented with a larger block of instructions, enabling it to expose a greater amount of ILP. While

correct branch prediction can increase ILP, incorrect prediction often results in large perfor-

mance penalties. These large performance penalties or misprediction penalties are the second

reason that branches are the major impediment to exploiting ILP. Recent studies comparing

perfect branch prediction with a highly accurate dynamic predictor show that a small fraction

of mispredictions can reduce performance by a factor of two to more than ten [15],[16].

The �nal reason branches impede ILP so severely is that frequent branches in the instruction

stream place an upper limit on the potential ILP. A superscalar or VLIW processor may have

to execute multiple branches per cycle to sustain the execution of multiple instructions per

cycle. Under the assumption that an instruction stream contains 25% branches, an issue-8

superscalar processor must have the capability to sustain at least two branches per cycle. If

the issue-8 processor could only execute a single branch each cycle, its maximal performance

would be resource limited to four instructions per cycle. Handling multiple branches per cycle

2

requires additional pipeline complexity, as well as designing multiported branch prediction

structures such as the branch target bu�er (BTB). In high issue rate processors, it is much

easier to duplicate arithmetic function units than to predict and execute multiple branches per

cycle. Therefore, most future generation ILP processors will likely have limited branch handling

capabilities which may limit performance in nonnumeric applications.

To exploit and extract ILP beyond the basic block boundary requires e�cient handling of

branches and the control dependences imposed by branches. In this dissertation, two techniques

for exploiting and enhancing ILP in the presence of conditional branches are investigated,

speculative execution and predicated execution. Speculative execution refers to the execution

of an instruction before knowing that its execution is required. Speculative execution enables

the compiler or hardware to remove dependences between instructions and prior branches. In

this manner, the execution of instructions and predicted future instructions may be overlapped.

For the case in which the predicted future instructions were indeed required to execute, a large

potential performance gain may be observed. For the contrary case, the speculated instructions

are unnecessarily executed and their side e�ects must be nulli�ed.

Compiler-controlled speculative execution is employed using an e�cient structure called the

superblock. Superblocks provide an e�cient foundation for all phases of ILP compilation, in-

cluding optimization, scheduling, and register allocation. The formation and optimization of

superblocks increase the ILP along the important execution paths by systematically remov-

ing constraints due to the unimportant paths. Speculative execution enables the scheduler to

remove the control dependences between instructions and branches in a superblock. In conjunc-

tion with the data dependences removed with superblock optimization, speculative execution

is utilized to e�ciently extract ILP across basic block boundaries.

3

The second technique investigated in this dissertation is predicated execution. Predicated

execution support provides an e�ective means to completely eliminate branches from an in-

struction stream. Predicated or guarded execution refers to the conditional execution of an

instruction based on the value of a Boolean source operand, referred to as the predicate of

the instruction [17],[18]. This architectural support allows the compiler to use an if-conversion

algorithm to convert conditional branches into predicate de�ning instructions and instructions

along alternative paths of each branch into predicated instructions [19],[20],[21]. Predicated

instructions are fetched regardless of their predicate value. Instructions whose predicate value

is true are executed normally. Conversely, instructions whose predicate is false are nulli�ed,

and thus are prevented from modifying the processor state. Predicated execution allows the

compiler to trade instruction fetch e�ciency for the capability to expose ILP to the hardware

along multiple execution paths.

Predicated execution o�ers the opportunity to improve branch handling in superscalar and

VLIW processors. Eliminating frequently mispredicted branches may lead to a substantial

reduction in branch predictionmisses. As a result, the performance penalties associated with the

eliminated branches are removed. Eliminating branches also reduces the need to handle multiple

branches per cycle for wide issue processors. As a side e�ect of reducing the number of branches

in the instruction stream, the amount of speculation required to sustain full processor utilization

is reduced. Therefore, in the case of a mispredicted branch, fewer speculative instructions must

be discarded. Finally, predicated execution provides an e�cient interface for the compiler

to expose multiple execution paths to the hardware. Without compiler support, the cost of

maintaining multiple execution paths in hardware grows rapidly.

4

Predicated execution support is exploited in the compiler via a structure called the hyper-

block. Hyperblocks are a generalized form of superblocks which take advantage of both spec-

ulative and predicated execution. The major di�erence between hyperblocks and superblocks

is that an arbitrary number of paths of control may be combined into a single unit with hy-

perblocks, whereas, with superblocks, a single path of control is identi�ed for ILP compilation.

The goal of hyperblock compilation techniques is to intelligently group basic blocks from many

di�erent control ow paths into a single manageable structure for compiler optimization and

scheduling. Basic blocks are systematically selected for inclusion in hyperblocks to eliminate

hard-to-predict branches, maximize ILP optimization opportunities, and avoid over-committing

processor resources. Speculative execution is enabled in hyperblocks using a technique called

predicate promotion, which removes the predicate from selected instructions to allow execution

before its predicate is calculated, thereby speculating the instruction.

1.1 Contributions

The four major contributions of this dissertation are discussed below.

� The superblock compilation techniques discussed in this thesis provide an e�cient paradigm

for ILP compilation. Superblocks di�er from most ILP compilation techniques in that

they provide an underlying structure for both optimization as well as scheduling and reg-

ister allocation. Most techniques such as trace scheduling [10] and region scheduling [22]

do not extend e�ciently to optimization. The major architectural feature exploited to

achieve high performance with superblocks is speculative execution. In the area of su-

perblock compilation, the contributions speci�c to this thesis lie primarily in the areas of

5

superblock classical optimizations, superblock ILP optimizations, and speculative execu-

tion using the sentinel scheduling model.

� The hyperblock structure proposed in this thesis provides an e�ective framework for

ILP compilation of nonnumeric programs. Hyperblocks combine the use of predicated

and speculative execution to eliminate branches from the instruction stream as well as

eliminate dependences for control ow. Hyperblocks o�er several distinct advantages over

superblocks. First, they allow the compiler to expose parallelism along multiple execution

paths to the hardware. Second, they allow the compiler to eliminate a large portion of

the dynamic branches from applications, thereby eliminating the need to predict these

branches. Finally, they allow the compiler to selectively apply if-conversion to balance

the elimination of branch instructions with processor resource availability to ensure that

resources are not over-saturated.

� An approach to e�ciently extend traditional compiler optimizations, scheduling, and

register allocation to operate e�ectively on predicated code is proposed in this thesis.

Predicated code introduces new challenges for compilers since a large portion of the control

ow is no longer explicit, but rather represented implicitly by predicates. The fundamental

tool utilized by the compiler to understand predicate semantics is called the predicate

hierarchy graph. It provides information regarding the relationships among predicates,

such as mutual exclusion and covering. Using the predicate information, an instruction-

level control ow graph may be constructed to represent the implicit and explicit control

ows in predicated code. Traditional compiler transformations use a combination of

this control ow graph as well as the predicate relations themselves to e�ectively handle

predicated code. In addition, a set of predicate-speci�c optimizations has been developed

6

to further improve the performance predicated code. These optimizations utilize the

inherent functionality of predicated execution to expose optimization opportunities which

are more di�cult in traditional architectures. The optimizations include loop peeling,

branch combining, instruction merging, and predicate promotion.

� A detailed evaluation of the usefulness of predicated execution in ILP architectures for

nonnumeric programs is performed in this thesis. Most research and development have

focused on using predicated execution numerical applications in the vector or VLIW

domain. In this thesis, it is shown that predicated execution supported by hyperblock

compilation techniques is highly e�ective for nonnumeric applications. The ability of the

compiler to eliminate problematic branches and overlap the execution of multiple paths

of control with predicated execution is assessed. In addition, a comprehensive evaluation

of the relative bene�ts and limitations of speculative and predicated execution is made

in this thesis. The evaluation is unique in the sense that all compiler support for both

techniques has been implemented in the compiler, enabling a fair comparison and contrast

of the techniques within the scope of a single compiler framework.

1.2 Overview

This dissertation is composed of nine chapters. Chapter 2 presents an overview of the

organization and operation of the IMPACT compiler. All compiler techniques discussed in this

thesis are implemented within the framework of the IMPACT compiler.

The �rst technique investigated to deal with branches in ILP processors, speculative execu-

tion, is presented in Chapter 3. The superblock is the basic underlying structure utilized by the

compiler to extract, enhance, and exploit ILP. Chapter 3 discusses the superblock along with

7

superblock optimization and scheduling techniques. In Chapter 4, a new scheduling model,

sentinel speculation, is introduced. Sentinel speculation provides an e�ective framework for full

speculation of instructions, along with an e�cient set of mechanisms to detect and recover from

all exceptions for speculative instructions.

Chapter 5 provides an experimental evaluation of speculative execution using superblock

compilation techniques. The relative bene�ts of limited versus full speculation are assessed

along with the e�ects of the superblock ILP code transformations. Performance limitations of

speculative execution alone are also addressed.

The second technique for dealing with branches in ILP processors, predicated execution, is

presented in Chapter 6. Predicated execution enables the compiler to eliminate branches from

the instruction stream. E�cient architecture and instruction set architecture extensions for

predicated execution are the major focus of this chapter. The proposed compiler support for

utilizing predicated execution is given in Chapter 7. Compiler support is based on the hyper-

block structure. Hyperblock formation, extensions to superblock optimization and scheduling

techniques, and predicate-speci�c ILP optimizations are discussed in this chapter.

A second set of experiments is performed and analyzed in Chapter 8. This set of experiments

evaluates the e�ectiveness of predicated execution using hyperblock compilation techniques. A

full comparison between speculative execution and predicated execution is also done. Finally,

in Chapter 9, conclusions and directions for future research are given.

8

CHAPTER 2

OVERVIEW OF THE IMPACT COMPILER

All of the compiler techniques to utilize speculative and predicated execution are imple-

mented within the framework of the IMPACT compiler. A block diagram of the IMPACT com-

piler is presented in Figure 2.1. The compiler is divided into three distinct parts based on the

level of intermediate representation (IR) used. The highest level IR, Pcode, is a parallel C code

representation with loop constructs intact. In Pcode, memory dependence analysis [23],[24],

loop-level transformations [25], and memory system optimizations [26],[27] are performed. The

middle level IR is referred to as Hcode, which is a attened C representation with simple if-

then-else and go-to control ow constructs. In Hcode, statement level pro�ling is performed.

Additionally, pro�le-guided code layout and function inline expansion are performed at this

level [28],[29],[30].

The �nal level of IR in the IMPACT compiler is referred to as Lcode, which is a generalized

register transfer language similar in structure to most load/store processor assembly instruction

sets. Lcode is logically subdivided into two subcomponents, the machine independent IR, Lcode,

and the machine speci�c IR, Mcode. The data structures for both the Lcode and Mcode are

identical. The di�erence is that Mcode is broken down such that there is a one-to-one mapping

between Mcode instructions to the target machine's assembly language. Therefore, to convert

Lcode to Mcode, the code generator breaks up Lcode instructions into one or more instructions

which directly map to the target architecture. Lcode instructions are broken up for a variety

9

HCODE

Superblock
Formation

Hyperblock
Formation

ILP Code
Optimization

Classic Code
Optimization

C / Fortran
 Source

Peephole
Optimization

Code
Scheduling

PCODE

Dependence
Analysis

Loop
Transformations

Optimizations
Memory System

Parallelization

Function Inline
Expansion

Statement
Profiler

Code
Layout

MDES
LCODE

MCODE

Code
Emission

Register
Allocation

Software
Pipelining

Interprocedural
Safety Analysis

SPARC

Intel X86

AMD 29K MIPS R3000 HP PA−RISC

IMPACT HPL PLAYDOH

Figure 2.1 The IMPACT compiler.

10

of reasons including limited addressing modes, limited opcode availability, ability to specify a

literal operand, and �eld width of literal operands.

At the Lcode level, all machine independent classic optimizations are applied [31]. These

include constant propagation, forward copy propagation, backward copy propagation, common

subexpression elimination, redundant load elimination, redundant store elimination, strength

reduction, constant folding, constant combining, operation folding, operation cancellation, code

reordering, dead code removal, jump optimization, unreachable code elimination, loop invariant

code removal, loop global variable migration, loop induction variable strength reduction, loop

induction variable elimination, and loop induction variable reassociation. Additionally at the

Lcode level, interprocedural safety analysis is performed [32]. This includes identifying safe

instructions for speculation and function calls that do not modify memory (side-e�ect free).

Superblock and hyperblock compilation techniques, which are the focus of this thesis, are all

performed at the Lcode level. Superblock support includes superblock formation using execution

pro�le information, superblock classical optimization, and superblock ILP optimization. When

predicated execution support is available in the target architecture, hyperblocks rather than

superblocks are used as the underlying compilation structure. All superblock optimization

techniques have also been extended to operate on hyperblocks. In addition, a set of hyperblock-

speci�c optimizations to further exploit predicated execution support is available.

All code generation in the IMPACT compiler is performed at the Lcode level. The two

largest components of code generation are the instruction scheduler and register allocator.

Scheduling is performed via either acyclic global scheduling [32],[33] or software pipelining us-

ing modulo scheduling [34]. For the acyclic global scheduling, code scheduling is applied both

before register allocation (prepass scheduling) and after register allocation (postpass schedul-

11

ing) to generate an e�cient schedule. For software pipelining, loops targeted for pipelining

are identi�ed at the Pcode level and marked for pipelining. These loops are then scheduled

using software pipelining, and the remaining code is scheduled using the acyclic global sched-

uler. In addition to control speculation, both scheduling techniques are capable of exploiting

architectural support for data speculation to achieve more aggressive schedules [24],[35],[36].

Graph coloring based register allocation is utilized for all target architectures [37]. The

register allocator employs execution pro�le information if it is available to make more intelligent

decisions. For each target architecture, a set of specially tailored peephole optimizations are

performed. These peephole optimizations are designed to remove ine�ciencies during Lcode to

Mcode conversion, to take advantage of specialized opcodes available in the architecture, and

to remove ine�cient code inserted by the register allocator.

A detailed machine description database, Mdes, for the target architecture is also available

to all Lcode compilation modules [38]. The Mdes contains a large set of information to assist

with optimization, scheduling, register allocation, and code generation. Information such as

the number and type of available function units, size and width of register �les, instruction

latencies, instruction input/output constraints, addressing modes, and pipeline constraints is

provided by the Mdes. The Mdes is queried by the optimization phases to make intelligent

decisions regarding the applicability of transformations. The scheduler and register allocator

rely more heavily on the Mdes to generate e�cient as well as correct code.

Seven architectures are actively supported by the IMPACT compiler. These include the

AMD 29K [39], MIPS R3000 [40], SPARC [41], HP PA-RISC, and Intel X86. The other two

supported architectures, IMPACT and HPL PlayDoh [42], are experimental ILP architectures.

These architectures provide an experimental framework for compiler and architecture research.

12

The IMPACT architecture is a parameterized superscalar processor with an extended version

of the HP PA-RISC instruction set. Varying levels of support for speculative execution and

predicated execution are available in the IMPACT architecture. For this thesis, all experiments

utilize the IMPACT architecture with varying parameters.

13

CHAPTER 3

SPECULATIVE EXECUTION USING SUPERBLOCKS

For nonnumeric programs, the ILP available within basic blocks is extremely limited [1],[2],[43].

A VLIW or superscalar processor must optimize and schedule instructions across basic block

boundaries to achieve higher performance. An e�ective structure for ILP compilation is the

superblock [44]. The formation and optimization of superblocks increase the ILP available to

the scheduler along important execution paths by systematically removing constraints due to

the unimportant paths. Superblock scheduling is then applied to extract the available ILP and

map it to the processor resources.

The major technique employed to achieve compact superblock schedules is speculative exe-

cution, which refers to executing an instruction before knowing that its execution is required.

Such an instruction will be referred to as a speculative instruction. In the general sense, spec-

ulative execution may be engineered at run time or at compile time. Run time speculation

is utilized by processors employing dynamic scheduling [45],[46],[47]. Conversely, superblock

techniques utilize compile-time engineered speculative execution, or speculative code motion.

A compiler may utilize speculative code motion to achieve higher performance in three

major ways. First, in regions of the program where insu�cient ILP exists to fully utilize the

processor resources, useful instructions may be executed. Second, instructions starting long

dependence chains may be executed early to reduce the length of critical paths. Finally, long

latency instructions may be initiated early to overlap their execution with useful computation.

Speculative execution is generally employed by all aggressive scheduling techniques. For exam-

14

ple, Tirumalai et al. showed that modulo scheduling of \while" loops depends on speculative

support to achieve high performance [48]. Without speculative support, very little execution

overlap between loop iterations is achieved.

In this chapter, the major components of the superblock ILP compilation framework are

presented. These components include superblock formation, superblock classic optimization,

superblock ILP optimization, and superblock scheduling.

3.1 Superblock Formation

The purpose of code optimization and scheduling is to minimize the execution time while

preserving the program semantics. When this is done globally, some optimization and schedul-

ing decisions may decrease the execution time for one control path while increasing the time

for another path. By making these decisions in favor of the more frequently executed path, an

overall performance improvement can be achieved.

Trace scheduling is a technique that was developed to allow scheduling decisions to be made

in this manner [10],[49]. In trace scheduling the function is divided into a set of traces that

represent the frequently executed paths. There may be conditional branches from the middle

of the trace (side exits) and transitions from other traces into the middle of the trace (side

entrances). Instructions are scheduled within each trace ignoring these control-ow transitions.

After scheduling, bookkeeping is required to ensure the correct execution of o�-trace code.

Code motion past side exits can be handled in a fairly straightforward manner. If an

instruction J is moved from above to below a side exit, and the destination of J is used before

it is rede�ned when the side exit is taken, then a copy of J must also be placed between the

15

Instr 1

Instr 2

Instr 3

Instr 4

Instr 3

Instr 5

Instr 4

.

.

.

.

.

.

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

.

.

.

.

.

.

(a)

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

.

.

.

.

.

.
Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

.

.

.

.

.

.

(b)

Instr 5

Figure 3.1 Instruction scheduling across trace side entrances, (a) moving an instruction below
a side entrance, (b) moving an instruction above a side entrance.

side exit and its target. Movement of an instruction from below to above a branch can also be

handled without too much di�culty. The method for doing this is described in Section 3.4.

More complex bookkeeping must be done when code is moved above and below side en-

trances. Figure 3.1 illustrates this bookkeeping. In Figure 3.1(a), when Instr 1 is moved below

the side entrance (to after Instr 4), the side entrance is moved below Instr 1 . Instr 3 and Instr

4 are then copied to the side entrance. Likewise, in Figure 3.1(b), when Instr 5 is moved above

the side entrance, it must also be copied to the side entrance.

Side entrances can also make it more complex to apply optimizations to traces. For ex-

ample, Figure 3.2 shows how copy propagation can be applied to the trace and the necessary

bookkeeping for the o�-trace code. In this example, in order to propagate the value of r1 from

I1 to I3 , bookkeeping must be performed. Before propagating the value of r1, the side entrance

is moved to below I3 and instructions I2 and I3 are copied to the side entrance.

The bookkeeping associated with side entrances can be avoided if the side entrances are

removed from the trace. A superblock is a trace that has no side entrances. Control may only

enter from the top but may leave at one or more exit points. Superblocks are formed in two

16

(a) (b)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

I1:

I2:

I3:

I1:

I2:

I3:

I2’:

I3’:

mov r1,4

ld_i r2,_A,0

ld_i r3,r2,r1

mov r1,64

mov r1,4

ld_i r2,_A,0

ld_i r3,r2,4

mov r1,64

ld_i r2,_A,0

ld_i r3,r2,r1

Figure 3.2 Applying copy propagation to an instruction trace, (a) before copy propagation,
(b) after copy propagation with bookkeeping code inserted.

steps. First, traces are identi�ed using execution pro�le information [50]. Second, a process

called tail duplication is performed to eliminate any side entrances to the trace [51]. A copy is

made of the tail portion of the trace from the �rst side entrance to the end. All side entrances

into the trace are then moved to the corresponding duplicate basic blocks. The basic blocks in a

superblock need not be consecutive in the code. However, the implementation restructures the

code so that all blocks in a superblock appear in consecutive order for better cache performance.

The formation of superblocks is illustrated in Figure 3.3. Figure 3.3(a) shows a weighted ow

graph which represents a loop code segment. The nodes correspond to basic blocks and the arcs

correspond to possible control transfers. The count of each basic block indicates the execution

frequency of that basic block. The count of each control transfer indicates the frequency of

invoking these control transfers. Clearly, the most frequently executed path in this example

is the basic block sequence < A;B;E; F >. There are three traces: fA;B;E; Fg, fCg, and

fDg. After trace selection, each trace is converted into a superblock. In Figure 3.3(a), there

are two control paths that enter the fA;B;E; Fg trace at basic block F . Therefore, the tail

17

C

D

0

10

99

10

A

B

E

F

1

90
10

100

90
0

90

1

90

90

100

0

1

C

D

0

10

10

A

B

E

F

90
10

100

90
0

90

90

900

F’

10

0.1

0.9

90

89.1

9.9

(a) (b)

Y

Z Z

Y

Figure 3.3 Example of the superblock formation procedure, (a) after trace selection, (b) after
tail duplication.

18

part of the fA;B;E; Fg trace starting at basic block F is duplicated. Each duplicated basic

block forms a new superblock that is appended to the end of the function. The result is shown

in Figure 3.3(b). Note that there are no longer any side entrances into the most frequently

traversed trace, < A;B;E; F >; it has become a superblock.

Superblocks are similar to the extended basic blocks. An extended basic block is de�ned

as a sequence of basic blocks B1...Bk such that for 1 � i < k, Bi is the only predecessor of

Bi+1 and B1 does not have a unique predecessor [52]. The di�erence between superblocks and

extended basic blocks is mainly in how they are formed. Superblock formation is guided by

pro�le information and side entrances are removed to increase the size of the superblocks. It is

possible for the �rst basic block in a superblock to have a unique predecessor.

3.2 Classical Optimizations Applied to Superblocks

Classical optimizations applied to basic blocks and loops may be extended to operate on

superblocks and superblock loops. The premise behind this approach being successful is that

additional optimization opportunities are exposed when a single path of control is focused on.

In particular, superblocks identify the most likely path of control with trace selection and sys-

tematically exclude the constraints from infrequent paths with tail duplication. Additional

optimization opportunities are found because constraints associated with unlikely paths of con-

trol are ignored and thus do not inhibit the optimization from occurring. This approach di�ers

from classical interbasic block optimization techniques, which consider the constraints of all

paths equally to ensure correctness.

The superblock optimization strategy has many similarities to partial redundancy elimi-

nation (PRE) and partial dead code elimination (PDE) techniques [53],[54],[55]. The major

19

Table 3.1 Superblock classical optimizations.

Optimization Scope

constant propagation superblock
forward copy propagation superblock
backward copy propagation superblock
memory copy propagation superblock
common subexpression elimination superblock
redundant load elimination superblock
redundant store elimination superblock
constant folding superblock
strength reduction superblock
constant combining superblock
operation folding superblock
operation cancellation superblock
code reordering superblock
dead code removal superblock
loop invariant code removal superblock loop
loop global variable migration superblock loop
loop induction variable strength reduction superblock loop
loop induction variable elimination superblock loop
loop induction variable reassociation superblock loop

di�erence is that new optimization algorithms are not developed, but rather by performing

superblock formation, additional opportunities are exposed for traditional optimizations. Ad-

ditionally, pro�le information is inherently used to remove additional redundancies along the

the most important execution paths via superblock formation. A distinct advantage provided

by PRE and PDE is their more general applicability to eliminate global partial redundancies,

whereas with superblock techniques, the scope is limited to that of superblocks.

Table 3.1 shows the list of classical optimizations that have been extended to superblocks

in the IMPACT compiler [31],[51]. The nonloop-based code optimizations work on a single

superblock at a time. The loop-based code optimizations work on a single superblock loop at

a time. A superblock loop is a superblock that has a frequently taken backedge from its last

20

node to its �rst node. In the remainder of this section, a series of examples illustrating the

application of superblock optimizations will be given.

3.2.1 Local optimizations extended to superblocks

Traditionally, local optimization techniques are limited to the scope of one basic block at a

time. Global optimization techniques overcome this limitation by considering the entire func-

tion for identifying optimization opportunities. However, global optimizations may only be

applied if there are no constraints along any possible path of execution to inhibit the transfor-

mation. Frequently, there are instances in which an optimization opportunity is inhibited by

an infrequently executed path.

To illustrate the additional optimization opportunities found with superblock, consider the

case of common subexpression elimination shown in Figure 3.4. The original program is shown

in Figure 3.4(a). After trace selection and tail duplication, the equivalent program is shown in

Figure 3.4(b). Because of tail duplication, opC cannot be reached from opB; therefore, common

subexpression elimination can be applied to opA and opC. The resultant code segment after

optimization is shown in Figure 3.4(c).

Another frequently applied optimization technique, dead code removal, can be extended to

be more e�ective for superblocks. Traditional dead code removal removes operations whose

value will never be used in the future. For superblocks, an operation whose value is not used

in the superblock and is not live at the end of the superblock can also be considered as dead

code. However, the operation is not deleted but rather copied to all control ow paths that

exit in the middle of the superblock in which its value may be used. In this manner, an

operation is eliminated from the superblock. To avoid confusion with traditional dead code

21

(c)

opC’: mul r3,r2,3

(b)

(a)

1
99

1

99

1

1
99

opA: mul r1,r2,3

opB: add r2,r2,1

opC: mul r3,r2,3

opA: mul r1,r2,3

opC: mul r3,r2,3

opB: add r2,r2,1

opC’: mul r3,r2,3

opA: mul r1,r2,3

opC: mov r3,r1

opB: add r2,r2,1

Figure 3.4 Example of superblock common subexpression elimination, (a) original program
segment, (b) program segment after superblock formation, (c) program segment after common
subexpression elimination.

22

...

mov r0,r3

...

...

X

Y

Z
...

...

...

...

(a) (b)

X

Y

Z

mov r0,r1

mov r0,r2

mov r0,r3

add r1,r1,4
add r2,r2,4
add r3,r3,4

add r1,r1,4
...

add r2,r2,4
add r3,r3,4

mov r0,r1

mov r0,r2

Figure 3.5 Example of superblock operation migration, (a) original program segment, (b)
program segment after operation migration.

removal, this optimization technique is referred to as operation migration, which is e�ective

because program control rarely exits from the middle of a superblock. An example illustrating

operation migration in a superblock is given in Figure 3.5.

The program is a simple loop that has been unrolled three times. The loop index variable

(r0) has been expanded into three registers (r1, r2, r3) using induction variable expansion,

which will be discussed in Section 3.3. If the loop index variable is live outside the superblock

loop, then it is necessary to update the value of r0 before each exit as shown in Figure 3.5(a).

Since these values of r0 are only referenced when the superblock is exited early, these update

instructions (e.g., mov r0,r1; mov r0,r2; and mov r0,r3) can be pushed out the side exits of

the superblock. By performing operation migration, instructions are moved from important

execution paths to less important paths to reduce the overall dynamic instruction count. The

example code segment after operation migration is shown in Figure 3.5(b).

23

3.2.2 Loop optimizations extended to superblocks

Superblock loop optimizations can identify more optimization opportunities than traditional

loop optimizations that must account for all possible execution paths within a loop. Superblock

loop optimizations reduce the execution time of the most likely path of execution through a

loop. In traditional loop optimizations, a potential optimization may be inhibited by a rare

event such as an error in an input �le, or a function call to re�ll a large character bu�er in

text processing programs. In superblock loop optimizations, function calls that are not in the

superblock loop do not a�ect the optimization of the superblock loop.

The increased optimization opportunities created by limiting the search space to within a

superblock (versus the entire loop body) for loop invariant code removal is illustrated by the

example in Figure 3.6. In Figure 3.6(a), opA is not loop invariant (in the traditional sense)

because its source operand is a memory variable, and opD is a function call that may modify

any memory variable (assuming that the compiler does not perform interprocedural memory

disambiguation). On the other hand, opA is invariant in the superblock loop. The result of

superblock loop invariant code removal is shown in Figure 3.6(b).

Another e�ective loop optimization applied to superblocks is global variable migration,

which moves frequently accessed memory variables, such as globally declared scalar variables,

array elements, or structure elements, into registers for the duration of the loop. Loads and

stores to these variables are replaced by register accesses. Figure 3.7 shows an example of

superblock loop global variable migration. The memory variable x[r0] cannot be migrated to a

register in traditional global variable migration, because r0 is not loop invariant in the entire

loop. On the other hand, r0 is loop invariant in the superblock loop, and x[r0] can be migrated

to a register by superblock global variable migration. The result is shown in Figure 3.7(b). The

24

LD:

(a)
12047

(b)

opD: jsr refill

opD: jsr refill

opB: bgt r2,r1,LD;

opB: bgt r2,r1,LD

opC: add r1,r1,1

opC: add r1,r1,1

opA: ld_i r2,buffer_length,0

opA: ld_i r2,buffer_length,0

LD:

Figure 3.6 Example of superblock loop invariant code removal, (a) original program segment,
(b) program segment after loop invariant code removal.

25

opB: add r4, r4, r1

opD: add r1, r1, 1

100

opE: add r0, r0, 1

0

opA: ld_i r4, x, r0

opC: st_i x, r0, r4

opC’: st_i x, r0, r4

opA: ld_i r4, x, r0

opD: add r1, r1, 1

opE: add r0, r0, 1

100 0

opB: add r4, r4, r1

opC: st_i x, r0, r4(a)

(b)

Figure 3.7 An example of superblock loop global variable migration, (a) original program
segment, (b) program segment after loop global variable migration.

26

load of the global variable, opA, is placed at the entry point of the superblock loop. At each

exit point of the superblock loop, a copy of the store of the global variable, opC, is inserted.

3.3 Superblock ILP Optimization

Superblock formation along with classical optimization techniques are not su�cient to ex-

pose su�cient ILP to e�ectively utilize VLIW and superscalar processors. In particular, con-

ventional compiler optimization techniques are designed for scalar processors [52]. The primary

objective of a traditional optimizer is to reduce the number and complexity of the instructions

executed by the processor. Due to their limited amount of execution resources, scalar processors

do not signi�cantly bene�t from increased ILP. Superscalar and VLIW processors, on the other

hand, achieve higher performance by exploiting ILP with multiple data paths and function

units. In most cases, superscalar and VLIW processors can reduce the execution time of an

application even when the number of instructions executed is moderately increased as long as

the dependence height is reduced.

Many researchers and product developers have addressed compile-time transformations to

remove dependences between instructions. Kuck et al. discussed transformations, such as scalar

expansion and variable renaming, to eliminate anti- and output dependences [56]. Nakatani and

Ebcioglu presented an operation combining method that removes ow dependences between

pairs of instructions [57]. Anantha and Long described a parallelizing compiler that employs

loop unrolling, loop peeling, and variable renaming to assist Aiken and Nicolau's percolation

scheduling [58],[59]. Many techniques to eliminate dependences between iterations were imple-

mented in the Bulldog, Multiow Trace, Cydra 5, and the IBM experimental VLIW compil-

ers [49],[60],[61],[62]. Several height reduction techniques that reduce the length of dependence

27

chains in arithmetic calculations have been proposed [63],[64]. The transformations discussed

in this section utilize the concepts presented in these previous studies. The major contribu-

tion of the work presented in this section is the application of ILP optimization techniques to

control-intensive programs in the context of superblocks.

There are two major categories of ILP optimizations, superblock enlarging optimizations

and superblock dependence removing optimizations. Each is presented in the remainder of this

section.

3.3.1 Superblock enlarging optimizations

Superblock enlarging optimizations increase the size of the most frequently executed su-

perblocks so that the superblock scheduler can manipulate a larger number of instructions. It

is more likely the scheduler will �nd independent instructions to schedule at every cycle in a

superblock when there are more instructions to choose from. The superblock enlarging opti-

mizations utilized in the IMPACT compiler consist of branch target expansion, loop unrolling,

and loop peeling.

Branch target expansion. Branch target expansion expands the target superblock of

a likely taken control transfer that ends a superblock. The target superblock is copied and

appended to the end of the original superblock. Note that branch target expansion is not

applied to control transfers that are loop backedges. Branch target expansion is repeatedly

applied to increase the size of a superblock until one of the following conditions exists: a

prede�ned maximum superblock size is reached, the branch ending the superblock does not

favor one direction by a large enough amount, or the ratio of the execution frequency of the

last branch to the �rst instruction of the superblock is below a threshold.

28

L3:

L2:

L1:

8020

L1:

L2:

20

(a) (b)

blt r1,r2,L3

jmp L4

beq r3,r4,L5

beq r3,r4,L5

bge r1,r2,L2

jmp L4

Figure 3.8 Example of branch target expansion, (a) original program segment, (b) program
segment after expansion.

An example to illustrate branch target expansion is presented in Figure 3.8. The shaded

superblock (SB3) is frequently entered from SB1. To enable optimization and scheduling among

the instructions in both superblocks, a copy of SB3 is appended to SB1. Since SB3 was originally

along the taken path of the branch which ended SB1, its condition and direction are reversed

to maintain correctness. If SB3 could only be entered from SB1, the original version of SB3 is

unnecessary and is later removed.

Loop unrolling. Loop unrolling is a technique commonly used to overlap the execution

of multiple iterations of a loop. A loop unrolled N times has N � 1 copies of the loop body

appended to the original loop. The control transfers to the beginning of the loop are adjusted

to account for the unrolling. If the iteration count is known on loop entry, it is possible to

remove many of these control transfers by using a preconditioning loop to execute the �rst

modulo N iterations. All of the loop examples used in this section are assumed of this type for

simplicity. However, in practice for C programs, this is often not the case. After loop unrolling,

the loop body contains N iterations of the loop, which can be scheduled as a single unit by the

29

compiler. An example of loop unrolling is presented later in this section in conjunction with

the discussion of register renaming.

Loop peeling. Loop peeling is a special purpose optimization applied to superblock loops

which do not iterate frequently. Loop peeling refers to stripping o� the �rst several iterations

of the loop. A separate copy of the loop body is made for each peeled iteration. The original

loop body is moved to the end function to handle executions of the loop that require more

than the number of peeled iterations. Peeled iterations are essentially straight-line code and

can be merged with preceding and succeeding superblocks to create a single large superblock.

The transformation is most e�ective for a nested loop structure in which the outer loop iterates

frequently and the inner loop iterates infrequently. For this situation, loop peeling converts the

inner loop to straight-line code and merges the peeled iterations with the body of the outer loop.

The outer loop is then a superblock loop and can be optimized and scheduled with techniques

applied to inner loops (i.e., loop unrolling and register renaming).

Superblock loop peeling is only e�ective when the peeled loop iterates the exact number of

times it was peeled. In cases in which the loop iterates more or less frequently, the peeled code

must be exited to maintain correctness. Therefore, the applicability of superblock loop peeling

is limited to loops with highly predictable iteration counts. However, as will be discussed in

Chapter 7, predicated execution allows much more widespread use of loop peeling to increase

ILP. With predicated execution, the loop iteration count does not have to be determined pre-

cisely. Rather, execution is maintained within the peeled loop body for any iteration count less

than or equal to the number of times the loop is peeled. As a result, loop peeling is useful to a

large class of loops which iterate infrequently with predicated execution.

30

3.3.2 Superblock dependence-removing optimizations

The second category of superblock ILP optimizations is dependence-removing optimiza-

tions. These optimizations eliminate data dependences between instructions within frequently

executed superblocks, which increases the ILP available to the code scheduler. The trans-

formations consist of register renaming, accumulator variable expansion, induction variable

expansion, search variable expansion, operation combining, strength reduction, and tree height

reduction. The �rst four transformations are most e�ective for exposing increasing levels of ILP

in unrolled loops. The remaining three increase the utilization of a superscalar or VLIW pro-

cessor's arithmetic hardware. A side e�ect of most of these transformations is to substantially

increase the number of processor registers utilized by the program.

Register renaming. Reuse of registers by the compiler and variables by the programmer

introduces arti�cial anti- and output dependences and restricts the e�ectiveness of a super-

scalar or VLIW processor. Many of these arti�cial dependences can be eliminated with register

renaming, which assigns unique registers to di�erent de�nitions of the same register [56]. A

common use of register renaming is to rename registers within individual loop bodies of an

unrolled loop. An example to illustrate this is shown in Figure 3.9. The instruction latencies

shown in Table 3.2 are used for all examples in this section.

A simple inner loop (Figure 3.9(a)) and its corresponding assembly code (Figure 3.9(b))

are shown. Without either unrolling or renaming, each loop iteration requires seven cycles

to execute. If the loop is unrolled three times (Figure 3.9(c)), each loop iteration requires

an average of 6.3 cycles. Finally, if register renaming is applied in addition to loop unrolling

(Figure 3.9(d)), the average execution time of each loop iteration is reduced to 2.7 cycles.

31

19 cycles / 3 iterations

Assembly IT

0

0

2

5

5

6

6

8

11

11

12

12

14

17

17

18

7 cycles / 1 iteration

0

0

2

5

5

6

Assembly IT

8 cycles / 3 iterations

0

0

2

5

0

1

1

3

6

1

2

2

4

7

2

7

Assembly IT

for (j=0; j<n; j++) {

C(j) = A(j)+B(j)

}

Unrolling
After Loop(c)

Renaming
(d) After Register

L1:

L1:

L1:

Assembly Code(b)Original Loop(a)

add r1,r1,4

add r1,r1,4

blt r1,r5,L1

ld_f f2,A,r1

ld_f f3,B,r1

add_f f4,f2,f3

st_f C,r1,f4

ld_f f2,A,r1

ld_f f3,B,r1

add_f f4,f2,f3

st_f C,r1,f4

ld_f f2,A,r1

ld_f f3,B,r1

add_f f4,f2,f3

st_f C,r1,f4

add r1,r1,4

ld_f f2,A,r1

ld_f f3,B,r1

add_f f4,f2,f3

st_f C,r1,f4

add r1,r1,4

blt r1,r5,L1

ld_f f21,A,r11

ld_f f31,B,r11

add_f f41,f21,f31

st_f C,r11,f41

add r12,r11,4

ld_f f22,A,r12

ld_f f32,B,r12

add_f f42,f22,f32

st_f C,r12,f42

add r13,r12,4

ld_f f23,A,r13

ld_f f33,B,r13

add_f f43,f23,f33

st_f C,r13,f43

add r11,r13,4

blt r11,r5,L1

Figure 3.9 Example of loop unrolling and register renaming. All examples in this section
assume a superscalar processor with in�nite resources and no register renaming hardware. Also,
the issue times (IT) shown are for the code after code scheduling, but to preserve clarity, the
unscheduled code is shown. Sorting by issue time yields the scheduled code.

Table 3.2 Instruction latencies for all examples presented in this section.

Function Latency Function Latency

Int ALU 1 FP ALU 3
Int multiply 3 FP conversion 3
Int divide 10 FP multiply 3
branch 1 FP divide 10
memory load 2 memory store 1

32

Accumulator variable expansion. An accumulator variable accumulates a sum or prod-

uct in each iteration of a loop. A common example is the computation of a dot product between

two vectors. For loops of this type, the accumulation operation often de�nes the critical path

within the loop. Accumulator variable expansion eliminates rede�nitions of an accumulator

variable within an unrolled loop by creating k temporary accumulators (k refers to the num-

ber of accumulation instructions for that accumulation register in the unrolled loop body).

Each temporary accumulator replaces one de�nition of the original accumulator in the loop.

In this manner all ow, anti-, and output dependences are eliminated between the accumu-

lation instructions. To recover the value of the original accumulator variable, the temporary

accumulators are summed at all exit points of the loop.

An algorithm to perform accumulator variable expansion for a loop is shown in Figure 3.10.

Note that accumulator variables may only be modi�ed in the loop by increment or decrement

instructions. Also, since the total value of the accumulator is not computed until the loop is ex-

ited, no instructions in the loop other than accumulation instructions may use the accumulator

variable.

An example to illustrate the application of accumulator variable expansion is presented in

Figure 3.11. This loop (Figure 3.11(a)) is the innermost loop for matrix multiplication. After

conventional compiler optimization (Figure 3.11(b)), each iteration of the loop requires eight

cycles to execute. Loop unrolling and register renaming (Figure 3.11(c)) further improve the

average execution time to 4.7 cycles per iteration. However, it is clear that the accumulation of

the sum into r1 limits the ILP in the loop. Accumulator variable expansion (Figure 3.11(d)),

removes the dependences between instructions which increment/decrement r1 by introducing

three temporary accumulators, r11, r12, and r13. With this transformation, an average of 3.3

33

accumulator variable expansion(loop)
f
for each variable V in loop:
Determine if V is an accumulator variable by checking if the following
conditions are satis�ed:
1. All instructions modifying V are increment/decrement instructions
2. V is only referenced in the above increment/decrement instructions
3. The loop contains more than one of the above increment/decrement instructions

If V is an accumulator variable, do this transformation to make the
increment/decrement instructions independent:
1. Let k be the number of increment/decrement instructions
2. Allocate k new virtual registers (temporary accumulators)
3. Insert initialization code for the above k registers into the loop
preheader as follows:
a. Initialize the �rst register to V's value
b. Initialize the other k-1 registers to zero

4. For each increment/decrement instruction, replace V by one of the above
k temporary accumulators using each accumulator exactly once

5. At all loop exit points, insert a summation of the k temporary
accumulators to generate V's exit value

g

Figure 3.10 Algorithm for accumulator variable expansion.

cycles is required for each iteration. Also, the application of the induction variable expansion,

described next, would improve this time to 2.7 cycles per iteration.

Induction variable expansion. Induction variables are used within loops to index

through loop iterations and through regular data structures such as arrays. The value of

an induction variable is used to compute the address of data structures and, therefore, must be

computed before the data access is performed. When data access is delayed due to dependences

on the induction variable computation, ILP is typically limited. Induction variable expansion

eliminates ow, anti-, and output dependences between de�nitions of induction variables and

their uses within an unrolled loop body by creating k temporary induction variables (k is the

number of instructions which update this induction variable in the unrolled loop body). Each

temporary induction variable replaces one de�nition of the original induction variable in the

34

After Unrolling
and Renaming

(c)

14 cycles / 3 iterations

−−

−−

0

0

2

5

8

11

0

0

1

1

3

1

1

2

2

4

2

2

11

8 cycles / 1 iteration

Original Loop(a) Assembly Code(b)

−−

−−

0

0

2

5

0

0

Assembly IT

L1:

5

After Accumulator
Expansion

(d)

10 cycles / 3 iterations

−−

−−

−−

0

0

2

5

0

0

1

1

3

6

1

1

2

2

4

7

3

3

7

−−

−−

−−

for (k=0; k<n; k++) {

}

A(i,k) * B(k,j)

C(i,j) = C(i,j) +

Assembly IT Assembly IT

L1:L1:

add r6,r6,r8

add r4,r4,4

ld_f f5,B,r6

mul_f f7,f3,f5

add_f f1,f1,f7

ld_f f3,A,r4

ld_f f1,C,r2

st_f C,r2,f1

blt r4,r9,L1

ld_f f31,A,r41

ld_f f51,B,r61

mul_f f71,f31,f51

add r42,r41,4

add r62,r61,r8

ld_f f32,A,r42

ld_f f52,B,r62

mul_f f72,f32,f52

add_f f1,f1,f72

add r43,r42,4

add r63,r62,r8

blt r41,r9,L1

add r41,r43,4

add r61,r63,r8

add_f f1,f1,f73

mul_f f73,f33,f53

ld_f f53,B,r63

ld_f f33,A,r43

st_f C,r2,f1

ld_f f1,C,r2

ld_f f31,A,r41

ld_f f51,B,r61

mul_f f71,f31,f51

add_f f11,f11,f71

add r42,r41,4

add r62,r61,r8

ld_f f32,A,r42

ld_f f52,B,r62

mul_f f72,f32,f52

add_f f12,f12,f72

add r43,r42,4

add r63,r62,r8

ld_f f33,A,r43

ld_f f53,B,r63

mul_f f73,f33,f53

add_f f13,f13,f73

add r61,r63,r8

add r41,r43,4

blt r41,r9,L1

st_f C,r2,f11

add_f f11,f11,f13

add_f f11,f11,f12

ld_f f11,C,r2

mov_f f12,0

mov_f f13,0

add_f f1,f1,f71

Figure 3.11 Example of accumulator variable expansion.

35

induction variable expansion(loop)
f
for each variable V in loop:
Determine if V is an induction variable by checking if the following
conditions are satis�ed:
1. All instructions modifying V are increment/decrement instructions
2. The increment/decrement value is the same for all of the above
increment/decrement instructions and it is invariant in the loop

3. The loop contains more than one of the above increment/decrement instructions
If V is an induction variable, do this transformation to make the
increment/decrement instructions independent:
1. Let k be the number of increment/decrement instructions
2. Let m be the loop invariant increment/decrement value
3. Allocate k+2 new virtual registers (k+1 temporary induction
registers and one modi�ed increment/decrement value z)

4. Let the k+1 temp induction registers be numbered p = 0 to k
5. Insert initialization code for the above registers into the loop
preheader as follows:
a. Initialize register p with V's value + p * m
b. Initialize register z with k * m

6. Replace all references to V before the �rst increment/decrement
instruction by references to temp induction register 0

7. Replace all references to V between the pth increment/decrement
instruction and the (p+1)th increment/decrement instruction by
references to temp induction register p

8. Remove all the increment/decrement instructions from the loop
9. Before each branch back to the start of the loop, increment the
k+1 registers by register z's value

g

Figure 3.12 Algorithm for induction variable expansion.

loop. Also, the increments of each temporary induction variable are moved to the end of the

unrolled loop body to eliminate the ow dependences between each de�nition of a temporary

induction variable and its uses. Each temporary induction variable is initialized to its correct

value in the loop preheader.

An algorithm to perform induction variable expansion for a loop is presented in Figure 3.12.

Note that there are two major distinctions between induction variables and accumulator vari-

ables. First, the value of an accumulator variable may only be used by accumulation instructions

36

in the loop, whereas induction variables are used by at least one other instruction in the loop.

Second, the increment of an accumulator variable may vary with each iteration of the loop;

however, induction variables must be incremented by a loop invariant amount.

An example loop to illustrate the application of induction variable expansion is shown in

Figure 3.13(a). After conventional compiler optimization (Figure 3.13(b)), each loop iteration

requires six cycles to execute. With loop unrolling and register renaming (Figure 3.13(c)), this is

reduced to 2.7 cycles per iteration. However, the increments of r2 changed by register renaming

are still ow dependent. Induction variable expansion (Figure 3.13(d)) changes the increments

of the three registers renaming created for r2 so that the de�nitions are independent. This

further reduces the number of cycles to two per iteration. The improvement becomes more

pronounced the more the loop is unrolled. For example, the same loop unrolled eight times

would require 1.6 cycles per iteration after renaming but only 0.8 cycles per iteration after

induction variable expansion.

Search variable expansion. A single value, such as a maximum or minimum, is often

determined for matrices or arrays. Such values will be referred to as search values. Within

an unrolled loop body, the chain of ow dependences between successive tests and updates of

a search variable often de�nes a critical path. Similar to accumulator variable expansion and

induction variable expansion, search variable expansion eliminates this chain of dependences by

creating k temporary search variables. Each temporary search variable replaces one de�nition

of the original search variable in the loop. In this manner, each loop body in the unrolled

loop determines a value for the search variable during execution. When the loop is exited, the

value of the original search variable is obtained by comparing the values of all temporary search

variables.

37

Expansion

6 cycles / 1 iteration

0

0

2

5

0

5

5

Assembly IT

(b) Assembly Code

(d) After Induction

−−

−−

−−

−−

0

0

2

5

0

0

2

5

0

0

2

5

5

5

5

0

5

6 cycles / 3 iterations

Assembly

for (i=0; i<n; i++) {

C(j) = A(j)*B(j)

j = j + K

}

L1:

and Renaming

(a) Original Loop

(c) After Unrolling

0

0

2

5

0

1

1

3

6

1

2

2

4

7

2

0

7

8 cycles/ 3 iterations

Assembly

L1:

L1:

ITIT

ld_f f3,A,r2

ld_f f4,B,r2

mul_f f5,f3,f4

st_f C,r2,f5

add r2,r2,r7

add r1,r1,1

blt r1,r6,L1

ld_f f32,A,r22

ld_f f31,A,r21

ld_f f41,B,r21

mul_f f51,f31,f41

st_f C,r21,f51

add r22,r21,r7

ld_f f42,B,r22

st_f C,r22,f52

add r23,r22,r7

ld_f f33,A,r23

ld_f f43,B,r23

mul_f f53,f33,f43

mul_f f52,f32,f42

st_f C,r23,f53

add r21,r23,r7

add r1,r1,3

blt r1,r6,L1

mov r21,r2

add r22,r21,r7

add r23,r22,r7

mul r71,r7,3

ld_f f31,A,r21

ld_f f41,B,r21

st_f C,r21,f51

ld_f f32,A,r22

ld_f f42,B,r22

mul_f f51,f31,f41

mul_f f52,f32,f42

st_f C,r22,f52

ld_f f33,A,r23

ld_f f43,B,r23

mul_f f53,f33,f43

st_f C,r23,f53

add r21,r21,r71

add r22,r22,r71

add r23,r23,r71

add r1,r1,3

blt r1,r6,L1

Figure 3.13 Example of induction variable expansion.

38

Operation combining. Flow dependences between pairs of instructions each with a

compile-time constant source operand can be eliminated with operation combining [57]. Flow

dependences that can be eliminated with operation combining often arise between address cal-

culation instructions and memory access instructions along with loop variable increments and

loop exit branches. To illustrate the application of operation combining, consider the following

two ow dependent instructions:

I1: r1 = r2 op1 C1

I2: r3 = r1 op2 C2) r3 = r2 op2 (C1 op3 C2)

The instructions are combined in two steps. First, the nonconstant source operand of I2

is replaced by the nonconstant source operand of I1. Therefore, r1 is replaced by r2. If the

destination and source registers for I1 are the same, the positions of I1 and I2 are exchanged

rather than switching source operands. Second, the constant source operands are evaluated

according to the op1 and op2 operations. For this case, if both op1 and op2 are add operations,

C2 is replaced by C1 + C2.

Clearly, the combination of operations is limited to those of the same precedence and data

type (e.g., an add and a multiply operation cannot be combined). The current implementation

allows the following operations on the left to be combined with the operations on the right (f

indicates oating point, otherwise integer is assumed):1

(add, subtract)) (add, subtract, compare, memory load, memory store,

conditional branch)

1Note that if the evaluation of the constants during operation combining results in an overow or underow,

the compiler does not perform the transformation.

39

7 cycles / 1 iteration

0

1

3

6

Assembly IT

(b) Assembly Code

5 cycles / 1 iteration

0

0

2

2

ITAssembly

(c) After Combining

i = i + 1

t = A(i+2) − 3.2

(a) Original Loop

L1:L1:

while (t < 10.0) {

}

add r1,r1,4

ld_f f2,r1,8

sub_f f3,f2,3.2

blt f3,10.0,L1 blt f2,13.2,L1

sub_f f3,f2,3.2

add r1,r1,4

ld_f f2,r1,12

Figure 3.14 Example of operation combining.

(multiply)) (multiply)

(add f, subtract f)) (add f, subtract f, compare f, conditional branch f)

(multiply f, divide f)) (multiply f, divide f)

An example code segment to illustrate the e�ectiveness of operation combining is presented

in Figure 3.14(a). Without operation combining (Figure 3.14(b)), each iteration of the loop

requires seven cycles to execute. However, the ow dependence between the �rst two instruc-

tions and the last two instructions can be eliminated with operation combining. Note that the

�rst two instructions must exchange positions when operation combining is performed. After

operation combining, the execution time of each loop iteration is reduced to �ve cycles.

Strength reduction. Strength reduction is a common technique employed by compilers

to replace long latency instructions with one or more instructions which collectively require less

time. In many existing compilers, integer multiply by a compile-time constant is replaced by a

sequence of left shifts and adds [65]. For example, r2 = r1 � 10 can be replaced by

40

temp1 = r1 � 3

temp2 = r1 � 1

r2 = temp1 + temp2

The applicability of this transformation depends on whether the sequence of instructions

generated by strength reduction will execute in fewer cycles than the original instruction. The

application of strength reduction is typically limited in a scalar processor by this restriction.

However, many of the instructions generated during strength reduction are independent and

can be executed concurrently on a superscalar or VLIW processor. Therefore, there are more

opportunities to apply strength reduction for superscalar and VLIW processors. In addition to

applying strength reduction for integer multiply, superscalar and VLIW processors may bene�t

from reduction of integer divide and integer remainder by a compile-time constant.

Tree height reduction. Scalar processor compilers typically generate code for arithmetic

expressions by minimizing both the total number of instructions and the total number of tem-

porary registers required. For superscalar and VLIW processors, however, these methods often

limit performance by restricting parallel computation of individual components of an arithmetic

expression. Tree height reduction exposes ILP in the computation of an arithmetic expression

by �rst constructing an expression tree to represent the arithmetic expression [63],[64]. The

tree is then balanced to reduce the height, which represents the number of cycles to compute

the expression using a speci�c processor model.

The compiler used in this study uses a modi�ed version of the algorithm proposed by Baer

and Bovet [63] that examines intermediate code rather than source code. This tree height re-

duction algorithm utilizes communicativity and associativity to reduce the height of expressions

41

0

3

6

9

12

22 cycles

Assembly IT

(b)

0

0

0

3

10

13 cycles

Assembly IT

(C) After Height
Reduction

Assembly
Code

A = B * (C + D) * E * F / G

(a) Original Source Code

add_f f1,fC,fD

mul_f f1,f1,fB

mul_f f1,f1,fE

mul_f f1,f1,fF

div_f fA,f1,fG

add_f f1,fC,fD

mul_f f2,fB,fE

div_f f3,fF,fG

mul_f f1,f1,f2

mul_f fA,f1,f3

Figure 3.15 Example of tree height reduction.

using -, +, *, /, (,). Note that this algorithm does not apply distributive property. It also

assumes that all operations have the same latency which is not true for the processor model

studied and, therefore, limits its e�ectiveness in this case. Currently, more advanced tech-

niques for height reduction that utilize the distributive property and allow di�erent latencies

for operations are being examined in IMPACT.

An example arithmetic computation to illustrate the e�ectiveness of tree height reduc-

tion is presented in Figure 3.15(a). With conventional code optimization techniques (Fig-

ure 3.15(b)), the computation of the expression requires 22 cycles. With tree height reduction

(Figure 3.15(c)), two multiply instructions and an add instruction can be executed in parallel

with the divide, thereby reducing the execution time to 13 cycles.

3.4 Superblock Scheduling

Superblock scheduling extracts the ILP from the program and maps it to the processor

resources. Speculative execution is the major technique employed during scheduling to achieve

42

a high degree of instruction overlap. This section begins with a basic explanation of superblock

scheduling and then goes into a detailed discussion of speculative execution in superblocks. The

section is concluded with a comprehensive example of superblock scheduling.

3.4.1 Superblock scheduling algorithm

Superblock scheduling is a two-step procedure applied to each superblock independently.

The �rst step is to build a dependence graph which represents all the data and control depen-

dences between instructions within a superblock. There are three types of data dependences,

ow, anti-, and output. Control dependences enforce the ordering between a branch instruction

and other instructions before and after a branch. There is a control dependence between a

branch and a subsequent instruction J if the branch must execute before instruction J . Corre-

spondingly, there is a control dependence between an instruction J and a subsequent branch if

the branch must execute after instruction J .

The second step in the superblock scheduling algorithm is to perform list scheduling using

the dependence graph, instruction latencies, and resource constraints of the processor. The

general idea of a list scheduling algorithm is to pick, from a set of nodes (instructions) that are

ready to be scheduled, the best combination of nodes to issue in a cycle. The best combination

of nodes is determined by using heuristics which assign priorities to the ready nodes [32]. A

node is ready if all of its parents in the dependence graph have been scheduled and the result

produced by each parent is available.

The e�ciency of the schedule is based on two important factors. First, if the number of

instructions the scheduler has to choose from is large, the scheduler is more likely to utilize all

available resources to take full advantage of the VLIW or superscalar processor. The number

43

of instructions the scheduler may examine is increased by applying superblock formation and

superblock enlarging optimizations discussed in Sections 3.1 and 3.3. Second, if the number of

dependences is reduced, a more compact code schedule can be found. Data dependences are

removed using the ILP optimization techniques presented in Section 3.3. Control dependences

are removed using a combination of renaming and hardware support for speculative execution.

Enabling speculative execution in superblocks is discussed in this next subsection.

3.4.2 Speculative execution in superblocks

The instructions within a superblock are placed linearly in the instruction memory. Thus,

the side exits of the superblock correspond to conditional branches where the branch is not

likely taken. To e�ciently schedule code within superblocks, it is essential that the compiler

be able to move instructions above and below branches. Let J and BR denote two instructions

where J is the instruction to move and BR is a branch instruction. The term LIVE-OUT(BR)

is de�ned as the set of variables which may be used before being rede�ned when BR is taken

(i.e., the superblock is exited). Moving J from above to below BR (downward code motion) is

relatively straightforward. If BR does not depend on J , then J may be moved below BR. If

the destination of J is in LIVE-OUT(BR), then a copy of J must be inserted between BR and

its target.

To reduce the critical path of a superblock, upward code motion is more common. For

instance, moving a load instruction earlier to hide the load delay is frequently done. When an

instruction is moved upward across a branch, it is executed speculatively since the result of the

instruction is only needed when the branch is not taken. For upward code motion, moving J

from below to above BR, there are two major restrictions:

44

Restriction 1: The destination of J is not in LIVE-OUT(BR).

Restriction 2: J will never cause an exception that may terminate program execution when

BR is taken.

Restriction 1 usually has very little e�ect on code scheduling after superblock ILP optimiza-

tions. Register renaming is the most common transformation to overcome this restriction. By

renaming the destination register of an instruction to a new register, it is guaranteed not to be

in LIVE-OUT(BR).

A much more serious problem with speculative execution is the prevention of premature

program termination due to exceptions caused by speculative instructions. Exceptions by spec-

ulative instructions that would not have occurred if the code was not scheduled must be pre-

vented. This limitation is enforced by Restriction 2. The two most extreme interpretations of

Restriction 2 are to fully enforce it and to completely ignore it. Fully enforcing Restriction 2

results in only allowing instructions that cannot cause exceptions to be candidates for specu-

lative execution. This model is referred to as restricted speculation [66],[67]. For conventional

processors, restricted speculation does not allow memory load, memory store, integer divide,

and all oating-point instructions to be speculated. The performance of restricted speculation

is limited because of its inability to move long latency or instructions within a long dependence

chain upward in the superblock. Frequently, memory loads and oating-point instructions have

greater than single cycle latency and are part of long dependence chains.

Restriction 2 may be completely ignored if there are nonexcepting or silent versions of all

potentially excepting instructions in the instruction set architecture. This model is referred to as

general speculation [66],[67]. If an exception occurs for a silent instruction, it is simply ignored

and a garbage value is written into the destination of the instruction. Note that exceptions

45

such as page faults and TLB misses are not ignored for silent instructions, but rather handled

as if the instruction was not speculative. The garbage value written to the destination may be

propagated to other speculative instructions which use the result. However, for programs which

would have never excepted without scheduling, the invalid result is guaranteed to not a�ect the

correctness of the program execution. This is true because if the speculative instruction indeed

excepts, it must be for an execution of the superblock in which an exit branch is taken, i.e., the

speculative instruction was unnecessarily executed. By enforcing Restriction 1, the scheduler

guarantees that the destinations written by all speculative instructions are in the LIVE-OUT()

sets of any branches they moved above.

For undebugged programs or programs which rely on traps during normal operation, general

speculation is not a desirable scheduling paradigm. In the next chapter, the sentinel speculation

model is discussed which allows the scheduling freedom provided by general speculation but

allows precise detection and recovery from exceptions for speculative instructions.

3.4.3 Superblock scheduling example

To illustrate superblock scheduling and compare the e�ects of restricted and general specu-

lation, an example C loop segment is brought through each step of the superblock compilation

procedure in this section. The C source code for the example is presented in Figure 3.16 and

the corresponding assembly code in Figure 3.17. The loop segment traverses a linked list data

structure computing the sum of the absolute value of a weight �eld contained within each

element of the list.

The �rst step of the superblock compilation procedure is trace selection to identify the

sequences of blocks that will be converted into superblocks. Figure 3.18 shows the portion of the

46

}
if(count != 0)
 avg = weight/count;

if(ptr−>wt < 0)
 weight = weight − ptr−>wt;
else
 weight = weight + ptr−>wt;
ptr = ptr−>next;

avg = 0;
weight = 0;
count = 0;
while(ptr != NULL) {
 count = count + 1;

Figure 3.16 Example C source code segment.

(i1)
(i2)
(i3)
(i4)
(i5)
(i6) L0:

// avg
// count
// weight

(i7)
(i8)
(i9)
(i10)
(i11)
(i12)

L1:
L2:

// ptr−>wt

(i13)
(i14)
(i15)
(i16)
(i17)

L3:

L4:

ld_i
mov
mov
mov
beq
add

bne
beq
div
st_i

r1,
r7,
r2,
r3,
r1,
r2,

0

L3
1

r4,
r4,
r3,
L2
r3,
r1,

ld_i
bge
sub
jmp
add
ld_i

r1,
0,
r3,

r3,
r1,

0
L1
r4

r4
4
L0
L4
r2
r7

0,
0,
r3,
0,

ptr,
0
0
0
0,
r2,

r1,
r2,
r7,
avg,

Figure 3.17 Assembly code segment.

47

i6
i7
i8

BB2

i9
i10

BB3
i11

BB4

BB5
i12
i13

1

99

10 90

1

10
90

Figure 3.18 Loop portion of control ow graph after trace selection.

control ow graph corresponding to the while loop after trace selection. The dashed box outlines

the most frequently executed path of the loop. To convert the trace into a superblock, tail

duplication is applied to eliminate the side entrance from BB3 to BB5. The loop portion of the

program segment after the completion of superblock formation is shown in Figure 3.19. During

tail duplication, BB5 is copied to form superblock 2 (SB2). Also, since BB3 only branches to

BB5, the target of the jump instruction, i10, can be appended (refer to the discussion of branch

target expansion in Section 3.3) to the end of BB3. Therefore, BB3 and BB5 are merged to

form a second superblock, SB2.

Classical and ILP optimizations are then applied to each of the superblocks to increase the

number of instructions visible to the scheduler and to reduce the number of dependences among

the instructions in the superblock. Renaming destinations that are in the LIVE-OUT() set of

one or more previous branch instructions overcomes Restriction 1 for upward code motion. For

this example, the superblock loop is unrolled two times and register renaming is applied to the

load instructions to allow overlap of the unrolled loop iterations. Note that additional optimiza-

48

i6
i7
i8

BB2

i11
BB4

BB5
i12
i13

1

10 90

90

i9
i12’
i13’

BB3’

SB1

SB2
99(9/10)

1(9/10)

99(1/10)

1(1/10)

Figure 3.19 Loop portion of control ow graph after superblock formation and branch target
expansion.

tion opportunities exist for accumulator expansion (r2 and r3 may be expanded). However, for

ease of following the example, expansion optimizations are not applied. The loop segment after

superblock optimizations is presented in Figure 3.20. Note that once the loop is unrolled and

renamed, branch I9 must branch to L10 to restore r1 and r4 before the code at L1 is executed.

The superblock is now ready for scheduling. A dependence graph for each superblock is

constructed as the �rst phase of superblock scheduling. Using the LIVE-OUT() information

for each branch (Figure 3.21) and the scheduling model, the dependence graphs shown in

Figure 3.22 are built. The data dependences are represented by solid arcs and labelled with

f for ow and o for output (there are no anti-dependences in the superblock). The control

dependences are represented by dashed arcs. In both models the number of data dependences is

the same. However, the number of control dependences is reduced from nine with the restricted

speculation model to six with the general speculation model. More importantly, the control

49

 .
 .
 .

(I1)
(I2)
(I3)
(I4)
(I5)
(I6)

L0:
// ptr−>wt

// ptr−>next

// avg
// count
// weight

(I7)
(I8)
(I9)
(I10)
(I11)
(I12)

// ptr−>wt

// ptr−>next

L3:

L4:

L1’:

L1:
// ptr−>next

ld_i
mov
mov
mov
beq
add
ld_i
blt
add
ld_i
beq
add
ld_i
blt
add
ld_i
bne
beq
div
st_i

mov
mov
sub
ld_i
bne

0

L3

r1,
r7,
r2,
r3,
r1,

ptr,
0
0
0
0,

1
0
L1
r4
4
L3

r2,
r4,
r4,
r3,
r5,
r5,

r2,
r1,
0,
r3,
r1,
0,

r2,
r6,
r6,
r3,
r1,
r1,

r2,
r5,
0,
r3,
r5,
0,

r2,
r7,
avg,

L4
r2
r7

0,
r3,
0,

r4
4
L0

r1,
r4,
r3,
r1,
r1,

r5
r6
r3,
r1,
0,

1
0
L1’
r6
4
L0

Figure 3.20 Assembly code of C segment after superblock formation and loop unrolling.

live-out(I3) = {r1, r3, r4}

live-out(I6) = {r2, r3, r7}

live-out(I9) = {r3, r5, r6}

Figure 3.21 Live-out sets for superblock loop branch instructions.

50

I1

I2

I3

I4 I5

I6

I7

I8

I9

I10

I12

I11

o,f

o,f

f

f

f

f

f
f

f

f

I1

I2

I3

I4 I5

I6

I7

I8

I9

I10

I12

I11

o,f

o,f

f

f

f

f

f
f

f

f

(b) General speculation model(a) Restricted speculation model

Figure 3.22 Dependence graphs for the restricted and general speculation models.

51

Restricted

executes properly segmentation violation

Model:

Restrictions: 1 and 2

General

1

t1:

t2:

t3:

t4:

t5:

t6:

t7:

t8:

t9:

Schedule:

{I1, I2}

{I3, I4, I5}

{I6, I7, I8}

{I9, I10, I11}

{I12}

{I1, I2, I5}

{I3, I4, I8, I11}

{I6}

{I7, I9, I10, I12}

Without hardware support:

Figure 3.23 Code schedules and execution results obtained with the restricted and general
speculation models.

dependences limiting the upward movement of each of the loads are either removed, such as the

control dependence from I3 to I6, or switched to more distant instructions, such as the control

dependence from I9 to I11 is changed I3 to I11.

Scheduling the dependence graphs assuming no limitations on processor resources results in

the code schedules shown in Figure 3.23. For the restricted speculation model, the loop takes

nine cycles to execute and the program executes properly without additional hardware support.

With the general speculation model, the loop execution time is reduced to �ve cycles, because

the load instructions, I5, I8, and I11, can be initiated sooner, thereby reducing the critical path

length in the superblock. With the aggressive code scheduling done with general speculation,

it is possible to introduce spurious exceptions for load instructions I8 and I11. This will occur

if the link list has an odd number of elements in it. Therefore, without silent versions of load

instructions, the program may terminate incorrectly. But, by converting the speculative load

instructions into their silent version, the code will execute properly.

52

CHAPTER 4

SENTINEL SPECULATION MODEL

There are two major problems associated with speculative code motion. The �rst problem

is that the result value of a speculative instruction that is not required to execute must not

a�ect the execution of the subsequent instructions. This may be e�ectively achieved by compile-

time renaming transformations as discussed in the previous chapter. A more serious problem

with speculative code motion is correct handling of exceptions. An exception that occurs for a

speculative instruction that is not supposed to execute must be ignored. On the other hand, an

exception for a speculative instruction that is supposed to execute must be signaled. Accurately

detecting and reporting exceptions are required to identify program execution errors at the time

of occurrence. Also, for exceptions that do not terminate program execution, exception recovery

must be possible.

In this chapter, a set of architectural features and compile-time scheduling support, collec-

tively referred to as sentinel speculation, is described. Sentinel speculation provides an e�ective

framework for speculative execution, and also provides a means to e�ciently handle exceptions

that occur for speculative instructions.

4.1 Background and Related Work

Varying degrees of speculative code motion can be supported with di�erent speculation mod-

els. In Chapter 3, the two most extreme speculation models, restricted and general speculation,

53

were presented. Neither of these models handles exceptions e�ciently. With the restricted

speculation model, the compiler may only speculate those instructions it can guarantee will

never cause exceptions. Without sophisticated compile-time analysis, the performance of this

approach is extremely limited. With the general speculation model, speculative instructions,

which may potentially cause an exception, are converted into their silent version. In this man-

ner, any exceptions which may arise due to speculative instructions are ignored. In this section,

a survey of proposed speculation models which handle exceptions to varying degrees and with

varying hardware/software costs is presented. The models will be presented in the context of

superblock scheduling. However, they can easily be generalized to other scheduling paradigms,

such as trace scheduling [10], modulo scheduling [68] and enhanced pipelining [69].

4.1.1 Instruction boosting speculation model

The instruction boosting speculation model provides an e�ective means for speculating

instructions by removing both restrictions for upward code motion within a superblock (for

de�nitions of the restrictions on upward code motion, see Section 3.4) [70],[71]. The restrictions

are overcome by providing su�cient hardware storage to bu�er results until the branches an

instruction is moved above are committed. If all branches are found to be correctly predicted,

the machine state is updated by the boosted instructions' e�ects. If one or more of the branches

are incorrectly predicted, the bu�ered results are thrown away. Two sets of bu�er storage are

required for this speculation model, shadow register �les and shadow store bu�ers. The shadow

register �les hold the results of all boosted instructions which write into a register, while the

shadow store bu�ers hold the results of all boosted store instructions.

54

Exceptions for boosted instructions are handled by marking in the appropriate shadow struc-

ture whether an exception occurred during execution. At the excepting instruction's commit

point, the contents of the shadow structure are examined to determine if an exception condition

exists. If an exception condition exists, all information in the shadow structure is discarded

and a branch is made to a compiler-generated recovery block. The excepting instruction is

identi�ed by sequentially re-executing all speculative instructions which are committed by the

same branch instruction. The exception condition is therefore regenerated in a sequential pro-

cessor state. Operands of speculative instructions are preserved by ensuring that speculative

instructions do not update the architectural register �le until they are committed. Therefore, an

uncommitted speculative instruction may always be re-executed by retrieving its operands from

the architectural register �le. Finally, the exception is handled (either terminating program ex-

ecution or recovering from the exception) using traditional exception handling techniques since

the exception is regenerated in a sequential processor state.

4.1.2 Writeback suppression speculation model

The writeback suppression speculation model also provides an e�ective means for specu-

lating instructions by eliminating Restriction 2 for upward code motion [72]. This technique

is based on two main concepts: delay the exception for a speculative potentially excepting in-

struction (SPEI) until its execution is con�rmed, and prevent corruption of the source operands

of instructions by systematically suppressing updates to the register �le after a speculative in-

struction has excepted. Writeback suppression uses knowledge of the original basic block of

speculated instructions to determine which instructions to suppress. Any instruction that was

originally from a later basic block than the excepting speculative instructions is prevented from

55

updating the processor state, whereas instructions from earlier basic blocks update the state

normally.

Once the processor con�rms that the exception should take place, the exception is either

signaled or recovery is initiated. When recovery is possible, the excepting instruction's PC is

obtained from a pushdown stack which records the PC of all instructions which except. The

exception is processed using traditional exception handling techniques. Finally, the excepting

instruction and all instructions whose execution was suppressed during the initial execution are

re-executed. Normal execution resumes from the point at which the exception was detected.

4.1.3 Partial ignoring of speculative exceptions

The Multiow Trace system employs a technique to allow speculative execution of instruc-

tions which produce a oating-point value [73]. A speculative oating-point instruction that

excepts, writes NaN into its destination register. Exceptions are detected by the use of NaN by

a nonspeculative instruction. This method, however, has di�culties determining the original

excepting instruction, and is not guaranteed to signal an exception if the result of a speculative

exception-causing instruction is conditionally used. Also, an equivalent integer NaN must be

provided for this method to work for integer instructions.

A large number of current and past architectures disable a subset of exceptions to im-

prove performance through speculative execution. The Cydra 5 architecture is able to disable

exceptions for oating-point memory instructions and arithmetic operations [18],[74]. The

HP Precision Architecture supports nonexcepting oating-point instructions and nonexcept-

ing loads of address zero [75]. The SPARC architecture supports nonexcepting oating-point

instructions [76].

56

In summary, instruction boosting provides an e�ective framework for speculative code mo-

tion of instructions and handling of exceptions that occur for speculative instructions. However,

the hardware overhead is very large, and the number of branches that an instruction can be

boosted above is limited to a small number. Write-back suppression requires less hardware

overhead than boosting; however, the speculation distance is limited by the number of bits

provided in each instruction to mark the speculation distance. General speculation, on the

other hand, provides for the largest speculation freedom at a much lower implementation cost.

The problem is that there is no guarantee of detecting exceptions and determining the cause of

an exception. In the next section, a new speculation model referred to as sentinel speculation

is introduced. With a modest amount of architectural support, sentinel speculation permits all

the scheduling freedom of general speculation, while allowing exceptions to be always detected

and the excepting instruction accurately identi�ed.

4.2 The Sentinel Speculation Model

In this section, a speculation model referred to as sentinel speculation is introduced [77],[78].

Sentinel speculation combines a set of architectural features with su�cient compile-time support

to accurately detect and report exceptions for compiler-scheduled speculative instructions. The

basic idea behind this technique is to provide a sentinel for each potentially excepting instruction

(PEI). The sentinel reports any exceptions that were caused when the PEI is speculated. The

sentinel can either be an existing instruction in the program or a newly created instruction.

In the following subsections, the model of execution, the required architectural support, the

algorithm for sentinel superblock scheduling, and several other important issues are described.

57

4.2.1 Model of execution

Conceptually, each instruction, J , can be divided into two parts, the nonexcepting part that

performs the actual operation, and the sentinel part that ags an exception if necessary. The

nonexcepting part of J can be speculatively executed, provided the sentinel part of J remains

in J 's home block . The home block of an instruction is the original basic block in which the

instruction resides before compile-time scheduling. The sentinel part of J can be eliminated

if there is another instruction, K, in J 's home block which uses the result of J . The sentinel

part of K will signal any exceptions caused by both J and K, which makes it a shared sentinel

between J and K. Applying this argument one level further, if an instruction, L, in K's home

block which uses the result of K can be found, its sentinel part may serve as the shared sentinel

of J , K, and L. In this case, the semantics of K are de�ned so as to propagate an incoming

exception from J to L's sentinel.

For each PEI, a recursive search may be applied to identify a tree of instructions which

use its result. The search terminates along a path when an instruction that has no uses in its

home block is encountered.1 Such an instruction is termed an unprotected instruction. If all

instructions in a PEI's tree of uses are speculatively executed, an explicit instruction must be

created to act as the sentinel of the PEI. The explicit sentinel is restricted to remain in the

PEI's home block.

Since some instructions may never result in exceptions, e.g., integer add, the sentinel part

is not required for all instructions. An instruction only requires a sentinel part if it may cause

an exception, or it is used to report an exception for a dependent PEI.

1Note that a post dominating use is su�cient to guarantee that all exceptions will be detected. However, a

use in the home block is required in our implementation to facilitate earlier reporting of exceptions, re-execution

of fewer instructions for recovery, and reducing register lifetimes.

58

Table 4.1 Exception detection with sentinel speculation.

spec src(J).ex tag y J causes except. dest(J).ex tag dest(J).data except. signal

0 0 0 0 result of J none

0 0 1 0 - yes, except. PC = PC of J

0 1 0 0 - yes, except. PC = src(J):data z

0 1 1 0 - yes, except. PC = src(J):data z

1 0 0 0 result of J none

1 0 1 1 PC of J none

1 1 0 1 src(J):data z none

1 1 1 1 src(J):data z none

y union of all source operand exception tags of J

z the �rst source operand of J whose exception tag is set

4.2.2 Architectural support

In order to support sentinel speculation, several extensions are required to the processor

architecture. The �rst extension is an additional bit in the opcode �eld of an instruction to

represent a speculatively executed instruction. This additional bit is referred to as the specula-

tive modi�er of the instruction. The compiler sets the speculative modi�er for all instructions

that are speculatively scheduled. A second extension is an exception tag added to each reg-

ister in the register �le. The exception tag is used to mark an exception that occurs when a

speculative instruction is executed.2 The exception tag associated with each register must be

preserved along with the data portion of that register whenever the contents of the register are

temporarily stored to memory during context switch.

A summary of exception detection using the sentinel speculation model is shown in Table 4.1.

For each instruction, J , three inputs are examined, the speculative modi�er of J , the exception

tag of the source registers of J , and whether J causes an exception. A single bit is used for the

exception tag to simplify this discussion.

2Note that the minimum exception tag required is a single bit. However, in some cases a larger tag may be

useful to indicate the type of exception to assist in debugging and exception handling.

59

Execution of a speculative instruction. When J is a speculative instruction, excep-

tions will not be signaled immediately. If all the source register exception tags of J are reset,

conventional execution results when J does not cause an exception. When J does cause an

exception, the exception tag of the destination register is set, and the program counter (PC) of

J is copied into the data �eld of the destination register. The PC of J can be obtained from a

PC History Queue which keeps a record of the last m PC values to enable reporting exceptions

with nonuniform latency function units [18],[73]. If one or more of the source register exception

tags of J are set, an exception propagation occurs. This is independent of whether J causes an

exception or not. For this case, the destination register exception tag is set, and the data of the

source register with exception tag set are copied into the destination register. If more than one

of the source registers of J have their exception tag set, the data �eld of the �rst such source

is copied into the destination register. The implications regarding this issue will be discussed

in Section 4.2.6.

Execution of a nonspeculative instruction. If J is not a speculative instruction, con-

ventional execution results if all source registers have their exception tags reset. When J causes

an exception, the exception is signaled immediately, and J is reported as the exception-causing

instruction. Conversely, when one or more of the source register exception tags are set, an

exception has occurred for a speculatively executed instruction for which J serves as the sen-

tinel. The exception is, therefore, signaled and the data contents of the source register with its

exception tag set are reported as the PC of the exception-causing instruction. Again, if more

than one source register has its exception tag set, the data �eld of the �rst such source operand

is reported as the PC of the exception causing instruction.

60

Additional sentinel instruction. The �nal extension to the processor is an additional

instruction called check(reg). This instruction is inserted as the explicit sentinel when no use of

a speculative PEI exists in its home block. This instruction does not perform any computation,

but rather is merely used to check the exception tag of its source register. For most processors,

a new opcode does not have to be created, but rather a move instruction can be used instead.

The destination register of the move is either set to the same as the source register or to a

register hardwired to 0, such as R0 in the MIPS R2000 [79].

4.2.3 Sentinel superblock scheduling algorithm

As previously discussed, superblock code scheduling consists of two major steps, dependence

graph construction and list scheduling. The dependence graph contains dependence arcs to

represent all data and control dependences between instructions in the superblock. With the

sentinel speculation model, only restriction (1) (Section 3.4) is enforced for inserting control

dependences. Therefore, a control dependence arc from a branch instruction, BR, to another

instruction, J , is inserted if the location written to by J is used before being rede�ned when

BR is taken. This is the same restriction applied using the general speculation model. As with

general speculation, memory stores are not allowed to be speculative. However, in Section 4.4,

an extension to remove this constraint will be discussed.

Prior to list scheduling, an additional step is added for sentinel superblock scheduling. In

this step, potential sentinels are identi�ed for each PEI the scheduler is allowed to speculate. In

general, any instruction from a PEI's home block which uses the result of the PEI is a potential

sentinel. However, a simplifying assumption to recognize potential sentinels only along one

path in the dependence graph is made. This assumption is utilized to reduce the complexity

61

associated with exception recovery (Section 4.3). The overhead associated with limiting the

number of potential sentinels is that a larger number of explicit sentinels may be inserted than

are required. This overhead is discussed further in Chapter 5.

An algorithm to identify potential sentinel instructions for all PEIs in a superblock is pre-

sented in Figure 4.1. For each PEI, a leaf node in the dependence subgraph is identi�ed. Then

all instructions along that path are marked as potential sentinels for the PEI. Instructions with

a successor in the chain are marked as protected. Protected instructions may be freely specu-

lated since the next instruction in the chain will check all exceptions propagated or caused by

the instruction. The last instruction in the chain is marked as unprotected. If an unprotected

instruction is speculated, an explicit sentinel must be created by the scheduler to check all

exception conditions propagated through the chain. The last instruction in the chain is also

recorded as the last potential sentinel for the PEI.

A modi�ed form of list scheduling for superblocks to insert the necessary explicit sentinels

is then performed as the �nal step of sentinel superblock scheduling. The algorithm used

is presented in Figure 4.2 with the additions to the basic superblock scheduling algorithm

in bold type. The only modi�cation required for sentinel superblock scheduling is to insert

an explicit sentinel instruction when an unprotected instruction is speculated. The explicit

sentinel is restricted to be scheduled in the instruction's home block by adding the appropriate

control dependences. Note that the algorithm contains two function calls for handling exception

recovery. Exception recovery with sentinel speculation is discussed in Section 4.3.

62

identify potential sentinels(superblock) f
/� initialization, mark all instructions as protected �/
for each instruction in superblock, J f

J!protected = 1

J!sentinel = NULL

g
/� identify potential sentinels �/
for each instruction in superblock, J f

if (J not allowed to be speculative)

continue

if ((J is unprotected) OR (J is potentially excepting)) f
use = instruction in home block(J) such that there is a ow

dependence from J to use

/� use in home block serves as the sentinel for J if J is speculated �/
if (use) f

J!protected = 1

use!protected = 0

J!sentinel = use

/� Do not allow potential sentinel to move to subsequent block �/
add control dependence from use to use!post branch

g
/� No use in the home block so instruction is marked as unprotected �/
else f

J!protected = 0

g
g

g
/� Identify last potential sentinel for each PEI which may be speculative �/
for each instruction in superblock, J f

if (J is potentially excepting) f
last = J

while (last!sentinel)

last = last!sentinel

J!last potential sentinel = last

g
g

g

Figure 4.1 Algorithm to identify potential sentinel instructions.

63

schedule(superblock) f
build dependence graph(superblock)

identify potential sentinels(superblock)

clear resource usage map

issue time = 0

while (unscheduled set of instructions is not empty) f
issue time += 1

active set = set of unscheduled instructions that are ready

sort active set according to instruction priority

for each instruction in active set, J f
if (not all resources J requires are free)

continue

if ((enable recovery) AND (! compatible with active intervals(J)))

continue

/� J is scheduled at issue time �/
mark required resources of J busy in resource usage map

delete J from set of unscheduled instructions

J!issue time = issue time

if (J is speculative) f
set speculative modi�er of J

/� create an explicit sentinel if speculate an unprotected instruction �/
if (J is unprotected) f

create a new instruction, check(dest(J))

J!sentinel = check

add ow dependence J to check

/� Restrict explicit sentinel to remain in J's home block �/
add control dependence from J!prev branch to check

add control dependence from check to J!post branch

insert check into set of unscheduled instructions

g
g
if (enable recovery) update intervals(J)

/� check for control-ow hazards associated with an downward code motion �/
for each branch J moved below in superblock, BR f

if (J!dest not live when BR is taken)

continue

insert a copy of J into target superblock of BR

g
g

g
g

Figure 4.2 Sentinel superblock scheduling algorithm.

64

4.2.4 Sentinel speculation example

To illustrate exception detection with sentinel speculation, consider the assembly code frag-

ment shown in Figure 4.3(a). For simplicity, it will be assumed in this example that each

instruction requires one cycle to execute and that the processor has no limitations on the num-

ber of instructions that can be issued in the same cycle. Also, it will be assumed that memory

loads and stores are the only instructions that may cause exceptions. In the example, poten-

tially excepting instructions B and C may be speculated; therefore, a sentinel instruction must

be kept in the home block of B and C to check their exception status if they are speculated.

The potential sentinels for B are identi�ed as D and F . Since F is the last use in the

chain of ow dependences, it is marked as unprotected (Figure 4.3(a)). Similarly, the potential

sentinel for C is E, which is unprotected since it is the last use in this chain. The code segment

after scheduling is shown in Figure 4.3(b). Four instructions (B, C, D, and E) are moved

above the branch (A); therefore, their speculative modi�ers are set. Instruction E, though,

is unprotected, so an explicit sentinel (G) must be inserted into E's home block to check the

exception condition of C. In the �nal schedule, instructions F and G serve as sentinels for the

potentially excepting instructions B and C, respectively.

An execution sequence for the scheduled code segment in which instruction B causes an

exception is shown in Figure 4.4. For this example, it is assumed that the branch, instruction

A, is not taken. The initial states of all the registers are further assumed to have reset exception

tags and some unknown data �elds. In the �rst cycle, instruction B causes an exception.

However, since it is a speculative instruction, the exception is not yet signaled. Instead, the

exception tag of the destination register of instruction B is set, and the PC of instruction B

is copied into the destination register's data �eld. In the second cycle, instruction D �nds the

65

A: beq r2,0,L1 � B[1]: ld i r1,r2,0
B: ld i r1,r2,0 � C[1]: ld i r3,r4,0
C: ld i r3,r4,0 � D[2]: add r4,r1,1
D: add r4,r1,1 � E[2]: mul r5,r3,9

y E: mul r5,r3,9 A[2]: beq r2,0,L1
y F: st i r2,4,r4 z F[3]: st i r2,0,r4

z G[3]: check r5
y unprotected instruction � speculative instruction

z sentinel
[n] indicates in which cycle the instruction is executed

(a) (b)

Figure 4.3 Example of sentinel speculation, (a) original program segment, (b) program seg-
ment after scheduling.

exception tag of its �rst source register set. However, since it is also a speculative instruction, it

propagates the exception information to its destination register. Finally, in cycle 3, instruction

F detects that the exception tag of its �rst source register is set. Since instruction F is not a

speculative instruction, an exception is signaled and the cause of the exception is reported as

the contents of r4.

Note that in this example, if instruction B again results in an exception but the branch

instructionA is taken instead, the exception is completely ignored. This result is correct because

if the branch is taken, instruction B should not have been executed and, therefore, should not

disrupt the program's execution.

4.2.5 Handling uninitialized data

The use of an uninitialized register can potentially cause incorrect exceptions to be re-

ported with the sentinel speculation model. Registers that are referenced before being de�ned

in a function may have their exception tag set from the execution of a previous function or

program. The use of this register will therefore lead to an immediate or eventual exception

66

data

r1
r2
r3
r4

data

r1
r2
r3
r4

data

r1
r2
r3
r4

data

r1
r2
r3
r4

Initial

0
0
0
0

0

0

0 0

signal exception

After Cycle 1

After Cycle 2 After Cycle 3

r5 0

B causes an exception

r5 0

0

1 B

1

1
0

r5 r50

B

B

1

0
1
0

B

B

report B as source

except
tag

except
tag

except
tag

except
tag

Figure 4.4 Example of exception detection using sentinel speculation.

signal. However, this exception should not be reported. To prevent an exception from occur-

ring with uninitialized registers, the compiler performs live variable analysis [52] and inserts

additional instructions into the beginning of a function to reset the exception tags of the corre-

sponding registers. Therefore, spurious errors associated with referencing uninitialized registers

or variables are prevented.

4.2.6 Reporting multiple exceptions

Multiple exceptions in a program are handled e�ciently with sentinel speculation. The

exceptions can occur either within di�erent basic blocks or within the same basic block. When

two exceptions occur in di�erent basic blocks, the exceptions are guaranteed to be detected

in the proper order because exceptions for all instructions of a basic block are checked before

67

the basic block is exited. The requirement of a sentinel in the home block of each speculative

instruction enforces this condition.

For multiple exceptions in the same basic block, exceptions are not guaranteed to be detected

in the proper order according to the original code sequence. Multiple excepting instructions in

the same basic block may either have di�erent sentinels or share a sentinel. With di�erent sen-

tinels, the �rst sentinel executed will signal the �rst exception. When two excepting instructions

share a sentinel, multiple source registers of the sentinel instruction will have their exception

tags set. In this case, one of the exceptions is arbitrarily �rst signaled. If a recovery mechanism

is utilized, as discussed in the next section, the second exception is reported when the sentinel

is re-executed. The order of reporting two exceptions in the same basic block is di�cult to

maintain in most systems. In many cases, instructions within a basic block are reordered by

conventional compiler code optimizations. Therefore, an order of reporting exceptions in the

same basic block is not maintained with the sentinel speculation model.

4.3 Exception Recovery

For many types of exceptions, it is desirable to recover from the exception rather than

abort program execution. Recovery generally consists of repairing the excepting instruction

and continuing program execution. Recovery with speculative instructions is di�cult because

the exception condition may not be raised until long after the instruction is executed. Also,

other speculative instructions that use the result of the excepting instruction are likely to

have executed. Therefore, when the exception is detected and repaired, a chain of dependent

speculative instructions requires re-execution to generate a correct program state. The spec-

68

ulation model must ensure that the excepting instruction and all dependent instructions are

re-executable up to the point where the exception condition is checked.

4.3.1 Recovery model

The compiler support required to ensure recovery is dependent on the recovery model uti-

lized. In this chapter, the recovery model assumed is as follows. A sentinel that detects an

exception condition sets the processor PC to the excepting instruction's PC. The processor then

enters an exception handling state which terminates when the execution reaches the sentinel

again. The excepting instruction is re-executed as a nonspeculative instruction to regenerate the

exception condition. After the exception is repaired, re-execution of the subsequent instructions

proceeds.

Not all instructions between the excepting speculative instruction and the sentinel require

re-execution. Instructions that are not re-executed are simply discarded. The minimal set

of instructions that must be re-executed are those that are ow dependent on the excepting

instruction. Flow-dependent instructions propagate the exception condition for the excepting

speculative instruction and, therefore, must be re-executed to obtain the correct result. Any

superset of the ow-dependent instructions may be chosen for re-execution. However, the re-

execute set must be known by the compiler to ensure proper recovery.

Those nonspeculative instructions thus re-executed are done so as normal nonspeculative

instructions (e.g., if they produce an exception, the exception is signaled immediately). Those

speculative instructions thus re-executed are done so as normal speculative instructions (e.g.,

if they produce an exception, no exception is signaled but the exception tag and data �eld of

the excepting instruction's destination register are set appropriately) with one modi�cation.

69

Transparent exceptions must be handled immediately for speculative instructions in the excep-

tion handling state. Transparent exceptions include such events as page faults and TLB misses

which occur independently of the program logic. This is necessary to ensure that speculative

instructions that did not except in their original execution produce the correct result during

re-execution. When execution reaches the original sentinel instruction again, the exception

handling state is exited and normal execution resumes.

Note that other models of recovery may be utilized in conjunction with sentinel speculation.

One e�ective alternative is the use of recovery blocks [71],[80]. In this model, the compiler

generates the exact sequence of instructions that must be re-executed when an exception is

detected by a particular sentinel. The advantage of this scheme is the reduced complexity

in the exception handling state. The disadvantage of this scheme is that the static code size

increases due to the recovery blocks.

4.3.2 Restartable instruction interval

To ensure recovery with the recovery model discussed in the previous section, each PEI that

is speculated and its sentinel must delineate the endpoints of a restartable instruction interval.

The interval consists of two types of instructions based on their execution status during recov-

ery, those which are re-executed (RE) and those which which are not re-executed (NRE). An

instruction interval is restartable if all elements of the interval satisfy the following constraints.

First, none of the instructions in the interval may prevent re-execution of the RE instructions

in the interval. These instructions will be referred to as irreversible instructions. For the pur-

poses of this thesis, an irreversible instruction has one of the three following properties: the

instruction destroys the exception tag of a live register, the instruction modi�es an element of

70

update interval live set(interval, J) f
if (J is in interval!RE) f

if (srci(J) not in interval!def)

interval!use = interval!use + fsrci(J)g
if ((J is a memory load) AND (J not in interval!mem def))

interval!mem use = interval!mem use + fJg
interval!def = interval!def + fdesti(J)g
if (J is a memory store)

interval!mem def = interval!mem def + f(J)g
g

g

Figure 4.5 Algorithm to calculate live information for an instruction interval.

the processor state, which causes intolerable side e�ects, or the instruction cannot be executed

more than one time. As a result, synchronization, I/O, and subroutine call instructions break

restartable intervals.3 Based on these properties, memory stores are not considered irreversible

instructions.

The second constraint is that the operands of all RE instructions that are live at the start

of the interval are not overwritten by any instruction in the interval. An operand is live if it is

used by an RE instruction before it is de�ned by an RE instruction in the interval. The live set

of an interval is calculated using techniques for standard dataow analysis [52]. However, only

the RE instructions in the interval are considered in the process. An algorithm to compute

the live information for an instruction interval is presented in Figure 4.5. Live information is

computed for both register and memory operands since both must be maintained to ensure a

restartable interval.

To illustrate the computation of an interval live set, consider the example in Figure 4.6(a).

The register live set consists of r2, r3, and r5. Although r3 is computed by B before it is

3Note that if an architecture provides a means for the compiler to save/restore exception tags, a subroutine

call alone is not an irreversible instruction. However, in this discussion it is assumed that subroutine calls are

irreversible.

71

PEI,RE A: ld i r1,r2,0 PEI,RE A: ld i r1,r2,0
NRE B: add r3,r4,1 NRE B: add r3,r4,1
RE C: mul r4,r1,r5 NRE C: mul r4,r1,r5
RE D: add r6,r3,r4 RE D: add r6,r3,r4
RE E: ld i r4,r3,0 RE E: ld i r4,r3,0
RE F: sub r7,r1,1 RE F: sub r3,r1,1
Sentinel G: check r4 Sentinel G: check r4

(a) (b)

Figure 4.6 Instruction interval examples, (a) a restartable instruction interval, (b) a non-
restartable instruction interval.

used in the original execution of the interval, instruction B is an NRE instruction; therefore,

r3 will not be re-de�ned during re-execution. Consequently, its contents must be preserved all

the way to the end of the interval (during the original execution) and from the beginning of the

interval (during re-execution) to ensure that D may re-execute correctly. Also, note that even

though B uses r4 before it is de�ned, r4 is not included in the live set, because B is an NRE

instruction. Therefore, its input operands may be modi�ed without a�ecting the restartability

of the interval.

The instruction interval shown in Figure 4.6(a) is thus restartable since none of the registers

in the live set are modi�ed in the interval. An example interval that is not restartable is shown

in Figure 4.6(b). The register live set consists of r2, r3, and r4. The conditions for restartability

are violated by two instructions in the interval. Instruction E overwrites r4 which prevents D

from properly re-executing. Similarly, F overwrites r3 which prevents D and E from properly

re-executing.

The compiler must maintain a restartable instruction interval for all PEI/sentinel pairs that

are generated to ensure that exception recovery may be performed. From the point of view of

individual instructions, the compiler must satisfy the restartability constraints for all intervals

72

which span an instruction. In the remainder of this section, the required scheduler and register

allocator support to maintain restartable instruction intervals is presented. Also, a discussion

of various recovery models and the recovery model utilized for the experimental evaluation is

presented.

4.3.3 Scheduler support

Several additional restrictions must be added to the instruction scheduler to ensure that all

instruction intervals are restartable. The additional restrictions are as follows.

(1) A speculative instruction cannot be moved beyond any irreversible instruction.

(2) Exceptions for speculative instructions are not propagated across irreversible instructions.

(3) A speculative instruction may not modify any of its own input operands.

(4) All instructions which overwrite an operand in an instruction interval's live set may not

be scheduled in the interval.

The �rst two scheduling restrictions are used to prevent an irreversible instruction from

being included in any instruction interval. The �rst restriction is handled by inserting addi-

tional control dependences during dependence graph construction. A dependence arc is inserted

from each irreversible instruction into all subsequent instructions in the superblock. The second

restriction is maintained by modifying the de�nition of home block to account for irreversible in-

structions. Each irreversible instruction de�nes an additional basic block boundary as far as the

scheduler is concerned. In this manner, the identify potential sentinels algorithm (Figure 4.1)

will not search beyond an irreversible instruction for ow-dependent instructions.

73

The last two scheduling restrictions are used to ensure that the live operands of all RE

instructions in the interval are not destroyed by any instruction in the interval. Compile-time

renaming is utilized to overcome the third restriction. The destination of an instruction that

may be speculated and overwrites one of its source operands (self-anti-dependence) is renamed

to a new register. All uses of the original register are then replaced with the renamed register.

If necessary, a copy instruction is inserted to restore the proper value of the original register.

The fourth restriction is overcome by modifying the sentinel superblock scheduling algo-

rithm. The modi�cations employ two functions that check and update the status of instruction

intervals. The calls to these functions are included in the sentinel superblock scheduling algo-

rithm shown in Figure 4.2. The �rst function is used to determine if scheduling an instruction

at the current time is compatible with all active intervals. An instruction interval is active at

the current time if the start of the interval has been scheduled and the end of the interval has

not been scheduled. An instruction is compatible with an active interval if the interval remains

restartable when the instruction is added. An NRE instruction is compatible by default since

there are no restrictions on the rede�nition of its input operands.

An RE instruction is compatible if all instructions that modify any of its input operands that

are live in the interval may be scheduled after the end instruction of the interval. Instructions

that modify live operands are identi�ed by traversing the anti-, output, memory anti- and

memory output dependences of a candidate RE instruction. If the modifying instruction is

independent of the interval ending instruction, it can be scheduled after the interval end point

without a problem. However, if the modifying instruction is dependent on the instruction

that ends the interval, the restartability of the interval may be maintained only by breaking

the interval. An interval is broken by selecting an earlier potential sentinel for the end point.

74

The new interval end point must be independent of the modifying instruction. Therefore, the

modifying instruction must be able to be scheduled in the home block. If dependences prevent

scheduling the modifying instruction in the home block, the candidate instruction is not allowed

to be scheduled at the current time. An algorithm to determine if an instruction is compatible

with all active intervals is presented in Figure 4.7.

The last modi�cation to the sentinel superblock scheduling algorithm is a function which

updates the contents of all active intervals after each instruction is scheduled. The algorithm

used to update the active intervals is shown in Figure 4.8. When a PEI is scheduled specula-

tively, a new active interval is created. The interval begins with the PEI and its end point is

set to the last potential sentinel of the PEI. The last potential sentinel is selected as the end

point of the interval to ensure that the interval is restartable for the potential sentinel selected

as the actual sentinel of the PEI. Since the last sentinel is the instruction which ends the chain

of ow-dependent potential sentinels, enforcing all scheduling restrictions to the last potential

sentinel is su�cient to guarantee restartability.

The update algorithm also prevents instructions from overwriting the operands live in the

interval by inserting additional dependence arcs. Similarly to the previous algorithm, instruc-

tions that modify live source operands are identi�ed by traversing the anti-, output, memory

anti-, and memory output dependences for a new instruction added to a interval. A dependence

arc is added from the interval end point to the modifying instruction to restrict the modifying

instruction from entering the interval. If the modifying instruction is dependent on the end of

the interval, the interval must be broken. This is necessary to prevent a circular dependence

condition between the modifying instruction and the end of the interval. The potential sen-

tinel farthest down in the chain of ow dependences that is not dependent on the modifying

75

compatible with active intervals(J) f
/� Create a temporary interval for J if it is a speculated PEI �/
if ((J is speculative) AND (J is potentially excepting)) f

create a new active interval, temp

temp!start = J

temp!end = last potential sentinel of J

temp!RE = temp!NRE = fg
g
compatible = 1

for each active interval, interval f
if (J in NRE for interval) continue

/� Save the contents of all �elds of interval, so they can be later restored �/
original = copy all elements of interval

interval!RE = interval!RE + fJg
update interval live set(interval, J)

/� Determine if any of J's operands in the use set of the interval are modi�ed by

instructions which cannot be scheduled outside the interval �/
for each dependence arc out of J, dep f

if (((dep!type is anti or output) AND (dep!operand in interval!use)) OR

((dep!type is memory anti or memory output) AND (dep!to instr in interval!mem use))) f
/� An instruction not dependent on the end of the interval may always be moved

after the end of the interval to satisfy the dependence constraint �/
if (there is no dependence path from dep!to instr to interval!end)

continue;

/� Otherwise, the interval can be broken if dep!to instr can be moved into

the home block of instruction which ends the interval �/
else if (there is a dependence path from dep!to instr to interval!prev br) f

compatible = 0

break

g
g

g
restore contents of interval with original

if (! compatible) break

g
delete temp

return (compatible)

g

Figure 4.7 Algorithm to determine if an instruction is compatible with all active intervals.

76

update intervals(J) f
/� Create a new interval for a speculated PEI �/
if ((J is speculative) AND (J is potentially excepting)) f

create a new active interval, interval

interval!start = J

interval!end = last potential sentinel of J

interval!RE = interval!NRE = fg
interval!use = interval!def = interval!mem use = interval!mem def = NULL

g
/� De-activate all intervals which end with J, note that J must be

non-speculative to end an interval �/
for each active interval, interval f

if (interval!end==J) deactivate interval

g
/� update all active intervals with J �/
for each active interval, interval f

/� The recovery model utilized de�nes if J is an RE or NRE instruction for each interval �/
if (J in NRE for interval) f

interval!NRE = interval!NRE + fJg
continue

g
interval!RE = interval!RE + fJg
update interval live set(interval, J)

for each dependence arc out of J, dep f
if (((dep!type is anti or output) AND (dep!operand in interval!use)) OR

((dep!type is memory anti or memory output) AND (dep!to instr in interval!mem use))) f
if (there is a path in the dependence graph from dep!to instr to interval!end) f

/� break up the interval to satisfy the dependence constraint �/
S = farthest instruction in the ow dependence chain of potential sentinels for

interval!start that is not dependent on dep!to instr

if (S is not speculated) f
mark S as unprotected

interval!end = S

g
else f

/� Create an explicit sentinel since all potential sentinels for the broken

interval have been speculated �/
create a new instruction, check(dest(S))

add a ow dependence from S to check

add a control dependence from S!prev branch to check

add a control dependence from check to S!post branch

interval!end = check

add check into set of unscheduled instructions

g
g
insert a dependence of type dep!type between interval!end and dep!to instr

g
g

g
g

Figure 4.8 Algorithm to update all active intervals.

77

A: jsr foo A[1]: jsr foo
B: ld i r5,r3,0 � D[2]: ld i r1,r6,0
C: beq r5,0,L1 B[2]: ld i r5,r3,0

y D: ld i r1,r6,0 � E0[2]: add r10,r2,1
y E: add r2,r2,1 C[3]: beq r5,0,L1
F: st i r4,0,r7 � G[4]: add r8,r1,1

z G: add r8,r1,1 F[5]: st i r4,0,r7
H: ld i r6,r2,0 H0[5]: ld i r6,r10,0

I[5]: mov r2,r10

y instruction considered for speculative execution
z last potential sentinel for D
� speculative instruction
� sentinel for D
[n] indicates in which cycle the instruction is executed

(a) (b)

Figure 4.9 Example of sentinel superblock scheduling to ensure recovery, (a) original program
segment, (b) program segment after scheduling.

instruction is selected as the new end point. If no such instruction exists, an explicit sentinel

is created to serve as the end point of the interval.

An example to illustrate the handling of the scheduling restrictions is presented in Figure 4.9.

For this example assume that each instruction requires one cycle to execute, the processor has

unlimited resources, and only memory load and store instructions may cause exceptions. It

is further assumed that all instructions in an interval are RE. The �rst restriction is for A.

Instruction A is an irreversible instruction; therefore, no speculative code motion is allowed

across it. Instruction D may be speculated provided several constraints are observed. First, H

overwrites a source operand of D. Therefore, H must be scheduled after the end point of the

interval started by D, namely G. Similarly, if the compiler cannot determine that instructions

D and F access di�erent memory locations, F must be scheduled after G (due to memory

anti-dependence).

78

Instruction E may also be speculated in the example. Instruction E is self anti-dependent;

therefore, the destination of E must be renamed to a new register (r10 in the example). All

uses of the original register r2 are also renamed to r10, and a copy instruction, I, is inserted

assuming r2 is live outside the code segment. Let E0 be the instruction derived from E by

renaming r2 to r10. Since the copy instruction I is anti-dependent on E0, the copy is restricted

to be scheduled after the end point of all intervals which contain E0. Thus, I is scheduled

after G. The �nal schedule with all restrictions observed is shown in Figure 4.9(b). Note

that if speculative instruction D causes an exception, the exception is detected by its sentinel

G. Instructions D, B, E0, and C are then re-executed during exception handling mode. All

instructions re-execute correctly since their source operands have not been destroyed.

Additional compile-time renaming is also e�ective to minimize the number of anti-dependences

that must be enforced during scheduling due to the fourth restriction. In our current imple-

mentation, anti- and output dependence removing transformations are applied to superblocks

prior to scheduling [44].

4.3.4 Register allocator support

The register allocator must also be modi�ed to ensure that all PEI/sentinel intervals are

restartable. The following additional restrictions must be utilized by the register allocator so

that exception recovery is possible.

(1) The contents of a register in the live set of an interval may not be overwritten in the

interval.

(2) A destination register of an RE instruction may not be spilled in an interval.

79

The �rst restriction is handled by adding all instructions in an interval to the live range of

each register in the interval's live set. By extending the live range of a register across all intervals

in which it is live, the register contents are preserved across the necessary instructions to ensure

restartability of all intervals. The algorithm to construct live ranges of each virtual register is

augmented to add the contents of the intervals in which the register is live. Traditional graph

coloring may then be applied to achieve the desired allocation.

In the example shown in Figure 4.9(b), assuming all instructions are re-executed during

exception recovery, the live set of the interval from D to G consists of r2, r3, and r6. All

instructions in the interval are thus added to the live ranges of these registers. As a result, even

though D may be the last use of r6, the register allocator may not re-use the physical register

mapped to r6 until after G.

The �rst restriction also implies that register source operands of speculative PEIs may not

be spilled to memory by the register allocator. This is necessary with the recovery model

used in this thesis because during exception handling the processor does not know how to re-

execute spill load instructions to restore appropriate spilled source register operand values. In

the current implementation, the register allocator enforces this restriction by de-speculating a

speculative instruction whose source operands are spilled. De-speculation or downward code

movement back to the PEI's home block is performed incrementally until either the live range

becomes allocatable or the instruction's home block is reached. At the point at which the home

block is reached, the instruction is no longer speculative, and the register allocator is free to

spill its source operands.

The second restriction is necessary to ensure that improper exceptions are not signaled

when a speculative instruction's destination is spilled to memory. In order to spill the register,

80

a store instruction will read the contents of the speculative instruction's destination register. If

that register contains an exception condition, an exception will be signaled. However, execution

may not reach the home block of the speculative instruction. Therefore, an improper exception

signal may occur. Preserving destination registers of speculative instructions may be achieved

using the same de-speculation process. Speculative instructions whose destination live range

cannot be allocated are incrementally moved downward until either the live range becomes

allocatable or the speculative instruction's home block is reached. Again, once the home block

is reached, the instruction is no longer speculative and the register allocator is free to spill its

destination operand.

Note that if the architecture provides a special set of spill instructions, the second restriction

for register allocation may be eliminated. The spill instructions must save/restore the exception

tag along with the data contents of the register. Furthermore, the spill instruction that saves

the contents of a register must ignore the exception status of the register to prevent signalling

improper exceptions. Finally, the spill instructions must be included in the RE sets of all

intervals which span them to ensure that updated values are placed on the stack during re-

execution.

The current implementation of the scheduler does not utilize any information regarding

register usage to guide the schedule. Therefore, in superblocks with a large amount of register

pressure, the register allocator will be required to de-speculate many speculative instructions

to satisfy the restrictions for exception recovery. More advanced scheduling techniques which

integrate parts of register allocation and scheduling may be used to achieve a more e�cient

schedule [81],[82]. Currently, these techniques are being studied to improve the performance of

sentinel superblock scheduling in regions with large register pressure.

81

To summarize, by enforcing constraints for scheduling and register allocation, one can guar-

antee that all speculative PEI/sentinel pairs form a restartable instruction interval. Therefore,

an exception for a speculative instruction may be repaired and all RE instructions in the inter-

val started by the PEI may be re-executed to achieve a correct program state. The overhead

associated with enforcing these constraints is reduced scheduling freedom caused by additional

dependence constraints and speculation limits imposed by the register allocator. Also, addi-

tional instructions to accomplish renaming are typically necessary.

4.4 Allowing Speculative Stores

A limitation of sentinel speculation up to this point of discussion is that it does not allow

speculative store instructions. In this section, an extension to sentinel speculation is described

which allows store instructions to move above branch instructions. In the following subsections,

the additional architectural and compiler support required for speculative stores is presented.

4.4.1 Additional architectural support

In order to support speculatively executed store instructions, the operation of the data

memory subsystem must be modi�ed. In this discussion, it will be assumed that an N entry

store bu�er exists between the CPU and the data cache [47].

Operation of a conventional store bu�er. A store bu�er has three primary functions.

First, it creates a new entry for each store instruction executed by the CPU. Each store bu�er

entry consists of the store address, store data, and several status bits. Address translation is

performed during insertion to determine if an exception (access violation or page fault) has

occurred. If an exception occurs, it is handled immediately. The store bu�er also supplies data

82

to the CPU whenever a load with a matching address to a valid store bu�er entry is executed.

Finally, the store bu�er releases entries to update the data cache. The store bu�er operates as

a �rst-in-�rst-out circular queue. When the data cache is available and the bu�er is not empty,

the entry at the head of the queue is transferred to the data cache.

Operation of store bu�er supporting speculative stores. Speculative store instruc-

tions can be utilized if the store bu�er is modi�ed to allow probationary entries, which are

for speculative stores which may or may not require execution. Probationary entries are later

con�rmed by speci�c instructions if the predicted path of control is followed or invalidated when

a branch direction is mispredicted. To support probationary entries, each store bu�er entry

requires three additional �elds, a con�rmation bit, an exception tag, and an exception PC. Also,

an additional instruction to con�rm store instructions in the store bu�er, confirm store(index),

is needed. Finally, a mechanism to invalidate all probationary store bu�er entries whenever a

branch prediction miss occurs is required.

Each function of the store bu�er requires some modi�cations to handle probationary entries.

The insertion of a store into the store bu�er is summarized in Table 4.2. Note that nonspecula-

tive stores enter the bu�er as con�rmed entries, while speculative stores enter as probationary

entries. Also, when the bu�er is full, the processor is stalled to wait for an entry to become

available. When a load instruction is executed, both con�rmed and uncon�rmed entries are

searched for a matching address. However, a probationary entry with its exception tag set

will not participate in the search.4 This exclusion from the search is to enable re-execution of

the load instruction independent from re-execution of a matching excepting store in the store

bu�er. The releasing function of the store bu�er is changed so that probationary stores are not

4Note that an exception reected in the exception tag of a probationary store bu�er entry will be subsequently

detected by the corresponding confirm store instruction of the speculative store.

83

Table 4.2 Insertion of store into store bu�er.

spec src(I).ex tag y I causes except z description

0 0 0 insert a nonspeculative store as a con�rmed entry

0 0 1 force all con�rmed entries at head of bu�er to update cache,

save contents of store bu�er }, process exception
0 1 0 signal exception, report PC = src(I):data

0 1 1 signal exception, report PC = src(I):data

1 0 0 insert speculative store as a pending entry

1 0 1 insert speculative store as a pending entry, set exception tag,

set exception PC to PC of I

1 1 0 insert speculative store as a pending entry, set exception tag,

set exception PC to src(I):data

1 1 1 insert speculative store as a pending entry, set exception tag,

set exception PC to src(I):data

y Instruction producing source operand of store contains exception condition, so store must just propagate the

exception.

z The store instruction results in an exception.

} Saving the contents of the store bu�er only necessary when speculative stores are allowed.

allowed to update the data cache. This is accomplished by preventing any releases from the

store bu�er when the entry at the head of the bu�er is probationary.

Two additional functions are required for the store bu�er, con�rming and canceling proba-

tionary entries. A probationary store in the store bu�er is con�rmed by a confirm store(index)

instruction. The index signi�es which entry is con�rmed, counting from the tail entry. If the

exception tag of the entry being con�rmed is set, an exception must be reported. The exception

is handled in the same manner as when an exception occurs during insertion of a nonspeculative

store instruction. However, the PC of the excepting instruction is provided in the exception

PC �eld of the particular store bu�er entry. All probationary stores are canceled when a mis-

predicted branch is detected. Cancellation of a probationary store is accomplished by resetting

the valid bit of the corresponding store bu�er entry.

84

4.4.2 Scheduling support for store movement

An instruction scheduler can be extended to move store instructions above branch instruc-

tions in a straightforward manner. Stores are permitted to move above branches by removing

control dependences between a store instruction and all preceding branch instructions in a

superblock during dependence graph construction. All store instructions are marked unpro-

tected by the identify potential sentinels algorithm (Figure 4.1) since store instructions have

no destination register. Finally, list scheduling is modi�ed to insert con�rm stores rather than

checks as explicit sentinels for stores. Also, the scheduler must set the index �eld of the con-

�rm store when a store is speculated. The value of the index is the number of stores (regular

and speculative) between a speculative store and its corresponding con�rm.

Exception detection is not impaired by the movement of stores. A store instruction will only

be con�rmed when the branches it moved across have all been predicted correctly at compile

time. If any of the branches are incorrectly predicted, the store is canceled. An exception

for a speculative store is reported only at the time of con�rmation; therefore, only exceptions

for those stores that are supposed to be executed will be reported. Also, the con�rm store

instruction is restricted to remain in the home block of the store; thus, exceptions occurring in

di�erent basic blocks will be reported in the proper order. Again, if multiple exceptions occur

in the same basic block, the exceptions will be signaled; however, they are not guaranteed in

the order of the original code sequence.

Exception recovery is also possible with speculative stores. The only modi�cation required

is to allow re-executed speculative stores to replace their corresponding probationary entries

in the store bu�er. This is necessary for two reasons. First, multiple store bu�er entries are

not allowed for a speculative store that is re-executed several times. Second, to ensure proper

85

con�rmation, the order that stores are inserted into the bu�er must not be altered from the

order the compiler calculated during scheduling.

A possible deadlock situation can occur when attempting to insert a store into the bu�er

if the store bu�er is full and the entry at the head of the store bu�er is uncon�rmed. This

situation can be prevented during scheduling by allowing a speculative store to be separated

from its con�rm by at most N � 1 (for an N entry store bu�er) stores. All probationary stores,

therefore, must either be con�rmed or canceled within a range N stores. The size of the store

bu�er, though, is now an architectural parameter that must be available to the scheduler.

86

CHAPTER 5

EXPERIMENTAL EVALUATION OF SPECULATIVE

EXECUTION

The e�ectiveness of speculative execution using the superblock compilation techniques is

presented in this chapter. The methodology used to conduct the experiments is �rst described.

The results, which are then presented, include the performance of speculative execution in

superblocks, cost and e�ectiveness of superblock ILP optimizations, and instruction/data cache

e�ects.

5.1 Experimental Methodology

All experiments performed for this thesis were done using the IMPACT simulation envi-

ronment. The simulator models in detail a parameterizable superscalar processor including the

prefetch and issue unit, instruction and data caches, branch prediction mechanism, and hard-

ware interlocks. This enables the simulator to accurately model the number of cycles required

to execute a program and provide detailed analyses of visible processor components such as the

branch predictor and the caches.

5.1.1 Emulation-driven simulation

The IMPACT simulation approach is referred to as emulation-driven simulation. With

emulation-driven simulation, the compiler generates code for a target, hypothetical processor

exploiting advanced architectural features such as speculative and predicated execution. An

87

MCODE
Code generation
for target
processor

Insert emulation
code

Probe/HP-PA
code generation

Simulation

Trace

Scheduling
Reg Allocation

Emulation Tool
Validates Transformations

Figure 5.1 Simulation process.

emulation module then inserts additional assembly code into the program to model the advanced

architectural features on a conventional platform. For this thesis, the emulation platform is a

HP PA-RISC 700 series workstation. Code generation of the assembly code for the target

processor and the emulation code produces an executable program which can be run on the

emulation platform like any normal program.

Figure 5.1 illustrates the emulation-driven simulation procedure. The input to the process is

Mcode optimized for the target processor. Mcode is a processor speci�c version of the IMPACT

intermediate representation, Lcode. For all experiments in this thesis, the HP PA-RISC 1.1

instruction set was chosen as the base instruction set. Extensions to the base instruction set are

provided to support speculative and for later experiments predicated execution. The Mcode is

generated using all the superblock compilation techniques discussed in Chapter 3.

88

The �rst step is to schedule and register allocate the Mcode input for the target processor.

The target processor is allowed to have an arbitrary mix of function units and registers. For

example, if the target architecture can issue eight instructions per cycle, the scheduler reorders

code based upon this model. Following this stage, the code is in a form which could be the-

oretically executed by the target architecture. Since the target architecture is not available,

emulation code is inserted to model the target architecture on the emulation platform.

The code is then instrumented to gather branch direction and memory address data for

the simulation. The emulation code and the Mcode for the target processor are carefully

distinguished so only the Mcode is instrumented. Code generation of the �nal instrumented

Mcode and emulation code produces an executable �le. This executable serves two important

purposes. First, it can be run to ensure that correct program results are generated. This veri�es

that all the code transformations performed are indeed correct. Second, it generates the trace

information required to drive the simulator.

Simulation is performed on the target architecture's code using the memory address and

branch direction data from the executable. The result is an accurate measure of the number

of cycles required to execute the program on the target architecture. Due to the complexity of

simulation, uniform sampling is used to reduce the simulation time for the large benchmarks [83].

For the sampled benchmarks, a minimum of 10 million instructions are simulated, with at least

50 uniformly distributed samples of 200,000 instructions each. Testing has shown the sampling

error to be less than 1% for all benchmarks.

89

Table 5.1 Benchmark set.

Benchmark Description

008.espresso truth table minimization (SPEC CINT92)
022.li lisp interpreter (SPEC CINT92)
023.eqntott Boolean equation minimization (SPEC CINT92)
026.compress �le compression (SPEC CINT92)
052.alvinn neural network trainer (SPEC CFP92)
056.ear inner ear simulation (SPEC CFP92)
072.sc spreadsheet (SPEC CINT92)
cccp GNU C preprocessor, version 1.35
cmp �le comparison
eqn format math formulas for tro�
grep pattern search
lex lexical analyzer generator
qsort quick sort
tbl format table for tro�
wc count characters, words and lines
yacc parser generator

5.1.2 Benchmarks

All evaluations presented in this thesis use the set of sixteen benchmarks shown in Table 5.1.

The benchmarks consist of �ve of the six programs from the SPEC CINT92 suite. Additionally,

the two C benchmarks from the SPEC CFP92 suite, 052.alvinn, and 056.ear , are utilized. The

remaining nine benchmarks are common Unix utility programs. A short description of each

benchmark is also presented in Table 5.1. These benchmarks were chosen because of their

control-intensive nature and traditional lack of exploitable ILP.

The IMPACT compiler makes extensive use of execution pro�le information during the

compilation procedure. A description of the input �les used to generate the pro�le information

is presented in Table 5.2. For the benchmarks in which inputs were readily available, a set of 20

90

Table 5.2 Benchmark inputs used for pro�ling.

Benchmark Description of Pro�ling Inputs

008.espresso 20 truth tables
022.li 4 lisp �les (8-queens, 3 gabriel benchmarks)
023.eqntott 5 Boolean equations
026.compress 20 �les of varying size
052.alvinn 1 set of sensory input (SPEC reference input)
056.ear 1 sound �le (SPEC reference input)
072.sc 3 spread sheets (3 SPEC reference inputs)
cccp 20 C �les of varying size
cmp 20 pairs of �les with varying degrees of similarity
eqn 20 technical papers containing equations
grep 20 pairs of search strings and text �les
lex 5 lexers for C, Lisp, Pascal, awk and pic
qsort 1 random sequence of 102400 numbers
tbl 20 technical papers containing tables
wc 20 �les of varying size
yacc 10 grammars

random �les were selected to provide a wide range of training data. For the other benchmarks,

as many inputs as typically could be obtained were used for pro�ling.

The input �le used for each benchmark to collect performance data is presented in Table 5.3.

Overall, a large amount of care was taken to select a suitable input for measurement purposes.

Also, the measured input was chosen to be di�erent than all of the inputs on which the program

was pro�led to provide a more realistic evaluation. However, due to lack of available inputs,

three of the benchmarks, 052.alvinn, 056.ear , and 072.sc, were pro�led and measured on a

common input. For the SPEC benchmarks, one of the SPEC reference inputs was chosen. The

one exception was for 022.li , which used a scaled-down version of the SPEC reference input to

reduce the simulation time.

91

Table 5.3 Input for each benchmark used to do measurements.

Benchmark Description of Measured Input

008.espresso one of the SPEC reference inputs (bca.in)
022.li 7-queens
023.eqntott SPEC reference input
026.compress SPEC reference input
052.alvinn SPEC reference input
056.ear SPEC reference input
072.sc one of the SPEC reference inputs (loada2)
cccp the �le cccp.c from the GNU C Compiler Version 1.35
cmp two copies of cccp.c
eqn one large technical paper
grep the string \while" from cccp.c
lex IMPACT compiler's C lexer
qsort one random sequence of 102400 numbers
tbl one large technical paper
wc the �le cccp.c
yacc the grammar in c-parse.y from the GNU C Compiler Version 1.35

To provide a more detailed understanding of the characteristics of the benchmarks inves-

tigated in this thesis, the dynamic instruction mix is presented in Table 5.4. Instructions are

divided into �ve categories, memory load, memory store, integer ALU, oating-point ALU,

and branch. Furthermore, because instructions are weighted by their execution frequency, the

instruction mix is dynamic. The instruction set as previously described is an extended version

of the HP PA-RISC 1.1 as generated by the IMPACT compiler. For these data, only classical

optimizations are applied by the compiler. Therefore, superblock transformations have not

been done.

The most interesting data in the table are the relatively high frequencies of branches. Typi-

cally, researchers report about 20-25% of dynamic instructions are branches in integer programs,

whereas in this study, an average of greater than 32% of dynamic instructions are branches.

92

Table 5.4 Dynamic instruction mix for the benchmarks.

Benchmark Load Store IALU FALU Branch

008.espresso 0.242 0.027 0.493 0.000 0.238
022.li 0.345 0.129 0.217 0.000 0.310
023.eqntott 0.252 0.004 0.287 0.000 0.456
026.compress 0.245 0.120 0.387 0.000 0.248
052.alvinn 0.356 0.095 0.013 0.360 0.176
056.ear 0.262 0.153 0.115 0.304 0.166
072.sc 0.304 0.053 0.309 0.008 0.327
cccp 0.235 0.067 0.195 0.000 0.504
cmp 0.422 0.193 0.193 0.000 0.193
eqn 0.300 0.135 0.262 0.000 0.303
grep 0.235 0.076 0.096 0.000 0.593
lex 0.267 0.181 0.097 0.000 0.456
qsort 0.235 0.195 0.321 0.000 0.249
tbl 0.276 0.028 0.347 0.000 0.348
wc 0.255 0.194 0.220 0.000 0.331
yacc 0.253 0.035 0.348 0.000 0.364

Average 0.280 0.105 0.244 0.042 0.329

Two extreme cases, cccp and grep, consist of more than 50% branches. This di�erence is due to

several reasons. First, the HP PA-RISC 1.1 instruction set contains support for more powerful

instructions than many RISC instruction sets, such as compare-and-branch and post-increment

loads/stores. As a result, the overall number of instructions is reduced which tends to increase

the relative percentage of branches. Second, the high percentage of branches reects recent

compiler optimization advances to reduce the number of dynamic instructions. Compilers, such

as IMPACT, successfully target eliminating arithmetic and memory instructions with new op-

timization techniques. However, branch instructions are generally not eliminated. Again, the

relative frequency of branches is increased. The high frequency of branches observed in these

benchmarks is a strong motivation for the techniques presented in this thesis.

93

Table 5.5 Simulated processor architecture.

In-order issue superscalar processor with register interlocking
Uniform function units except branches (varied 1 to issue width)
Extended version of HP PA-RISC 1.1 instruction set

- Silent versions of all excepting instructions
- Predicated execution support

64 integer, 64 oating-point, 64 predicate registers
Dcache: perfect or 64K, direct mapped, blocking, 64 byte blocks,

12 cycle miss penalty, write-thru, no write allocate
Icache: perfect or 64K, direct mapped, blocking, 64 byte blocks,

12 cycle miss penalty
Bus: single transaction model with streaming support,

8 bytes/cycle bandwidth
BTB: 1K entries, direct mapped, 2-bit counter,

2 cycle misprediction penalty

It should be noted that the \average" data presented in Table 5.4 is the arithmetic mean.

This convention is used throughout this dissertation for all �gures and tables. Although a

harmonic mean is truly correct when taking the average of ratios, the arithmetic mean was

chosen because of its more simple and well-understood interpretation.

5.1.3 Processor model

The processor modeled for these experiments (target processor) is outlined in Table 5.5.

The target processor is an in-order issue superscalar processor with register interlocking. The

issue rate of the processor is varied from one to eight, where issue rate is the maximum number

of instructions the processor can fetch and issue per cycle. The processor is assumed to have

uniform function units except for the branches. Thus, there is no restriction on the type of

instructions that may be issued each cycle except for the branches. The cache model used for

each individual experiment is perfect unless speci�ed as 64k entries. The assumed instruction

latencies are those given in Table 5.6. These correspond to those of the HP PA-RISC 7100.

94

Table 5.6 Instruction latencies.

Function Latency Function Latency

Int ALU 1 FP ALU 2
memory load 2 FP multiply 2
memory store 1 FP divide (SGL) 8
branch 1 / 1 slot FP divide (DBL) 15

All experiments utilize either the restricted or general speculation model to support spec-

ulative code motion. Sentinel speculation was not used due to its scheduling complexity and

simulation overhead. The interested reader is referred to [78] for an experimental evaluation of

the sentinel speculation model.

5.2 Results

Performance improvement is presented in this section using a speedup calculation. Speedup

is computed by dividing the total execution cycles of the base con�guration by the total execu-

tion cycles of the evaluated con�guration. The base con�guration for all experiments presented

in this section is an issue-1 processor with basic block compilation support. The same cache

models are assumed for both con�gurations. Thus, for those experiments that utilize perfect

caches, the execution cycles for the base con�guration are derived using a perfect cache, whereas

for those experiments that use a �nite cache, the execution cycles for the base con�guration are

derived using the same sized �nite cache.

The importance of expanding the scope of optimization/scheduling beyond basic blocks

and utilizing speculative execution for ILP processors is shown in Figure 5.2. In this �gure, the

speedup obtained by increasing the issue rate of the target processor from two to eight is shown.

95

1

2

3

4

5

6

7

8

9

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

tb
l

w
c

ya
cc

A
ve

ra
ge

Benchmark

Sp
ee

du
p

Issue-2 Issue-4 Issue-8

Figure 5.2 Performance comparison of three processor models using basic block compilation
support.

The target processor has no restrictions on the combination of instructions that can be issued

in the same cycle and perfect caches are assumed. Code is optimized and scheduled using only

traditional basic block techniques. As shown, almost no performance gain is seen when the

processor resources are increased. This is attributable to the lack of ILP available in the basic

blocks of these benchmarks. This result could be anticipated, though. The instruction mix data

presented previously in Table 5.4 indicated that approximately 32% of dynamic instructions

are branches. This translates into basic blocks consisting of two to �ve instructions. With such

a small number of instructions, the available ILP is also very small.

5.2.1 E�ectiveness of speculative execution

Using the previous �gure as motivation, the experiment is repeated in Figure 5.3 with exten-

sions to overcome the performance limitations. The compilation scope is increased from basic

blocks to superblocks by using the superblock compilation techniques discussed in Chapter 3.

96

1

2

3

4

5

6

7

8

9

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

tb
l

w
c

ya
cc

A
ve

ra
ge

Benchmark

Sp
ee

du
p

Issue-2 Issue-4 Issue-8

15 27

Figure 5.3 Performance comparison of three processor models supporting the general perco-
lation model and using superblock compilation support.

Code motion support across basic block boundaries is facilitated by providing architectural

support for general speculation.

Figure 5.3 shows that the performance increase is dramatic. In many cases (most notably

for cmp), it is superlinear. These large performance improvements are due to a combination

of factors. First, the e�ciency of the code is increased by employing classical optimizations

on the superblocks. Second, ILP is increased by performing superblock ILP optimizations. As

a result of the increased ILP, large performance improvements are achieved by increasing the

available resources in the target processor. On average, the speedup of an issue-8 processor

with superblock compilation support is over six times that of an issue-1 processor with basic

block compilation support.

The performance improvement enabled with the addition of speculative execution support

is examined in more detail in Figures 5.4 - 5.6 for processor issue rates of 2, 4, and 8, respec-

97

1

2

3

4

5

6

7

8

9

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

tb
l

w
c

ya
cc

A
ve

ra
ge

Benchmark

Sp
ee

du
p

Basic Block
Superblock Restricted
Superblock General

Figure 5.4 Performance comparison of an issue-2 processor with varying levels of compiler
and speculation support.

1

2

3

4

5

6

7

8

9

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

tb
l

w
c

ya
cc

A
ve

ra
ge

Benchmark

Sp
ee

du
p

Basic Block
Superblock Restricted
Superblock General

15

Figure 5.5 Performance comparison of an issue-4 processor with varying levels of compiler
and speculation support.

98

1

2

3

4

5

6

7

8

9

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

tb
l

w
c

ya
cc

A
ve

ra
ge

Benchmark

Sp
ee

du
p

Basic Block
Superblock Restricted
Superblock General

11 27

Figure 5.6 Performance comparison of an issue-8 processor with varying levels of compiler
and speculation support.

tively. These experiments again assume no limitations on the combination of instructions which

may be executed each cycle and utilize perfect caches. These �gures isolate the e�ects of two

important components of performance. First, comparing the basic block and the superblock

restricted con�gurations shows the performance gain achieved by expanding the compiler opti-

mization/scheduling scope from basic blocks to superblocks. Second, comparing the superblock

restricted and the superblock general con�gurations shows the additional performance gain

provided by general speculation support in superblocks.

For an issue-2 processor (Figure 5.4), only a small performance gain is achieved with su-

perblock compilation support. A large percentage of this gain is also achieved with only re-

stricted speculation. This trend indicates the compiler is generally e�ective utilizing the proces-

sor resources without general speculation for narrow issue processors. With an issue-4 processor

(Figure 5.5), more substantial gains are achieved. Superblocks with restricted speculation ex-

99

pose new optimization and scheduling opportunities to improve performance. However, the

full e�ects of the optimizations are not realized without support for general speculation. The

majority of the performance gain is only achieved with general speculation support. This is

especially true for the superblock dependence removing optimizations. These optimizations

eliminate data dependences between instructions, but if the scheduler cannot move the instruc-

tions above branches, the scheduler cannot take full advantage of the potential ILP.

The trends with the issue-4 processor generally continue and become more magni�ed for the

issue-8 processor in Figure 5.6. For issue-8, on average only half the maximal performance level

(3x speedup) is achieved with superblocks and restricted speculation. By adding general specu-

lation support, the average performance level is doubled (6x speedup). Overall, the importance

of general speculation is shown to increase as the issue rate of the processor increases.

The code motion performed by the compiler with speculative execution support can signi�-

cantly a�ect the dynamic number of instructions executed by the target processor. Intuitively,

one would expect the number of dynamic instructions to increase since speculative code mo-

tion increases the execution frequency of instructions. The e�ect of general speculation on

the dynamic instruction count for an issue-8 processor is presented in Table 5.7. The table

contains the number of dynamic instructions executed for three con�gurations, basic block,

superblock restricted, and superblock general. In addition, the ratios of the instruction count

for superblock restricted and superblock general with respect to the basic block are provided

in parenthesis.

The table surprisingly indicates a relatively small increase in the number of dynamic in-

structions for most benchmarks. For some, such as cmp and grep, the number of dynamic

instructions is actually less than with speculative execution. The reason for this trend is the

100

Table 5.7 E�ect of speculation on the dynamic instruction count for an issue-8 processor.

Benchmark Basic Block Superblock Restricted Superblock General

008.espresso 379M 437M (1.16) 484M (1.28)
022.li 30M 29M (0.97) 31M (1.05)
023.eqntott 767M 845M (1.10) 1029M (1.34)
026.compress 71M 82M (1.16) 89M (1.25)
052.alvinn 2669M 3568M (1.34) 3573M (1.34)
056.ear 11366M 11077M (0.97) 11263M (0.99)
072.sc 93M 105M (1.12) 109M (1.17)
cccp 2376K 3522K (1.48) 3678K (1.55)
cmp 2751K 1539K (0.56) 932K (0.34)
eqn 41M 46M (1.12) 45M (1.09)
grep 1452K 1200K (0.83) 1282K (0.88)
lex 32M 33M (1.04) 35M (1.11)
qsort 40M 45M (1.11) 48M (1.18)
tbl 2529K 2391K (0.95) 2490K (0.98)
wc 1933K 1585K (0.82) 1491K (0.77)
yacc 36M 37M (1.02) 43M (1.17)

Average - - (1.05) - (1.09)

two competing e�ects. On the one end, additional optimization opportunities are enabled with

speculative execution, which tend to reduce the instruction count. These optimizations include

loop invariant code removal and global variable migration. For example, an invariant load in-

struction in a loop that is conditionally executed may not be safely moved out of a loop because

it may cause a spurious exception. However, with general speculation, such a load can be safely

moved out of the loop by using a silent version of the load. The opposing e�ect is the increase

in dynamic instructions caused by speculating an instruction above one or more branches. By

speculating the instruction, it executes regardless of the direction the branch takes. Specula-

tive code motion therefore increases the instruction count. Overall, the net of these competing

e�ects is the �nal reported dynamic instruction count.

101

Table 5.8 Speculative load characteristics for an issue-8 processor.

Benchmark Total Loads Speculative Loads

008.espresso 95M 63M (0.67)
022.li 10M 6681K (0.64)
023.eqntott 353M 287M (0.81)
026.compress 13M 8644K (0.64)
052.alvinn 950M 886M (0.93)
056.ear 2384M 2047M (0.86)
072.sc 32M 22M (0.69)
cccp 551K 356K (0.65)
cmp 271K 267K (0.98)
eqn 6924K 3640K (0.53)
grep 319K 300K (0.94)
lex 9739K 8492K (0.87)
qsort 13M 8036K (0.60)
tbl 1894K 1136K (0.60)
wc 171K 136K (0.80)
yacc 11M 9547K (0.83)

Average - - (0.75)

The most important class of instructions to speculate is the loads because they typically

have long latency and begin dependence chains. The use of speculative loads for an issue-

8 processor is presented in Table 5.8. The table contains the total dynamic loads in each

benchmark and the total dynamic loads which are speculative. The number in parenthesis is

the ratio of speculative loads to total loads. As shown in the table, an extremely large fraction

of the loads is speculative. Values range from a low of 60% for qsort and tbl to a high of 98%

for cmp. Clearly, the compiler takes strong advantage of speculative loads to achieve a compact

schedule.

102

5.2.2 E�ectiveness of superblock optimizations

The individual performance contributions of superblock formation and superblock ILP op-

timizations are broken down in Figure 5.7. For both superblock con�gurations, the processor

is assumed to support general speculation, has no limitations on the combination of instruc-

tions that may be issued each cycle, and has perfect caches. From the �gure, the dominant

e�ect that superblock ILP optimizations have on the overall performance is shown. Superblock

formation alone generally yields only modest performance gains. However, with the addition

of superblock ILP optimizations, large performance gains are achieved. Several of the most

distinct examples of this behavior occur for 056.ear , lex , and yacc. This trend could be antic-

ipated, though. Superblock formation only combines basic blocks into superblocks increasing

the potential for instruction overlap by enlarging the scope. Overlap is still signi�cantly limited

by data dependences and the inability to exploit loop-level ILP, whereas the superblock ILP

optimizations, such as loop unrolling and induction variable expansion, aggressively transform

the superblocks to increase ILP in loops and straight-line code. As a result, the scheduler has

many more opportunities to reorder instructions and achieve a compact schedule.

For several of the benchmarks, the general trend is not observed. For example, for 022.li and

eqn, the majority of the overall performance is achieved with superblock formation. For these

benchmarks, the superblock optimizations are relatively ine�ective at increasing ILP. This can

be attributed primarily to memory disambiguation di�culties and inherent data dependences

which could not be broken.

The major side e�ect of superblock formation and superblock optimization is the code

expansion that is incurred. The code expansion resulting from superblock techniques is pre-

sented in Figure 5.8. The size has been normalized with respect to the static size of the basic

103

1

2

3

4

5

6

7

8

9

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

tb
l

w
c

ya
cc

A
ve

ra
ge

Benchmark

Sp
ee

du
p

Basic Block
Superblock Formation
Superblock ILP Optimization

27

Figure 5.7 E�ectiveness of superblock formation and optimization for an issue-8 processor.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

tb
l

w
c

ya
cc

A
ve

ra
ge

Benchmark

C
od

e
E

xp
an

si
on

Superblock Formation Superblock ILP Optimization

5.7

Figure 5.8 Code expansion of superblock formation and optimization.

104

block code. From the �gure, superblock formation generally only produces modest code size

increases. On average, an approximately 10% increase is observed. The largest increases occur

for 008.espresso, qsort , and tbl , each experiencing slightly more than a 20% growth.

In contrast to superblock formation, a relatively large increase in static code size occurs

with superblock ILP optimizations. The average measured increase is about 2.1 times. The

large increases are mainly due to loop unrolling. For an issue-8 processor, loops are generally

unrolled 4 to 16 times depending on the static and pro�le characteristics of the loop. Branch

target expansion also tends to signi�cantly increase code size. The optimizations do utilize

pro�le information to control code expansion by expanding only important sections of the code.

However, the overall size increase is still signi�cant. It should be noted that the large code

expansion values reported are a bit misleading due to the small size of some of the benchmarks.

Four of the �ve benchmarks experiencing the largest code expansions, namely 052.alvinn, cmp,

qsort , and wc, are all less than 300 lines of C source code. Therefore, increasing the code size

of these even �ve times is not that serious since the overall size is still extremely manageable.

5.2.3 Cache e�ects

Up to this point in the evaluation of speculative execution and superblock techniques, a

perfect cache model has been used. In this section, this restriction is removed to study the e�ects

of �nite cache models on performance. Additionally, the e�ect of superblock optimizations and

speculative code motion on the instruction and data caches is examined.

The experiment presented earlier with perfect caches in Figure 5.3 is repeated in Figure 5.9

with 64K instruction and data caches. Note that the base con�guration also uses 64K caches

to obtain the cycle count total for this experiment. The target processor has no limitations on

105

1

2

3

4

5

6

7

8

9

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

tb
l

w
c

ya
cc

A
ve

ra
ge

Benchmark

Sp
ee

du
p

Issue-2 Issue-4 Issue-8

15 27

Figure 5.9 Performance comparison of three processor models with 64K caches supporting
general speculation and using superblock compilation support.

the combination of instructions that can be issued each cycle and supports general speculation.

Furthermore, superblock compilation techniques are used for all the evaluated con�gurations.

Several important points can be made by contrasting the perfect and �nite cache exper-

iments. First, the general trends visible in the perfect cache experiment are maintained in

the �nite cache experiment. The compiler takes advantage of the ILP exposed in the code to

achieve continual performance improvements as the available processor resources are increased.

However, the speedup values reported are reduced for all issue rates. This result is expected

though, because as one increases both the execution cycles of the base con�guration as well as

the evaluated con�guration, their ratio reduces.

A second point is that the �nite cache has a larger negative e�ect on performance as the

issue rate of the target processor is increased. This trend occurs because as the issue rate of

the processor increases, the total execution cycles decrease. Assuming the number of cycles

106

1

2

3

4

5

6

7

8

9

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

tb
l

w
c

ya
cc

A
ve

ra
ge

Benchmark

Sp
ee

du
p

Perfect Caches 64K Caches

27 26

Figure 5.10 Performance comparison of perfect cache model and the 64K cache model for an
issue-8 processor.

stalled for cache misses remains relatively constant, a larger fraction of the total cycles is spent

stalling for cache misses. Additionally, as the issue rate of the processor increases, each stalled

cycle represents a loss of a larger number of potentially executed instructions. For example, an

issue-8 processor loses eight instructions for every stalled cycle, whereas an issue-2 processor

only loses two instructions. As a result, the cost of each stalled cycle grows in proportion to

increases in the available processor resources.

The actual amount of performance lost due to �nite caches is shown more clearly in Fig-

ure 5.10. For this experiment, the execution cycles for both perfect and �nite caches are normal-

ized with respect to the base con�guration with perfect caches. Again, superblock compilation

techniques are used for both experimental con�gurations. For many of the benchmarks, only a

small performance loss is incurred with the �nite cache. The instruction and data working sets

for most of these benchmarks have little di�culty �tting into a 64K cache.

107

However, for several of the benchmarks, the cost is large. For example in 026.compress,

performance drops approximately 2.5 times with a �nite cache, which is due to a high frequency

of data cache misses (24.8% miss rate). The working set of 026.compress is extremely large

and causes thrashing in a 64K direct-mapped data cache. Another benchmark, 052.alvinn, has

a relatively low miss rate (3.5%), but the combination of the extremely parallel benchmark

and with a large fraction of loads (35.6% from Table 5.4) causes the large performance loss.

Noticeable performance losses are also observed for 072.sc and qsort primarily because of data

cache stalls.

The e�ects of speculative code motion on the caches are examined in more detail in Ta-

ble 5.9. In the table, the number of instruction and data cache misses is reported for restricted

and general speculation. The ratio of each data entry for general speculation with respect to

restricted speculation is shown in parenthesis. To magnify the e�ects, a 4K instruction cache

and perfect data cache are used for the instruction cache evaluation. In correspondence, a

perfect instruction cache and a 4K data cache are used for the data cache evaluation. For both

experiments, an issue-8 processor is assumed.

From Table 5.9, the e�ect of general speculation on instruction cache misses varies across

the benchmarks. The predominant e�ect is an increase in the number of instruction cache

misses caused by speculating instructions above branches. Speculative code motion causes

instructions to be executed more frequently. As a result, the instruction working set grows,

causing an increase in the number of cache misses. In contrast, seven of the benchmarks show

the counterintuitive result a decrease in instruction cache misses with general speculation.

This behavior is primarily attributable to small di�erences in the code layout resulting from

additional superblock optimizations enabled with general speculation. The varied code layout

108

Table 5.9 E�ect of speculation on the instruction and data caches for an issue-8 processor.

Icache Misses Dcache Misses
Benchmark Restricted General Restricted General

008.espresso 2523K 2410K (0.96) 7131K 7730K (1.08)
022.li 1273K 1074K (0.84) 900K 986K (1.10)
023.eqntott 641K 655K (1.02) 12M 12M (0.96)
026.compress 1470K 1735K (1.18) 3956K 4973K (1.26)
052.alvinn 334K 322K (0.96) 78M 71M (0.92)
056.ear 33M 27M (0.80) 110M 104M (0.95)
072.sc 1675K 1400K (0.84) 2740K 3424K (1.25)
cccp 41K 45K (1.10) 29K 28K (1.00)
cmp 26 32 (1.23) 85K 32K (0.38)
eqn 2431K 2238K (0.92) 775K 742K (0.96)
grep 70 73 (1.04) 2966 3061 (1.03)
lex 77K 107K (1.38) 288K 316K (1.10)
qsort 289 254 (0.88) 446K 410K (0.92)
tbl 54K 55K (1.02) 33K 42K (1.26)
wc 26 33 (1.27) 3223 2536 (0.79)
yacc 342K 426K (1.24) 790K 1060K (1.34)

Average - - (1.04) - - (1.02)

causes fewer collisions in the directed mapped cache. Additionally, fewer collisions occur in

the BTB introducing fewer branch prediction misses. Fewer BTB misses indirectly decrease

the instruction cache misses by reducing the frequency at which instructions are fetched down

the wrong branch path. These e�ects magni�ed by the small instruction cache result in the

observed reduction in instruction cache misses.

The e�ects of general speculation on the data cache misses are also shown in Table 5.9.

The predominant trend is an increase in misses with general speculation. Large increases are

observed for 026.compress, 072.sc, tbl , and yacc. This is a direct result of speculating load

instructions during scheduling. With general speculation, the compiler can freely speculate

loads to achieve a compact schedule. These speculative loads introduce new cache misses which

109

did not exist with restricted speculation. On the other hand, two of the benchmarks, cmp

and wc, show a large reduction in cache accesses and misses with general speculation. This

behavior is due to the substantial number of superblock optimizations enabled with general

speculation. A large fraction of the loads and stores are eliminated from important loops with

loop invariant code removal and global variable migration. These optimizations are not possible

with restricted speculation because the loads are conditionally executed and may introduce

spurious exceptions. With fewer loads and stores in the important loops, the number of data

cache misses is signi�cantly reduced.

The e�ects of superblock ILP optimizations on the instruction and data caches are presented

in Table 5.10. The same experimental parameters and data format as the previous experiment

(Table 5.9) are used. From the table, large increases in the number of instruction cache misses

are observed. This is primarily due to the set of superblock enlarging optimizations that are

applied, including loop unrolling and branch target expansion.

The most notable increases occur for 026.compress and 052.alvinn. Both of these bench-

marks are relatively small and their working sets have little di�culty �tting into 4K instruction

caches with only superblock formation applied. However, after superblock ILP optimizations,

their instruction working sets exceed the 4K capacity of the cache, and large increases in misses

is the result. It is interesting to note that loop unrolling is the major source of increase for

052.alvinn, which has most of its inner loops unrolled 16 times. Without loop unrolling, all

of the inner loops can simultaneously reside in the instruction cache, but afterwards the loops

interfere with one another causing a large number of misses. In comparison, branch target

expansion is the optimization which causes the large increase in instruction cache misses for

026.compress. There are a large number of important superblocks each of which is judiciously

110

Table 5.10 E�ect of superblock ILP optimization on the instruction and data caches for an
issue-8 processor.

Icache Misses Dcache Misses
Benchmark SB Formation SB Optimization SB Formation SB Optimization

008.espresso 1465K 2410K (1.65) 7582K 7730K (1.02)
022.li 1104K 1074K (0.97) 954K 986K (1.03)
023.eqntott 699K 655K (0.94) 11M 12M (1.02)
026.compress 1169 1735K (1483.02) 3787K 4973K (1.31)
052.alvinn 2900 322K (111.14) 81M 71M (0.88)
056.ear 2512K 27M (10.76) 189M 104M (0.55)
072.sc 574K 1400K (2.44) 2880K 3424K (1.19)
cccp 9807 45K (4.66) 27K 28K (1.05)
cmp 10 32 (3.20) 89K 32K (0.36)
eqn 1094K 2238K (2.05) 811K 742K (0.91)
grep 23 73 (3.17) 2899 3061 (1.06)
lex 16K 107K (6.69) 302K 316K (1.05)
qsort 106 254 (2.40) 396K 410K (1.04)
tbl 44K 55K (1.25) 35K 42K (1.22)
wc 14 33 (2.36) 8770 2536 (0.29)
yacc 62K 426K (6.78) 799K 1060K (1.33)

Average - - (102.72) - - (0.96)

enlarged with branch target expansion. Afterwards, interference occurs among the superblocks

causing instruction cache misses to increase. One should note that the average reported in

Table 5.10 is signi�cantly skewed by the large increases for 026.compress and 052.alvinn.

The e�ects of superblock ILP optimizations on the data cache are also shown in Table 5.10.

For most of the benchmarks, an increase in data cache misses is obtained with superblock ILP

optimization. This is attributed to the increase in speculation opportunities created by the

optimizations. Loop unrolling combined with register renaming, induction variable expansion,

and accumulator variable expansion enable loop iterations to be tightly overlapped using specu-

lation. As previously mentioned, speculation of loads increases their execution frequency which

leads to increases in data cache misses. Without these optimizations, only limited speculation

111

opportunities exist due to the large number of data and control dependences. Thus, the number

of speculative loads is small without superblock ILP optimizations.

Several of the benchmarks show a drastic reduction in data cache misses with superblock

ILP optimizations. Two examples of this behavior occur for cmp and wc. As previously

mentioned, this is mostly due to the increased opportunities for optimizations that remove

loads and stores from loops, namely loop invariant code removal and global variable migration.

These optimizations are not applicable in the traditional sense because hazardous subroutine

calls exist in the loop bodies. As a result, the optimizer must be conservative and not remove any

memory instructions. With superblock formation, the hazardous instructions are excluded from

the superblock thereby exposing new optimization opportunities. The optimized superblock

loop has the majority of the loads and stores eliminated for these two benchmarks, resulting in

large decreases in data cache misses.

The interested reader is referred to [32] for more evaluations on the e�ects of speculation

on instruction and data caches. Also, for more evaluation of code expanding optimizations on

the instruction cache, the reader is referred to [84].

5.2.4 Limitations of speculative execution in superblocks

This section has illustrated the performance improvement potential of superblocks, specu-

lative execution in superblocks, and superblock ILP optimizations. Over the traditional basic

block compilation techniques, large performance improvements are observed. However, there

are several factors which motivate enlarging the compilation scope beyond superblocks to ex-

ploit ILP. These include a signi�cant amount of under-utilized resources in wide issue proces-

112

0

1

2

3

4

5

6

7

8

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

tb
l

w
c

ya
cc

A
ve

ra
ge

Benchmark

IP
C

Executed IPC Unused IPC

Figure 5.11 Average executed and unused instructions per cycle for an issue-8 processor using
superblock compilation techniques.

sors. Also, the superblock performance relies heavily on support to execute a large number of

branches each cycle. This section examines these limitations in more detail.

The average fraction of executed and unused instructions per cycle (IPC) for an issue-

8 processor achieved with superblock compilation techniques is presented in Figure 5.11. The

experimental processor is assumed to have perfect caches and no restrictions on the combination

of instructions that may be issued in a cycle. The data in the �gure show that across the

benchmarks there is a substantial fraction of idle processor resources. Only three benchmarks,

052.alvinn, cmp, and grep, sustain greater than six IPC. Six of the benchmarks utilize less than

half the available resources. It should be noted that the executed IPC in the �gure consists

of any issued instructions, both useful and useless. The �gure clearly shows that there is a

substantial opportunity to increase performance beyond what is achieved with superblocks and

speculation alone.

113

Table 5.11 Superblock characteristics.

SB Completion Ratio
Benchmark SB size 1.00 � 0.90 � 0.70 � 0.50 � 0.30

008.espresso 34.2 0.34 0.39 0.50 0.61 0.81
022.li 18.2 0.59 0.63 0.72 0.75 0.83
023.eqntott 19.3 0.46 0.46 0.47 0.53 0.63
026.compress 30.9 0.44 0.45 0.52 0.57 0.75
052.alvinn 88.1 0.96 0.97 0.98 0.98 0.99
056.ear 46.1 0.70 0.70 0.74 0.77 0.81
072.sc 28.5 0.40 0.40 0.43 0.62 0.82
cccp 21.1 0.62 0.62 0.65 0.72 0.89
cmp 57.8 0.78 0.78 0.83 0.87 0.92
eqn 29.6 0.59 0.59 0.62 0.67 0.76
grep 53.6 0.68 0.70 0.74 0.81 0.87
lex 37.6 0.63 0.64 0.66 0.75 0.82
qsort 19.8 0.58 0.58 0.58 0.66 0.77
tbl 16.1 0.74 0.76 0.80 0.85 0.92
wc 24.6 0.44 0.57 0.71 0.79 0.95
yacc 26.7 0.48 0.49 0.54 0.67 0.86

Average 34.5 0.59 0.61 0.66 0.73 0.84

In order to more deeply understand the source of the idle resources, the characteristics of

the superblocks are examined in more detail in Table 5.11. The �rst column of data contains

the average number of instructions in each superblock weighted by the execution frequency of

the superblock. These data show the average size of the superblocks presented to the scheduler

for each benchmark. The table shows that the average superblock size is rather small for most

of the benchmarks. Considering that the scheduler is trying to produce a compact schedule for

an issue-8 processor, 20-40 instructions are typically insu�cient to fully utilize the resources

due to moderate-length dependence chains.

An important behavior to note when comparing the superblock size data and the executed

IPC data in Figure 5.11 is the correlation between large superblock size and high executed IPC

114

values. The three benchmarks with the largest average size, 052.alvinn, cmp, and grep, also

have the largest executed IPC. Correspondingly, all of the benchmarks with an average size of

less than 20 instructions, execute less than four IPC. This illustrates the need to expand the

scheduling scope beyond superblocks in order to examine a larger number of instructions to

�nd su�cient ILP.

The remaining data in Table 5.11 show the weighted average completion ratio of superblocks.

The completion ratio is de�ned as the percentage of time a speci�ed fraction of the superblock is

executed. For example, the \�0.90" column for 008.espresso indicates that 39% of the time 90%

or more of the instructions in the superblocks are executed. Looking at the data inversely, 61%

of the time the superblock is exited before 90% of the instructions are executed. From the table,

on average more than 50% of the superblock is only executed 73% of the time. This indicates

that superblocks are exited prematurely through a side exit a large fraction of the time. This is

particularly undesirable because the superblock is optimized and scheduled assuming the entire

superblock will execute. Much of the potential performance gained through speculation is lost

when a superblock side exit is taken. All speculative instructions which originated below the

taken side exit are wasted instructions. The ideal behavior is displayed by 052.alvinn: large

superblocks that predominantly execute to completion.

Superblocks are inherently limited by the restriction that ILP may only be exploited along

a single path of control. For many control-intensive programs, no single highly dominant path

of execution exists. The data in Table 5.11 shows the need to generalize the superblock tech-

niques to overlap the execution of multiple paths. By exploiting ILP along multiple paths,

more opportunities for instruction overlap are created. Additionally, execution can be e�ec-

115

tively maintained within the compilation structure preventing the early exit problem seen with

superblocks.

An assumption used throughout the experiments up to this point is that the processor can

execute any combination of instructions each cycle, including branches. Thus for an issue-8

processor, up to 8 branches can be issued simultaneously. This assumption though is not likely

to be met with future ILP processors. Most next generation superscalar processors, such as HP

PA-8000, Intel P6, and Sun UltraSPARC, are issue-4 and can process a maximum of one branch

each cycle [85],[86]. The Multiow Trace series machine is an exception to this rule; it could

process up to four branches each cycle [73]. However, one can expect the number of branches

executed each cycle to remain small due to design and implementation di�culties caused by

executing multiple branches per cycle.

The performance of the superblock techniques utilizing general speculation is presented in

Figure 5.12 for an issue-8 processor as the maximum number of branches allowed each cycle is

varied from eight to one. The �gure shows a substantial drop-o� across all benchmarks. On

average, performance is cut by approximately a factor of two when the number of branches is

reduced from eight to one. The benchmarks showing the largest e�ects are cmp and grep, where

the performance losses are factors of 4 and 3.5, respectively. Much of the large performance gains

that were achieved for an issue-8 processor are lost when the processor can only execute 1 or 2

branches each cycle. This behavior occurs because with superblock scheduling, branches tend to

get clustered at the bottom of superblocks. The branches are typically data dependent on one or

more memory and arithmetic instructions. As a result, the computation instructions are pushed

near the top of the superblock and overlapped. The branches are pushed downwards until a

time at which their source operands are available. The net result is a long chain of branches

116

1

2

3

4

5

6

7

8

9

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

tb
l

w
c

ya
cc

A
ve

ra
ge

Benchmark

Sp
ee

du
p

8-BR 4-BR 2-BR 1-BR

27 20 12

Figure 5.12 E�ect of reducing the maximum number of branches executed per cycle for an
issue-8 processor.

at the end of each superblock that must be processed. As the branch execution resources are

constrained, the schedule lengths of the superblocks are expanded and performance loss results.

The data in Figure 5.12 show that branch resources quickly become the performance bot-

tleneck as their availability is decreased. This provides compelling motivation to reduce the

number of branches in the instruction stream. If a signi�cant portion of the branch instructions

could be eliminated, the branch resource bottleneck is likely to disappear.

The branch problem is compounded by the tendency to increase the fraction of branches

in the instruction stream as more advanced optimization techniques are applied. Advanced

optimizations, such as superblock classical optimizations, tend to focus on eliminating memory

and ALU instructions. However, few optimizations address the reductions of the number of

branches. The net result is an increase in the percentage of instructions that are branches.

This behavior is illustrated by comparing the dynamic instruction mixes with only classical

117

Table 5.12 Dynamic instruction mix after superblock optimizations.

Benchmark Load Store IALU FALU Branch

008.espresso 0.228 0.027 0.520 0.000 0.225
022.li 0.323 0.137 0.226 0.000 0.313
023.eqntott 0.223 0.004 0.402 0.000 0.371
026.compress 0.201 0.098 0.450 0.000 0.252
052.alvinn 0.349 0.093 0.028 0.357 0.173
056.ear 0.209 0.171 0.121 0.313 0.186
072.sc 0.255 0.042 0.383 0.011 0.310
cccp 0.189 0.055 0.328 0.000 0.427
cmp 0.265 0.027 0.118 0.000 0.589
eqn 0.197 0.119 0.319 0.000 0.365
grep 0.202 0.092 0.146 0.000 0.560
lex 0.253 0.179 0.119 0.000 0.450
qsort 0.204 0.186 0.379 0.000 0.230
tbl 0.311 0.033 0.279 0.000 0.377
wc 0.123 0.131 0.331 0.000 0.415
yacc 0.240 0.035 0.349 0.000 0.376

Average 0.236 0.089 0.281 0.043 0.351

optimizations and with additional superblock optimizations. The dynamic instruction mix

with classical optimizations was presented earlier in Table 5.4, and the dynamic instruction

mix after superblock optimizations is shown in Table 5.12. Again, instructions are broken

down into �ve categories, memory load, memory store, integer ALU, oating-point ALU, and

branch. It should be noted that the e�ects of all superblock optimizations (classical and ILP)

are included in Table 5.12. Therefore, the code is not primarily optimized for redundancy

elimination. The focus of many of the transformations is to remove dependences to increase

ILP in the superblocks.

A comparison of the data in Tables 5.4 and 5.12 shows that, on average, superblock opti-

mizations signi�cantly reduce the fraction of loads and stores, while increasing the fraction of

ALU and branch instructions. For instance, the average fraction of loads drops from 0.280 to

118

0.236, whereas the average fraction of branches rises from 0.329 to 0.351. The most notable

increase in the fraction of branches occurs for cmp, which increases from 0.193 to 0.589. Recall

from previous discussions that a large fraction of the loads and stores are removed from the in-

ner loop of cmp after superblock formation by applying loop invariant code removal and global

variable migration. With the removal of most of the loads and stores, the fraction of branches

in the loop rises dramatically. Signi�cant increases in the fraction of branches also occur for

eqn and wc for similar reasons.

Not all the benchmarks show increases in the fraction of branches. One notable exception

occurs for 023.eqntott , in which the fraction of branches is reduced from 0.456 to 0.371. For this

benchmark, superblock formation exposes an additional opportunity for constant propagation in

the most frequently executed inner loop. Following constant propagation, one of the branches is

left with compile-time constants for source operands, allowing it to be evaluated and eliminated.

As a result, a branch is eliminated from each iteration of the important loop, substantially

reducing the fraction of branches. Despite some optimization opportunities such as this, a

large fraction of the dynamic instructions are branches for all the benchmarks. This indicates

that more widely applicable techniques are needed to eliminate branches from the instruction

stream.

In summary, speculative execution in superblocks alone is limited by several factors. First,

there are a large number of resources which cannot be �lled by the superblock techniques alone.

Thus, there is a wide range of potential performance improvement beyond that achieved with

superblock techniques. The limited ILP in superblocks can be attributed to superblocks typ-

ically not being large enough and having frequently taken side exits. These characteristics

motivate expanding the compiler scope from a single path of execution to overlapping multiple

119

execution paths. The second factor is the large performance loss incurred when the number

of branches that a wide-issue processor can execute are reduced. The instruction stream con-

tains a high fraction of branches, and when the number of branches which may be executed is

limited, the branch resource bottleneck is exposed. This factor motivates the need for gener-

alized techniques to eliminate branches from the instruction stream to overcome the resource

bottlenecks.

These limitations lead directly into the remainder of this thesis, which explores the use of

predicated execution. Predicated execution support enables the compiler to eliminate branches

from the instruction stream. Also, predication provides an e�cient mechanism for the compiler

to exploit ILP along multiple execution paths. The next two chapters discuss the architecture

and compiler support for predicated execution that is explored in this dissertation.

120

CHAPTER 6

PREDICATED EXECUTION

As discussed in the previous chapter, utilizing speculative execution alone to extract ILP

in the presence of branches has performance limitations. The fundamental limitation is that

speculation eliminates dependences between instructions and branches, but does not remove

the branches themselves. To overcome this drawback, predicated execution is investigated.

Predicated or guarded execution enables a compiler to eliminate branches from the instruction

stream. As a result, many of the di�culties introduced by branches can be eliminated. This

chapter addresses the architectural support required to accomplish predicated execution. First,

an overview of the predicated execution concept and its uses is provided. A brief survey of

predicated execution support in present and past processors is also presented. Next, the archi-

tectural extensions required to provide e�cient support for predicated execution are described.

The extensions are applied to the base IMPACT architecture that was used for the experiments

presented in the previous chapter.

6.1 Overview

Predicated execution refers to the conditional execution of instructions based on the value

of a Boolean source operand, referred to as the predicate. If the value of the predicate is true

(a logic 1), the instruction is allowed to execute normally; otherwise (a logic 0), the instruction

is nulli�ed, preventing it from modifying the processor state. Figure 6.1 contains a simple

121

for (i = 0; i < 100; i++) mov r1,0 mov r1,0
if (A[i] � 50) mov r2,0 mov r2,0

j = j + 1; ld i r3,A,0 ld i r3,A,0
else L1: L1:

k = k + 1; ld i r4,r3,r2 ld i r4,r3,r2

bgt r4,50,L2 pgt p1(U),p2(U),r4,50
add r5,r5,1 add r5,r5,1 (p2)
jmp L3 add r6,r6,1 (p1)

L2: add r1,r1,1
add r6,r6,1 add r2,r2,4

L3: blt r1,100,L1
add r1,r1,1
add r2,r2,4
blt r1,100,L1

(a) (b) (c)

Figure 6.1 Example of if-conversion, (a) source code segment, (b) assembly code segment,
(c) assembly code segment after if-conversion.

example to illustrate the concept of predicated execution. For each iteration of the loop in

Figure 6.1(a), either the value of j or k is conditionally incremented. The basic compiler

transformation to exploit predicated execution is known as if-conversion [19],[20]. If-conversion

replaces conditional branches in the code with comparison instructions that de�ne one or more

predicates. Instructions control dependent on the branch are then converted to predicated

instructions, utilizing the appropriate predicate value. In this manner, control dependences are

converted to data dependences.

Figures 6.1(b) and 6.1(c) show the assembly code for the loop example before and after if-

conversion. Note that the variables j and k have been placed in registers r5 and r6 , respectively.

The �rst conditional branch, bgt , in Figure 6.1(b) is replaced by a predicate de�ne instruction,

pgt , in Figure 6.1(c). The actual semantics of the pgt instruction will be discussed later in this

chapter. It is su�cient for this example to say that the predicate p1 is assigned the value 1 if

r4 > 50 and 0 otherwise. The predicate p2 is assigned the complement of p1 . The instructions

122

incrementing the values of r5 and r6 are converted to predicated instructions, associated with

predicates p1 and p2 , respectively. For each loop iteration, either r5 and r6 will be incremented

by the predicated add instructions, contingent on the results of the predicate de�ne instruction.

Also, note that the jump instruction becomes unnecessary after if-conversion.

Predicated execution exists in some format in many current and past systems. The remain-

der of this section presents a survey of commercial systems that contain predicated execution

support.

6.1.1 Predicated execution support in the Cydra 5

The Cydra 5 system is a VLIW, multiprocessor system utilizing a directed-dataow archi-

tecture [18],[74]. Each Cydra 5 instruction word contains seven operations, each of which may

be individually predicated. An additional source operand added to each operation speci�es a

predicate located within the predicate register �le. The predicate register �le is an array of

128 Boolean (one bit) registers. Within the processor pipeline after the operand fetch stage,

the predicate speci�ed by each operation is examined. If the content of the predicate register

is one, the instruction is allowed to proceed to the execution stage; otherwise, it is squashed.

Essentially, operations whose predicates are zero are converted to no ops prior to entering the

execution stage of the pipeline. The predicate speci�ed by an operation must thus be known

by the time the operation leaves the operand fetch stage.

The content of a predicate register may only be modi�ed by one of three operations: stu� ,

stu� bar , or brtop. The stu� operation takes as operands a destination predicate register and

a Boolean value as well as an input predicate register. The Boolean value is typically produced

using a comparison operation. If the input predicate register is one, the destination predicate

123

mov r1,0
mov r2,0
ld i r3,A,0

L1:
ld i r4,r3,r2
gt r6,r4,50
stu� p1,r6
stu� bar p2,r6
add r5,r5,1 (p2)
add r6,r6,1 (p1)
add r1,r1,1
add r2,r2,4
blt r1,100,L1

Figure 6.2 Example of if-then-else predication in the Cydra 5.

register is assigned the Boolean value. Otherwise, destination predicate is assigned to 0. The

stu� bar operation functions in the same manner, except the destination predicate register is set

to the inverse of the Boolean value when the input predicate value is one. The brtop operation

is used for loop control in software pipelined loops and sets the predicate controlling the next

iteration by comparing the contents of a loop iteration counter to the loop bound.

Figure 6.2 shows the previous example after if-conversion for the Cydra 5. To set the

mutually exclusive predicates for the di�erent execution paths shown in this example requires

three instructions. First, a comparison must be performed, followed by a stu� to set the

predicate register for the true path (predicated on p1) and a stu� bar to set the predicate

register for the false path (predicated on p2). This results in a minimum dependence distance

of 2 from the comparison to the �rst possible reference of the predicate being set.

In the Cydra 5, predicated execution is integrated into the optimized execution of mod-

ulo scheduled inner loops to control the prologue, epilogue, and iteration initiation [61],[87].

Predicated execution in conjunction with rotating register �les eliminates almost all code ex-

124

pansion otherwise required for modulo scheduling. Predicated execution also allows loops with

conditional branches to be e�ciently modulo scheduled.

6.1.2 Predicated execution support in ARM

The Advanced RISC Machines (ARM) processors consist of a family of processors, which

specialize in low cost and very low power consumption [88]. They are targeted for embedded

and multi-media applications. The ARM instruction set architecture supports the conditional

execution of all instructions. Each instruction has a four bit condition �eld that speci�es the

context for which it is executed. By examining the condition �eld of an instruction and the

condition codes in a processor status register, the execution condition of each instruction is

calculated. The condition codes are typically set by performing a compare instruction. The

condition �eld speci�es under what comparison result the instruction should execute, such as

equals, less than, or less than or equals. When the compare instruction result contained in the

processor status register matches the condition �eld, the instruction is executed. Otherwise, the

instruction is nulli�ed. With this support, the ARM compiler is able to eliminate conditional

branches from the instruction stream.

6.1.3 Limited predicated execution support in other systems

Many other contemporary processors o�er some form of limited support for predicated ex-

ecution. A conditional move instruction is provided in the DEC Alpha, SPARC V9, and Intel

Pentium Pro processor instruction sets [76],[89],[90]. A conditional move is functionally equiv-

alent to that of a predicated move. The move instruction is augmented with an additional

source operand which speci�es a condition. As with a predicated move, the contents of the

source register are copied to the destination register if the condition is true. Otherwise, the

125

instruction does nothing. The DEC GEM compiler can e�ciently remove branches utilizing

conditional moves for simple control constructs [91]. The HP PA-RISC instruction set provides

all branch, arithmetic, and logic instructions the capability to conditionally nullify the subse-

quent instruction [75]. This feature is utilized extensively in the IMPACT compiler to emulate

predicated execution support on the HP platform. This will be discussed more extensively in

Chapter 8.

The Multiow Trace 300 series machines supported limited predicated execution by provid-

ing select instructions [60]. Select instructions provide more exibility than conditional moves

by adding a third source operand. The semantics of a select instruction in C notation are as

follows:

select dest,src1,src2,cond

dest = ((cond) ? src1 : src2)

Unlike the conditional move instruction, the destination register is always modi�ed with a

select instruction. If the condition is true, the contents of src1 are copied to the destination;

otherwise, the contents of src2 are copied to the destination register. The ability to choose

one of two values to place in the destination register allows the compiler to e�ectively choose

between computations from \then" and \else" paths of conditionals based upon the result of

the appropriate comparison.

Vector machines have had support for conditional execution using mask vectors for many

years [92]. A mask of a statement S is a logical expression whose value at execution time speci�es

whether or not S is to be executed. The use of mask vectors allows vectorizing compilers to

vectorize inner loops with if-then-else statements.

126

6.2 Architectural Support for Predicated Execution

An architecture supporting predicated execution must be able to conditionally nullify the

side e�ects of selected instructions based on the value of its predicate. Additionally, the ar-

chitecture must support e�cient computation of predicate values. The architecture chosen

for modi�cation to support predicated execution, the IMPACT architecture model, is a stati-

cally scheduled, in-order issue, superscalar processor supported by the IMPACT compiler. The

predicated execution model used is based upon those of the Cydra 5 and the HPL PlayDoh

architectures [18],[42]. This section will present the base architecture and the proposed modi-

�cations for predicated execution to the instruction set and microarchitecture.

6.2.1 IMPACT architecture model

The baseline architecture, shown in Figure 6.3, is composed of the processor, instruction

cache and data cache sharing a common memory data bus, and the main memory subsystem.

The instruction set is based on the HP PA-RISC 1.1 instruction set with the addition of integer

multiply and divide instructions. Silent versions of all excepting instructions are also added to

facilitate speculative code motion under the general speculation model.

The processor supports in-order issue to the fully pipelined functional units. Each functional

unit may contain up to one of each of the following: an integer unit, a oating-point unit, a load-

store unit, and a branch unit. A realistic memory subsystem is modeled to accurately show the

bene�ts and disadvantages of new compiler techniques and architectural support. Figure 6.4

shows the four-stage pipeline including instruction fetch (IF), instruction decode/issue (ID),

instruction execute (IE), and write-back/retire (WBR).

127

Function
Unit

Function
Unit

Function
Unit

Instruction
Cache

Data
Cache

Instruction
Fetch

Decode/
Issue

Branch
Target
Buffer

Register
File

Rdy Value

Reorder
Buffer

ValueReg

A
ss

oc
 H

/W

Store
Buffer

ValueAddress

Main
Memory

Flags

..

.

Processor

Result Bus

Load Ports

D
at

a
C

ac
he

 P
or

ts

Store Ports

Figure 6.3 IMPACT microarchitecture block diagram.

128

Instruction
Fetch

Instruction
Decode/

Issue

Instruction
Execute

Write Back/
Result Commit

Figure 6.4 Pipeline diagram for the IMPACT architecture.

The processor performs dynamic branch prediction by feeding the fetched instruction ad-

dresses into a branch target bu�er (BTB). Instructions are speculatively executed until the

branch target is determined at the end of the execute stage. If the branch is mispredicted,

all instructions fetched after the mispredicted branch are squashed and fetching begins at the

correct target address.

The decode stage is responsible for in-order issue in the processor. Instructions are selected

from the fetch bu�er, decoded, and issued. The in-order model blocks on structural hazards and

ow dependences. The reorder bu�er is used to maintain a precise state within the processor in

the event of an exception or mispredicted branch [93]. The current state of a register within the

processor is determined by accessing the register �le for the in-order state and by performing an

associative search on the reorder-bu�er for the most recent value [94]. Stores will only be sent

to the data cache when they are retired from the store bu�er. This ensures a precise memory

state [93].

129

6.2.2 Instruction set extensions

The Cydra 5 style of supporting full predication is chosen for the IMPACT architecture

model. Full predication o�ers the most e�cient and exible paradigm to support predicated

execution. As a result, all instructions in the instruction set architecture are augmented with

an additional source operand to hold a predicate speci�er. In this manner, every instruction

may be predicated. Predicate values are maintained in an Nx1 predicate register �le. The

details of the predicate register �le are discussed in the next section.

Predicates are manipulated via a new set of instructions added to the baseline architec-

ture. These instructions are classi�ed broadly as predicate comparison instructions, predicate

clear/set instructions, and predicate save/restore instructions.

Predicate comparison instructions. The most common way to set predicate regis-

ter values is with a new set of predicate comparison instructions. The predicate comparison

semantics used are those of the HPL PlayDoh architecture [42]. Predicate comparison instruc-

tions compute predicate values using semantics similar to those for conventional comparison

instructions. There is one predicate comparison instruction for each integer, unsigned, oat,

and double comparison opcode in the original instruction set. The major di�erence is that

these instructions have up to two destination registers and these destination registers are in the

predicate register �le. The predicate comparison instruction format is shown below.

p<cmp> Pout1(< type >), Pout2(< type >), src1, src2 (Pin)

This instruction assigns values to Pout1 and Pout2 according to a comparison of src1 and src2

speci�ed by <cmp>. The comparison <cmp> can be: equal (eq), not equal (ne), greater than

(gt), etc. A predicate <type> is speci�ed for each destination predicate. Predicate de�ning

instructions are also predicated, as determined by Pin.

130

Table 6.1 Predicate comparison truth table.

Pout

Pin Comparison U U OR OR AND AND

0 0 0 0 - - - -
0 1 0 0 - - - -
1 0 0 1 - 1 0 -
1 1 1 0 1 - - 0

The predicate <type> determines the value written to the destination predicate register

based upon the result of the comparison and of the input predicate, Pin. For each combination of

comparison result and Pin, one of three actions may be performed on the destination predicate.

It can write 1, write 0, or leave it unchanged, indicated by a `-'. Thus, a total of 34 = 81 possible

types exist. There are six predicate types that are particularly e�ective, unconditional (U), OR-

type (OR), and AND-type (AND) predicates and their complements. Table 6.1 contains the

truth table for these predicate types.

Unconditional destination predicate registers are always de�ned, regardless of the value of

Pin and the result of the comparison. If the value of Pin is 1, the result of the comparison is

placed in the predicate register (or its complement for U). Otherwise, a 0 is written to the

predicate register. Unconditional predicates are utilized for blocks that are executed based on a

single condition, i.e., they have a single control dependence. The semantics of the unconditional

predicates are analogous to the those of the stu� and stu� bar operations in the Cydra 5.

The OR-type predicates are useful when execution of a block can be enabled by multiple

conditions, such as logical AND (&&) and OR (||) constructs in C. OR-type destination pred-

icate registers are set if Pin is 1 and the result of the comparison is 1 (0 for OR); otherwise,

the destination predicate register is unchanged. Note that OR-type predicates must be ex-

plicitly initialized to 0 before they are de�ned and used. However, after they are initialized

131

multiple OR-type predicate de�nes may be issued simultaneously and in any order on the same

predicate register. This is true since the OR-type predicate either writes a 1 or leaves the reg-

ister unchanged which allows implementation as a wired logical OR condition. This property

can be utilized to compute an execution condition with zero dependence height using multiple

predicate de�ne instructions.

The AND-type predicates are analogous to the OR-type predicates. AND-type destination

predicate registers are cleared if Pin is 1 and the result of the comparison is 0 (1 for AND); oth-

erwise, the destination predicate register is unchanged. The AND-type predicate is particularly

useful for transformations such as control height reduction [95],[96].

The PlayDoh architecture also provides another predicate type, conditional. The conditional

type predicates have semantics similar to regular predicated instructions, such as adds. If the

value of Pin is 1, the result of the comparison is placed in the destination predicate register

(or its complement for C). Otherwise, no actions are taken. Under certain circumstances, a

conditional predicate may be used in place of an OR-type predicate to eliminate the need for

an initialization instruction. However, the parallel issue semantics of the OR-type predicates

are lost with conditional predicates. For this reason, the IMPACT compiler chooses not to

generate conditional type predicates.

As an example of unconditional predicate de�nition, recall the predicate de�nition instruc-

tion from Figure 6.1:

pgt p1(U), p2(U), r4, 50

The predicate source operand is omitted in this example, so it is assumed to be 1. In this case,

the value written to predicate register p1(U) is the Boolean result of (r4 > 50). Thus, the

value written to p2(U) is (r4 > 50). Note that the truth table indicates that in the event that

132

if (a && b) beq a,0,L1 (1) pclr p1

c = c + 1; beq b,0,L1 (2) peq p1(OR), p2(U),a,0

else add c,c,1 (3) peq p1(OR), p3(U),b,0 (p2)
d = d + 1; jmp L2 (4) add c,c,1 (p3)

L1: (5) add d,d,1 (p1)
add d,d,1

L2:
(a) (b) (c)

Figure 6.5 Example usage of OR-type predicate comparisons.

the predicate source operand of a predicate de�ne instruction is false, the value written to a

destination predicate register of type U or U is 0. In this rare case, an instruction predicated

on a false predicate is allowed to modify the processor state.

Figure 6.5 contains an example of the use of OR-type predicates for a block whose execution

depends upon multiple conditions. In Figure 6.5(a), the increment of variable c depends upon

both a and b being nonzero. The assembly code for this code sequence is shown in Figure 6.5(b)

and the if-converted code is shown in Figure 6.5(c). The if-converted code contains three

predicate de�nition instructions, the �rst of which serves to explicitly initialize the contents of

predicate register p1 to 0. The subsequent predicate de�nitions require further explanation.

Instruction (2) in Figure 6.5(c) is setting two predicates. Predicate p1(OR) controls the

\else" case, i.e., the increment of d . Predicate p2(U) controls the execution of the second

predicate de�ne instruction. Note that in instruction (2), predicate p1 is being de�ned as OR-

type and predicate p2 is begin de�ned as an unconditional complement. From Table 6.1, the

value written to p1 is a one, if (a == 0). This is correct since the \else" case will be executed

if (a == 0). The value written to p2(U) is (a == 0).

133

Instruction (3) in Figure 6.5(c) also sets two predicates. Predicate p1(OR) again controls

the execution of the \else" case, and predicate p3(U) controls the execution of the \then" case,

i.e., the increment of c. A one is written to p1 , if (b == 0) and the value of p2 is one. So

overall, the \else" case is executed if either (a == 0) or (b == 0). The value written to p3 is

one if the Boolean result of (b == 0) is true and the value of p2 is one. That is, the \then"

case is executed only if both a and b are nonzero.

Predicate clear/set instructions. The stylized use of OR-type and AND-type predicates

described previously requires that the predicates be precleared and preset, respectively. Three

sets of instructions are provided for these purposes. First, to individually clear and set individual

predicates, pclr and pset instructions are added to the instruction set. Each takes up to two

destination predicate registers and sets the value of zero or one to those destinations. Note

that unconditional predicate comparison instructions could also be used for the purpose of

setting individual predicates to zero or one. Therefore, the additional instructions may not

be required. However, it may be more e�cient to provide these special clearing and setting

instructions because they do not require any source operands.

The second set of instructions added for clearing and setting predicates consists of pclr all

and pset all instructions. These instructions set the entire contents of the predicate register

�le to zero or one in a single cycle. These instructions are particularly useful before entering

a section of predicated code which makes extensive use of OR-type or AND-type predicates.

Note, the compiler has to be particularly careful using these instructions to ensure that no live

predicates are destroyed.

Finally, as provided in the HPL PlayDoh architecture, instructions to clear and set groups

of registers using a mask are provided [42]. These instructions are aptly called pclr mask and

134

pset mask . These instructions set a contiguous group of 32 predicate registers to zero or one

using a mask. Thus, any combination of the 32 predicates can be cleared or set using these

instructions. For architectures with more than 32 predicates, a sequence of these instructions

may be required to initialize all the desired predicates.

Predicate save/restore instructions. Extensions to the base instruction set allow two

methods of saving and restoring the contents of the predicate register �le. The pld blk and

pst blk instructions allow the loading and storing of the predicate register �le in 32 bit blocks.

These instructions are primarily used to save/restore the caller-save predicates across subroutine

calls and to save/restore the callee-save predicates at function entry and exit points. They also

make saving the contents of the predicate register �le during a context switch more e�cient.

The second method acts on individual predicate registers and is only required if the need

arises to spill predicate registers. The IMPACT compiler employs an intelligent allocation al-

gorithm method to avoid spilling predicate registers. In the rare situation in which a predicate

register has to be spilled, pld and pst instructions are used. These instructions allow an indi-

vidual predicate register to be loaded from and stored to memory. In this manner, the compiler

has the freedom to handle predicate registers in the same way as the conventional register types.

6.2.3 Microarchitecture extensions

To support predicated execution, some modi�cations to the baseline architecture presented

in Section 6.2.1 are required. The extensions are broadly broken down into two categories: the

nulli�cation mechanism and the predicate register �le.

Nulli�cation mechanism. The predicate of each instruction determines its execution

state. If the predicate is 1, or true, the instruction is executed normally; if the value is 0, or

135

false, the e�ects of the instruction are nulli�ed. In general, nulli�cation may be accomplished

at any point in the processor pipeline before the register �le or memory system is modi�ed.

The earliest an instruction may be nulli�ed is during the decode/issue stage. After fetching

the value of an instruction's predicate, the instruction is simply not issued if its predicate is

0. This has the advantage of allowing the execution unit to be allocated to other operations.

Thus, for critical resources such as divide units, a nulli�ed instruction will never tie it up

unnecessarily. Also, for nulli�ed load instructions, superuous cache and TLB misses will never

be generated. On the negative side, the value of the predicate register referenced must be

available during decode/issue, so the predicate register must at least be set in the previous

cycle. This dependence distance may also be larger for deeper pipelines or if bypass is not

available for predicate registers. Increasing the dependence distance between de�nitions and

uses of predicates may adversely a�ect execution time by lengthening the schedule for predicated

code. This nulli�cation model is utilized in the Cydra 5 [18].

The other extreme for nulli�cation is to allow the instruction to execute almost to com-

pletion, but to disallow any change of processor state in the write-back stage of the pipeline.

Therefore, for instructions that write their result into the register �le, this update must be

suppressed. For store instructions, they must be prevented from entering the store bu�er. This

method is useful since it reduces the latency between an instruction that modi�es the value of

a predicate register and a subsequent instruction which is conditioned based on that predicate

register. This reduced latency enables more compact schedules to be generated for predicated

code. A drawback to this method is that regardless of whether an instruction is suppressed,

it still ties up an execution unit. This method is also likely to increase the complexity of the

register bypass logic and force exception signaling to be delayed until the last pipeline stage.

136

Hybrid nulli�cation schemes are also possible and become more appealing for deeply pipelined

machines to balance the e�ects of both extremes. For the IMPACT architecture, nulli�cation

at the decode/issue stage is chosen. The IMPACT architecture contains a very short pipeline

(four stages) and the reduced design complexity makes this the preferred choice. Also, it is

believed that the negative of increased dependence height incurred by this approach can be

overcome with compiler transformations such as predicate promotion. These transformations

are discussed in detail in Chapter 7.

Predicate register �le. As previously mentioned, an Nx1 register �le to hold predicates is

added to the baseline architecture. The choice of introducing a new register �le to hold predicate

values rather than using the existing general purpose register �le was made for several reasons.

First, it is ine�cient to use a 32 bit general register to hold a one bit predicate. Second, register

porting is expected to be a signi�cant problem for wide-issue processors. By keeping predicates

in a separate �le, additional port demands are not added to the general purpose register �le.

Within the architecture, the predicate register �le behaves no di�erently than a conventional

register �le. For example, the contents of the predicate register �le must be saved during a

context switch. Furthermore, the predicate �le is partitioned into caller and callee save sections

based on the chosen calling convention.

6.2.4 Predicated execution for out-of-order issue processors

Although out-of-order execution is not the focus of this dissertation, a brief discussion of

some of the issues involved with predicated execution is presented in this section. Superscalar

processors employing out-of-order execution via an algorithm, such as the Tomasulo algorithm,

face new problems with predicated execution [46],[97]. The problems mainly stem from the

137

A: ld i r1,r2,r3
B: add r1,r4,r5 (p1)
C: ld i r6,r1,0

Figure 6.6 Example of the tagging problem with out-of-order execution.

tagging mechanism used to forward results to instructions waiting in the reservation stations.

In the conventional Tomasulo algorithm, an instruction deposits its ID or tag into its destination

register when it is issued. Subsequent instructions which use this destination register as a source

operand receive the producing instruction's tag when the register value is fetched. This tag

indicates the instruction which will forward the correct value for the particular register. Since

there is guaranteed to be a unique producer of each register value at a given point in the

execution of a program, a unique tag is always available.

With predicated execution, the problem is that instructions conditionally write to their

destination register. As a result, when an instruction is ready for issuing, there may not be a

unique tag from which to obtain its unavailable source operands. For example, consider the

execution of the code stream shown in Figure 6.6. When instruction A is issued, it deposits

tag A into its destination register, r1 . Next, instruction B is issued, thereby writing tag B into

its destination register, again r1 . Now, when the operands for instruction C are fetched, the

producer of its source operand, r1 , is assumed to be the last instruction to write to r1 , namely

instruction B. In the cases in which the predicate of instruction B is true, everything is handled

properly. However, in the case in which the predicate of instruction B is false, no result will be

forwarded to instruction C, which causes an error.

One potential solution is to not allow instruction B to place its tag in its destination register

unless its predicate is true. The problem with this is that much of the out-of-order execution

138

op dest,src1[,src2,...] (pred)

old dest = dest
if (pred)

dest = op(src1[,src2,...])
else

dest = old dest

Figure 6.7 Select instruction execution semantics for predicated instructions.

capabilities of the processor are lost. With this solution, the processor must stall whenever

the predicate of an instruction is not available, whereas the underlying principle of out-of-order

execution is to continue issuing instructions regardless if their source operands are available.

The instructions not ready wait in reservation stations allowing ready instructions to bypass

them. Therefore, much of the out-of-order performance potential is sacri�ced with this scheme.

A second solution is to utilize the execution semantics of the select instruction, from Sec-

tion 6.1.3, for all predicated instructions that write to a destination register. A predicated

instruction writes one of two values into its destination register as shown in Figure 6.7. When

its predicate is true, the standard operation is applied, and the value computed by the instruc-

tion is written to the destination register. In contrast, when its predicate is false, the instruction

is issued as a move instruction; copying the original contents of the destination register to the

destination register. An extra register read operation is thereby required to obtain the original

contents of the destination operand. With this approach, predicated instructions always pro-

duce a result. Therefore, the tagging problem is eliminated because the last instruction issued

that writes to a particular register is guaranteed to produce a value. As a result, a unique tag

is guaranteed to be available for each pending register value during execution.

139

The advantage of this approach is its natural applicability to out-of-order issue processors.

The underlying tagging and data forwarding mechanisms require little change to function cor-

rectly with predicated execution. A negative of this approach is the increased dependence chain

lengths incurred for predicated code. Predicated instructions that target the same destination

register are serialized because each instruction must read the original value of its destination

register. Therefore, they must wait for all previous instructions targeting the same destination

to produce a result. This can be quite undesirable especially when code from mutually exclusive

paths is overlapped. A second negative of this approach is the additional register read port

that is required to obtain the original contents of the destination register.

Alternative schemes have been proposed in the literature to overcome the tagging di�cul-

ties with predicated execution. The use of statically de�ned tags has been proposed [98]. With

statically de�ned tags, the compiler can force two instructions which write to a common des-

tination register under mutually exclusive predicates to have the same tag. In this manner, a

subsequent use will utilize this common tag and be provided the result from the appropriate

instruction based on the value of the predicate. This eliminates the serialization e�ects of using

the select instruction semantics.

Another scheme uses a more hardware-oriented approach to provide multiple tags for each

register [99]. With this approach, registers are allowed to have multiple tags which indicate

multiple outstanding conditional updates of a register. Instead of instructions replacing the tag

�eld of their destination register, predicated instructions just add their tag to the beginning of

a list of tags. By not replacing the tag, the instruction does not have to wait for all previous

predicated instructions which write to the register to complete. Subsequent uses that await

in the reservation stations are provided forwarded data for all tags which match an entry in

140

their source operand lists. A prioritization scheme is used so that the �rst such tag in the list

which provides a result from a nonnulli�ed instruction is the result which is used. Again, this

technique eliminates the serialization e�ects of using the select instruction semantics.

141

CHAPTER 7

COMPILER SUPPORT FOR PREDICATED EXECUTION

Predicated execution provides a large number of opportunities to enhance and expose ILP

in the presence of branches. However, as with speculative execution, an aggressive compiler is

required to realize most of the performance advantages. Compiler optimization and transforma-

tion techniques focus on eliminating branches from the instruction stream and overlapping the

execution of multiple control ow paths using the conditional execution capabilities provided by

predication. The compiler support for predicated execution is based on a new structure referred

to as the hyperblock. Hyperblocks are a generalized form of superblocks that take advantage

of both predicated and speculative execution.

This chapter is a detailed description of hyperblock compilation techniques. The formation

procedure for hyperblocks is described �rst. Second, extensions to traditional optimization,

instruction scheduling, and register allocation techniques to enable them to work on hyperblocks

are discussed. The presence of predicates introduces new challenges into the compiler backend

to understand the meaning of predicates, take advantage of the relations among predicates, and

perform transformations in the presence of predicates. Finally, a set of four new optimizations

designed speci�cally for improving the performance of predicated code is presented.

142

7.1 Hyperblock Formation

As discussed in the previous chapter, the most basic compiler transformation utilizing pred-

icated execution is if-conversion. The traditional approach has been to apply if-conversion to

entire innermost loops to enable vectorization or modulo scheduling of loops with conditional

branches [19],[87]. This could also be extended to handle certain control structures, such as

hammocks, in nonloop portions of the code. The major problem with this approach is that

if-conversion is an all or nothing transformation. With the large number of branches and cor-

responding control ow paths present in nonnumeric applications, a more exible strategy that

e�ciently supports selective if-conversion is required. To support such a exible method, the

hyperblock is introduced.

A hyperblock is a collection of connected basic blocks in which control may only enter

through the �rst block, referred to as the entry block. Control ow may leave from any number

of blocks in the hyperblock. All control ow between basic blocks in a hyperblock is removed via

if-conversion. The goal of hyperblocks is to intelligently group basic blocks from many di�erent

control ow paths into a single manageable block for compiler optimization and scheduling.

Hyperblocks are formed using a �ve-step procedure: region identi�cation, loop backedge

coalescing, block selection, tail duplication, and if-conversion. A running example is utilized

throughout this section to illustrate hyperblock formation. The example chosen is the inner

loop from the benchmark wc. The pre-processed C source code for the loop segment is shown

in Figure 7.1. This example was chosen for two reasons. First, it contains a loop that accounts

for a large fraction of the benchmark execution time, yet is small enough to be presented in the

context of this dissertation. Second, the loop has a nontrivial control structure, which presents

a challenge to all branch handling strategies.

143

linect = wordct = charct = token = 0;

{
for (;;)

if (−−(fp)−>cnt < 0)
c = filbuf(fp);

A:
C:

B:

}

charct++;
if (c == EOF) break;

if ((’ ’ < c) &&

D:
E:

F:

H:

token = 0;

}

linect++;
if (c == ’\n’)

(c != ’\t’)) continue;
else if ((c != ’ ’) &&

K:

G:
I:
J:
L:
M:

{
 (c < 0177))

wordct++;
token++;

}
continue;

{
if (! token)

else
c = *(fp)−>ptr++;

Figure 7.1 Source code for the inner loop of wc.

The purpose of wc is to count the number of characters, words, and lines in an input �le. A

character bu�er is processed in the loop and re-�lled as necessary until the end-of-�le marker is

encountered. The corresponding assembly code and control ow graph for the loop segment are

presented in Figure 7.2. The control ow graph is augmented with the execution frequencies of

each control transfer for the measured run of the program. The basic blocks are consistently

identi�ed by the letters A through M in both �gures. The loop is characterized by small

basic blocks and a large percentage of branches. Overall, the loop segment contains 13 basic

blocks with a total of 34 instructions. Of the 34 instructions, 14 are branches, 8 conditional, 5

unconditional, and 1 subroutine call. The remainder of this section describes each step of the

hyperblock formation procedure.

Step 1 - Region identi�cation. The blocks for a hyperblock are chosen from regions

in the control ow graph. A region is a group of basic blocks with a single entry block that

144

LA:

LB:
add r29, r30, 1

LD: beq r4, −1, EXIT

add r32, r33, 1
LE:

bge 32, r4, LG
LF: bge r4, 127, LG
LH: bne 0, r2, LA
LK:

add r35, r36, 1

LG: beq r4, 10, LI
LJ: bne r4, 32, LL
LM: mov r2, 0

LI:
add r38, r39, 1

LL: bne r4, 9, LA

LC: mov Parm0, r3
jsr filbuf
mov r4, Ret0

blt r98, 1, LC

add r2, r2, 1

A

CB

14

14

105K

105K

D

E

F

H

K

G

I J

L

M

1
105K

77K 28K

0

77K

61K 16K

16K

4K 24K

4K 22K
2K

252K

28K

(b)

EXIT

add r27, r98, −1

(a)

ld_i r98, r3, 0

st_i r3, 0, r27

ld_i r30, r3, 4

st_i r3, 4, r29
ld_c r4, r30, 0

ld_i r33, r73, 0

st_i r73, 0, r32

ld_i r36, r72, 0

st_i r72, 0, r35

ld_i r39, r71, 0

st_i r71,0, r38

jmp LA

jmp LA

jmp LM

jmp LM

jmp LD

Figure 7.2 Inner loop segment of wc, (a) assembly code, (b) weighted control ow graph.

dominates all blocks in the region [52]. Typical regions are loop bodies, intervals, if-then-else

conditionals, and nested combinations of these. The regions serve as outer boundaries for

hyperblock formation. The compiler attempts to identify the largest regions as possible under

two constraints. First, a basic block may only reside in a single region. Second, the region may

contain no internal cycles. The second constraint is later relaxed to support loop peeling, as

145

will be described in Section 7.3.3. For the wc example, the innermost loop body is identi�ed as

a region.

Step 2 - Backedge coalescing. The second step of hyperblock formation applies only to

loop regions. All loop backedges of loop regions are coalesced into a single backedge. This is

done because if-conversion can only remove nonloop branches. By coalescing all the backedges,

the control logic that determines the particular backedge that is traversed becomes a candidate

for elimination via if-conversion. A single branch back to the loop header is taken whenever

any of the backedges were taken in the original loop.

Examination of the control ow graph for the wc example in Figure 7.2 shows that the

loop contains four loop backedges, i.e., the branches from basic blocks H, K, L, and M to basic

block A. These branches currently cannot be eliminated with if-conversion. However, these

branches can be retargeted to a new block N, as shown in Figure 7.3. Block N simply contains

an unconditional branch back to block A. The loop region now contains only a single loop

backedge. Additionally, the four branches to block N are now candidates for elimination with

if-conversion.

Step 3 - Block selection. The third step of hyperblock formation is choosing a set

of basic blocks to combine into a hyperblock. Blocks are selected based on two high-level,

possibly conicting goals. First, including more blocks can potentially improve performance by

eliminating branches among the included blocks. Second, including too many blocks is likely

to result in an overall performance loss due over-saturation of processor resources or increased

dependence height. These conicting goals must be addressed by the block selection algorithm.

Blocks are selected by enumerating execution paths through the region. An execution path is

a path of control ow from the entry block to an exit block in the region. A priority is calculated

146

A

CB

14

14

105K

105K

61K

D

E

F

H

K

G

I J

L

M

1
105K

77K 28K

0

77K

16K

16K

4K 24K

4K 22K
2K

25
2K

28K

N

EXIT

A

CB

14

14

105K

105K

D

E

F

H

K

G

I J

L

M

1105K

77K 28K

0

77K

61K 16K

16K

4K 24K

4K 22K
2K

252K

28K

EXIT

(a) (b)
105K

Figure 7.3 Backedge coalescing applied to the inner loop segment of wc, (a) before coalescing,
(b) after coalescing.

147

for each path to determine its relative importance. Paths are included from highest priority to

lowest priority based upon the estimated available execution resources and the characteristics

of the path. The �nal set of selected blocks is then the union of all blocks along paths chosen

for inclusion.

The path priority function is a combination of four elements: path execution frequency,

number of instructions on the path, path dependence height, and hazard conditions on the

path. Execution frequency is used to give paths with higher execution frequency a higher

priority. In general, execution frequency is used to exclude paths of control which are not often

executed. Removing infrequent paths eliminates dependence constraints for optimization and

scheduling associated with these paths. Also, the demand for resources is reduced by omitting

these paths. The number of instructions along a path is used to give higher priority to paths

with fewer instructions. Longer paths utilize more machine resources and are likely to reduce

the overall performance of the hyperblock if they are combined with shorter paths.

The dependence height of a path is used to give paths with larger dependence height a lower

priority. When multiple paths are merged together in a hyperblock, the dependence height of

the resultant hyperblock is the maximum across all paths. Therefore, the overall performance

of a hyperblock can be reduced by merging a path with a very large relative dependence height.

Finally, any hazard conditions that exist along a path are used to give the path lower priority.

Hazard conditions include procedure calls and unresolvable memory stores (typically pointer

updates). Hazard conditions limit the e�ectiveness of optimization and scheduling for the entire

hyperblock since the compiler must make conservative assumptions regarding the hazards to

ensure correctness.

148

The path priority function is de�ned more precisely by the following three equations:

dep ratioi = 1:0 � (dep heighti= max
1�j�N

(dep heightj)) (7.1)

op ratioi = 1:0� (num opsi= max
1�j�N

(num opsj)) (7.2)

priorityi = (probabilityi � hazardi)� (dep ratioi + op ratioi +K) (7.3)

Equation (7.1) calculates the ratio of a particular path's dependence height with respect to

the path with the largest dependence height in the region. In order to make smaller dependence

heights more favorable, this ratio is subtracted from one. Correspondingly, the ratio of the

number of operations on a particular path with respect to the largest number of operations

along a path in the region is calculated by Equation (7.2). These two equations are used to

gauge the height and resource dominance of each path through the region.

The overall priority is calculated by Equation (7.3). The priority is the product of two

terms. The �rst term is the probability the path is traversed scaled by a hazard multiplier. The

hazard multiplier is used to reduce the probability of paths that contain a hazardous instruction.

Currently, a value of 0.25 is used for any path containing a subroutine call or an unresolvable

memory store. For paths containing containing no hazards, a value of 1.0 is used. The second

product term is the sum of the previously computed dependence and operation ratios along

with a constant term, K . The constant term is used to indicate a base contribution of the

path probability. In this manner, a path with the largest dependence height and number of

operations still may have a nonzero priority. Currently, the value of K is set to 0.1.

As previously mentioned, after the priorities for all paths are calculated, the paths are sorted

in priority order and considered for inclusion from highest to lowest priority. The algorithm used

for block selection is presented in Figure 7.4. Paths are included in the hyperblock provided

149

/� Prede�ned variables for block selection �/
ISSUE WIDTH = 1 to 8 /� As speci�ed in the machine description �le �/
RES MULTIPLIER = 2

MAX DEP GROWTH = 3

MIN PATH PRIORITY RATIO = 0.10

block selection(region) f
enumerate all paths in region

calculate priority of each path

sort paths from largest to smallest priority

/� Initialization of loop variables �/
avail resources = ISSUE WIDTH � dep height1 �RES MULTIPLIER

used resources = 0

last priority = 0.0

sel paths = 0

for (i = 1 to num paths) f
/� Check if there enough resources available to include the path �/
if ((num opsi + used resources) > avail resources) f

continue

g
/� Prevent paths with large relative dependence heights from being included �/
if (dep heighti > (dep height1 �MAX DEP GROWTH)) f

continue

g
/� Do not include paths with a small relative priority to that of the last included path �/
if (priorityi < (last priority �MIN PATH PRIORITY RATIO)) f

continue

g
/� Include the path in the hyperblock �/
sel paths = sel paths [pathi

used resources = used resources+ num opsi

last priority = priorityi
g
sel blocks = all blocks contained within sel paths

return sel blocks

g

Figure 7.4 Block selection algorithm.

150

that they do not violate any of the following three conditions. First, the additional resources

required by a path may not cause the total number of resources required by the hyperblock

to exceed the estimated available resources. Second, the dependence height of a path may

not exceed the dependence height of the highest priority path (dep height1) by more than a

prede�ned fraction. Finally, the priority of a path must be within some fraction of the priority

for the last included path. This restriction prevents disparate low priority paths from being

included in a hyperblock consisting of high priority paths. The �nal set of blocks that are

actually selected for inclusion are calculated by taking the union of all blocks along the selected

paths.

The block selection algorithm utilizes a simpli�ed scheme to model processor resources.

Resources are modeled by keeping track of the estimated number of available instruction slots.

Currently, instruction slots are not classi�ed by allowable instruction types. Therefore, each

instruction under consideration may be placed in any available slot. The available number of

instruction slots is calculated by multiplying the issue width of the target processor by the

dependence height of the highest priority path. In addition, the number of available resources

is increased by a padding factor referred to as the RES MULTIPLIER. A padding factor of 1.0

constrains the selection algorithm to not increase the schedule length of the highest priority

path due to resource demands of other paths. In practice, this was found too restrictive. For

many cases, increasing the schedule length of the highest priority path by a modest margin is

pro�table because more paths can be overlapped. For this dissertation, the RES MULTIPLIER

was set to 2.0.

The application of the block selection algorithm to the wc example is illustrated in Fig-

ure 7.5. In the right-hand portion of the �gure, the execution paths are enumerated in priority

151

A

CB

14

14

105K

105K

61K

D

E

F

H

K

G

I J

L

M

1
105K

77K

0

77K

16K

16K

4K 24K

4K 22K
2K

25
2K

28K

N

EXIT

1. A−B−D−E−F−H−N
2. A−B−D−E−F−H−K−N

5. A−B−D−E−G−I−M−N

3. A−B−D−E−G−J−M−N

6. A−B−D−E−G−J−L−N

8. A−C−D−E−F−H−N
9. A−C−D−E−F−H−K−N

15. A−B−D−E−F−G−I−M−N
16. A−B−D−E−F−G−J−M−N

18. A−B−D−E−F−G−J−L−N
19. A−C−D−E−F−G−I−M−N
20. A−C−D−E−F−G−J−M−N
21. A−C−D−E−F−G−J−L−M−N
22. A−C−D−E−F−G−J−L−N

12. A−C−D−E−G−I−M−N

10. A−C−D−E−G−J−M−N
11. A−C−D−E−G−J−L−M−N

13. A−C−D−E−G−J−L−N

7. A−B−D

14. A−C−D

4. A−B−D−E−G−J−L−M−N

17. A−B−D−E−F−G−J−L−M−N

28K

105K

Figure 7.5 Block selection applied to the inner loop segment of wc.

order. This loop region contains 22 unique paths, with the path A-B-D-E-F-H-N having the

highest priority. Paths 1-7 are chosen for inclusion by the block selection algorithm. After

path 7, the priority value for the remaining paths drops dramatically due to their low execution

frequency. Additionally, block C contains a hazardous instruction (a subroutine call), so the

priority of all paths which contain block C is further reduced. The blocks which are actually

selected for inclusion are then calculated by taking the union of all blocks from the selected

paths. The result of block selection is that all blocks with the exception of block C are cho-

152

sen for the hyperblock. With this strategy, some paths which were not chosen may indeed be

included in the hyperblock. For this example, paths 15-18 are actually also selected since all

the blocks which lie along those paths are chosen. In reality these paths could be excluded if

desired, but little advantage is gained by doing this.

Step 4 - Tail duplication. In order to make the eventual hyperblock be single entry,

control ow from nonselected blocks to selected blocks (other than the entry block) must be

eliminated. Such paths of control are referred to as side entry points into the hyperblock. In

the example (Figure 7.5), a side entry point exists from block C to block D. Tail duplication is

used to remove all side entry points of a hyperblock. The tail duplication algorithm transforms

the control ow graph by �rst marking all blocks which have side entry points. Then, all

selected blocks that may be reached from a marked block without passing through the entry

block are also marked. Finally, all the marked blocks are duplicated and the control ow arcs

corresponding to the side entry points are adjusted to transfer control to the corresponding

duplicate blocks. Note that blocks are duplicated at most one time regardless of the number of

side entry points.

The wc example after tail duplication is shown in Figure 7.6. The set of blocks which must

be duplicated is identi�ed by �rst marking the target of the side entry point, namely, block

D. Then all selected blocks in which control can reach from block D without passing through

block A are marked. The set of reachable blocks contains blocks E, F, G, H, I, J, L, M, and

N. Tail duplication proceeds by replicating block D and all of the reachable blocks. Lastly, the

C-D control arc is adjusted to C-D0 to remove the side entrance.

Step 5 - If-conversion. The �nal phase of hyperblock formation is if-conversion. If-

conversion removes all control ow among the blocks selected for the hyperblock using con-

153

A

CB

14

14

105K

105K

61K

D

E

F

H

K

G

I J

L

M

1
105K

77K 28K

0

77K

16K

16K

4K 24K

4K 22K
2K

25
2K

28K

D’

E’

F’

H’

K’

G’

I’ J’

L’

M’

0 14

10 4

0

10

2

2

1 3

1 3
0

0

0

4

N N’

8

14

EXIT

105K

Figure 7.6 Tail duplication applied to the inner loop segment of wc.

154

ditional execution. However, explicit branches remain to handle all control ow which exits

the hyperblock. In the current implementation, a variant of the RK if-conversion algorithm

is utilized [20]. The if-conversion algorithm �rst calculates the localized control dependence

information among the selected basic blocks [100]. Control dependences are maintained as a

set of edges in the control ow graph which determine the execution condition of a particular

basic block. The control dependence information is localized because only control ow among

the selected blocks is considered. All control dependences resulting from branches not in the

region or branches which exit the hyperblock are ignored for the purposes of calculating control

dependences. This strategy minimizes the number of control dependences represented with

predicates to only those branches which are targeted for elimination.

Once the control dependence information is calculated, one predicate register is assigned to

represent each unique set of control dependences. Therefore, all blocks which share a common

set of control dependences will be executed under the same predicate. Predicate comparison

instructions are inserted into all basic blocks which are the source of the control dependence

edges associated with a particular predicate. The predicate compare condition is determined

by the branch condition speci�ed by a particular control dependence edge. After the predicate

comparison instructions are inserted, all instructions in each selected block, including the newly

inserted predicate comparisons, are conditioned under the predicate assigned to their block.

Finally, all conditional and unconditional branches from selected blocks to other selected blocks

are removed. The predicated code is placed linearly in the �nal hyperblock using a topological

sort of the original hyperblock control ow graph.

The if-conversion step performed on the wc example is illustrated in Figures 7.7 and 7.8.

The calculation of the localized control dependence information and the predicate assignment

155

brE

A

CB

14

14

105K

105K

61K

D

E

F

H

K

G

I J

L

M

1
105K

77K 28K

0

77K

16K

16K

4K 24K

4K 22K
2K

25
2K

28K

D’ − N’

N

EXIT

Control Dependences Predicate Assignment

105K

A : none
B : none
D none
E

:
: none

F :
: brE, brFG
:H brF
: brGI
: brGJ
: brHK
:L brJ

M : brI, brJ, brL
:N none

A :
B :
D
E

:
:

F :
:G
:H
:I
:J
:K
:L

M :
:N

null
null

null
null
p1 (U)
p4 (OR)
p2 (U)
p7 (U)
p5 (U)
p3 (U)
p8 (U)
p6 (OR)
null

Figure 7.7 Localized control dependence calculation and predicate assignment for the inner
loop segment of wc.

are shown in Figure 7.7. Blocks A, B, D, E, and N have no local control dependences. Therefore,

these blocks will always be executed if the hyperblock is not exited prematurely through a side

exit and do not require predicates. The remaining blocks are control dependent on the edges

speci�ed in the �gure. Control dependences are denoted by indicating the branch from which

they originate. True and complement conditions are used to distinguish the left-hand and

right-hand control ow arcs out of a particular block, respectively. For example, the control

dependence for block J is brG, indicating the right-hand edge leaving block G. The example

hyperblock contains eight unique sets of control dependences, thus eight predicates are required.

The mapping of control dependences to predicates and the assignment of predicates to basic

blocks are also shown in Figure 7.7.

156

Loop:

add r27, r98, −1

blt r98, 1, LC

add r29, r30, 1

beq r4, −1, EXIT

add r32, r33, 1

add r35, r36, 1 (p3)

add r2, r2, 1 (p3)

mov r2, 0 (p6)

add r38, r39, 1 (p7)

pclr p4, p6
ld_i r98, r3, 0

st_i r3, 0, r27

ld_i r30, r3, 4

st_i r3, 4, r29
ld_c r4, r30, 0

ld_i r33, r73, 0

st_i r73, 0, r32
pge p4(OR), p1(U), 32, r4
pge p4(OR), p2(U), r4, 127 (p1)
peq p3(U), −, 0, r2 (p2)
peq p6(OR), p5(U), r4, 10 (p4)
peq p7(U), −, r4, 10 (p4)
peq p6(OR), p8(U), r4, 32 (p5)
ld_i r36, r72, 0 (p3)

st_i r72, 0, r35 (p3)

ld_i r39, r71, 0 (p7)

st_i r71, 0, r38 (p7)
peq p6(OR), −, r4, 9 (p8)

jmp Loop

Figure 7.8 Inner loop segment of wc after if-conversion.

Unconditional predicates are used for predicates which have a single edge in their control

dependence sets. For the example, predicates p1, p2, p3, p5, p7, and p8 are unconditional.

On the other hand, OR-type predicates are used for predicates which have multiple edges in

their control dependence sets. OR-type predicates are necessary with multiple edges since the

predicate should be set to 1 if either edge is traversed. Predicates p4 and p6 must be OR-type in

the example. In reality, OR-type predicates could be used exclusively for if-conversion. However,

OR-type predicates require explicit clearing for proper use. With unconditional predicates,

explicit clearing is not required; thus, they are used whenever possible to reduce the number of

necessary clears.

157

To illustrate the insertion of predicate comparison instructions, consider the calculation of

predicate p4, which is the predicate for block G. The control dependence set for block G is

fbrE; brFg; thus, comparison instructions must be placed in blocks which originate the control

dependence edges, namely, blocks E and F. From Figure 7.2, the compare conditions are derived

from the conditional branches which terminate these blocks. Therefore, both comparisons

will utilize a pge instruction to correspond with the bge instruction. The �nal code after if-

conversion, presented in Figure 7.8, shows the two pge instructions which de�ne predicate p4

as OR-type. Note also that OR-type predicates require explicit clearing before they are de�ned

or referenced. Thus, the pclr instruction is placed at the top of the hyperblock.

If-conversion is completed by associating instructions in each basic block of the hyperblock

with the appropriate predicate and subsequently removing all internal control ow. The pred-

icates of each instruction are derived directly from their original basic block and the predicate

assignment given in Figure 7.7. For example, the ld i , add , and st i instructions originally in

block I, are conditioned under predicate p7 in the �nal hyperblock code. When control ow is

removed, both conditional and unconditional branches are eliminated. In the �nal hyperblock

for the wc example, all but three branches are removed. The remaining branches are the two

infrequent branches which exit the hyperblock (highlighted in Figure 7.8) and an unconditional

loop-back branch at the bottom of the hyperblock.

7.2 Extending Superblock Techniques to Hyperblocks

Hyperblock formation is only the �rst step in the hyperblock compilation techniques. The

hyperblocks created by the formation procedure require subsequent ILP enhancing and ex-

posing transformations to be applied. For example, loop unrolling, register renaming, and

158

induction variable expansion are regularly applied to hyperblock loops. Aggressive scheduling

and register allocation are also necessary to realize any of the performance potential. This

closely mirrors the scenario of superblock formation and subsequent superblock compilation

techniques. To accomplish the necessary compiler support, all of the superblock techniques in

the IMPACT compiler are extended to operate on hyperblocks as the basic compilation unit.

The major di�erence between hyperblocks and superblocks is that program control ow is not

completely represented by branches in hyperblocks. Rather, it is represented with a combina-

tion of branches and predicates. Therefore, the compiler must be adopted to understand the

meaning and relationships of predicates in order to e�ciently perform transformations in the

presence of predicates.

A block diagram of the backend hyperblock compilation path is presented in Figure 7.9. The

diagram shows the phase ordering of the backend compilation steps. Predicates are generated

early in the backend compilation procedure, during hyperblock formation. After hyperblock

formation, all subsequent parts of the compiler operate on predicated code. The information

regarding the relationships among predicates is communicated to the compiler via two modules:

the predicate hierarchy graph (PHG) and the predicate control ow graph (CFG) generator.

The PHG provides information regarding the relationships of predicates with other predicates.

For example, it can answer the question are two predicates true under mutually exclusive

conditions. The predicate CFG generator constructs a control ow graph that jointly represents

the control ow indicated by branches and predicates. The resultant predicate CFG is then used

by the dataow analysis equation solver to provide the necessary predicate-sensitive dataow

information to the rest of the compiler.

159

Lcode generation

ILP/Predicate−specific

formation

Classical optimizations

optimizations

Classical optimizations

Instruction Scheduling

Register Allocation

No predicates

Predicate aware

PHG

CFG
Generator

Equation
Solver

relationspredicate

dataflow
information

Dataflow Analysis

Hyperblock/Superblock

Figure 7.9 Block diagram of the backend compilation path with hyperblocks.

The remainder of this section discusses the details of the PHG and the dataow analysis

using the predicate CFG generator. In addition, the interfaces of these modules into the rest

of the compiler are summarized.

7.2.1 Predicate hierarchy graph

The relationships among predicates are derived from a structure referred to as the PHG.

A PHG is a directed acyclic graph that represents the Boolean equations used to compute all

the predicates in a hyperblock [101]. The PHG is composed of two types of nodes, predicate

160

and condition. Predicate nodes represent the predicates themselves. Therefore, there is a

single predicate node in the PHG for each predicate de�ned in a hyperblock. Condition nodes

represent the compare conditions used to compute the predicates. There are condition nodes

in the PHG which correspond to each predicate comparison instruction in a hyperblock. Edges

in the PHG represent the ow of values used to compute predicates and conditions. Two nodes

are connected with an edge when the value speci�ed by one node is used to directly compute

the value in the other node. A PHG is generally rooted at the true predicate node, or `T', since

hyperblocks are constructed such that all chains of predicate computations start under the true

predicate.

A PHG is constructed by initially creating a predicate node for the true predicate. Each

predicate comparison instruction is then examined sequentially from the entry point of the

hyperblock. The compare condition speci�es up to two condition nodes that must be created.

The condition nodes reect the regular and the complement conditions of two target predicate

comparison instructions. Edges are inserted to the new condition nodes from the predicate that

is sourced by the predicate comparison. Next, predicate nodes are created for each destination

of the predicate comparison if they do not exist already. Edges are then inserted between the

appropriate condition nodes that are used to de�ne predicates and the predicate nodes. This

process is repeated until nodes and edges have been added to the graph for all predicate com-

parison instructions in the hyperblock. The �nal PHG is very regular in structure, containing

alternating levels of predicate and condition nodes all starting from the true predicate node.

The PHG construction process is best illustrated with an example. The hyperblock loop

from the benchmark wc that was used to demonstrate hyperblock formation will be utilized. The

assembly code for the �nal hyperblock is presented in Figure 7.10(a). The predicate comparison

161

pge p4(OR), p1(U), 32, r4

A

CB

D

E

F

H

K

G

I J

L

M

D’ − N’

N

EXIT

p1

p2 p4

p5

p6

p7p3

p8

(a) (b)

add r27, r98, −1

blt r98, 1, LC

add r29, r30, 1

add r32, r33, 1

add r35, r36, 1 (p3)

add r2, r2, 1 (p3)

mov r2, 0 (p6)

add r38, r39, 1 (p7)

pclr p4, p6
ld_i r98, r3, 0

st_i r3, 0, r27

ld_i r30, r3, 4

st_i r3, 4, r29
ld_c r4, r30, 0

ld_i r33, r73, 0

st_i r73, 0, r32

pge p4(OR), p2(U), r4, 127 (p1)
peq p3(U), −, 0, r2 (p2)
peq p6(OR), p5(U), r4, 10 (p4)
peq p7(U), −, r4, 10 (p4)
peq p6(OR), p8(U), r4, 32 (p5)
ld_i r36, r72, 0 (p3)

st_i r72, 0, r35 (p3)

ld_i r39, r71, 0 (p7)

st_i r71, 0, r38 (p7)
peq p6(OR), −, r4, 9 (p8)

jmp Loop

beq r4, −1, EXIT

[c2, c2_bar]
[c3]
[c4, c4_bar]

[condition notation]

[c1, c1_bar]

[c4]
[c5, c5_bar]

[c6]

Figure 7.10 Example hyperblock loop from wc, (a) assembly code for the �nal hyperblock,
(b) control ow graph before if-conversion.

instructions are marked with a shorthand notation to represent the computed conditions. This

notation, such as c1 and its complement c1 bar , is used for all of the PHG construction examples

in this section. To serve as a reference point, the CFG for the hyperblock before if-conversion

is shown in Figure 7.10(b). The predicates assigned to each block are marked in the �gure.

The PHG that is constructed from the example hyperblock is shown in Figure 7.11. Con-

struction begins by creating a node for the true predicate, T , and inserting it into the graph.

The �rst predicate comparison instruction is then examined. It computes conditions c1 and

c1 bar under predicate T . Thus, two condition nodes are created and inserted into the graph.

162

T

c1 c1_bar

c2 c2_bar

p1

p4

c4 c4_bar

p5p7

p8

p6

p2

c3

p3

c4

c5 c5_bar

c6

Figure 7.11 Predicate hierarchy graph for example hyperblock loop from wc.

In addition, edges are added between predicate T and the two condition nodes. Two predicates

are also de�ned by this predicate comparison instruction, namely, p4 and p1 . Since nodes to

represent these predicates do not already exist, they are created. An edge is inserted to connect

predicate p4 and condition c1 because the predicate is set when the compare condition holds.

On the other hand, predicate p1 is a complement type that is computed under the opposite

condition of predicate p4 . Hence, an edge is added between predicate p1 and condition c1 bar .

Construction continues by examining the second predicate comparison instruction. Again,

two condition nodes are created and inserted into the graph to represent conditions c2 and

c2 bar . Edges are inserted between these condition nodes and predicate p1 since the predi-

163

cate comparison is predicated on p1 . As with the �rst predicate comparison instruction, this

comparison also de�nes two predicate values, p4 and p2 . However, a node already exists for

predicate p4 . Therefore, a new node is created only for predicate p2 . To complete the proce-

dure for the second predicate comparison instruction, edges are inserted to connect predicates

p4 and p1 to conditions c2 and c2 bar , respectively. The process continues through the re-

maining �ve predicate comparison instructions to construct the PHG presented in the �gure.

It should be noted that condition c4 is computed twice in the hyperblock. This results in two

identical condition nodes in the PHG. Such identical condition nodes can be later merged if

desired. The �nal PHG distinctly shows the computation chains used to derive each predicate.

The purpose of the PHG is to provide an e�cient structure for the compiler to derive

relations among the predicates. Three important predicate relations have been identi�ed for

this dissertation. The relations are de�ned as Boolean on a pair of predicates.

(1) Ancestor - A predicate is an ancestor of another predicate if all conditions used to compute

the predicate are derived directly or indirectly from the ancestor.

(2) Control path - Two predicates have a control path if there exists at least one set of

conditions under which both predicates are jointly true.

(3) Implies - A predicate implies another predicate when the conditions for the �rst predicate

being true guarantees the second predicate will also be true.

The meaning of the �rst two relations is relatively straightforward. The ancestor relation

de�nes predicates from which other descendant predicates are completely derived. This relation

is similar to most ancestor/descendant relations de�ned on graphs or trees. The one caveat is

that an ancestor must be used to derive all conditions for the descendant predicate as opposed

164

to a single condition in the case of a predicate de�ned with multiple conditions. With the

ancestor/descendant relation, the compiler is certain the descendant may be true only when

the ancestor is also true. Similarly, if the descendant has a value of 1, then the ancestor must

be 1.

The control path relation identi�es predicates which have overlapping conditions, so that

they may be true at the same time. Essentially, the control path relation is the inverse of

mutual exclusion. Two predicates which are mutually exclusive may not both have values of 1

for a given set of conditions. Note that mutually exclusive predicates may both be 0, but not

both 1. Instructions conditioned on predicates which do not have a control path relation have

no dependences to one another. Thus, the compiler can treat such instructions independently

without any di�culties.

The implies relation is not as straightforward and occurs much less frequently in hyperblocks.

A predicate implies another predicate when the condition(s) for a predicate being true also

ensure that another predicate is true. A descendant predicate seemingly has this relationship

with its ancestor. However, the implies relationship is not for predicates whose conditions are

derived from another predicate as is the descendant/ancestor relation. Rather, the implies

relation is that some condition or set of conditions for determining one predicate are also used

for a second predicate. The implies relation generally involves one predicate that is de�ned

if any of multiple conditions are true and a second predicate that is de�ned under one those

conditions. In cases where the second predicate is known to be true, the �rst predicate is

implied to be true.

Algorithms to compute each of the three relationships using the PHG are presented in Fig-

ures 7.12 { 7.14. The �rst algorithm computes the ancestor relationship among two predicates,

165

=� Determine if p1 is an ancestor of p2 �/
compute ancestor(p1, p2) f

root = root node of the PHG
node1 = predicate node representing p1
node2 = predicate node representing p2
for each path through the PHG from root to node2, cur path f

if (cur path does not contain node1)
return (0)

g
return (1)

g

Figure 7.12 Algorithm to compute the ancestor relationship between two predicates.

p1 and p2 . A value of 1 is returned if predicate p1 is an ancestor of predicate p2 . Otherwise,

a value of 0 is returned. The ancestor relationship can be e�ciently expressed as a dominator

relationship in the PHG. A predicate is an ancestor of another predicate if its predicate node

dominates the other predicate node. In a graph with a unique entry node, a node X is de�ned

to dominate another node Y if all paths starting from the entry node to node Y go through

node X [52]. Therefore, in the PHG, predicate p1 is an ancestor of predicate p2 if all paths

in the PHG starting with predicate T leading to predicate p2 pass through predicate p1 . The

algorithm in Figure 7.12 computes exactly this relationship.

Using this algorithm on the example PHG in Figure 7.11, the ancestors of predicate p4 are

predicates T and p4. Each predicate is always an ancestor of itself. Additionally, the root node,

predicate T , is an ancestor of all predicates. For predicate p4 , no other predicates satisfy the

dominance constraints. Predicate p1 occurs on one path from the root node to predicate p4 .

However, there is a path where it does not occur, so it is not an ancestor. As another example,

the ancestors of predicate p5 are predicates T , p4 and p5 .

166

=� Determine if there is a control path between p1 and p2 �/
compute control path(p1, p2) f

node1 = predicate node representing p1
node2 = predicate node representing p2
visit node1 and all its predecessor nodes, marking visited nodes with flag1
visit node2 and all its predecessor nodes, marking visited nodes with flag2
let merge nodes be the set of nodes which are encountered �rst along all

paths starting from node2 with both flag1 and flag2 set
for each predicate node in merge nodes, cur merge f

mutually ex = 0
for each pair of edges leaving cur merge, edgeX and edgeY f

let condX = node pointed to by edgeX

let condY = node pointed to by edgeY

if (((condX:visit == flag1) && (condY:visit == flag2)) k
((condX:visit == flag2) && (condY:visit == flag1))) f

mutually ex = complement conditions(condX , condY)
if (! mutually ex) return (1)

g
g
if (! mutually ex) return (1)

g
return (0)

g

Figure 7.13 Algorithm to compute the control path relationship between two predicates.

The second algorithm, shown in Figure 7.13, computes the control path relationship among

two predicates. The algorithm returns a value of 1 if the two predicates can be simultaneously

true. Otherwise, a value of 0 is returned indicating the predicates are mutually exclusive. The

control path relationship is calculated by traversing all paths backwards from each of the pred-

icate nodes, p1 and p2 , to the root of the PHG. The set of nodes where paths from predicates

p1 and p2 �rst intersect (merge nodes) is then constructed. For each of the merge nodes, the

edges leaving the merge in the forward direction are analyzed. Predicates p1 and p2 are mu-

tually exclusive if all pairs of forward leaving edges from the merge that were traversed during

di�erent backward traversals, lead to complementary conditions. Essentially, there may be no

overlap of the conditions leading to predicates p1 and p2 at the merge nodes. In the cases in

167

which the edges lead to overlapping conditions or there is only a single edge leaving the merge,

the two predicates are not mutually exclusive. Hence, they have a control path between them.

The calculation of the control path relation can be equivalently viewed as forming the

Boolean expression for each predicate. If the logical AND of the two Boolean expressions

can be simpli�ed to 0, the predicates are mutually exclusive. Otherwise, there is a control

path between the two predicates. Using the control path algorithm on the example PHG

(Figure 7.11), the predicates with a control path to predicate p4 are T , p1 , p4 , p5 , p6 , p7

and p8 . The remaining predicates, namely, p2 and p3 , are mutually exclusive with predicate

p4 . This is clear from the PHG because only predicate p2 and its descendants are calculated

under complementary conditions, namely, condition c2 bar . The control path relationship is

also obvious if the control ow graph for the hyperblock before if-conversion is examined. In

Figure 7.10(b), it is clear that there is no path of control from predicate p4 (block G) to either

predicates p2 (block H) or p3 (block K) without exiting the hyperblock.

As another example, the predicates with a control path to predicate p5 are predicates T ,

p1 , p4 , p5 , p6 , and p8 . This predicate has the same control path relationship as predicate p4

with one exception. For this case, predicate p7 is also mutually exclusive with predicate p5 .

The �nal algorithm shown in Figure 7.14 computes the implies relationship between two

predicates, p1 and p2 . A value of 1 is returned if predicate p1 implies predicate p2 . Otherwise,

a value of 0 is returned. The implies relation is calculated using an algorithm similar to the

previous control path algorithm. The algorithm examines all the conditions which are used

to compute predicate p1 . In general, if a duplicate condition node which directly computes

predicate p2 can be found for each condition used to compute predicate p1 , the implies relation

is established. This is accomplished by traversing backwards all paths starting from each

168

=� Determine if p1 implies p2 is true �/
compute implies(p1, p2) f

node1 = predicate node representing p1
node2 = predicate node representing p2
for each predecessor of node1, prev node f

visit prev node and all its predecessor nodes, marking visited nodes with flag1
visit node2 and all its predecessor nodes, marking visited nodes with flag2
let merge nodes be the set of nodes which are encountered �rst along all

paths starting from node2 with both flag1 and flag2 set
implies = 0
for each predicate node in merge nodes, cur merge f

for each edge leaving cur merge that leads to a node with flag1 set, edgeX f
implies = 0
for each edge leaving cur merge that leads to a node with flag2 set, edgeY f

let condX = node pointed to by edgeX

let condY = node pointed to by edgeY

let predY = successor predicate node to condY
if ((same conditions(condX , condY)) && (predY == node2)) f

implies = 1
break

g
g
if (! implies) return (0)

g
if (implies) break

g
if (! implies) return (0)

g
return (1)

g

Figure 7.14 Algorithm to compute the implies relationship between two predicates.

condition for predicate p1 and predicate p2 itself to the root of the PHG. The set of nodes

(merge nodes) that is the �rst intersection of these backward traversals is then constructed.

For each of the merge nodes, the edges and target nodes are analyzed to determine if an

implies relation exists. Predicate p1 will imply predicate p2 if, for each edge visited during the

predicate p1 traversal, there is a corresponding edge visited during the predicate p2 traversal

which leads to an identical condition node. In addition, the predicate computed by the condition

node on the predicate p2 traversal must be predicate p2 . The algorithm is conservative by

169

its formulation in that the corresponding duplicate condition for predicate p2 must directly

compute predicate p2 for the implies relation to be detected. A more sophisticated algorithm

is required to capture more general implies relations.

In the example PHG shown in Figure 7.11, a single implies relation exists. Predicate p7

being true implies that predicate p6 will be true. This relation holds because predicate p6 is

an OR-type predicate which is computed on two conditions. One of these conditions (condition

c4) is also used to compute a di�erent predicate, namely, predicate p7 . In all cases, if predicate

p7 is true, predicate p6 will also be true. Note that the opposite implies relation, predicate p6

implies predicate p7 , does not hold. Predicate p6 may be true if either conditions c4 or c4 bar

are true, whereas, condition c4 must hold for predicate p7 to be true.

The �nal PHG for the example hyperblock loop from wc with all predicate relations enu-

merated is presented in Figure 7.15. For each predicate, those predicates which have control

path, ancestor, and implies relations are shown.

One obvious alternative strategy to utilizing the PHG would be to analyze the CFG just

before if-conversion to construct predicate relations. This information could then be maintained

throughout the compiler backend to supply the predicate relations. Many of the necessary

analyses are well-understood in the CFG area and could be accomplished in a straightforward

manner. This approach was considered and not chosen for several important reasons. First,

all compiler transformations that may a�ect the relations among predicates would have to

incrementally update the predicate relation information. Second, any compiler transformation

which introduces new predicates would also have to postulate the relations of the new predicates

with those existing predicates. Finally, the CFG prior to if-conversion may not always be

170

T

c1 c1_bar

c2 c2_bar

p1

p4

c5 c4 c4_bar

p5

c6 c6_bar

p7

p8

c7

p6

p2

c3

p3

p1

p2

control: T, p1, p2, p3, p4, p5, p6, p7, p8

control: T, p1, p2, p3

p3
control: T, p1, p2, p3

p4
control: T, p1, p4, p5, p6, p7, p8

p5
control: T, p1, p4, p5, p6, p8

control: T, p1, p4, p5, p6, p7, p8
p6

p7
control: T, p1, p4, p6, p7

p8
control: T, p1, p4, p5, p6, p8

(a) (b)

ancestor: T, p1

ancestor: T, p1, p2

ancestor: T, p1, p2, p3

ancestor: T, p4

ancestor: T, p4, p5

ancestor: T, p4, p6

ancestor: T, p4, p7

ancestor: T, p4, p5, p8

implies: none

implies: none

implies: none

implies: none

implies: none

implies: none

implies: p6

implies: none

Figure 7.15 Predicate hierarchy graph for example hyperblock loop from wc, (a) graph itself,
(b) enumeration of all predicate relations.

available for a given compilation framework, such as binary translation. The PHG approach

overcomes these problems by deriving the predicate relations directly from the hyperblock code.

7.2.2 Dataow analysis using the predicate CFG generator

The second mechanism for providing predicate relationship information to the compiler is

with a module referred to as the predicate CFG generator. The predicate CFG generator con-

structs a CFG for a hyperblock that jointly represents the control ow produced by branches as

171

well as the predicates. The implicit control ow that is derived from certain predicates evaluat-

ing to true and others evaluating to false is made explicit in the predicate CFG. The resultant

graph can then be analyzed to obtain predicate sensitive information without considering the

predicates of instructions. The major use of the predicate CFG is to serve as the underlying

structure for dataow analysis. With this approach, standard dataow analysis techniques are

utilized to analyze hyperblocks.

A predicate CFG is constructed by utilizing the concept of predicate covering. Conceptually,

a predicate evaluates to true under some set of conditions. The predicate is covered by a group

of predicates whose collective conditions subsume those of the original predicate. Hence, the

predicate may not evaluate to true unless one or more of the covering predicates are true.

Using the concept of predicate covering, an instruction-level graph that represents the pos-

sible ows of instruction execution through the hyperblock may be constructed. Instructions

are considered executed in this discussion only if their predicate evaluates to true. Hence, this

instruction-level graph, the predicate CFG, can be used to enumerate all the possible instruc-

tion execution sequences in a hyperblock. Simplisticly, every instruction in a hyperblock could

be chained to each of its successors. The resultant predicate CFG is correct, but is highly

conservative because it contains many execution sequences which cannot occur. A much more

precise predicate CFG may be constructed using predicate covering. The set of instructions

that can be executed immediately after a particular instruction are the �rst set of the sequential

successors whose predicates form a predicate covering. Other instructions may be subsequently

executed, but they will be executed after one or more of the immediate successors. The set of

immediate successors for each instruction de�ne the connection points for the predicate CFG.

172

/� Defn: A predicate node is covered if any of the following conditions hold:
1) It is marked visited
2) All its predecessor condition nodes are visited
3) Complementary successor condition nodes are visited �/

/� Mark node and all nodes which are implicitly covered in the PHG �/
mark covered nodes(node, target node) f

if (node:visit == 1) return
node:visit = 1
if (node == target node) return
/� Predicate node: visit all predecessor and successor condition nodes of node �/
if (node is a predicate node) f

for each predecessor of node, pred node

mark covered nodes(pred node, target node)
for each successor of node, succ node

mark covered nodes(succ node, target node)
g
/� Condition node: visit all predecessor and successor predicate nodes of node if they are

covered, visit sibling condition nodes of node which compute the same condition �/
else f

pred node = predecessor predicate node of node
if ((pred node:visit == 0) && (pred node is covered))

mark covered nodes(pred node, target node)
for each successor condition node of pred node, succ node

if ((succ node:visit == 0) && (same condition(succ node, pred node)))
mark covered nodes(succ node, target node)

succ node = successor predicate node of node
if ((succ node:visit == 0) && (succ node is covered))

mark covered nodes(succ node, target node)
g

g

Figure 7.16 Algorithm for marking the covered nodes in a predicate hierarchy graph.

Predicate covering is de�ned more precisely in terms of the predicate nodes in a PHG. A

predicate is covered if any of the following are true: the predicate is speci�ed as covered; all the

predicate's predecessor condition nodes are covered; or two complementary successor condition

nodes of the predicate are covered. Essentially, a predicate node is covered if there are a set of

nodes in the PHG which collectively dominate or post dominate it.

173

The two algorithms that are used by the compiler to construct the predicate CFG for

a hyperblock are presented in Figures 7.16 and 7.17. The primary algorithm is that given

in Figure 7.17. The visit ag is used to specify the nodes in the PHG that are currently

covered. The goal is to sequentially consider each instruction in the hyperblock from the target

instruction, instr , until a set of instructions that establish a predicate covering is found. The

\for" loop in the algorithm performs a sequential scan of the instructions starting at the target

instruction. During the scan, any instruction conditioned on the same predicate or an ancestor

predicate automatically covers the predicate of instr , so the search is terminated. Predicate

covering is established by de�nition for an instruction with the same predicate. Similarly,

an ancestor predicate always covers its descendants by recursively applying the de�nition of

predicate covering. For these cases, the succ set is updated with the current instruction and

returned as the set of immediate successors. Note that any instructions already in succ set

remain in the set as valid immediate successors.

A second case which automatically terminates the search is that the current instruction's

predicate is implied by the target instruction's predicate. With such an implies relation, the

current instruction's predicate is computed on a superset of the conditions used to compute

the target instruction's predicate. Therefore, if the implied predicate is covered, any predicate

computed on a subset of conditions must also be covered. Overall, the three special cases (same,

ancestor, or implied predicate) are handled by the general algorithm to be discussed. They are

singled out as special cases for performance reasons. When none of the termination scenarios

occur, the instruction must pass two tests before it is recorded as an immediate successor.

First, the current instruction's predicate must have a control path to the target instruction's

predicate. If the two predicates are mutually exclusive, the current instruction will not be a

174

/� Compute a set of instructions which are the immediate successors of instr �/
compute successors(hyperblock, instr) f

succ set = ;
pred = instr:predicate

pred node = PHG node corresponding to pred
if ((instr is an unconditional branch) && (pred == true))

return (;)
reset visit ag for all nodes in the PHG for hyperblock
for each instruction sequentially after instr, cur instr f

cur pred = cur instr:predicate

cur pred node = PHG node corresponding to cur pred

if ((cur pred == pred) k (cur pred is an ancestor of pred) k
(pred implies curr pred)) f

succ set += cur instr

return (succ set)
g
else if (cur pred and pred are not on control path)

continue
else if (cur pred node:visit == 1)

continue
succ set += cur instr

mark covered nodes(cur pred node, pred node)
/� All successors have been found when pred node is covered �/
if (pred node:visit == 1)

return (succ set)
g
succ set += -1 /� add fall through path of hyperblock as a successor �/
return (succ set)

g

Figure 7.17 Algorithm to compute the immediate successors for an instruction in a hyper-
block.

successor. The second case for which the current instruction is not an immediate successor

occurs when its predicate is already covered by the predicate of a prior instruction. In this

case, because the current instruction is a successor but not an immediate successor, it need not

be considered.

At this point in the algorithm, the current instruction is indeed an immediate successor.

The remaining step is to mark the node in the PHG corresponding to the current instruction's

predicate as covered. Then, the state change is propagated through the PHG to mark any

175

additional nodes that have become covered as a result of the current instruction's predicate being

covered. The algorithm mark covered nodes, presented in Figure 7.16, performs these actions.

Covering is propagated by �rst setting the visit ag for the predicate node corresponding to the

current instruction's predicate. Then, all the neighboring nodes are recursively examined to

determine if further covering conditions are established. The recursion terminates when either

the target node (predicate of the target instruction) is reached or the node itself is already

covered.

The actions taken by the recursive visit of all neighboring nodes are broken down by the node

type. For a predicate node, the search is propagated to all predecessor and successor condition

nodes. For a condition node, its predecessor, successor, and sibling nodes are examined to

determine if a predicate covering has been established. This is accomplished by simply applying

the nontrivial covering de�nition; namely, a predicate node is covered if either all its predecessors

are covered or complementary successors are covered. Any node which is newly covered expands

the search to all its neighbors. At the end of the mark covered nodes algorithm, all predicates

covered by the current set of immediate successors are marked as visited.

Execution next resumes in the compute successors algorithm (Figure 7.17). All immediate

successors have been found if the target instruction's predicate is covered. The loop iterates until

this condition is reached. In the case where the hyperblock ends before the target instruction's

predicate is covered, implicit control ow out of the bottom of the hyperblock may occur.

Hence, the immediate successor list is augmented with an entry for the fall through path.

The application of the compute successors algorithm to each instruction in a hyperblock

provides the connection points for an instruction-level CFG that represents the implicit control

ow among the instructions introduced by the predicates. Several mechanical steps are now

176

pge p4(OR), p1(U), 32, r4

add r27, r98, −1

blt r98, 1, LC

add r29, r30, 1

add r32, r33, 1

add r35, r36, 1 (p3)

add r2, r2, 1 (p3)

mov r2, 0 (p6)

add r38, r39, 1 (p7)

pclr p4, p6
ld_i r98, r3, 0

st_i r3, 0, r27

ld_i r30, r3, 4

st_i r3, 4, r29
ld_c r4, r30, 0

ld_i r33, r73, 0

st_i r73, 0, r32

pge p4(OR), p2(U), r4, 127 (p1)
peq p3(U), −, 0, r2 (p2)
peq p6(OR), p5(U), r4, 10 (p4)
peq p7(U), −, r4, 10 (p4)
peq p6(OR), p8(U), r4, 32 (p5)
ld_i r36, r72, 0 (p3)

st_i r72, 0, r35 (p3)

ld_i r39, r71, 0 (p7)

st_i r71, 0, r38 (p7)
peq p6(OR), −, r4, 9 (p8)

jmp Loop

beq r4, −1, EXIT

i1:
i2:
i3:
i4:
i5:
i6:
i7:
i8:
i9:
i10:
i11:
i12:
i13:
i14:
i15:
i16:
i17:
i18:
i19:
i20:
i21:
i22:
i23:
i24:
i25:
i26:
i27:
i28:
i29:

i1:
i2:
i3:
i4:
i5:
i6:
i7:
i8:
i9:
i10:
i11:
i12:
i13:
i14:
i15:
i16:
i17:
i18:
i19:
i20:
i21:
i22:
i23:
i24:
i25:
i26:
i27:
i28:
i29:

i11

i2
i3
i4
i5
i6
i7
i8
i9
i10

i12
i13
i14
i15, i17
i16, i17
i20, i29
i18
i19, i24
i27, i28
i21
i22
i23
i29
i25
i26
i28
i28, i29
i29
−

Immediate successor(s)Instruction

(a) (b)

Figure 7.18 Example of the computation of immediate successors from wc, (a) assembly code
for the hyperblock, (b) immediate successors for each instruction.

required to convert the instruction-level CFG to the desired predicate CFG. First, the control

ow edges for the branches are added into the instruction-level CFG so that it contains both

predicate and branch information. Next, the instruction-level graph is partitioned into basic

blocks [52]. This step is not absolutely required as an instruction-level CFG could be utilized

by a dataow analyzer. However, this step is extremely important for e�ciency to reduce the

number of nodes in the graph. Finally, the CFG for the hyperblock is connected with the

equivalent CFGs generated for the rest of the blocks in the function. The result is a complete

CFG for a function body that represents both branch and predicate control ow.

177

The process of generating a predicate CFG is illustrated using the continuing example

hyperblock from the benchmark wc. The computation of the immediate successors for each

instruction is presented in Figure 7.18. In Figure 7.18(a), the assembly code for the hyperblock

is shown again. Each instruction is marked with a tag, such as i10 , for reference throughout

the example. The application of the algorithm compute successors to each instruction in the

hyperblock produces the immediate successors given in Figure 7.18(b). The successors for the

�rst 13 instructions are simply the next subsequent instructions since all the instructions are

predicated under true. Note that at this point, the control ow associated with the branches

is not considered. Therefore, a branch, such as instruction i5 , has just instruction i6 as a

successor.

The �rst instruction with nontrivial successors is instruction i14 . The algorithm com-

pute successors proceeds by sequentially considering instructions subsequent to instruction i14 .

The goal is to �nd the �rst set of instructions whose predicates cover the predicate of instruction

14 , namely, predicate true. The �rst instruction, i15 , is conditioned on predicate p1 . Predi-

cate p1 has none of the following relations with predicate true: identical, ancestor, or implies.

Therefore, it does not satisfy any of the special cases which immediately terminate the search.

Predicate p1 also has a control path to predicate true and is not already covered, so instruction

i15 is indeed an immediate successor to instruction i14 . The next step of the process is to

utilize the mark covered nodes algorithm to mark predicate p1 as covered and to propagate

this state to neighboring nodes. The result of this step is that predicates p1 , p2 , and p3 are

marked as covered. This is clear from the PHG for the hyperblock shown in Figure 7.15(a), in

which the cover state is propagated to all the descendants of predicate p1 .

178

At this point, the overall goal of �nding the set of instructions whose predicates cover

predicate true has not yet been achieved. Therefore, the search continues to the next instruction,

namely, instruction i16 . This instruction is conditioned on predicate p2 which is already marked

as covered. Therefore, the loop is just iterated without modifying the succ set or the PHG visit

ags. The next sequential instruction is instruction i17 , which is conditioned on predicate

p4 . Again, this predicate does not satisfy any of the special cases to terminate the search,

so the algorithm continues. Predicate p4 has a control path to predicate true, and it is not

already covered. Hence, instruction i17 is added to the immediate successor list. As in the

previous case, the next step of the process is to invoke the mark covered nodes algorithm to

mark predicate p4 as covered and to propagate this state to neighboring nodes.

The current state of the PHG is that predicates p1 , p2 , and p3 are covered. By marking

predicate p4 as covered, conditions c1 and c1 bar are also covered. This in turn leads to

predicate true becoming covered since two of its successor nodes which compute complementary

conditions are covered. The overall result is the �rst set of instructions whose predicates

cover predicate true is found. Thus, the compute successors algorithm terminates and returns

fi15; i17g as the immediate successors for instruction i14 . The same procedure is applied

to the remaining instructions in the hyperblock to derive the immediate successors given in

Figure 7.18(b).

The immediate successors for each instruction in the hyperblock provide the connection

points to build an instruction-level CFG that represents all the implicit control ow between

the instructions caused by the predicates. The resulting graph is shown in Figure 7.19(a).

Instructions i1 through i12 are summarized in the �rst node for space reasons since they

just have sequential control ow to the subsequent instruction. Although this hyperblock is

179

i13

i14

i15

i17i16

i20

i21

i22

i23

i18

i19 i24

i27

i28

i25

i26

i29

i11−i14

i1−i12
i1−i5

i6−i10

i15

i16

i20−i23

i29

i27

i19 i24−26

i17−i18

i28

EXIT

LC

(a) (b)

Figure 7.19 Example of predicate CFG generation from wc, (a) instruction-level CFG rep-
resenting implicit control ow for predicates, (b) �nal predicate CFG for the hyperblock.

relatively small, the implicit control ow is rather complex. The next step of the procedure

is to insert additional edges into the graph for the explicit control ow of the branches. The

hyperblock has three branches, instructions i5 , i10 and i29 . Therefore, an additional edge to

represent the taken direction of each branch is added to the graph.

The �nal step is to partition the instruction-level graph into basic blocks to reduce the

number of nodes the subsequent analyses will have to consider. The basic blocks are recognized

from the instruction-level graph as simply the largest group of sequential instructions without

any control ow splits or merges. For example, instructions i20 , i21 , i22 , and i23 form a basic

180

block. The resultant predicate CFG for the example hyperblock is shown in Figure 7.19(b).

Each node in the graph is a basic block with the speci�ed instructions contained within it.

Comparing the predicate CFG for this hyperblock with the original CFG before if-conversion

(Figure 7.10(b)) shows that the graphs are indeed identical. In general, a correct predicate CFG

may be derived for any hyperblock. However, the degree to which it matches the original CFG

before if-conversion depends heavily on the compiler transformations applied after if-conversion.

The use of the predicate CFG approach has several advantages and disadvantages. The

major advantage of the approach is that the introduction of predicates into the compiler does

not force compiler analyses to be rewritten in a predicate cognizant form. Rather, conventional

techniques can be applied to hyperblocks and to produce predicate-sensitive information. This

is likely to be important both in terms of implementation cost as well as compile time. The

predicate CFG allows the use of conventional techniques by logically separating predicates and

their relations from the actual compiler analyses. It is the responsibility of the predicate CFG

generator to produce a control ow graph which contains both predicate as well as branch

control ow information. Subsequent analyses then operate on this graph without regard for

the predicates of instructions.

The weakness of this approach is that the resultant predicate CFG is conservative under

certain circumstances. As a consequence, the analysis results derived can also be conservative.

Note that this does not mean that incorrect results are obtained by analyzing the predicate

CFG. Rather, the analysis results may be not as precise as they could be which may cause the

compiler to miss optimization, scheduling, or register allocation opportunities. The predicate

CFG becomes conservative because certain hyperblock code sequences may arti�cially force the

control ow graph to merge and re-split. By merging and re-splitting, correctness is maintained

181

in that the possible implicit control ow is accurately represented. As a consequence though,

additional control ow paths are added to the graph which cannot really occur. Thus, the

predicate CFG is conservative because more control ow paths are represented than really

exist. The problem arises when instructions with less constrained predicates are intermixed

among instructions with more constrained predicates. This primarily occurs after instruction

scheduling.

The problem is illustrated by the example in Figure 7.20. The example is a simple if-then-

else statement which is fully if-converted to form a hyperblock. Figure 7.20(a) shows the original

CFG before if-conversion. One code sequence for the hyperblock is given in Figure 7.20(b). For

this sequence, there is no instruction intermixing that causes any di�culties. As a result, an

accurate predicate CFG is generated, as shown in Figure 7.20(c). Note that the predicate

CFG generator properly handles intermixing of predicates p1 and p2 as instruction i6 occurs

between two instructions conditioned on predicate p1 . The problem arises in the example

when an instruction conditioned on predicate True is intermixed with instructions conditioned

on predicates p1 and p2 . The hyperblock code sequence in Figure 7.20(d) shows this case with

instruction i7 placed between instructions i6 and i4 .

The predicate CFG constructed for the second code sequence is presented in Figure 7.20(e).

As shown, control ow must merge at instruction i7 , since it is the only successor of both

instructions i3 and i6 . Then, control ow is re-split into mutually exclusive paths to account

for the next two instructions. The resultant predicate CFG contains four possible paths of

control. However, there are really only two possible paths as indicated by the original CFG,

making the graph conservative. By having extra paths of control, compiler analyses, such as

dataow analysis, blindly account for these paths which produce conservative results.

182

i1
i2

i3
i4

i5
i6

i7
i8

i1

i2

i7

i8

i1
i2
i7

i8

i5 (p2)

i4 (p1)

i6 (p2)

i3 (p1)

i1

i2

i7

i8

i5 (p2)

i4 (p1)

i6 (p2)

i3 (p1)

i1
i2

i3 (p1)
i4 (p1)

i6 (p2)
i5 (p2)

i3 (p1) i6 (p2)

i4 (p1) i5 (p2)

i7

i8

(a) (b) (c)

(e)(d)

Figure 7.20 Example of an accurate and a conservative predicate CFG, (a) original CFG,
(b) �rst example code sequence for the hyperblock, (c) accurate predicate CFG for the �rst
hyperblock, (d) second example code sequence for the hyperblock, (e) conservative predicate
CFG for the second hyperblock.

183

There are several possible strategies to achieve more accurate results. First, using the

predicate CFG approach, some principles of scheduling with reverse if-conversion could be

utilized [102]. In particular, replicating instructions with less constrained predicates in the

predicate CFG would eliminate the need to merge control ow. For the previous example,

instruction i7 could be duplicated with one copy serving as the sole successor of instruction

i3 and the other serving as the sole successor of instruction i6 . As a result, an accurate

predicate CFG could be obtained even with intermixed predicates. Another strategy di�ers

completely from the predicate CFG approach. Several researchers are exploring the area of

directly analyzing predicated code [103],[104]. For this approach, the compiler analyses are

modi�ed to understand predicates and their relations. The accuracy of the analysis is only

limited by the accuracy of the predicate relations.

7.2.3 Use of predicate information by the compiler backend

The backend modules of the IMPACT compiler have been enhanced to operate on hyper-

blocks using a combination of the predicate information provided by the PHG and the predi-

cate CFG. The compiler modules a�ected by hyperblocks include the classical optimizer, ILP

optimizer, instruction scheduler, and register allocator. A combination of predicate-sensitive

dataow information and direct predicate relation information is used by the modules to e�-

ciently transform predicated code. A brief summary of the ways in which each class of modules

utilizes the predicate information is provided in this section.

Classical/ILP optimization: The optimization modules pose the most di�culties in

the process of extending the compiler backend components to operate on hyperblocks. One

approach for the optimizations is to exclusively utilize the predicate CFG. In this manner, all

184

hyperblocks would be converted into a graph of basic blocks which could then be optimized using

standard techniques. However, there are two problems associated with this approach. First,

the majority of optimizations which are local to a hyperblock cast as global optimizations

in the predicate CFG. This is a serious problem for compilation speed in compilers such as

IMPACT where global transformations are signi�cantly more complex to perform than local

transformations. The second reason is the structure of the IMPACT ILP optimizer. Most of

the ILP optimizations operate on a single superblock or superblock loop as was presented in

Section 3.3. Extending the ILP optimizations to operate on hyperblocks as the basic unit is

much more natural than extending them to be global transformations.

The approach chosen is to extend all optimizations to directly operate on hyperblocks as

the lowest level structure. Hence, hyperblocks are de�ned as the basic unit for local transforma-

tions. Global transformations are de�ned to be transformations among instructions in di�erent

hyperblocks. The classic and ILP optimizers utilize all of the predicate information that is

provided by the PHG and the predicate CFG to various degrees. The predicate CFG is used

to construct global dataow analysis information to establish the correctness requirements at

the hyperblock boundaries. Hyperblock transformations may not be performed if they violate

the dataow conditions when the hyperblock is exited. This restriction is the same regardless

of the underlying structure for local optimization.

Within a hyperblock, the optimizers utilize the three predicate relations provided by the

PHG. The ancestor and implies relations are used to establish a dominance relation between

two predicated instructions in a hyperblock. Most classical optimizations, such as local copy

propagation, are applied among two instructions in which the �rst instruction dominates the

second [52]. In a basic block or a superblock, dominance trivially holds as the preceding

185

instruction always dominates a subsequent instruction. This is true because basic blocks and

superblocks are single entry blocks with linear control ow.

Hyperblocks are also single entry, but the predicates disrupt the simple ordering constraints

for dominance. However, using the PHG, the dominance condition can be established by

determining if either the ancestor or the implies relations hold among the predicates of the target

instructions. If an instruction, A, precedes another instruction, B, A dominates B if either the

predicate for A is an ancestor of the predicate for B or the predicate for A is implied by the

predicate for B. Essentially, these rules are used to identify the cases in which an instruction is

executed under the same or a more restrictive set of conditions of another instruction. Hence,

whenever instruction B is executed, instruction A is guaranteed to have previously executed.

The control path relation provided by the PHG is also utilized by the optimizations. Opti-

mization opportunities are generally lost when a particular register or expression is overwritten

or killed. For optimizing memory references, the problem is more serious because any interven-

ing memory instruction which potentially writes to a particular address takes away an optimiza-

tion opportunity. In a basic block or superblock, all intervening instructions must be considered

as potential optimization hazards, whereas with hyperblocks, the problem is less clear. Only

instructions conditioned under predicates which have a control path to the instructions being

transformed need to be considered as potential optimization hazards. Any instructions which

are conditioned under mutually exclusive predicates can be ignored. Hence, the hyperblock

optimizations use the control path relation to ignore instructions which are conditioned under

mutually exclusive predicates as potential optimization hazards. Clearly, incorrect transforma-

tions would not be performed if the control path relation was not considered. However, a large

fraction of the hyperblock optimization opportunities is lost if the relation is not utilized.

186

A: mov r1,r2 (p1)
B: add r2,r3,r4 (p2)
C: ld i r5,r1,0 (p3)

Figure 7.21 Example use of the predicate relations to perform local copy propagation.

The use of the predicate relations to perform local copy propagation on a hyperblock is

illustrated in Figure 7.21. For this example, predicate p1 is assumed to be an ancestor of

both predicates p2 and p3 . In addition, predicates p2 and p3 are mutually exclusive. The

goal of copy propagation is to forward propagate the source operand of copy instructions into

subsequent instructions which use the destination operand of the copy. For the example in

Figure 7.21, a potential opportunity for a local copy propagation occurs between instructions

A and C. However, the correctness of the transformation is not clear because of the predicates

of the instructions.

A real opportunity is identi�ed in the example because the predicate for instruction A

is an ancestor of the predicate for instruction C. Hence, whenever instruction C is executed,

the compiler knows that instruction A is previously executed. The optimization opportunity,

though, is lost if there is an intervening instruction which over-writes the value in register r2 .

In this example, instruction B seemingly does this. But, the predicates for instructions B and

C are mutually exclusive. Thus, the potential hazard does not a�ect the copy propagation, and

it can be safely performed.

Instruction scheduling: Extending the superblock scheduler to operate on hyperblocks

can be accomplished in a relatively straightforward manner. The use of predicate information in

the hyperblock scheduling framework is localized to one step, dependence graph construction.

After the dependence graph is in place, the remainder of the superblock scheduling process is

187

A: ld i r1,r2,r3 (p2)
B: add r4,r1,4 (p2)
C: ld i r1,r5,0 (p3)
D: mul r6,r1,r7 (p3)

Figure 7.22 Example use of the control path relation for hyperblock scheduling.

not altered for hyperblocks. The dependence graph construction utilizes two forms of predicate

information. First, the predicate CFG provides predicate-sensitive dataow information at the

hyperblock exit points. As with superblock scheduling (see Section 3.4), instructions may not

be moved above an exit branch if they de�ne a register which is in the LIVE-OUT set of a

branch. Hence, a dependence edge is placed between the de�ning instruction and the branch

to ensure the proper ordering.

The second use of predicate information for dependence graph construction is to avoid

unnecessary dependences. In particular, the control path relation provided by the PHG is

utilized for this purpose. Two instructions which are conditioned under predicates that do

not have a control path relation (mutually exclusive) may never both be executed. Therefore,

there should be no ordering constraints among instructions conditioned by mutually exclusive

predicates. This is true even if the instructions de�ne and use common registers or memory

locations. As a result, the dependence graph construction process makes extensive use of the

control path relation to only put edges between instructions which have a control path relation

between their predicates.

The code sequence shown in Figure 7.22 illustrates the point. As with the optimization

example, assume that predicates p2 and p3 are mutually exclusive. Using a naive depen-

dence construction procedure, all four instructions in Figure 7.22 are sequentially linked with

188

dependences. There is at minimum a ow dependence between instructions A and B, an anti-

dependence between instructions B and C, and a ow dependence between instructions C and

D. In addition, depending on the processor model and the instruction latencies, there is also

an output dependence between instructions A and C along with a ow dependence between

instructions A and D.

Clearly, if predicates p2 and p3 are mutually exclusive, there should be no dependences

between instructions conditioned by predicate p2 and predicate p3 . Using a dependence con-

struction procedure that makes use of the control path relation, the number of dependences in

the example is reduced to two, namely, ow dependences between instructions A and B along

with instructions C and D. The remainder of the scheduling process takes full advantage of

the reduced dependences to achieve a higher degree of overlap among instructions which are

conditioned under mutually exclusive predicates.

Register allocation: The register allocator makes exclusive use of the predicate CFG to

perform allocation of predicated code. Register live ranges are constructed by utilizing the

predicate CFG for a function body which contains hyperblocks. The predicate CFG is a graph

that represents control ow for both branches as well as predicates. Hence, traditional global

live range construction techniques for a basic block level graph can be applied to the predicate

CFG to derive live ranges which are predicate-sensitive. In essence, live range construction

for register allocation is treated as just another global dataow problem in the compiler. With

predicate-sensitive live ranges constructed, the remaining register allocation process is unaltered

by the presence of hyperblocks.

189

7.3 Predicate-Speci�c Optimizations

Up to this point in this chapter, the compiler support for predicated execution has focused

on forming hyperblocks and extending superblock techniques to operate on hyperblocks. There

are also many opportunities for new compiler optimizations targeted directly at improving the

performance of predicated code. These new optimization techniques improve the e�ciency of

predicated code as well as performing new transformations that are made possible with con-

ditional execution support. For this dissertation, a set of four important predicate-speci�c

optimizations have been identi�ed. The optimizations are predicate promotion, branch com-

bining, predicated loop peeling, and instruction merging.

7.3.1 Predicate promotion

Speculative execution is an important source of ILP for superscalar and VLIW processors

regardless of whether predicated execution is provided. By speculating instructions, a com-

piler can execute instructions before their condition for execution is completely known. With

superblock compilation support, speculative execution was shown to be a major source of per-

formance improvement. The ability to move instructions above branches which they depend on

gave the scheduler substantially more freedom to achieve a compact schedule. With hyperblock

compilation support, speculation comes in two forms. First, instructions can be moved above

exit branches in the hyperblock. This form of speculation is the same as in the superblock

domain. The second form of speculation in hyperblocks occurs in the predicate domain and is

referred to as predicate promotion.

Predicate promotion advances the predicate of an instruction to an ancestor predicate [21].

The ancestor predicate is less constrained than the original predicate, meaning that it is com-

190

puted using fewer conditions. As a result, the promoted instruction is executed under fewer

conditions than the original program speci�ed, making it a speculative instruction. The ma-

jor advantage of predicate promotion is reducing the dependence height of the transformed

hyperblocks. The critical dependence chains in hyperblocks frequently involve instructions

awaiting the computation of their predicate. Subsequent predicate computations in turn await

these instructions. With predicate promotion, dependences between predicate comparisons and

predicated instructions are broken. The dependence is completely broken when the predicate of

an instruction is advanced to True. Otherwise, the dependence height is lessened by connecting

predicated instructions to predicate values that are available earlier. The overall result is that

more compact schedules can be achieved through reduced dependence height and additional

code motion freedom.

Three types of predicate promotion have been identi�ed to handle the various opportunities

to advance instruction predicates. The �rst type is the most trivial form of promotion and

is aptly referred to as simple predicate promotion. Simple predicate promotion is utilized for

instructions whose predicates are computed by a single predicate comparison instruction. In

addition, no modi�cations to surrounding instructions nor insertion of new instructions are

allowed by this transformation. An algorithm for simple predicate promotion is presented in

Figure 7.23. The �rst four conditions in the algorithm identify potential promotion candidates.

Condition 2 ensures that an instruction is only eligible for promotion if it writes its results into

a destination register. As a result, instructions such as branches and stores, are not eligible for

predicate promotion. The major fact that must hold to perform simple predicate promotion

is expressed by conditions (5) and (6) in Figure 7.23. These conditions ensure that there is

no useful value in the destination register of the candidate, op(x), that would be overwritten

191

simple predicate promotion(hyperblock) f
for each instruction, op(x), in hyperblock f

if all of the following conditions are true:
1. op(x) is predicated
2. op(x) has a destination register
3. op(x) has a speculative version
4. there is a unique op(y) lexically before op(x) such that dest(y) = pred(x)
5. dest(x) is not live at op(y)
6. dest(j) 6= dest(x) in f op(j); j = y + 1 : : : x� 1 such that there is a path

of control between op(j) and op(y) g
7. it is pro�table to promote op(x)

then promote op(x):
1. set pred(x) = pred(y)

g
g

Figure 7.23 Algorithm for simple predicate promotion.

if the candidate is promoted. Therefore, the candidate instruction's predicate may be safely

advanced one level to its immediate ancestor.

Conditions (1) - (6) identify opportunities for a legal simple predicate promotion. The

remaining condition which must hold is that there is some pro�t associated with the promotion.

The costs associated with simple predicate promotion are exactly those of speculation in the

control ow domain. The nominal speculation costs are primarily increased execution count

with possible increases in register pressure and cache misses. In addition, a speculation model,

such as sentinel speculation, may impose additional costs for promoting potentially excepting

instructions. However, the general speculation model is assumed throughout this discussion, so

there are no additional speculation costs. With the low overhead of simple predicate promotion,

the pro�tability check is assumed to always hold in the current implementation. Thus, simple

predicate promotion is applied to all cases which meet the legality requirements. In addition,

simple predicate promotion is iteratively applied to continually advance instruction predicates

until they either reach true or one of the conditions is not met.

192

multidef predicate promotion(hyperblock) f
for each instruction, op(x), in hyperblock f

if all the following conditions are true:
1. op(x) is predicated
2. op(x) has a destination register
3. op(x) has a speculative version
4. there exists more than one op(y) lexically before op(x) such that dest(y) = pred(x)
5. dest(x) is not live at the �rst instruction in hyperblock, op(1)
6. dest(j) 6= dest(x) in f op(j); j = 1 : : : x� 1 g
7. it is pro�table to promote op(x)

then promote op(x):
set pred(x) = True

g
g

Figure 7.24 Algorithm for multide�nition predicate promotion.

The second type of predicate promotion is very similar to simple predicate promotion, but

is utilized for predicates de�ned by two or more instructions. Again, the transformation is

restricted to perform no modi�cations to surrounding instructions nor insertion of new in-

structions. An algorithm for this type of promotion, referred to as multide�nition predicate

promotion, is given in Figure 7.24. Multide�nition predicate promotion can be viewed as simul-

taneously performing simple predicate promotions of a candidate instruction to each of those

instructions which compute its predicate. The di�culty, though, is choosing the appropriate

predicate in which to advance the candidate instruction. To simplify the process, the true pred-

icate is chosen as the �xed target for multide�nition predicate promotion. With this approach,

the same conditions as for simple predicate promotion are used. Conditions (5) and (6) utilize

the �rst instruction in the hyperblock as the reference point to ensure that no useful value in

the destination register of the candidate is overwritten if the candidate is promoted to true.

Clearly, this algorithm is conservative, but in practice it is found to work rather well.

193

renaming predicate promotion(hyperblock) f
for each instruction, op(x), in the hyperblock f

if all the following conditions are true:
1. op(x) is predicated
2. op(x) has a destination register
3. op(x) has a speculative version
4. op(x) cannot be promoted by simple predicate promotion
5. it is pro�table to promote op(x)

then rename and promote op(x):
new reg = new virtual register
for each instruction, op(y), lexically after op(x) f

if (src(y) = dest(x)) and (op(x) is the only de�nition of dest(x) to reach op(y))
src(y) = new reg

g
dest(x) = new reg

add new move instruction, op(z), immediately following op(x) to perform:
original dest(x) = new reg

pred(z) = pred(x)
pred(x) = True

g
g

Figure 7.25 Algorithm for renaming predicate promotion.

The �nal type of predicate promotion is referred to as renaming predicate promotion. Re-

naming predicate promotion is introduced to overcome a major limitation of both simple and

multide�nition predicate promotions. This limitation is that instructions cannot be promoted

whenever their destination register is live along alternate control paths (violate either condi-

tions 5 or 6 in Figures 7.23 or 7.24). Predicate promotion could be performed, though, if the

destination register of the instruction is renamed to a new temporary register. In this manner,

the live register value would not be corrupted by the promoted instruction. However, as a side

e�ect of renaming the destination register, an additional copy instruction may be needed to

ensure that subsequent instructions use the proper values.

An algorithm to perform renaming predicate promotion is presented in Figure 7.25. The

conditions for renaming predicate promotion are much weaker than either of the other types

194

of promotion. In general, all instructions which have a speculative version can be legally pro-

moted. With this broad applicability and the need to insert a copy instruction, the pro�tability

function becomes more important. A promotion is useful if it directly or indirectly leads to

a more compact schedule for the hyperblock. However, in the IMPACT compiler all predi-

cate promotion occurs before scheduling during the optimization phase, so an estimation of

pro�tability is required.

The current pro�t function determines that a renaming predicate promotion should occur if

the candidate has at least one ow dependence edge to another instruction in the hyperblock.

However, there are two exceptions to this rule. First, if the candidate is a copy instruction

itself, the promotion is not pro�table. For this case, the compiler would just be replacing

a predicated copy by a promoted copy and another predicated copy. Second, if the candidate

overwrites one of its source operands, such as an increment instruction, the renaming promotion

is not pro�table. The reason for this exception is that other compiler transformations such as

induction or accumulator expansion are much more e�ective for removing dependences on these

instructions.

Renaming predicate promotion is accomplished in Figure 7.25 by creating a new virtual

register, new reg . All instructions subsequent to the candidate which are guaranteed to use

its destination are modi�ed to use the new register. This substitution allows the dependent

instructions to be potentially hoisted along with the candidate during scheduling. After re-

naming the destination of the candidate to the new register, a predicate copy is inserted after

the candidate. The copy conditionally moves the contents of the new register into the original

destination of the candidate conditioned under the candidate's original predicate. Finally, the

candidate is promoted to true.

195

To illustrate the application of predicate promotion, the example in Figure 7.26 is presented.

The example is the most important loop segment for the benchmark qsort . The assembly code

after hyperblock formation is given in Figure 7.26(a). The loop contains a single if-then-else

statement which has been if-converted. In addition, the hyperblock contains two branches, the

�rst of which exits the loop, and the second is the loop back branch. The schedule for the

hyperblock loop on a processor with no resource constraints is shown in Figure 7.26(b). Note

that all instructions are assumed to have a latency of one cycle except loads which have a two-

cycle latency. A major problem in the hyperblock is that the predicated loads (instructions 4

and 8) cannot issue until cycle 3 because this is the earliest time their predicates are available.

The delaying of the loads in turn causes subsequent instructions which depend on the loads to

also be delayed.

A clear opportunity for predicate promotion exists in this example. By advancing the

predicate of both instructions 4 and 8, the critical dependence chain in the hyperblock can be

reduced. The hyperblock loop after predicate promotion is presented in Figure 7.26(c). The

�rst load, instruction 4, can be promoted with a simple predicate promotion. The value in r6 is

not live at the point of instruction 4; therefore, the predicate for instruction 4 is just advanced.

The new predicate of instruction 4 is the predicate of the instruction which computes p126 ,

namely, the predicate of instruction 3 which is true.

The second load, instruction 8, cannot be transformed with simple predicate promotion. At

instruction 8, there is a live value in r6 that would be corrupted if the predicate of instruction

8 is simply advanced to true. As a result, renaming predicate promotion is required. To

accomplish renaming predicate promotion, the destination of instruction 8 is renamed to a new

register, r60 , and the predicate is advanced to true. In addition, a copy instruction is inserted

196

(a)

LA:

LB:

add

1
2

4
3

5
6
7
8
9

ld_i r20, r14, r101
ld_i r23, r2, r102

ld_i
add
add

add

LE:

add

LC: ld_i
add

st_i
st_i

add

add r7, r7, 1
r114, r114, 8
r9, r3, EXITbge

blt r8, r1, LA

pge

r8, r8, 1 (r127)

LA:

LB:

add

1
2
3

5
6
7
8

ld_i r20, r14, r101
ld_i r23, r2, r102

ld_i
add
add

LD:

add

LE:

add

LC: ld_i

add

st_i
st_i

add

add r7, r7, 1
r114, r114, 8
r9, r3, EXITbge

blt r8, r1, LA

pge
r6, r123, 0

r60, r124, 0

1,20
1
2
3
4
5
6

−
3

LD:

4

cycle issued instructions

0
1
2
3
4
5

−
3

cycle issued instructions

(b)

(c)

(d)

10
11
12
13
14
15
16
17

r114, 0, r23
r114, 4, r6

mov 8’
9

10
11
12
13
14
15
16
17

r114, 0, r23
r114, 4, r6

4, 5, 6, 7, 8, 9, 10, 11
12, 14
13, 15, 16
17

1,2, 4, 8

12, 13, 14, 15, 16
17

5, 6, 7, 8’, 9, 10, 11

p126(U), p127(U), r20, r23
r6, r123, 0 (p126)
r123, r123, 8 (p126)
r9, r9, 1 (p126)
r101, r101, 8 (p126)
r6, r124, 0 (p127)
r124, r124, 8 (p127)

r102, r102, 8 (p127)

p126(U), p127(U), r20, r23

r123, r123, 8 (p126)
r9, r9, 1 (p126)
r101, r101, 8 (p126)

r6, r60 (p127)
r124, r124, 8 (p127)
r8, r8, 1 (p127)
r102, r102, 8 (p127)

Figure 7.26 Example of predicate promotion from qsort , (a) assembly code after hyper-
block formation, (b) schedule for hyperblock, (c) assembly code after predicate promotion, (d)
schedule for hyperblock after predicate promotion.

197

which moves the new register back to the original destination of instruction 8, r6 , conditioned

under the original predicate of instruction 8, p127 . Subsequent uses of r6 are guaranteed to

receive the proper value by inserting the copy.

The resulting schedule after predicate promotion is shown in Figure 7.26(d). The overall

schedule length has been reduced by one cycle. This improvement was accomplished because

instructions 4 and 8 can be issued in cycle 0 after promotion. This compares with issuing

them in cycle 3 in the original code. As a result, instruction 13 and the subsequent branches

can all be executed a cycle earlier. Although this example seemingly only shows a modest

performance increase, the actual performance gain with predicate promotion is substantial in

the �nal hyperblock. The �nal hyperblock is unrolled eight times. With predicate promotion,

the schedule length is reduced from 44 to 33 cycles, a 33% improvement. The reduction in

dependence height and the increased code motion freedom enable the scheduler to achieve a

signi�cantly more compact schedule.

7.3.2 Branch combining

A common problem arising in hyperblocks is that they contain a large number of infre-

quently taken branches which exit the hyperblock. With limited branch resources, these exit

branches often become the performance bottleneck. The exit branches are to handle execution

sequences which transfer control ow to basic blocks which were not selected for inclusion in the

hyperblock. These basic blocks typically correspond to handling infrequent execution scenar-

ios, such as special cases, boundary conditions, and invalid input. In the wc example presented

earlier in this chapter (see Figure 7.8), the hyperblock contained two exit branches. These

exit branches handle the special cases of re�lling the input bu�er and detecting the end of the

198

input �le. In many cases, code segments contain a large number of these infrequent execution

scenarios. Thus, the corresponding hyperblocks contain a large number of exit branches.

An example of such a hyperblock is the loop segment from the benchmark grep presented

in Figure 7.27. The code segment consists of a loop body, where each iteration contains two

memory, two ALU, and �ve branch instructions. The �rst four branches are exit branches

which are taken very infrequently, as indicated by the execution frequencies in Figure 7.27(b).

A small loop such as this is generally unrolled to increase the available ILP. In this example,

the iterations of the loop are completely independent from each other. Thus, a high degree of

instruction overlap can potentially be achieved. However, with four exit branches per iteration

and few other instructions, the branch execution bandwidth to sustain four or eight instructions

per cycle is quite large. For processors with limited branch resources, the resultant performance

will likely be determined by the resource constraints. In this example unrolled twice and

ignoring the loop backedge, the unrolled loop contains eight branches. For a processor which

can execute at most one branch per cycle, the minimal schedule length for this hyperblock is

8 branches � 1 cycle=branch, or 8 cycles. With only 18 instructions in the loop body, the

maximal performance that can be achieved is 2.25 instructions per cycle.

In this example, if-conversion alone was not su�cient for eliminating branches from the

code. If-conversion failed because the cost of eliminating the branches was too large due to the

instructions which would have to be included in the hyperblock. For these cases, the compiler

can employ a transformation referred to as branch combining to eliminate exit branches from

the hyperblock. Branch combining replaces a group of exit branches by a corresponding group

of predicate de�ne instructions. All of the predicate de�nes write into the same predicate

register using the OR-type semantics. As a result, the resultant predicate will be set to 1 if any

199

1
2

4
3

5
6
7
8
9

bge
ld_c
beq
beq
bge
st_c
add
add
jmp

A: r1, r5, EXIT1

r3, 10, EXIT2
r3, 0, EXIT3
r2, r6, EXIT4

A

r1, r1, 1
r2, r2, 1

r3, r1, 0

r2, 0, r3

14

4035

0

0

101K

(b)(a)

Figure 7.27 Loop segment from grep, (a) assembly code, (b) weighted control ow graph.

of the exit branches were to be taken. Not exiting the hyperblock is the most common case, so

the predicate will be false.

Branch combining is illustrated in Figure 7.28. Each of the exit branches, instructions 1, 3, 4,

5, 7, 9, 10, and 11 in Figure 7.28(a), is replaced by a corresponding predicate de�ne instruction

in Figure 7.28(b) based on the same compare condition. All predicate de�ne instructions

target the same predicate register, p1 . The predicate is initially cleared, then each predicate

de�ne instruction sets p1 if the corresponding exit branch would have taken in the original

code. A single, combined exit branch (instruction 16) is then inserted which is taken whenever

any of the exit branches were taken. The correct exiting condition is achieved by creating

an unconditional branch predicated on p1 . In cases where p1 is false, the remainder of the

unrolled loop is executed and the next iteration is invoked. In cases where p1 is true and an

exit branch was indeed taken, instruction 12 transfers control to the block labeled Decode. In

this block, exit branches are re-executed in their original order to determine the branch which

was originally taken. Since the conditions of multiple exit branches could be true, the �rst

200

Iter 1

Iter 2

1
2

4
3

5
6
7
8
9

10
11
12
13
14
15

bge
ld_c
beq
beq
bge
st_c
bge
ld_c
beq
beq
bge
st_c
add
add
jmp

(p1)

Iter 1

Iter 2

(a) (b)

A: A:

1
3
4
5
6
7
9

10
11

0
1’
2
3’
4’
5’

8
9’

10’
11’
16

7’

12
13
14
15

6’

Decode:

r1, r1, 2
r2, r2, 2

beq
beq
bge
st_c
bge
beq
beq

bge

jmp

ld_c

ld_c

st_c
add
add

st_c
jmp

jmp

pge

peq
peq
pge
pge

peq
peq
pge

pclr

r1, r1, 2
r2, r2, 2

p1(OR), r3, 10
p1(OR), r3, 0

p1(OR), r4, 10
p1(OR), r4, 0

p1(OR), r1, r5

p1(OR), r2, r6
p1(OR), r1, r7

p1(OR), r2, r8

p1r1, r5, EXIT1

r3, 10, EXIT2
r3, 0, EXIT3
r2, r6, EXIT4

r1, r7, EXIT5

r4, 10, EXIT6
r4, 0, EXIT7
r2, r8, EXIT8

A

A

Decode

r1, r5, EXIT1
r3, 10, EXIT2
r3, 0, EXIT3
r2, r6, EXIT4

r1, r7, EXIT5
r4, 10, EXIT6
r4, 0, EXIT7
EXIT8

r3, r1, −1

r2, −1, r3

r4, r1, 0

r2, 0, r4

r3, r1, −1

r4, r1, 0

r2, −1, r3
r2, 0, r4

r2, −1, r3

Figure 7.28 Example of branch combining from grep, (a) assembly code after unrolling twice,
(b) assembly code after branch combining.

such branch has to be determined since that branch would have been taken in the original code

sequence.

An important issue with branch combining is correct handling of instructions located be-

tween branches which are eliminated. In the original code, these instructions will not be ex-

ecuted if a previous exit branch is taken to transfer control out of the hyperblock. But in

the transformed code, these instructions will be executed regardless because the actual control

transfer out of the hyperblock does not occur until after the last exit branch. Instructions

201

between combined branches are essentially speculated. However, there are often instructions

which cannot be speculated between eliminated branches, such as stores.

To handle the nonspeculative instructions properly, two things are done. First, instructions

which cannot be speculated are moved below the combined exit branch in the hyperblock.

Second, they are replicated in the decode block and placed in their original position with

respect to the exit branches. In the example in Figure 7.28(b), the �rst store, instruction 6, is

handled in this manner. By positioning the store as such, it is guaranteed to execute exactly the

same number of times as it did in the original code sequence. For most instructions which may

be speculative, such as loads or arithmetic instructions, such transformations are unnecessary.

Stores and instructions whose destination register is live along a prior exit branch are the most

common instructions in the nonspeculative category.

A second issue with branch combining is the heuristics of when to apply the transformation

and which branches should be combined. This pro�tability question arises because branch

combining can create highly ine�cient hyperblocks when applied blindly. The major negative

of branch combining is an extra level of branch indirection that is added whenever an exit

branch is taken. For the case in which an exit branch is taken, the combined exit branch is

�rst executed to transfer control to the decode block. Then, the actual branches are executed

to determine the �rst exit condition which holds and transfers control to the correct exit point.

Furthermore, the actual cycle at which the exit occurs with branch combining is typically

much later than without branch combining. This occurs because the combined exit cannot be

executed until all exit branch conditions are calculated. With a frequently taken exit or a group

of low probability exits which collectively account to a signi�cant exit frequency, performance

will su�er.

202

To overcome these potential problems, the branch combining algorithm utilizes two thresh-

olds to control the application of the transformation. First, individual branches are candidates

for branch combining only if the fraction of time they are taken is less than a maximum frac-

tion. This threshold rules out all but infrequently taken exit branches. The second threshold

is a ceiling on the overall taken frequency of the combined branches. This threshold limits the

number of consecutive branches which are combined by the sum of the taken probabilities. By

limiting the number of branches which are combined, a balance of overhead when a hyperblock

exit occurs and branch reduction in the main hyperblock can be maintained. In the current

implementation, the individual branch threshold is set to 0.10 and the combined threshold to

0.25.

Overall, for an issue-8 processor which can execute at most one branch per cycle, the

execution time of the example loop from grep is reduced from 584K cycles to 106K cycles with

branch combining. This large performance increase is primarily due to the drastic reduction in

dynamic branches for this loop. With branch combining, the number of dynamic branches in

the hyperblock drops from 343K to to 21K.

7.3.3 Predicated loop peeling

A fundamental limitation of if-conversion is the inability to transform a cyclic control ow

graph. Hyperblocks can be loops themselves by having an exit branch which targets the entry

block of the hyperblock. This was the case for the wc example presented in Section 7.1. But, no

internal branches which form cycles are allowed in regions identi�ed for hyperblock formation.

For many cases, this limitation is not a problem since the compiler generally wants to optimize

and schedule loops as a single entity. Transformations, such as loop unrolling and register

203

renaming, enable high levels of ILP to be extracted from hyperblock loops by overlapping the

execution of independent iterations. One important exception is the loops which do not iterate

frequently. For these loops, there are not enough iterations executed to achieve the desired level

of ILP.

An e�ective approach is to overlap the execution of infrequently iterated loops with the

code surrounding the loop. In this manner, the loop execution can be overlapped with more

instructions to increase the ILP. Predicated loop peeling is introduced to enable such overlap.

Loop peeling itself is a traditional transformation which unravels several iterations from the

beginning or end of a loop. Typically, loop peeling is utilized by compilers to treat loops which

have specialized code that is executed for a particular iteration. For example, some variable

may be initialized in the �rst iteration and referenced by subsequent iterations. By peeling o�

the �rst iteration, the compiler can eliminate the special case code from the body of the loop.

Predicated loop peeling is an extension of the traditional transformation. With predicated

loop peeling, the �rst several iterations of an infrequently iterated loop are peeled o�. In

general, the loop is peeled enough times so that the majority of invocations for the loop just

execute the peeled code. The peeled iterations are conditioned by iteration predicates to enable

execution of the proper number of iterations. Any peeled iterations which are not required for

execution are just nulli�ed by the predicate hardware. The peeled iterations appear as purely

acyclic code; thus, they are merged with basic blocks before and after the loop to form a single

hyperblock. A copy of the original loop body, referred to as the recovery loop, is also maintained

to handle invocations of the peeled loop which iterate more times than the peel amount. A

branch is placed after the last peeled iteration to test if more iterations are required. In the

204

cases where additional iterations are required, control ow is transferred out of the hyperblock

to the recovery loop to ensure correctness.

One of the major advantages of predicated loop peeling is the ability to exploit outer loop

ILP with hyperblock techniques. For many cases, the code surrounding the peeled loop is itself

another loop. By peeling the inner loop and thus converting it into sequential code, a hyperblock

loop can be formed for the outer loop. The hyperblock consists of the selected blocks from the

outer loop as well as the peeled iterations of the inner loop. This loop can then be e�ectively

transformed with inner loop techniques, such as loop unrolling and register renaming, to enable

high levels of ILP to be extracted from the outer loop. The example presented later in this

section illustrates the performance potential of this approach.

Loop peeling of this form does not strictly require predicated execution to be performed.

The compiler could perform the transformation purely in the control ow domain. However,

two important advantages of the transformation are not observed with this approach. First,

predicates allow the compiler to merge the peeled iterations and the surrounding code into a

single hyperblock structure. After this point, an unmodi�ed hyperblock optimizer and scheduler

take full advantage of the resultant peeling, whereas without predicated execution, a complex

control ow graph consisting of the peeled loop and the surrounding code remains which must be

optimized and scheduled in some manner for ILP. A second advantage of utilizing predicates for

loop peeling is the ability to remove the mispredictions associated with loop back branches. For a

loop which does not iterate frequently, the loop back branch is a major source of mispredictions.

With predicated loop peeling, the compiler converts the loop back branches for each peeled

iteration into predicate comparisons. The de�ned predicates are then used to properly condition

205

subsequent instructions. When peeling is performed purely in the control ow domain, no

branches are eliminated. Thus, the peeled code does not reduce the number of mispredictions.

The major tradeo� involved with predicated loop peeling is that of coverage versus instruc-

tion overhead. On the one hand, the loop should be peeled enough times so that execution

rarely requires more than the peeled iterations. Whenever more iterations are required, perfor-

mance is lost because the peeled hyperblock is exited to enter the recovery loop. On the other

hand, each time the loop is peeled, more instructions are inserted into the hyperblock. The pro-

cessor resources will become over-saturated when the loop is peeled too many times. The loop

peeling and hyperblock formation algorithms utilize these tradeo�s to identify opportunities.

The details of the peeling heuristics and the algorithms for transformation are not presented

here. The interested reader is referred to [105] for a complete description of predicated loop

peeling.

To illustrate the application and e�ectiveness of predicated loop peeling, the example pre-

sented in Figure 7.29 is utilized. The �gure shows a nested loop segment from the function

elim lowering in 008.espresso. This loop segment is among the most frequently executed in

the benchmark. The assembly code and weighted control ow graph for the loop segment are

shown in Figure 7.30. The entire loop nest has the seven basic blocks shown, with the inner

loop consisting of blocks C and D. From Figure 7.30, two important facts can be determined.

First, the inner loop does not iterate frequently; on average, the loop body is executed 2.6

times. Second, the inner loop contains only nine instructions, and is dominated by a �ve-cycle

dependence chain. With the combination of these features, very little ILP can be extracted from

the inner loop by itself. The compiler achieves an average of approximately two instructions

206

p < last;
p += CC−>wsize)

LG:

LA: if ((p[0] & (0x2000)))
{

/* INNER LOOP */

/* OUTER LOOP */

do {
if (p[i_] & ~r[i_]) break;

}while(−−i_ > 0);
if (i_ != 0)

goto false1;
continue;
false1:
CC−>active_count−−, (p[0] &= ~(0x2000));

}

LB:

LC:
LD:

LF:

LE:

p = CC−>data, last = p + CC−>count * CC−>wsize; for (

{

register int i_ = (p[0] & 0x03FF);

}

Figure 7.29 Example loop segment from the function elim lowering in 008.espresso.

per cycle by unrolling and transforming the inner loop. The inner loop will therefore be peeled

to enable the compiler to overlap the inner loop with the surrounding outer loop instructions.

The predicated loop peeling transformation in conjunction with hyperblock formation is

illustrated in Figure 7.31. For this example, the inner loop is peeled twice. The �gure shows

the assembly code and control ow graph for the resultant hyperblock. The entire loop nest

is combined into a single hyperblock, consisting of blocks from the outer loop and the peeled

inner loop. After the second peeled iteration is the branch (instruction 25) which checks if there

are additional iterations. If there were more than two iterations required for the inner loop,

the branch is taken and the recovery loop, the block labeled \RECOV", is entered. This code

segment contains a copy of the inner loop to execute the remaining iterations. In addition, the

code subsequent to the inner loop which was merged into the hyperblock (blocks E, F, and G)

is tail duplicated.

207

(b)
(a)

A

B

C

D

E

F

EXIT

G

127K

127K

205K 203K

389K

2K

125K

265K

2K 125K

125K

1K

LA: r98, r1, 0
and r99, r98, 8192
beq r99, 0, LG

LB: and
lsl
add
add

r11, r98, 1023
r115, r11, 2
r124, r115, r1
r125, r115, r2

LC:
add

add
xor
and
bne

r56, r124, 0
r124, r124, −4
r58, r125, 0
r125, r125, −4
r59, −1, r58
r60, r56, r59
r60, 0, LE

LD: add
bgt

r11, r11, −1
r11, 0, LC

LE: beq r11, 0, LG
LF: add

and
r137, r137, −1
r64, r98, −8193
r1, 0, r64

LG: add
blt

r1, r1, r101

1
2

4
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Register contents:

r1 = p mem(r124, 0) = p[i_]
mem(r125, 0) = r[i_]r11 = i_
r137 = CC−>active_countr101 = CC−>wsize

ld_i

ld_i

ld_i

st_i

r1, r3, LA

Figure 7.30 Example loop segment from 008.espresso, (a) original assembly code, (b)
weighted control ow graph.

208

r98, r1, 0
and r99, r98, 8192

and
lsl
add
add

r11, r98, 1023
r115, r11, 2

1
2

4
3

5
6
7

r124, r1, −4
r125, r2, −4

LA:

(p130)
(p130)
(p130)
(p130)

add

add
xor
and

r59, −1, r58
r60, r56, r59

8
9

10
11
12
13
14

r56, r115, r1
r124, r124, r115
r58, r115, r2
r125, r125, r115

add r11, r11, −1
15
16

(p130)
(p130)
(p130)
(p130)
(p130)
(p130)
(p130)
(p134)
(p134)

add

add
xor
and

r59, −1, r58
r60, r56, r59

add r11, r11, −1

17
18
19
20
21
22
23

r56, r124, 0
r124, r124, −4
r58, r125, 0
r125, r125, −4

bgt
24
25

(p135)
(p135)
(p135)
(p135)
(p135)
(p135)
(p135)
(p136)
(p136)

r1, 0, r64
add
blt

r1, r1, r101

add
and

26
27
28
29
30
31

r137, r137, −1
r64, r98, −8193

(p133)

(p130)
(p133)
(p133)

Predicate association:

p133 ~ F

PEEL 1

PEEL 2

p134 ~ Peel 1 − D
p135 ~ Peel 2 − C

p136 ~ Peel 2 − Dp130 ~ B, Peel 1 − C, E

LA:

RECOV:

pne

ld_i

ld_i

ld_i

ld_i

peq
pgt

ld_i

peq

pne

st_i

r1, r3, LA

p134(U), −, r60, 0

p130(U), −, r99, 0

p135(U), −, r11, 1

p136(U), −, r60, 0

p133(U), −, r11, 0

C
D

Peel1

Peel2

r11, 0, RECOV

B
A

E
F
G

E
F
G

Figure 7.31 Example loop segment from 008.espresso after hyperblock formation with pred-
icated loop peeling; the inner loop is peeled twice.

The assembly code for the hyperblock shows the generation and use of predicates by the

transformation. The iteration predicates for the peeled loop are predicates p130 and p135 .

These predicates determine whether each iteration is executed or not. The �rst iteration is

executed whenever block B is executed; therefore, the �rst iteration predicate is assigned the

same predicate as block B, namely, predicate p130 . The second iteration is executed whenever

the loop back branch would have taken in the original loop. For this example, instruction 15

computes the loop back condition and stores the result in predicate p135 . The second iteration

is then conditioned based on this predicate. The inner loop also has embedded control ow,

209

namely, the branch at the bottom of block C. This branch is eliminated with standard if-

conversion and introduces the second set of predicates in each peeled iteration, predicates p134

and p136 . The resultant structure looks much like a simple hyperblock loop with a single exit

branch formed from an inner loop region.

The hyperblock in Figure 7.31 is still very sequential and is dominated by data dependences.

To increase the ILP, the compiler applies the full set of hyperblock ILP transformations to the

resultant structure. The compiler is able to treat the outer loop, peeled inner loop combination

as a conventional hyperblock loop since it is not structurally di�erent. More speci�cally, the

loop is �rst unrolled, with subsequent register renaming, induction variable expansion, and

accumulator variable expansion applied to the hyperblock. Additionally, predicate promotion

is aggressively applied because it is an extremely important ILP enhancing transformation with

peeled loops. The instructions in each peeled iteration are often limited by a chain of predicate

computation instructions. In order to allow the scheduler to overlap the execution of these

instructions with previous instructions, the predicate dependences are broken with promotion.

A portion of the �nal hyperblock after ILP transformations is presented in Figure 7.32. For

space reasons, the �gure shows just a single iteration of the outer loop, where in actuality the

outer loop is unrolled six times. The loop iteration contains one less instruction than the loop

prior to transformation. The major di�erences are the renaming and expansion transformations

along with the predicate promotion that have occurred to reduce the dependence height. Pro-

moted instructions are indicated by an \�" in the predicate �eld for each instruction. From the

�gure, six of the nine instructions in each peeled iteration are promoted. The most important

advantage of the renaming and promotion transformations is that the input operands for the

210

and

and
lsl

add

1
2

4
3

5
6
7

add
and

26
27
28
29
30

LA:

(p133)

add

add
xor
and

8
9

10
11
12
13
14

add r11, r11, −1
15
16

(p130)
(p134)
(p134)

add

add
xor
and

add r11, r11, −1

17
18
19
20
21
22
23

bgt
24
25

(p135)
(p136)
(p136)
(p130)
(p133)

r346, r157, 0
r347, r346, 8192

r11, r346, 1023
r348, r11, 2
r349, r157, −4
r350, r2, −4

*
*
*
*

*
*
*
*

*
*r351, r348, r157

r124, r349, r348
r352, r348, r2
r125, r350, r348
r353, −1, r352
r354, r351, r353

*

*
*

*r355, r349, r348
r124, r124, −4 (p130)*

(p130)*
r356, r350, r348
r125, r125, −4
r357, −1, r356
r358, r355, r357

r161, r161, −1
r359, r346, −8193 *
r157, 0, r359

* = Promoted Instruction

PEEL 1

PEEL 2

ld_i

pne

add

ld_i

ld_i

peq
pgt

ld_i

ld_i

peq

pne

st_i

p130(U), −, r347, 0

p134(U), −, r354, 0
p135(U), −, r11, 1

p136(U), −, r358, 0

p133(U), −, r11, 0
r11, 0, RECOV

blt r1, r3, LA

Figure 7.32 Example loop segment from 008.espresso after hyperblock formation with pred-
icated loop peeling and ILP optimizations. This �gure shows just one iteration of the outer
loop. In the actual compiled code, the outer loop is unrolled six times to achieve performance.

211

2.46M cycles

884K

16K

6.59

With Peeling

Execution time:

Dynamic branches:

Dynamic mispredictions:

Executed IPC:

No Peeling

6.70M cycles

2.96M

182K

1.83

Performance Summary (issue−8, 1 branch)

Figure 7.33 Performance summary for example loop segment from 008.espresso.

predicate computations themselves can be scheduled earlier. As a result, the dependence chain

threading through the predicate computations is substantially reduced.

The ILP transformations also allow the scheduler to achieve a high degree of instruction

overlap across outer loop iterations. The outer loop does not have any cross iteration memory

dependences in this example. Therefore, there is nothing to limit iteration overlap besides

register dependences which the compiler can e�ectively eliminate with transformations. The

overall result is a large increase in performance for this code segment with predicated loop

peeling.

A summary of the performance for this loop nest on an issue-8 processor capable of executing

at most 1 branch per cycle is given in Figure 7.33. The methodology utilized to generate these

data is the same as that used in the overall evaluation of predicated execution in Chapter 8.

The �gure compares the best the compiler can achieve for the example with and without loop

peeling. The performance change is drastic, the cycle count is reduced by nearly a factor of

three. In correspondence, the average IPC is increased from 1.83 to 6.59. Clearly, predicated

loop peeling has enabled the compiler to increase the ILP and translate the parallelism into

overall performance improvement. A large portion of the performance improvement is due to

212

the reductions in dynamic branches and dynamic mispredictions. From Figure 7.33, these are

reduced by over three and ten times with peeling.

7.3.4 Instruction merging

The �nal predicate speci�c optimization discussed in this dissertation is referred to as in-

struction merging. Instruction merging di�ers from the previous optimizations in that it is

primarily oriented towards improving the e�ciency of the predicated code rather than increas-

ing the ILP. Instruction merging combines two instructions in a hyperblock with complementary

predicates into a single instruction which will execute under the union of the conditions. As a

result, the number of instructions in a hyperblock is reduced. This technique achieves some of

the same e�ects of partial redundancy elimination [53],[54],[55]. However, it uses the hyperblock

boundaries to identify the paths along which redundancies are sought. Instruction merging is

most e�ective for reducing the number of instructions for resource limited instruction classes,

such as branches or stores. By merging these instructions, more compact schedules can often

be achieved by reducing the resource pressure in a hyperblock.

To accomplish instruction merging, instructions that have the same source and destination

operands along with equivalent opcodes are �rst identi�ed. Then, if the same values for these

operands reach both instructions, candidates for instruction merging are identi�ed. The next

step is to ascertain whether one of the instructions can be promoted to a new predicate which

allows the other instruction to be eliminated. The new predicate that is required is the logical

OR of the candidate instruction predicates. To simplify matters, only two scenarios are con-

sidered in the current implementation. First, the candidate predicates are mutually exclusive

with a common ancestor predicate. In this case, the common ancestor predicate is used as the

213

new predicate. The second scenario is that one of the candidate predicates is an ancestor of

the other. For this case, the ancestor predicate itself serves as the new predicate.

The application of instruction merging is illustrated by the example presented in Figure 7.34.

This example is not directly from one of the benchmark programs, but is arti�cially created to

resemble some of the more common application instances. The original assembly code and con-

trol ow graph before any hyperblock transformations are shown in Figures 7.34(a) and 7.34(b).

The example is an acyclic code region with an if-then-else statement. On each side of the if-

then-else are branches which exit the region. Figure 7.34(c) shows the code after hyperblock

formation. All blocks are selected for the hyperblock; thus, the if-then-else branch is removed

via if-conversion. The highlighted instructions show identical computations under mutually

exclusive predicates, which are the candidates for instruction merging.

The code segment after instruction merging is shown in Figure 7.34(d). The transformation

combines instructions 4 and 9 into instruction 4. In a somewhat di�erent manner, instructions

7 and 12 are combined into instruction 12. Considering �rst the instruction merging of the

load instructions, the second load is made redundant by promoting the �rst load to true. After

promotion, the value of r6 computed by instruction 4 can be utilized by all subsequent uses of

r6 under any predicate. Thus, the re-computation of r6 by instruction 9 is unnecessary.

The second instruction merging cannot be accomplished in the same manner. Since the

instructions are branches, promoting the �rst branch may cause the hyperblock to be prema-

turely exited. This can be seen by considering the case where p31 is 1 and the hyperblock exit

branch is taken. For this case, the hyperblock would be exited without executing instructions

10 and 11. To overcome this problem, the instruction merging transformation is reversed for

214

LA:

LB:

LD:

1
2

4
3

5
6
7
8
9

10
11
12
13

ld_i
ld_i
blt r20, r23, LC
ld_i
add

LC:
jmp LD
ld_i

st_i

add

A

B C

D

st_i
r7, r6, 1

r6, 0, EXIT1beq

beq r6, 0, EXIT1 EXIT1 EXIT1

r23, r2, 0
r20, r1, 0

r5, 0, r7

r6, r4, 0

sub r6, r6, r20
r1, 0, r6

r1, r1, 1

LA:1
2

4
3

5
6
7
9

10
11
12
13

ld_i
ld_i

ld_i
add

ld_i

st_i

add

st_i
beq

beq

r23, r2, 0
r20, r1, 0

sub

r1, r1, 1

pge

LA:1
2

4
3

5
6

10
11
12
13

ld_i
ld_i

ld_i
add

st_i

add

st_i

beq

r23, r2, 0
r20, r1, 0

sub

r1, r1, 1

pge
r6, r4, 0

r6, 0, EXIT1

(a) (b)

(c) (d)

r6, r4, 0

p30(U), p31(U), r20, r23
r6, r4, 0 (p30)
r7, r6, 1 (p30)
r5, 0, r7 (p30)
r6, 0, EXIT1 (p30)
r6, r4, 0 (p31)
r6, r6, r20 (p31)
r1, 0, r6 (p31)
r6, 0, EXIT1 (p31)

p30(U), p31(U), r20, r23

r7, r6, 1 (p30)
r5, 0, r7 (p30)
r6, r6, r20 (p31)
r1, 0, r6 (p31)

Figure 7.34 Example of instruction merging, (a) original assembly code, (b) original control
ow graph, (c) assembly code after hyperblock formation, (d) assembly code after instruction
merging.

215

branches. The second branch is promoted allowing the �rst branch to be eliminated. By doing

this, all instructions which require execution are physically located before the actual branch.

Overall, instruction merging has enabled two instructions to be eliminated in the example

hyperblock. Most importantly, one of the instructions is a branch which can be very important

for processors with limited branch resources. In general, the performance gains achieved with

instruction merging are very small when compared with the other predicate speci�c optimiza-

tions. The importance of this transformation is expected to rise as the processors considered

have more di�cult resource constraints. In addition, if the inverse transformation, instruction

splitting, is aggressively applied by the compiler, instruction merging may become extremely

important to fuse predicated instructions back together.

216

CHAPTER 8

EXPERIMENTAL EVALUATION OF PREDICATED

EXECUTION

The e�ectiveness of predicated execution using the hyperblock compilation techniques is

evaluated in this chapter. Extensions to the methodology for the speculative execution exper-

iments in Chapter 5 are �rst discussed. The experimental results are then presented. They

include the e�ects of predicated execution on the overall performance, the instruction stream

contents, the importance of speculation, and the instruction/data cache behavior.

8.1 Experimental Methodology

The experiments presented in this chapter utilize the same methodology as the previous

experiments with several extensions. The extensions are focused on the additional support

required for predicated execution. The two primary components of the experimental method-

ology that are a�ected by predicated execution are the processor model and the emulation

capabilities.

8.1.1 Processor model

The processor model described in Section 5.1.3 is extended to support predicated execu-

tion. The extensions are those instruction set and microarchitecture extensions presented in

Sections 6.2.2 and 6.2.3. The instruction set of the target processor is expanded to contain

predicate comparison instructions, predicate clear/set instructions, and predicate save/restore

217

instructions. To the microarchitecture, a nulli�cation mechanism at the decode/issue pipeline

stage is added along with a 64-entry predicate register �le. The latencies of the predicate

comparison and predicate clear/set instructions are assumed to have the same latency as the

integer ALU instructions, 1 cycle. The predicate save/restore instructions are assumed to have

the same latency as the conventional memory load or store instructions (Table 5.6). Finally,

no restrictions are assumed on the combination of predicated or predicate de�ning instructions

that may be issued each cycle.

8.1.2 Emulation of predicated execution

Emulation of predicated execution is achieved using the bit manipulation and conditional

nulli�cation capabilities of the HP PA-RISC processor. The 64 1-bit predicate registers are

emulated by reserving two of the callee-saved integer registers and accessing them as 64 1-bit

registers. Figure 8.1 shows an example of the PA-RISC assembly instructions used to emulate a

sequence of predicated code. The predicated code segment (Figure 8.1(a)) is the code sequence

from Figure 6.5(c). In this example, predicate registers p1 , p2 , and p3 have been assigned

bits 1,2, and 3 of general register %r3 , respectively. Also, the values a, b, c, and d have been

allocated to general registers %r23 , %r24 , %r25 , and %r26 , respectively.

Emulation of a predicate clear instruction (1) is achieved by using the deposit immediate

PA-RISC instruction to write a 0 into the appropriate bit position of the general register. In

this case, p1 is assigned bit 1 of register %r3 ; therefore, that is cleared.

The instruction sequence required to emulate a predicate de�ne instruction is dependent

upon the predicate types of the destination predicate registers. Consider predicate de�ne in-

struction (2) in Figure 8.1(a). This instruction is de�ning predicate register p1 as OR-type and

218

(1) pclr p1 DEPI 0,1,1,%r3

(2) peq p1(OR), p2(U), a,0 DEPI 0,2,1,%r3
COMCLR,= %r0,%r23,%r0
DEPI,TR 1,2,1,%r3
DEPI 1,1,1,%r3

(3) peq p1(OR), p3(U), b,0 (p2) DEPI 0,3,1,%r3
BB,>=,N %r3,2,$ ex pred 0
COMCLR,= %r0,%r24,%r0
DEPI,TR 1,3,1,%r3
DEPI 1,1,1,%r3

$ ex pred 0

(4) add c,c,1 (p3) EXTRU,EV %r3,3,1,%r0
ADDI 1,%r25,%r25

(5) add d,d,1 (p1) EXTRU,EV %r3,1,1,%r0
ADDI 1,%r26,%r26

(a) (b)

Figure 8.1 An example of predicated execution emulation, (a) target processor assembly
code, (b) HP PA-RISC assembly code.

p2 as unconditional complement. This combination requires a sequence of four instructions

as given in Figure 8.1(b). The �rst instruction in the PA-RISC code sequence places a 0 in

bit 2 of register %r3 , thereby clearing p2 . The second instruction then performs the compari-

son. The conditional nulli�cation capabilities are used to execute either the third or the fourth

instruction. If the contents of %r23 are 0, the comparison nulli�es the third instruction and

only the fourth instruction is executed, writing a 1 to bit 1 of %r3 (p1). Otherwise, the third

instruction will be executed, writing a 1 to bit 2 of %r3 (p2). Additionally the third instruction

unconditionally nulli�es the execution of the next instruction, so the fourth instruction is not

executed. The correct functionality of the predicate de�ne instruction is achieved by this code

219

sequence. In the case where the variable a is zero, p1 is set to 1 and p2 is set to 0. Under the

opposite condition, p1 is not modi�ed and p2 is set to 1.

Instruction (3) in Figure 8.1 is an example of a predicated predicate de�ne instruction.

The assembly code sequence is similar to that of instruction (2), with the addition of a branch

instruction to handle the predicate. Other predicated instructions are emulated by extracting

the bit from one of the reserved registers that corresponds to the predicate for that instruction.

The value of that bit is used to conditionally execute the predicated instruction. For example,

instruction (4) in Figure 8.1(a) is predicated on p3 . Thus, bit 3 is extracted from %r3 using the

bit extract instruction, and the value extracted is used to conditionally nullify the increment of

c. In the case where the extracted bit is 0, the subsequent instruction is nulli�ed. Otherwise,

the subsequent instruction is allowed to execute normally. The proper semantics of predicated

instructions are therefore realized.

For a detailed description of the functionality of the instructions used in Figure 8.1(b), the

reader is referred to the HP PA-RISC Instruction Set Manual [75].

8.2 Results

As with Section 5.2, performance improvement is presented throughout this section using

a speedup calculation. Speedup is computed by dividing the total execution cycles of the base

con�guration by the total execution cycles of the evaluated con�guration. The major di�erence

with the results in Section 5.2 is that the base con�guration is changed from an issue-1 pro-

cessor with basic block compilation support to an issue-1 processor with restricted speculation

and superblock compilation support. Overall, this reduces the absolute speedups reported by

eliminating the code e�ciency improvements achieved through expanding the compiler's scope

220

from basic blocks to superblocks. Again, the same cache models are assumed for both con�gu-

rations in the speedup calculation. Thus, for those experiments that utilize perfect caches, the

execution cycles for the base con�guration are derived using a perfect cache, whereas for those

experiments that use a �nite cache, the execution cycles for the base con�guration are derived

using the same sized �nite cache.

8.2.1 Overall performance with predicated execution

The performance improvement achieved with predicated execution using hyperblock compi-

lation techniques is presented in Figures 8.2 - 8.4. The �gures show results for processor issue

rates of 2, 4 and 8, respectively. Each processor is able to issue at most one branch per cycle.

The �gures show the speedup achieved over the base processor for two con�gurations. The

�rst con�guration, \Superblock General," has architectural support for general speculation and

utilizes superblock compilation support. This represents the highest performance con�guration

discussed in Chapter 5. The second con�guration, \Hyperblock General," has architectural sup-

port for both general speculation and predicated execution and utilizes hyperblock compilation

support. For all the data presented in these �gures, perfect caches are assumed.

From Figure 8.2, little performance improvement is achieved with predicated execution

for an issue-2 processor. In fact, for many of the benchmarks, performance loss is observed.

This behavior is a composite of two factors. First, the combination of superblock compilation

support and general speculation is highly e�ective for an issue-2 processor. There are few

idle processor resources to take advantage of with increased ILP. As a result, there is little

opportunity to increase performance for an issue-2 processor. The second factor is that the

hyperblock techniques tend to be aggressive and assume a wide issue processor when applying

221

1

2

3

4

5

6

7

8

9

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

tb
l

w
c

ya
cc

A
ve

ra
ge

Benchmark

Sp
ee

du
p

Superblock General
Hyperblock General

Figure 8.2 Performance improvement achieved with predicated execution for an issue-2, one-
branch processor.

1

2

3

4

5

6

7

8

9

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

tb
l

w
c

ya
cc

A
ve

ra
ge

Benchmark

Sp
ee

du
p

Superblock General
Hyperblock General

Figure 8.3 Performance improvement achieved with predicated execution for an issue-4, one-
branch processor.

222

1

2

3

4

5

6

7

8

9

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

tb
l

w
c

ya
cc

A
ve

ra
ge

Benchmark

Sp
ee

du
p

Superblock General
Hyperblock General

13

Figure 8.4 Performance improvement achieved with predicated execution for an issue-8, one-
branch processor.

transformations. For processors with insu�cient instruction execution bandwidth, processor

resources tend to be over-saturated in the hyperblocks. The e�ect is an increase in the execution

time of the program.

With an issue-4 processor (Figure 8.3), more consistent performance gains are observed

with predicated execution. The most branch intensive programs tend to show the largest im-

provements, including 023.eqntott , cmp, grep, and wc. The ability of the compiler to eliminate

branches to reduce contention for the branch resources and to eliminate branch mispredictions

to get rid of the misprediction penalties are the main reasons for the improvement. For example,

consider the benchmark cmp. Recall from Table 5.12, that 59% of the dynamic instructions in

this program are branches after superblock optimizations. On an issue-4 processor capable of

executing 1 branch per cycle, a performance bound of approximately 2 instructions per cycle

is established by the resource constraints. However, with predicated execution, many of these

223

branches can be eliminated via transformations such as if-conversion and branch combining.

The overall results are the elimination of the branch resource bottleneck and a large increase

in speedup due to the available ILP.

Performance gains, however, are still somewhat limited for many of the benchmarks with an

issue-4 processor. This trend occurs because the issue-4 processor is still su�ering from one of

the problems of the issue-2 processor. Namely, the hyperblock techniques are overly aggressive

and tend to assume a wide issue (8-12 issue) processor when applying transformations. Thus,

processor resources tend to become over-saturated in some hyperblocks. A good example of this

occurs for 008.espresso. In this benchmark, loop peeling is performed a large number of times.

The loop peeling and subsequent hyperblock optimizations increase the ILP substantially. But,

loop peeling creates multiple predicated copies of innermost loop bodies and results in too

many instructions for an issue-4 processor to absorb. The result is a signi�cant increase in the

schedule lengths for some of the most frequently executed hyperblocks, which causes the net

overall performance loss.

The performance results achieved by increasing the processor issue width to 8 are presented

in Figure 8.4. For an issue-8 processor, the hyperblock compilation techniques are highly

e�ective at increasing performance. Overall, the average speedup across the benchmarks of

Hyperblock General is 68% above that of Superblock General. There are several major reasons

for the improved performance of Hyperblock General. First, the number of processor resources

is large enough to eliminate most of the over-saturation problems previously discussed. Thus,

the processor is able to take full advantage of the increased ILP provided by the hyperblock

techniques. The most notable example is the benchmark 008.espresso. For both issue-2 and

issue-4 processors, performance loss is observed with Hyperblock General. However, for the

224

issue-8 processor a 46% performance increase over that for Superblock General is achieved. The

hyperblock loop peeling optimization becomes highly e�ective with enough processor resources

for this benchmark.

The second reason for the improved performance of Hyperblock General is that the branch

resource limitations and branch misprediction penalties become an obvious problem for su-

perblock code at issue-8. Branch intensive programs are limited to a maximum 2-4 instructions

per cycle on average with only one branch unit. Similarly, each cycle lost due to a branch

misprediction is really a loss of 8 potential instructions that might have been issued. As a

result, decreases in both branch instructions as well as branch mispredictions translate directly

into improved performance. Benchmarks limited by branch resource contention include cmp,

grep, and lex . All of these benchmarks bene�t signi�cantly from branch combining to remove a

large fraction of the dynamic branches. Benchmarks limited by branch mispredictions include

023.eqntott , qsort and wc. The use of if-conversion to form hyperblocks removes a large frac-

tion of the highly mispredicted branches from these benchmarks. The branch and misprediction

e�ects are examined in more detail in Section 8.2.3.

The �nal reason for the improved performance of Hyperblock General is the ability of the

compiler to overlap the execution of multiple paths of control. For many of the benchmarks,

the branches are not heavily biased; thus, single path techniques, such as superblocks, are

inherently limited. The limitations become more of a problem as the demand for ILP increases

with expanding processor issue width. With predicated execution, the compiler employs if-

conversion to selectively overlap the execution of multiple paths of control. As a result, the

compiler exposes ILP along multiple paths of control to the hardware. Performance is improved

for all the benchmarks with this increased ILP.

225

8.2.2 Branch resource e�ects

The results from the previous section assume that the processor can issue a maximum of

one branch per cycle. This assumption is made due to the di�culties associated with designing

processors which execute multiple branches per cycle. Multiple branches require signi�cant

additional pipeline complexity as well as dealing with di�cult branch predictor design issues.

Thus, future generation ILP processors will likely have limited branch handling capabilities.

However, it is important to evaluate the e�ectiveness of predicated execution with fewer branch

constraints to more deeply understand its uses and limitations. The overall performance of

predicated execution with multiple branches per cycle is examined in Figures 8.5 and 8.6. The

experiments are performed assuming perfect caches.

Figure 8.5 shows the performance improvement with predicated execution for an issue-

8 processor with the number of branches per cycle increased to 2. The use of predicated

execution and hyperblock compilation techniques with this con�guration still shows substantial

performance improvements for most of the benchmarks. Overall, the average speedup across the

benchmarks with Hyperblock General is 34% higher than that of Superblock General. Despite

the additional branch resource, the compiler is able to derive many of the same advantages

as the issue-8, one-branch case. Namely, the ability to reduce the number of branches and

overlap the execution of multiple paths of control allow the compiler to signi�cantly enhance

the ILP. In addition, the reduction in branch mispredictions because of the removal of unbiased

branches decreases the cycles associated with handling the mispredictions. The combination of

the increased ILP and the reduction in penalty cycles leads to the performance improvement.

The overall increase with Hyperblock General though is noticeably smaller than the previous

data for an issue-8, one-branch processor. Comparing these results with the earlier results

226

1

2

3

4

5

6

7

8

9

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

tb
l

w
c

ya
cc

A
ve

ra
ge

Benchmark

Sp
ee

du
p

Superblock General
Hyperblock General

13

Figure 8.5 Performance improvement achieved with predicated execution for an issue-8, two-
branch processor.

(Figure 8.4) shows that the performances of both Superblock General and Hyperblock General

are increased with the additional branch resource. However, the performance of Superblock

General is increased by a signi�cantly larger margin. This result could be anticipated. The

hyperblock code has a large fraction of the branches eliminated. Therefore, it does not bene�t

signi�cantly from an additional branch resource. However, the superblock code is highly branch

intensive. Thus, it bene�ts greatly from the additional branch resource.

The performance e�ects of completely removing the limitation on the number of branches

per cycle is presented in Figure 8.6. For this �gure, the issue-8 processor can issue any combina-

tion of 8 instructions each cycle. On the surface, the e�ectiveness of predicated execution and

hyperblock compilation techniques has become less clear. For several of the benchmarks, includ-

ing grep, lex , tbl , and yacc, Superblock General noticeably outperforms Hyperblock General.

For other benchmarks, including 008.espresso, 023.eqntott , 056.ear , and wc, Hyperblock Gen-

227

1

2

3

4

5

6

7

8

9

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

tb
l

w
c

ya
cc

A
ve

ra
ge

Benchmark

Sp
ee

du
p

Superblock General
Hyperblock General

11 13

Figure 8.6 Performance improvement achieved with predicated execution for an issue-8 pro-
cessor with no constraints on branches.

eral shows large performance improvements. Closer examination of the benchmarks provides an

important insight into the performance of Hyperblock General, namely that the performance

improvement gained from predicated execution can be broken into two categories.

The �rst category is the performance e�ect that is achieved by reducing the number of

branches in the code. For the issue-8, one-branch processor, this category contributes substan-

tially to the overall performance. However, as the number of branch resources is increased

to the issue width of the processor, the contribution of this category goes to zero. In fact, it

becomes a detriment to the overall performance. Eliminating branches via hyperblock tech-

niques has a nonzero cost; thus, if there is no performance advantage gained by applying the

transformations, a net performance loss is observed. This is the case for benchmarks such as

grep, lex , and tbl . These benchmarks are primarily limited by the frequency of branches, so

they have little chance for improvement without any branch resource limitations.

228

The other category of performance improvements achieved with predicated execution is that

gained by overlapping the execution of multiple control paths and by eliminating branch mispre-

dictions. Regardless of the number of branch resources, predicated execution o�ers performance

advantages in these areas. Several of the benchmarks that show this distinctly are 008.espresso,

023.eqntott , 056.ear , and wc. These benchmarks share the common quality of having unbiased

branches in the code that is most frequently executed. The hyperblock compilation techniques

are able to utilize predicated execution to e�ciently overcome the limitations of these unbi-

ased branches. The overall result is the substantial performance improvement regardless of the

number of branch resources.

8.2.3 Instruction stream e�ects

To better understand the overall performance results presented in the previous two sections,

some of the important e�ects that predicated execution and hyperblock techniques have on the

instruction stream are investigated in this section. All experiments in this section use an issue-8

processor capable of issuing at most 1 branch per cycle. In addition, perfect caches are assumed.

The e�ect of predicated execution on the dynamic instruction count is presented in Table 8.1.

The table contains the number of dynamic instructions executed for two con�gurations: Su-

perblock General and Hyperblock General. The ratio of the Hyperblock General instruction

count with respect to the Superblock General instruction count is provided in parentheses. The

Hyperblock General data includes instructions which are predicate nulli�ed. Intuitively, one

would expect the Hyperblock General instruction count to be signi�cantly higher than for the

Superblock General because hyperblock formation combines instructions from multiple paths

229

Table 8.1 E�ect of predicated execution on the dynamic instruction count for an issue-8
processor.

Benchmark Superblock General Hyperblock General

008.espresso 488M 644M (1.32)
022.li 32M 33M (1.04)
023.eqntott 1030M 892M (0.87)
026.compress 90M 108M (1.20)
052.alvinn 3575M 3604M (1.01)
056.ear 11273M 11273M (1.00)
072.sc 116M 122M (1.05)
cccp 3731K 3923K (1.05)
cmp 932K 921K (0.99)
eqn 45M 45M (1.00)
grep 1282K 1647K (1.28)
lex 35M 46M (1.29)
qsort 48M 52M (1.09)
tbl 2566K 2934K (1.14)
wc 1493K 1526K (1.02)
yacc 43M 51M (1.18)

Average - - (1.10)

into a single path. Therefore, more instructions are executed to avoid branches that determine

the particular control path that requires execution.

Table 8.1 surprisingly shows only modest increases in the instruction count. The largest

increase is 32% for 008.espresso and the overall average across the benchmarks is 10%. For two

of the benchmarks, 023.eqntott and cmp, the dynamic instruction count is actually smaller for

Hyperblock General. Examination of the benchmarks in detail reveals that the major reason

for this behavior is the competing e�ects of increased instruction count because of overlapping

multiple paths and reduced instruction count because of less speculation. With superblock

compilation support, the compiler aggressively speculates instructions across many branches to

achieve a compact schedule. Each branch above which an instruction is speculated increases

230

the instruction's execution count. The problem becomes magni�ed with the tail duplication

that is performed during superblock formation. Tail duplication creates additional copies of

instructions. With aggressive speculation, the compiler can place multiple instances of the same

instruction along particular paths of control. When these paths are traversed, the instruction is

not only executed more times because it is speculated, it may also be executed a multiplicative

number of times due to the duplication.

On the other hand, with predicated execution, the compiler speculates much less often

and does not incur the instruction count increase associated with speculation. Many of the

branches have been removed; thus, there are fewer speculation opportunities. In addition,

the ILP is higher with predicate support; therefore, the compiler speculates less to achieve a

packed schedule. These e�ects tend to cancel out some or all of the e�ects of the conventional

instruction count increases incurred with predicated execution. The overall result observed for

most of the benchmarks is a modest net instruction count increase. For two of the benchmarks,

023.eqntott and cmp, the reduction in instruction count from reduced speculation exceeds any

increase due to overlapping multiple paths. Thus, the net decrease is the result.

The e�ect of predicated execution on the dynamic number of branches is presented in

Table 8.2. As in the previous table, this table contains the dynamic number of branches

executed for Superblock General and Hyperblock General. The ratio of the Hyperblock General

branch count with respect to the Superblock General branch count is provided in parentheses.

The table clearly shows the e�ectiveness of using predicated execution to reduce the number

of branches in the instruction stream. For ten of the sixteen benchmarks measured, over half

of the branches are removed. The benchmark with the largest number of branches removed is

cmp. For this benchmark, only 5% of the dynamic branches remain with predicated execution.

231

Table 8.2 E�ect of predicated execution on the dynamic branch instruction count for an
issue-8 processor.

Benchmark Superblock General Hyperblock General

008.espresso 73M 35M (0.48)
022.li 7442K 6085K (0.82)
023.eqntott 306M 52M (0.17)
026.compress 12M 9055K (0.74)
052.alvinn 462M 73M (0.16)
056.ear 1538M 442M (0.29)
072.sc 22M 11M (0.48)
cccp 920K 534K (0.58)
cmp 530K 26K (0.05)
eqn 7694K 4510K (0.59)
grep 662K 171K (0.26)
lex 14M 3021K (0.21)
qsort 8670K 6104K (0.70)
tbl 609K 416K (0.68)
wc 478K 223K (0.47)
yacc 11M 5848K (0.49)

Average - - (0.45)

The reductions in the number of branches translate directly into improved performance for

processors with limited branch execution capabilities. The branch resource limitations place

an upper bound on the instruction throughput of these processors. However, with the large

reductions in the number of branches, the resource limitations are removed and performance

increases.

Table 8.3 reports the e�ect of predicated execution on the number of dynamic branch mis-

predictions and the misprediction rate. As with the previous two tables, data for Superblock

General and Hyperblock General are reported. The ratio of mispredictions with Hyperblock

General to Superblock General is also given in parentheses. From the table, the compiler is able

to consistently utilize predicated execution to eliminate branches and the mispredictions asso-

232

Table 8.3 E�ect of predicated execution on the dynamic branch misprediction count for an
issue-8 processor.

Superblock General Hyperblock General
Benchmark Mispredictions Miss rate Mispredictions Miss rate

008.espresso 3480K 4.76 1512K (0.43) 4.27
022.li 764K 10.27 685K (0.90) 11.26
023.eqntott 43M 14.12 6500K (0.15) 12.30
026.compress 1336K 10.91 855K (0.64) 9.44
052.alvinn 1112K 0.24 992K (0.89) 1.34
056.ear 64M 4.20 15M (0.23) 3.43
072.sc 1278K 5.56 844K (0.66) 7.61
cccp 65K 7.14 64K (0.99) 12.11
cmp 4395 0.83 31 (0.01) 0.12
eqn 587K 7.64 497K (0.85) 11.04
grep 9660 1.46 20K (2.08) 11.73
lex 229K 1.62 195K (0.85) 6.46
qsort 1321K 15.24 654K (0.50) 10.72
tbl 39K 6.40 37K (0.96) 8.96
wc 32K 6.85 57 (0.00) 0.03
yacc 502K 4.23 438K (0.87) 7.49

Average - 6.34 - (0.69) 7.39

ciated with those branches. The fraction of mispredictions eliminated, however, varies widely

across the benchmarks. Two of the benchmarks, cmp, and wc, show drastic improvements

with virtually all of their mispredictions eliminated. Four other benchmarks (008.espresso,

023.eqntott , 056.ear , and qsort) have over half of their mispredictions eliminated. For these

benchmarks, the hyperblock compilation techniques are consistently able to identify and target

the unbiased branches for removal. Utilizing if-conversion and loop peeling, the compiler is

highly successful at reducing the number of mispredictions.

The compiler is less successful at reducing mispredictions in other benchmarks. For pro-

grams such as 022.li and cccp, there are a large number of mispredictions without predicated

execution support. However, the hyperblock techniques are unsuccessful at removing enough of

233

the highly mispredicted branches. For other programs such as grep and lex , the primary bot-

tleneck is not branch mispredictions, but rather the branch instructions themselves. Therefore,

the compiler focuses its work on eliminating branches from the instruction stream, even heavily

biased ones. The result is a large drop in the dynamic branches (Table 8.2) and little e�ect on

the branch mispredictions.

The benchmark grep actually has the reverse e�ect of increasing the number of mispredic-

tions with hyperblocks due to the focused e�ort to reduce the number of dynamic branches.

More speci�cally, grep has a large number of opportunities to eliminate branches with the

branch combining optimization. Branch combining essentially introduces an additional level of

control ow to allow a large number of branches to be moved outside a hyperblock and thus be

executed fewer times. The negative of this optimization is that both the �rst-level branch and

the second-level branches can be mispredicted. For most benchmarks, the small misprediction

increases from branch combining are hidden by improvements elsewhere in the program. With

grep, there are no signi�cant opportunities for misprediction improvement; therefore, a net

increase from branch combining is observed.

An important piece of instruction stream data to examine is the number of instructions

between branches or the distance between branches. These data represent how often the pro-

cessor is faced with a control transfer decision versus executing sequential memory and arith-

metic instructions. The e�ect of predicated execution on the distance between branches and

mispredicted branches is summarized in Table 8.4. For both con�gurations, Superblock General

and Hyperblock General, the number of instructions between branches/mispredictions is aver-

aged across the execution of the benchmarks. The ratios of both the branch and misprediction

averages for Hyperblock General with respect to Superblock General are given in parentheses.

234

Table 8.4 E�ect of predicated execution on the average distance between branches and mis-
predictions for an issue-8 processor.

Superblock General Hyperblock General
Benchmark Branches MP Branches Branches MP Branches

008.espresso 5.7 139.4 17.2 (3.0) 394.1 (2.8)
022.li 3.3 41.2 4.5 (1.4) 47.9 (1.2)
023.eqntott 2.4 22.8 15.9 (6.7) 136.1 (6.0)
026.compress 6.4 66.6 10.8 (1.7) 123.9 (1.9)
052.alvinn 6.7 3215.7 48.0 (7.1) 3644.9 (1.1)
056.ear 6.3 173.8 24.5 (3.9) 743.9 (4.3)
072.sc 4.1 90.1 10.1 (2.5) 144.2 (1.6)
cccp 3.1 55.8 6.3 (2.1) 59.6 (1.1)
cmp 0.8 211.1 33.5 (44.1) 29730.9 (140.9)
eqn 4.9 76.7 9.1 (1.9) 90.9 (1.2)
grep 0.9 131.8 8.6 (9.2) 81.0 (0.6)
lex 1.5 155.8 14.3 (9.3) 236.1 (1.5)
qsort 4.6 34.7 7.6 (1.7) 76.6 (2.2)
tbl 3.2 64.8 6.0 (1.9) 77.6 (1.2)
wc 2.1 44.6 5.8 (2.7) 26775.7 (600.5)
yacc 2.6 84.4 7.6 (2.9) 114.1 (1.4)

Average 3.7 288.1 14.4 (6.4) 3904.9 (48.1)

The table shows the large increases in the distance between branches that are achieved

with predicated execution. The most control intensive application is the benchmark cmp,

with an average of 0.8 instruction between branches for Superblock General. With Hyperblock

General, the distance is drastically increased to 33.5 instructions. Other benchmarks do not

show this enormous growth, but still show rather substantial increases. The average across all

the benchmarks grows from 3.7 instructions with Superblock General to 14.4 instructions with

Hyperblock General. These data are extremely important for estimating the branch handling

capabilities needed to sustain an ILP processor. Without predicated execution, an additional

branch is required for every three to four instruction slots the issue width is increased in order

to sustain the execution throughput. With predicated execution, an additional branch is only

235

required for every 14-15 instruction slots the issue width is increased. This reduction in the

branch bandwidth requirements makes the design of wide issue ILP processors much more

feasible.

Table 8.4 shows similar trends for the distance between branch mispredictions. With the

exception of grep, the distance between mispredictions increases across all the benchmarks with

Hyperblock General. These increases are extremely important since the distance between mis-

predictions is a direct measure of the work that a processor may accomplish between successive

misprediction repairs. The two benchmarks which stand out the most are cmp and wc. For

these benchmarks, the growth in misprediction distance is enormous. This result could be ex-

pected based on the branch misprediction data presented earlier in Table 8.3. The number of

branch mispredictions is reduced to nearly zero with predicated execution; thus, any distances

between these mispredictions will be extremely large. It should be noted that the average re-

ported in the table is signi�cantly skewed by these two benchmarks. The one anomaly is the

benchmark grep, which has a smaller distance between mispredictions with predicated execu-

tion. This behavior is a direct result of the increase in the number of mispredictions caused by

branch combining as described previously.

An interesting way to examine the e�ects of predicated execution on the branch and mis-

prediction distances is to compare the distributions of the distances. The distributions for

Superblock General and Hyperblock General which plot the distance between branches and

mispredictions are presented in Figures 8.7 and 8.8, respectively. The instruction distances are

broken down into 11 distinct groups with the ranges speci�ed on the horizontal axes. The verti-

cal axes specify the fraction of branch intervals which contain the given number of instructions.

Within each benchmark, the fractions are weighted by the dynamic execution frequency. Then,

236

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0-0 1-1 2-2 3-4 5-8 9-16 17-
32

33-
64

65-
128

129-
256

257+

Distance Range (Instructions)

Fr
ac

tio
n

Superblock General
Hyperblock General

Figure 8.7 E�ect of predicated execution on the distribution of the distance between branches
for an issue-8 processor.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0-0 1-1 2-2 3-4 5-8 9-16 17-
32

33-
64

65-
128

129-
256

257+

Distance Range (Instructions)

Fr
ac

tio
n

Superblock General
Hyperblock General

Figure 8.8 E�ect of predicated execution on the distribution of the distance between branch
mispredictions for an issue-8 processor.

237

these values are normalized and averaged across all 16 benchmarks to achieve the �nal data

point. Each benchmark contributes equally to the �nal distribution. An important caveat to

keep in mind when examining these �gures is that there are a di�erent number of intervals for

each con�guration. For the most part, the Hyperblock General con�guration has fewer branches

and mispredictions; thus, the number of intervals is smaller.

Figure 8.7 clearly shows the increase in the observed distance between branches. The Hyper-

block General distribution is noticeably shifted towards the larger distance ranges. The largest

di�erence between the two distributions occurs for the 0 instruction range, which corresponds

to back-to-back branches in the instruction stream. Hyperblock compilation techniques are

therefore successful at eliminating a signi�cant fraction of the back-to-back branches from the

benchmarks. The e�ect of predicated execution is not as clear for the misprediction distance

distributions in Figure 8.8. The results are somewhat hidden because of the large increases

that occur in the \257+" group that do not show up in the �gure. Not only does the number

of intervals that fall into this range increase, but the actual distances in this range also grow

substantially. An interesting note is that predicated execution has the smallest e�ects on the

mispredictions that occur in closest proximity. Obviously, the branches responsible for these

mispredictions are not amenable to the current set of hyperblock compilation techniques.

8.2.4 Speculative execution e�ects

Although predicated execution is used to eliminate a large fraction of the branches, spec-

ulative execution is still extensively used within the hyperblock compilation framework. Spec-

ulative execution is accomplished in two ways with hyperblocks. First as with superblocks,

speculative execution increases the code motion freedom during optimization and scheduling

238

by allowing instructions to move across control dependent branches. Hyperblock techniques

selectively eliminate branches; thus, there are a signi�cant number of branches that remain in

the code to provide ample speculation opportunities. The second manner in which speculation

is accomplished in predicated code is by predicate promotion. As was described in Chapter 7,

predicate promotion advances an instruction's predicate to a less constrained predicate to allow

greater code motion freedom. As a result, the instruction is executed more often than was spec-

i�ed by the original program semantics. Hence, the instruction is speculated. The e�ectiveness

of speculative execution on predicated code along with the relative importance of predicated

and speculative execution are investigated in this section.

The contributions to overall performance of speculative and predicated execution are com-

pared in Figure 8.9 for an issue-8, one-branch processor. The comparison is achieved by con-

sidering separately the performance of code with neither speculation nor predication (SB-R),

speculation support alone (SB-G), predication support alone (HB-R), and support for both

(HB-G). It should be noted that all data presented in this chapter up to this point for hy-

perblocks use both speculation and predication. From the �gure, the relative contributions of

speculation and predication vary widely across the benchmarks. For benchmarks such as 022.li

and tbl , the majority of the overall performance is achieved with speculation alone. The use

of predication alone yields poor performance, and the combination of speculation/predication

achieves little over speculation alone. These benchmarks are inherently not limited by control

ow, but rather by data, memory, and control dependences. Speculation provides some im-

provement by removing control dependences, but the remaining data and memory dependences

are the major bottlenecks.

239

1

2

3

4

5

6

7

8

9

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

tb
l

w
c

ya
cc

A
ve

ra
ge

Benchmark

Sp
ee

du
p

SB-R SB-G HB-R HB-G

13

Figure 8.9 Performance comparison of predicated execution and speculative execution for an
issue-8, one-branch processor.

At the other extreme, there are several benchmarks in which the majority of the overall

performance is achieved with predication alone. Benchmarks exhibiting this behavior include

023.eqntott and grep. These benchmarks are extremely limited by branches, either by branch

resource limitations, branch mispredictions, or the lack of dominant execution paths. By elimi-

nating branches and overlapping the execution of multiple paths, these problems are overcome.

These benchmarks are also characterized by a high level of ILP. Thus, when the branch problems

are overcome, large performance improvements are immediately observed.

The predominant behavior, though, is not indicated by either of these extreme positions.

The majority of benchmarks requires the combination of predication and speculation to achieve

the maximal performance. Either predication or speculation alone yields substantially lower

performance than the combination. Two benchmarks that illustrate this point clearly are

008.espresso and wc. These benchmarks achieve little performance improvement with either

240

1 2 3 4 5 6 7 8 9

008.espresso

022.li

023.eqntott

026.compress

052.alvinn

056.ear

072.sc

cccp

cmp

eqn

grep

lex

qsort

tbl

wc

yacc

Average

B
enchm

ark

Speedup
SB

-R
SB

-G
H

B
-R

H
B

-G

F
ig
u
re

8
.1
0

P
erform

an
ce

com
p
arison

of
p
red

icated
ex
ecu

tion
an
d
sp
ecu

lative
ex
ecu

tion
for

an
issu

e-4,
on
e-b

ran
ch

p
ro
cessor.

sp
ecu

lation
or

p
red

ication
alon

e.
H
ow

ever,
th
e
com

b
in
ation

of
th
e
tw
o
y
ield

s
su
b
stan

tial
p
er-

form
an
ce

gain
s.
T
h
e
p
erform

an
ce

gain
s
are

actu
ally

h
igh

er
th
an

th
e
in
d
iv
id
u
al
sp
eed

u
p
s
ad
d
ed

togeth
er.

T
h
e
m
a
jor

reason
for

th
is
b
eh
av
ior

is
th
at

m
ost

of
th
e
b
en
ch
m
ark

s
are

lim
ited

b
y
b
oth

con
trol

d
ep
en
d
en
ces

as
w
ell

as
b
ran

ch
in
stru

ction
s
th
em

selves.
R
em

ov
in
g
on
e
p
rob

lem
en
ab
les

som
e
p
erform

an
ce

gain
,
b
u
t
th
e
gain

is
lim

ited
b
ecau

se
th
e
oth

er
p
rob

lem
is
q
u
ick

ly
ex
p
osed

an
d
b
ecom

es
th
e
p
erform

an
ce

b
ottlen

eck
.
W
ith

su
p
p
ort

for
sp
ecu

lation
an
d
p
red

ication
,
b
oth

p
rob

lem
s
can

b
e
e�

cien
tly

overcom
e,
w
h
ich

allow
s
a
large

in
crease

in
IL
P
.

T
h
e
p
rev

iou
s
ex
p
erim

en
t
is
rep

eated
in

F
igu

re
8.10

for
an

issu
e-4,

on
e-b

ran
ch

p
ro
cessor.

A
s

w
ith

th
e
p
rev

iou
s
ex
p
erim

en
t,
th
e
com

b
in
ation

of
sp
ecu

lation
an
d
p
red

ication
su
p
p
ort

p
rov

id
es

sign
i�
can

t
p
erform

an
ce

im
p
rovem

en
t
over

eith
er

su
p
p
ort

alon
e.

T
h
e
lim

itation
s
im

p
osed

b
y

b
oth

con
trol

d
ep
en
d
en
ces

as
w
ell

as
b
ran

ch
es

m
u
st
b
e
join

tly
overcom

e
to

ach
ieve

th
e
m
ax
im

al

p
erform

an
ce

level.
T
h
e
m
ost

sign
i�
can

t
d
i�
eren

ce
from

th
e
issu

e-8
ex
p
erim

en
t
is
th
e
red

u
ced

241

e�ectiveness of predicated execution. The relative gains of the predication alone and specula-

tion/predication are noticeably less for several of the benchmarks with the issue-4 processor.

This behavior is due to the over-saturation problems of the predicated code for narrower issue

processors that were discussed earlier. As a result, the contribution of speculation to the overall

performance is higher with the reduced issue rate used in this experiment. Benchmarks, such as

008.espresso, 056.ear , and 072.sc, illustrate this point. For the issue-8 processor, they achieved

signi�cant improvements over speculation alone with both speculation and predication support,

whereas with the issue-4 processor, most of the performance is achieved with speculation alone.

A large fraction of the speculation in hyperblocks is achieved with predicate promotion.

Promoted instructions execute under a less constrained predicate than they were originally

assigned. Instructions are promoted completely when their predicate is advanced to true. Ta-

ble 8.5 provides several statistics on the application of predicate promotion for the benchmarks.

The �rst data column speci�es the dynamic number of predicated instructions before any pred-

icate promotion is applied. The second and third columns specify the dynamic number of

instructions whose predicates have been promoted and completely promoted, respectively. Fi-

nally, the dynamic number of instructions that remain predicated after promotion is complete

is shown in the last column. Note that the third and fourth columns should total the number

of originally predicated instructions. The ratios of each column with respect to the �rst data

column are speci�ed in parentheses.

From Table 8.5, the fraction of promoted predicated instructions varies widely across the

benchmarks. For six of the benchmarks, very little predicate promotion is applied. Four of

these benchmarks have absolutely zero instructions predicate promoted and the remaining two

benchmarks have less than a 5% promotion rate. The major reason for the small amount

242

Table 8.5 Predicate promotion statistics.

Benchmark Original Predicated Promoted Promoted to T Remain Predicated

008.espresso 452M 298M (0.66) 266M (0.59) 186M (0.41)
022.li 6524K 2237K (0.34) 2237K (0.34) 4287K (0.66)
023.eqntott 194M 3656K (0.02) 3648K (0.02) 191M (0.98)
026.compress 22M 3215K (0.14) 3215K (0.14) 19M (0.86)
052.alvinn 29M 0 (0.00) 0 (0.00) 29M (1.00)
056.ear 1144M 238M (0.21) 238M (0.21) 906M (0.79)
072.sc 31M 10M (0.32) 10M (0.32) 21M (0.68)
cccp 872K 165K (0.19) 165K (0.19) 706K (0.81)
cmp 118K 0 (0.00) 0 (0.00) 118K (1.00)
eqn 2669K 764K (0.29) 764K (0.29) 1905K (0.71)
grep 35K 0 (0.00) 0 (0.00) 35K (1.00)
lex 18M 730K (0.04) 694K (0.04) 17M (0.96)
qsort 20M 4336K (0.22) 4336K (0.22) 15M (0.78)
tbl 686K 332K (0.48) 327K (0.48) 358K (0.52)
wc 1051K 0 (0.00) 0 (0.00) 1051K (1.00)
yacc 18M 7398K (0.40) 7398K (0.40) 11M (0.60)

Average - - (0.21) - (0.20) - (0.80)

of promotion in these benchmarks is the lack of opportunity for pro�table promotions. The

predicate computations in these benchmarks are generally not along the critical dependence

chains in the hyperblocks. Therefore, there is little to be gained in terms of dependence height

reduction by removing dependences to the predicate computation instructions through predicate

promotion.

The remainder of the benchmarks has a signi�cant fraction of the predicated instructions

promoted. The largest degree of promotion occurs for 008.espresso in which 66% of the predi-

cated instructions are promoted. For these benchmarks, the predicate computations frequently

do occur on the critical dependence chains. As a result, a large fraction of the predicated

instructions are stuck waiting for the predicates to be computed. By performing predicate

promotion, the dependences on the predicate computations are relaxed, which increases the

243

ILP in the code. One important case in which predicate promotion is applied frequently occurs

in hyperblocks with peeled loops. The peeled iterations are predicated through a long chain

of predicate computations to ensure that only the required number of iterations is executed.

To achieve a compact schedule, predicate promotion is essential to break some of the depen-

dences on the predicate computation. By promoting a su�cient number of the instructions,

a compact schedule is achieved for the peeled loops and surrounding code. The large fraction

of hyperblocks with peeled loops in 008.espresso is the primary reason for the high promotion

rate observed in this benchmark.

Table 8.5 also shows that most promoted instructions have their predicate advanced to the

true predicate by the transformation. This behavior primarily occurs by design of the current

predicate promotion algorithms. Instructions are carefully selected as candidates for promotion.

But after that, a greedy heuristic is used to guide the degree of promotion. The motivation for

this heuristic is that dependences are maximally relaxed by advancing an instruction's predicate

as far as possible. When the predicate is advanced to true, the instruction itself is completely

independent of any predicate computations. The net result is that almost all promotions are

complete.

8.2.5 Cache e�ects

Up to this point in the evaluation of predicated execution and hyperblock compilation

techniques, a perfect cache model has been assumed. In this section, this restriction is removed

to study the e�ects of �nite instruction and data cache models on performance.

The performance loss incurred going from perfect caches to 64K caches is presented in

Figure 8.11. In the �gure, the execution cycles for both perfect and �nite caches are normalized

244

1

2

3

4

5

6

7

8

9

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

tb
l

w
c

ya
cc

A
ve

ra
ge

Benchmark

Sp
ee

du
p

Perfect Caches 64K caches

13 13

Figure 8.11 Performance comparison of perfect cache model and the 64K cache model for an
issue-8 processor with predicated execution support.

with respect to the base con�guration with perfect caches. For many of the benchmarks, only

a small performance loss is incurred with the �nite caches. The instruction and data working

sets for these benchmarks have little di�culty �tting into 64K caches. The same conclusion

was made for the earlier superblock experiment (see Figure 5.10). Therefore, the hyperblock

transformations have not signi�cantly altered this fact. This result is very positive because

it shows that the majority of the performance gains achieved with predicated execution and

hyperblock compilation techniques is not subsequently erased with a �nite cache model.

For several of the benchmarks though, the performance loss is rather large with �nite caches.

The most obvious example is the benchmark 026.compress. For this benchmark, the perfor-

mance gain over the base processor is completely eliminated with �nite caches. This behavior

is a combination of factors. First, the data working set of 026.compress is extremely large and

causes thrashing in a 64K direct mapped cache. This was indicated by the large performance

245

loss in the previous superblock experiment. But, the problem becomes noticeably worse with

hyperblocks, which brings up the the second factor, namely, a large number of additional data

cache misses are introduced by the hyperblock compilation techniques that cause the additional

performance drop. The remaining benchmarks that su�er noticeable performance losses with

predicated execution do so for the same basic reasons. For benchmarks with consistent per-

formance losses in both the superblock and hyperblock experiments, such as 052.alvinn, the

inherent working set(s) are rather large which cause a substantial number of stalls due to cache

misses. Other benchmarks such as 023.eqntott and eqn have signi�cant increases in either in-

struction and/or data cache misses, which leads to the larger speedup loss that is observed with

hyperblocks.

The e�ects of predicated execution and hyperblock compilation techniques on the caches are

examined in more detail in Table 8.6. In the table, the number of instruction and data cache

misses are reported for the Superblock General and Hyperblock General con�gurations. The

ratios of Hyperblock General to Superblock General for the instruction and data cache entries

are shown in parentheses. To magnify the e�ects, a 4K instruction cache and perfect data cache

are used for the instruction cache evaluation. In correspondence, a perfect instruction cache

and a 4K data cache are used for the data cache evaluation. For both experiments, an issue-8,

one-branch processor is assumed.

Looking �rst at the data cache results, the predominant trend is an increase in data cache

misses with predicated execution. The primary cause of this behavior is the additional load

misses introduced by hyperblock formation and subsequent predicate promotion. The hyper-

block formation procedure combines multiple paths of control into a single block of predicated

instructions using if-conversion. Loads from various paths are then typically predicate pro-

246

Table 8.6 E�ect of predicated execution on the instruction and data caches for an issue-8
processor.

Icache Misses Dcache Misses
Benchmark Superblock Hyperblock Superblock Hyperblock

008.espresso 2691K 1170K (0.44) 7148K 7203K (1.01)
022.li 1114K 894K (0.80) 1003K 1020K (1.02)
023.eqntott 604K 997K (1.65) 11M 11M (1.02)
026.compress 1856K 2630 (0.00) 4964K 6656K (1.34)
052.alvinn 334K 395K (1.18) 72M 69M (0.96)
056.ear 33M 57M (1.74) 98M 106M (1.08)
072.sc 1403K 1617K (1.15) 3197K 3177K (0.99)
cccp 47K 44K (0.94) 29K 38K (1.31)
cmp 32 23 (0.72) 28K 26K (0.92)
eqn 2143K 2015K (0.94) 787K 850K (1.08)
grep 73 75 (1.03) 3074 3041 (0.99)
lex 102K 61K (0.60) 318K 359K (1.13)
qsort 284 395 (1.39) 421K 488K (1.16)
tbl 55K 57K (1.04) 46K 55K (1.18)
wc 33 27 (0.82) 2662 1705 (0.64)
yacc 418K 542K (1.29) 1113K 1162K (1.04)

Average - - (0.98) - - (1.06)

moted to reduce the overall dependence height of the hyperblock. Loads are prime targets

for predicate promotion because they often are near the top of long dependence chains. The

problem occurs when these loads cause cache misses. Before promotion, only those loads whose

predicates evaluate to true are executed and thus can cause cache misses. But, after promotion,

loads across many paths are unconditionally executed, and thus can introduce cache misses.

Essentially, this procedure is achieving load speculation from many paths of control. The larger

fraction of speculative loads increases the data working set of the benchmarks, and a growth in

data cache misses is observed.

The e�ects are most notable in two benchmarks: 026.compress and cccp. For these bench-

marks, data cache misses are increased by 34% and 31%, respectively. The data cache miss

247

increase for cccp does not have a pronounced e�ect on the overall performance (Figure 8.11)

because the larger, 64K cache is able to absorb the additional misses. However, for 026.com-

press, the additional misses lead directly to a performance loss because of the already existing

cache problems in this benchmark. The increase in data cache misses for eqn is also noticeable

in the overall performance. The 8% increase in data cache misses directly translates into a large

performance loss.

The e�ects of predicated execution and hyperblock compilation techniques on the instruc-

tion cache are also examined in Table 8.6. The behavior varies widely across the benchmarks.

For half of the benchmarks, the number of instruction cache misses is reduced under the Hy-

perblock General con�guration, whereas, for the other half, the number of misses is increased

with hyperblocks. These di�erences reect the two competing e�ects on the instruction cache

caused by hyperblock compilation techniques. On the one hand, the locality of the code tends

to increase with hyperblocks because all of the important paths are overlapped in a single

predicated block. Therefore, there is less branching to di�erent portions of the program and

execution is sequential a higher fraction of the time. Overall, the increased locality tends to

reduce instruction cache misses. A drastic reduction surprisingly happens for 026.compress,

which has its instruction cache misses almost completely eliminated with hyperblocks. The

working set is e�ectively localized to a few blocks with hyperblock compilation techniques. Un-

fortunately, these e�ects do not translate into positive performance results because of the data

cache problems.

The opposite e�ect is because of the larger code blocks that occur with hyperblocks. Since

hyperblocks tend to overlap the execution of multiple paths, the overall size of individual

hyperblocks is signi�cantly larger than superblocks. Optimizations such as loop unrolling and

248

branch target expansion also tend to multiply the size e�ects by replicating hyperblocks one or

more times. The net result is an increased instruction working set and hence a larger number

of instruction cache misses. The two benchmarks a�ected most by the instruction cache are

023.eqntott and 056.ear . For 056.ear , the additional instruction cache misses are absorbed by

the 64K cache; thus, no noticeable performance loss is observed in Figure 8.11. However, the

additional instruction cache misses for 023.eqntott are not hidden and the result is a noticeable

performance drop.

8.2.6 Predicate architecture issues

An architecture supporting predicated execution contains several unique components. These

include the ability to nullify instructions, additional instructions to manipulate predicates,

and the predicate register �le. In this section, several issues regarding the e�ectiveness and

utilization of the predicate architecture are examined.

The �rst issue examined is the frequency of predicated instructions which are nulli�ed during

program execution. Table 8.7 presents these data. The �rst two columns in the table contain

previously presented data, the total dynamic instructions (Table 8.1) and the total predicated

dynamic instructions (Table 8.5). Note that the \Predicated" column data do not include

instructions whose predicates are eliminated via transformations such as predicate promotion.

The ratio of predicated instructions to total instructions is shown in parentheses in the second

column. The \Predicate Nulli�ed" column shows the number of dynamic instructions nulli�ed

at run time by a false predicate. The ratio of nulli�ed instructions to predicated instructions

is shown in parentheses in the third column. These data provide an important measure of

processor resource utilization in predicated code.

249

Table 8.7 Dynamic nulli�cation frequency for predicated instructions.

Benchmark Total Predicated Predicate Nulli�ed

008.espresso 644M 186M (0.29) 124M (0.67)
022.li 33M 4287K (0.13) 1936K (0.45)
023.eqntott 892M 191M (0.21) 68M (0.36)
026.compress 108M 19M (0.18) 9733K (0.51)
052.alvinn 3604M 29M (0.01) 28M (0.97)
056.ear 11273M 906M (0.08) 479M (0.53)
072.sc 122M 21M (0.17) 13M (0.62)
cccp 3923K 706K (0.18) 383K (0.54)
cmp 921K 118K (0.13) 114K (0.97)
eqn 45M 1905K (0.04) 1357K (0.71)
grep 1647K 35K (0.02) 25K (0.71)
lex 46M 17M (0.38) 11M (0.65)
qsort 52M 15M (0.30) 7942K (0.53)
tbl 2934K 358K (0.12) 171K (0.48)
wc 1526K 1051K (0.69) 752K (0.72)
yacc 51M 11M (0.22) 7756K (0.71)

Average - - (0.20) - (0.63)

The table shows that a relatively high frequency of predicated instructions is nulli�ed. The

overall average fraction of nulli�ed instructions across the benchmarks is 63%, with as high as

7% for 052.alvinn and cmp. In general, the fraction of nulli�ed instructions is expected to be

relatively high due to the large number of control ow paths and unbiased branches in many

of the benchmarks. However, several of these large values are a bit misleading. For both of the

aforementioned benchmarks, only a small fraction (1% and 13%) of the dynamic instructions

are actually predicated. Thus, these extremely high nulli�cation ratios are rather small when

compared to the total instructions. A more serious issue seemingly occurs for the benchmark

wc, which has 69% predicated instructions and 72% of those are nulli�ed. For this benchmark,

a signi�cant fraction of useless instructions are executed. However, examination of the code for

this benchmark shows that the majority of predicated instructions is used to �ll idle processor

250

Table 8.8 Dynamic usage distribution of predicate comparison instruction types.

Benchmark Single-U Single-O Dual-UU Dual-OO Dual-UO

008.espresso 0.471 0.231 0.020 0.157 0.122
022.li 0.165 0.680 0.139 0.000 0.016
023.eqntott 0.494 0.500 0.006 0.000 0.000
026.compress 0.041 0.733 0.226 0.000 0.000
052.alvinn 0.000 1.000 0.000 0.000 0.000
056.ear 0.200 0.503 0.298 0.000 0.000
072.sc 0.440 0.544 0.005 0.000 0.010
cccp 0.060 0.729 0.202 0.000 0.009
cmp 0.205 0.795 0.000 0.000 0.000
eqn 0.128 0.848 0.015 0.000 0.009
grep 0.003 0.997 0.000 0.000 0.000
lex 0.056 0.533 0.407 0.000 0.004
qsort 0.000 0.450 0.550 0.000 0.000
tbl 0.196 0.679 0.096 0.000 0.029
wc 0.286 0.143 0.000 0.000 0.571
yacc 0.209 0.650 0.025 0.000 0.116

Average 0.185 0.626 0.124 0.010 0.055

resources, while enabling branches to be eliminated. The net e�ect is positive performance

gains despite the low resource utilization.

The usage of predicate comparison instructions is the second predicate architecture issue

that is examined. Table 8.8 presents the dynamic usage distribution of the various types of

predicate comparison instructions. As was described in Section 6.2.2, the predicate comparison

instructions may have up to two destination operands, and each may be one of six types: un-

conditional, OR-type, AND-type, and their complements. The current hyperblock compilation

techniques do not make use of the AND-type predicates, so there are none of these comparison

types. The �rst two columns in the table correspond to single target unconditional compares

and single target OR-type compares. For these predicate comparison instructions, no other

comparison with the the same source operands could be found to combine into a dual target

251

comparison. The last three columns correspond to dual target comparisons with the speci�ed

destination pair types. Note that the \Dual-UO" includes both unconditional/OR-type and

OR-type/unconditional comparisons.

From the table, the most apparent result is the surprisingly high utilization of single target

compares, about 80% on average. This indicates that there are a signi�cant number of single-

sided \if" statements which are if-converted. If-conversion of this nature always generates single

target compares since there is no matching complement condition to pair up. Also, the branch

combining optimization is a major source of single target OR-type compares. This optimization

converts a series of branches into OR-type compares. Only a single target is required because

only the taken branch condition is captured in the predicate.

Within the dual target compares, the unconditional/unconditional comparisons occur most

frequently. This result should be expected though. If-conversion of simple if-then-else state-

ments utilizes these comparison types almost exclusively. Therefore, their frequency is likely

to be high. The least utilized dual target compares are the OR-type/OR-type. In general,

because the complement of an OR-type predicate does not have much value, one can expect

this comparison instruction to be infrequently utilized. The only benchmark where the OR-

type/OR-type compares occur, a measurable fraction of the instructions is 008.espresso. The

hyperblocks that are formed with loop peeling in this benchmark provide several opportunities

to make use of this dual target comparison.

The �nal component of the evaluated predicate architecture is the number of predicate

registers utilized by hyperblock compilation techniques. Table 8.9 shows the dynamic usage

distribution of predicate registers for the benchmarks. The entries in the table contain the

weighted fraction of hyperblocks which require the speci�ed range of predicate registers. The

252

Table 8.9 Dynamic usage distribution of predicate registers.

Benchmark 1-8 9-16 17-24 25-32 33-40 41-48

008.espresso 0.363 0.158 0.299 0.000 0.180 0.000
022.li 0.933 0.067 0.000 0.000 0.000 0.000
023.eqntott 0.119 0.014 0.859 0.000 0.008 0.000
026.compress 0.686 0.000 0.314 0.000 0.000 0.000
052.alvinn 1.000 0.000 0.000 0.000 0.000 0.000
056.ear 0.369 0.360 0.180 0.000 0.090 0.000
072.sc 0.537 0.272 0.191 0.000 0.000 0.000
cccp 0.782 0.000 0.032 0.044 0.141 0.000
cmp 0.000 1.000 0.000 0.000 0.000 0.000
eqn 0.879 0.120 0.000 0.000 0.000 0.000
grep 1.000 0.000 0.000 0.000 0.000 0.000
lex 0.369 0.020 0.028 0.000 0.583 0.000
qsort 1.000 0.000 0.000 0.000 0.000 0.000
tbl 0.938 0.034 0.025 0.003 0.000 0.000
wc 0.000 0.000 0.000 0.000 0.000 1.000
yacc 0.808 0.105 0.005 0.007 0.074 0.000

Average 0.611 0.134 0.121 0.003 0.067 0.063

predicate requirements are calculated by performing local register allocation for the predicate

registers on each hyperblock. The register allocator has an unlimited supply of predicate reg-

isters, but attempts to utilize the minimal number of required registers such that no spilling

is necessary. Thus, the number of required predicate registers is the maximum number of

overlapping predicate lifetimes in a hyperblock.

From the table, the majority of hyperblocks requires only a small number of predicates. This

is most obvious for benchmarks such as 052.alvinn, grep, and qsort , where no hyperblocks in

the entire benchmark require more than eight predicates. These benchmarks are characterized

by simple control ow structures in the important portions of the code, which, in turn, require

few predicates to represent. At the other extreme, there is a signi�cant overall fraction (13%)

of hyperblocks that require 33 or more predicates. The two benchmarks with the highest

253

predicate requirements are wc and lex . For these benchmarks, if-conversion is utilized to remove

complex control ow and thus requires more predicates. Subsequent optimizations such as loop

unrolling further increase the predicate register requirements by creating larger hyperblocks

with more overlapped control constructs. It is expected that more benchmarks will begin to

show predicate usage distributions close to wc and lex with the application of more aggressive

hyperblock optimizations and the use of new predicate optimizations such as control height

reduction [95],[96].

8.2.7 Current level of performance

The results from Chapter 5 showed the performance improvement potential of superblocks,

speculative execution in superblocks, and superblock ILP optimizations. Compared to tradi-

tional basic block compilation techniques, large performance improvements were observed. At

the same time, several factors indicated that speculative execution in superblocks has perfor-

mance limitations. With superblocks, there was a large fraction of under-utilized resources in

wide issue processors. The limited ILP in superblocks was attributed to superblocks typically

not being large enough and having frequently taken side exits. Also, the superblock performance

relies heavily on support to execute multiple branches per cycle.

These factors motivated the investigation of predicated execution and hyperblock compila-

tion techniques. The results presented in this chapter show that a large amount of success was

achieved at improving performance by overcoming the superblock limitations. In this section,

the experiments utilized to illustrate the superblock limitations are repeated to more clearly

indicate the level of success to which limitations are addressed. These results also allow some

perspective to be placed on the current performance level.

254

Table 8.10 Hyperblock characteristics.

HB Completion Ratio
Benchmark HB size 1.00 � 0.90 � 0.70 � 0.50 � 0.30

008.espresso 80.4 0.77 0.79 0.82 0.85 0.88
022.li 20.8 0.68 0.67 0.79 0.82 0.89
023.eqntott 38.1 0.85 0.90 0.91 0.92 0.93
026.compress 42.9 0.54 0.57 0.67 0.83 0.93
052.alvinn 88.2 0.94 0.95 0.97 0.98 0.99
056.ear 86.0 0.84 0.88 0.96 0.98 0.99
072.sc 29.3 0.70 0.72 0.78 0.87 0.93
cccp 26.7 0.53 0.54 0.60 0.66 0.91
cmp 75.5 0.99 0.99 0.99 0.99 0.99
eqn 34.0 0.54 0.55 0.62 0.69 0.84
grep 49.7 0.54 0.61 0.70 0.76 0.91
lex 51.3 0.66 0.69 0.73 0.84 0.94
qsort 40.6 0.68 0.68 0.69 0.85 0.86
tbl 20.1 0.75 0.78 0.83 0.87 0.91
wc 131.1 0.99 0.99 0.99 0.99 0.99
yacc 33.9 0.61 0.64 0.69 0.74 0.86

Average 53.0 0.73 0.75 0.80 0.85 0.92

The characteristics of the hyperblocks generated by the compiler are presented in Table 8.10.

The �rst column of data contains the average number of instructions in each hyperblock

weighted by the execution frequency of the hyperblock. These data show the average size

of the hyperblocks presented to the scheduler for each benchmark. Note that the data in the

table include all blocks in the programs, not just the hyperblocks. Comparing the hyperblock

results with the previous superblock results (Table 5.11) shows the hyperblock compilation tech-

niques are highly e�ective at increasing the number of instructions available to the scheduler.

On average, the block size increased from 34.5 to 53.0 instructions. Most importantly, several

of the benchmarks with the smallest superblocks were increased dramatically. For example, the

255

average size of the superblocks in 023.eqntott was 19.3 instructions. With hyperblocks, the size

was approximately doubled to 38.1 instructions.

The benchmarks which showed largest increases in block sizes also achieved large perfor-

mance improvements. Examples of such benchmarks include 008.espresso, 023.eqntott , and

wc. The increased number of instructions the scheduler has to consider clearly increases the

e�ciency of the resultant schedule. The inverse of this behavior is also true. For benchmarks

which did not have a signi�cant increase in block size, such as 022.li and tbl , little performance

improvement was observed with predicated execution. Clearly, the hyperblock techniques were

less e�ective at creating large hyperblocks in these benchmarks, which results in only small

performance gains over superblock code.

The remaining data in Table 8.10 show the weighted average completion ratio of hyperblocks.

The completion ratio, as previously de�ned, is the percentage of time a speci�ed fraction of the

hyperblock is executed. For example, the \�0.90" column for 008.espresso indicates 79% of the

time, 90% or more of the instructions in the hyperblocks are executed. The previous superblock

data showed that a large fraction of the time superblocks are exited prematurely though a

side exit. The goal with hyperblocks was to increase the completion ratio by overlapping the

execution of multiple paths in a single hyperblock. Table 8.10 again shows that the hyperblock

techniques were indeed successful at this goal. The average fraction of executions which execute

more than 90% of the blocks is raised from 61% to 75%. One of the most notable increases

occurs for 008.espresso, in which the fraction of executions which have a 90% completion ratio

is raised from 39% to 79%. Similarly for 072.sc, the 90% completion ratio is raised from 40%

to 72%. The formation of hyperblocks by overlapping the execution of all the important paths

enables the compiler to e�ectively form blocks with small early exit probabilities.

256

1

2

3

4

5

6

7

8

9

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

tb
l

w
c

ya
cc

A
ve

ra
ge

Benchmark

Sp
ee

du
p

8-BR 4-BR 2-BR 1-BR

1313 13 13

Figure 8.12 E�ect of reducing the maximum number of branches executed per cycle for an
issue-8 processor with predicated execution support.

A second limiting factor of superblocks is the large performance loss that occurs when

the number of branch resources is reduced. Figure 8.12 presents the speedup of an issue-

8 processor with predicated execution over the base processor as the maximum number of

branches per cycle is reduced from eight to one. Comparing the hyperblock results with the

previous superblock results (Figure 5.12) shows that the performance has become substantially

more stable with predicated execution. With superblocks, much of the large performance gains

that were achieved for an issue-8 processor are lost when the processor can only execute 1 or 2

branches each cycle. The branch resources quickly become the performance bottleneck as their

availability is decreased. However in the hyperblock code, the high performance level is closely

maintained regardless of the number of branches. The ability of the compiler to eliminate

branches with predicated execution clearly removes the branch resource bottleneck.

257

Table 8.11 Dynamic instruction mix with hyperblock compilation techniques.

Benchmark Load Store IALU FALU Branch

008.espresso 0.187 0.027 0.722 0.000 0.065
022.li 0.299 0.140 0.329 0.000 0.231
023.eqntott 0.234 0.005 0.702 0.000 0.058
026.compress 0.162 0.067 0.646 0.000 0.124
052.alvinn 0.341 0.090 0.193 0.349 0.026
056.ear 0.197 0.173 0.142 0.438 0.050
072.sc 0.211 0.023 0.614 0.012 0.140
cccp 0.161 0.045 0.592 0.000 0.202
cmp 0.225 0.000 0.746 0.000 0.029
eqn 0.172 0.104 0.537 0.000 0.188
grep 0.183 0.073 0.628 0.000 0.115
lex 0.187 0.251 0.495 0.000 0.067
qsort 0.230 0.225 0.409 0.000 0.135
tbl 0.276 0.029 0.483 0.000 0.211
wc 0.061 0.000 0.811 0.000 0.129
yacc 0.202 0.041 0.615 0.000 0.142

Average 0.208 0.081 0.541 0.050 0.120

The e�ect of hyperblock compilation techniques on the dynamic instruction mix is presented

in Table 8.11. Instructions are broken into �ve categories, memory load, memory store, integer

ALU, oating-point ALU, and branch. The run-time value of the predicate for instructions is not

considered when computing the data in this table. Comparing the the hyperblock instruction

mix and the superblock instruction mix (Table 5.12) clearly shows the reduction in the fraction

of branch instructions. The average fraction of branches is reduced from 35.1% with superblocks

to 12.0% with hyperblocks. The consequence of this large reduction in branches is an almost

equally large increase in integer ALU instructions, 28.1% to 54.1%. The introduction of new

instructions to manipulate predicates as well as the additional arithmetic instructions obtained

from overlapping the execution of multiple control paths are the major sources for the increase

of integer ALU instructions.

258

A somewhat surprising result is the uniform reduction in the fraction of load instructions

with hyperblock compilation techniques. The average fraction of loads is dropped from 23.6%

to 20.8%, and in all but one benchmark a reduction is observed. A portion of this behavior is

because of the increase in the total instructions for hyperblock code (see Table 8.1). However,

the primary cause of this behavior is the reduced amount of load speculation that is employed

in the hyperblock code. With superblock code, a large fraction of the load instructions are spec-

ulated and generally speculated over many branches. Thus the execution frequency of loads is

substantially increased. With hyperblock code, load speculation primarily occurs with predi-

cate promotion rather than code motion across branches. The instruction mix data presented

in the table does not take the run-time predicate into account. Thus, predicate promotion does

not increase the fraction of load instructions. The net result is that the large increases in load

frequency caused by speculation are observed to a lesser extent in the hyperblock code. Hence,

an overall reduction in the fraction of dynamic instructions that are loads is obtained.

The utilization of the available processor resources that is achieved using hyperblock compi-

lation techniques is evaluated in Figure 8.13. The average fraction of executed and unused IPC

is plotted for an issue-8 processor capable of executing at most one branch per cycle. The cor-

responding experiment for superblocks is presented in Figure 5.11. Comparing the superblock

and hyperblock results shows that the executed IPC has increased noticeably for most of the

benchmarks. For example, the executed IPC for 008.espresso has increased from 3.2 to 5.8.

Overall the average executed IPC across the benchmarks increases from 4.5 to 5.2. It should

be noted that the superblock experiment purposefully utilizes no limitation on the number

of branches allowed each cycle to present the most optimistic value, whereas the hyperblock

experiment limits the number of branches to one per cycle to present a more realistic value.

259

0

1

2

3

4

5

6

7

8

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

05
2.

al
vi

nn

05
6.

ea
r

07
2.

sc

cc
cp

cm
p

eq
n

gr
ep le
x

qs
or

t

tb
l

w
c

ya
cc

A
ve

ra
ge

Benchmark

IP
C

Executed IPC Unused IPC

Figure 8.13 Average executed and unused instructions per cycle for an issue-8, one-branch
processor using hyperblock compilation techniques.

Despite the branch limitations, the increased resource utilization shows that the hyperblock

compilation techniques are e�ective at increasing the ILP to achieve performance improvement.

Figure 8.13 also shows that a signi�cant fraction of idle resources still remain for many of

these benchmarks. The most notable example is 022.li in which over 5 IPC is idle for an issue-8

processor. Many performance limitations associated with data, memory, and control depen-

dences remain in the code which limits the available ILP. Predicated execution in conjunction

with hyperblock compilation techniques has made positive progress, but clearly there is a large

performance potential to be gained from further ILP research.

In summary, an extensive evaluation of the e�ectiveness of predicated execution supported

by hyperblock compilation techniques has been presented in this chapter. Substantial perfor-

mance improvements were achieved compared to superblock code with aggressive speculation

support. The primary sources of the improved performance are the reduction in dynamic

260

branches, the decrease in branch mispredictions, and the ability to e�ciently overlap the exe-

cution of multiple paths of control. Several issues are also evaluated, including the e�ects of

hyperblock compilation techniques on the instruction/data caches; the relative contributions

of speculation and predication to overall performance; and the utilization of the architectural

components to support predicated execution. For additional experimental results on the ef-

fectiveness of predicated execution, the interested reader is referred to [106], [107], [108], and

[109].

261

CHAPTER 9

CONCLUSION

9.1 Summary

Branch instructions pose serious di�culties for processors that exploit ILP. These problems

arise for several reasons. First, branches limit code motion freedom by imposing control de-

pendences to enforce the proper ordering conditions between branches and other instructions.

Second, branches cause substantial run-time overhead from misprediction penalties. Finally,

branches limit processor throughput when the branch execution bandwidth cannot keep up

with the branch frequency in the instruction stream. For superscalar and VLIW processors,

conventional architectural and compilation methods do not provide enough support to allow

e�ective exploitation of ILP in the presence of branches. In this dissertation, two techniques to

overcome these di�culties are investigated, speculative execution and predicated execution.

The �rst technique, speculative execution, allows the compiler to remove dependences be-

tween instructions and prior branches. In this manner, the compiler may eliminate control

dependences to allow more instructions to be executed concurrently. Speculative execution is

utilized by the compiler via an e�cient structure called the superblock. Superblocks are formed

using a combination of trace selection and tail duplication. Superblock formation isolates im-

portant execution paths and systematically eliminates constraints due to unimportant paths.

Subsequent optimizations applied to superblocks expand the size and increase the ILP along

262

the important execution paths. Superblock scheduling is then applied to aggressively overlap

the execution of instructions in the superblock through the use of speculative execution.

Experimental results show that speculative execution along with superblock compilation

techniques are highly e�ective at improving the performance of superscalar and VLIW proces-

sors. The largest performance gains over traditional techniques are achieved with the combi-

nation of superblock ILP optimizations and general speculation. Superblock formation alone

yields only modest performance improvements by combining groups of basic blocks together

into a single structure. Instruction overlap is still signi�cantly limited by data dependences

and the inability to overlap the execution of loop iterations. Superblock ILP optimizations

aggressively transform the superblock to increase ILP in loops and straight-line code. As a re-

sult, the scheduler has many more opportunities to reorder instructions and achieve a compact

schedule. The importance of generalized speculation is also shown by the results. Without

speculation support, the scheduler is unable to take advantage of the increased ILP because

control dependences limit code motion. General speculation provides the scheduler with the

necessary freedom to achieve a high degree of concurrency.

The experiments also show that speculative execution in superblocks alone has several lim-

itations. First, there are a large number of resources which cannot be �lled by the superblock

techniques alone. Thus, there is a wide range of potential performance improvement beyond

that achieved with superblock techniques. The limited ILP in superblocks can be attributed

to superblocks typically not being large enough and having frequently taken side exits. These

characteristics motivate the expansion of the compiler scope from a single path of execution to

overlapping multiple execution paths. The second factor is the large performance loss incurred

when the number of branches that a wide-issue processor can execute is reduced. The instruc-

263

tion stream contains a high fraction of branches, and when the number of branches which may

be executed is limited, the branch resource bottleneck is exposed. This factor motivates the

need for generalized techniques to eliminate branches from the instruction stream to overcome

the resource bottlenecks.

The limitations of solely performing speculative execution in superblocks lead to the second

technique investigated in this dissertation, predicated execution. Predicated execution allows

the compiler to completely remove some branches from the instruction stream by utilizing

conditional execution. In addition, predicated execution provides an e�cient interface for the

compiler to overlap the execution of multiple paths of control. Predicated execution is exploited

in the compiler using a structure referred to as a hyperblock. Hyperblocks are a generalized form

of superblocks which take advantage of both speculative and predicated execution. Hyperblocks

are formed through a sequence of steps which include basic block selection, tail duplication,

and if-conversion. The goal of hyperblock formation is to intelligently select basic blocks from

many di�erent control ow paths to be merged into a single manageable structure using if-

conversion. Basic blocks are systematically selected for inclusion in hyperblocks to eliminate

unbiased branches, maximize ILP optimization opportunities, control the overall dependence

height, and avoid over-committing processor resources.

Predicated execution also provides the opportunity for new optimization opportunities to

increase the e�ciency of predicated code and to perform new transformations made possible

with conditional execution. In this dissertation, three important predicate-speci�c optimiza-

tions are introduced: predicate promotion, branch combining, and loop peeling. Predicate

promotion advances the predicate of an instruction to allow the instruction to be executed

before the predicate is known. Hence, predicate promotion provides support for speculation in

264

the predicate domain. Branch combining allows infrequently taken branches to be converted

into predicate comparison instructions, while the branches themselves are moved outside the

hyperblock. The net result is that the compiler can drastically reduce the frequency of branch

instructions in the important sections of the code. Finally, predicated loop peeling allows infre-

quently iterated loops to be unraveled and overlapped with surrounding code. In many cases,

outer loop parallelism can be e�ectively exploited after peeling the innermost loops. Overall,

these transformations provide the compiler with powerful tools for increasing the ILP with

predicated execution.

A detailed evaluation of predicated execution using hyperblock compilation techniques is

presented in this dissertation. The results show that substantial performance improvements

are achieved over superblock code with aggressive speculation support. There are three major

sources of performance gain. First, the ability to remove a large fraction of the branches from

the instruction stream alleviates the branch resource bottleneck. Second, removing unbiased

branches decreases the number of branch mispredictions which in turn reduces the time the

processor is stalled while branch mispredictions are repaired. Finally, the ability to overlap the

execution of multiple control paths increases the ILP the compiler can expose in the presence

of branches. Overall, the results show that the combination of speculative and predicated

execution are highly e�ective for exploiting ILP in nonnumeric applications.

9.2 Future Research

The work presented in this dissertation motivates several promising opportunities for future

research. These include the areas of hyperblock formation, predicate-speci�c optimization, and

generalized acyclic scheduling.

265

The �rst opportunity is in the area of hyperblock formation. The hyperblock formation

techniques presented in this dissertation demonstrate the e�ectiveness of the approach. The

formation algorithm works well for innermost loops. However, for general acyclic code, ine�-

cient hyperblocks are often produced. The primary reason for this behavior is that the external

boundaries of loops are �rmly designated by the loop structure itself. With these in place, the

formation algorithm can e�ciently identify the set of blocks within the loop to convert into a

hyperblock. On the other hand, for general acyclic code, such �rm boundaries do not exist.

As a result, the hyperblocks tend to grow too far along particular paths of control, and not far

enough along others. New techniques to form e�cient hyperblocks in acyclic code will likely

increase the e�ectiveness of the hyperblock techniques across all the benchmarks.

Another subject within hyperblock formation that was not examined in this dissertation

is the issue of forming hyperblocks without pro�le information. Currently, pro�le information

is essential to identifying the important control paths in the code. Hyperblock formation uti-

lizes the pro�le information along with several static measures, such as dependence height,

instruction count, and hazard existence, to create hyperblocks. Instead of pro�le information,

the hyperblock formation techniques could utilize static branch prediction techniques or other

static measures in conjunction those static measures currently utilized. Since many users are

often unable or unwilling to provide pro�le information to the compiler, the ability to form e�-

cient hyperblocks without pro�le information certainly expands the potential use of hyperblock

techniques by a large margin.

A second area of future research is predicate-speci�c optimization. In this dissertation,

several such optimizations were introduced, including predicate promotion, branch combining,

predicated loop peeling, and instruction merging. These optimizations target improving the

266

quality of the predicated code and providing new transformation capabilities that are made

possible with support for predicated execution. Overall, the predicate-speci�c optimizations

utilized in this dissertation greatly improved the overall performance of the hyperblock code.

These optimizations are probably the beginnings of an extremely important area of research.

The ability to conditionally execute instructions with predicates rather than branches provides

the compiler with a powerful tool. New optimizations which utilize predicated execution to

reduce dependence height, increase code motion freedom, and reduce resource contention will

be highly important for future ILP compilers. Also, the introduction of overlapped paths of

control in a single block introduces new challenges to the compiler to improve the quality

of such code. Compilers for architectures that have predicated execution will require e�cient

techniques to handle predicates. Further research in the area of predicate-speci�c optimizations

is de�nitely warranted.

The �nal area of future research motivated by this dissertation is that of generalized acyclic

scheduling. In this dissertation, superblock scheduling and hyperblock scheduling are utilized

exclusively. Superblock scheduling provides an e�cient paradigm to e�ectively schedule across

basic block boundaries along a single path of control. Hyperblock scheduling is a generalization

of superblock scheduling which supports predicated execution. However, the limitation of the

hyperblock approach is that scheduling is restricted to a single net of predicated code. Code

motion across hyperblocks is not supported. New scheduling techniques which attack program

graphs containing a mixture of control ow and predicated execution are required. The ability

to aggressively move code across hyperblocks will substantially increase the ILP exposed by the

scheduler.

267

REFERENCES

[1] N. P. Jouppi and D. W. Wall, \Available instruction-level parallelism for superscalar
and superpipelined machines," in Proceedings of the 3rd International Conference on

Architectural Support for Programming Languages and Operating Systems, pp. 272{282,
April 1989.

[2] M. D. Smith, M. Johnson, and M. A. Horowitz, \Limits on multiple instruction issue," in
Proceedings of the 3rd International Conference on Architectural Support for Programming

Languages and Operating Systems, pp. 290{302, April 1989.

[3] M. A. Schuette and J. P. Shen, \An instruction-level performance analysis of the Multiow
Trace 14/300," in Proceedings of the 24th International Workshop on Microprogramming

and Microarchitecture, pp. 2{11, November 1991.

[4] J. E. Smith, \A study of branch prediction strategies," in Proceedings of the 8th Interna-

tional Symposium on Computer Architecture, pp. 135{148, May 1981.

[5] T. Ball and J. R. Larus, \Branch prediction for free," in Proceedings of the ACM SIG-

PLAN 1993 Conference on Programming Language Design and Implementation, pp. 300{
313, June 1993.

[6] R. E. Hank, S. A. Mahlke, R. A. Bringmann, J. C. Gyllenhaal, and W. W. Hwu, \Su-
perblock formation using static program analysis," in Proceedings of the 26th Annual

International Symposium on Microarchitecture, December 1993.

[7] S. McFarling and J. Hennessy, \Reducing the cost of branches," in Proceedings of the 13th
International Symposium on Computer Architecture, pp. 396{403, June 1986.

[8] W. W. Hwu, T. M. Conte, and P. P. Chang, \Comparing software and hardware schemes
for reducing the cost of branches," in Proceedings of the 16th International Symposium

on Computer Architecture, pp. 224{233, May 1989.

[9] J. A. Fisher and S. M. Freudenberger, \Predicting conditional branch directions from pre-
vious runs of a program," in Proceedings of 5th International Conference on Architectual

Support for Programming Languages and Operating Systems, pp. 85{95, October 1992.

[10] J. A. Fisher, \Trace scheduling: A technique for global microcode compaction," IEEE

Transactions on Computers, vol. c-30, pp. 478{490, July 1981.

[11] J. Lee and A. J. Smith, \Branch prediction strategies and branch target bu�er design,"
IEEE Computer, pp. 6{22, January 1984.

[12] T. Y. Yeh and Y. N. Patt, \Two-level adaptive training branch prediction," in Proceedings
of the 24th Annual International Symposium on Microarchitecture, pp. 51{61, November
1991.

268

[13] T. Y. Yeh and Y. N. Patt, \Alternative implementations of two-level adaptive branch
prediction," in Proceedings of the 19th Annual International Symposium on Computer

Architecture, pp. 124{134, May 1992.

[14] S. Pan, K. So, and J. T. Rahmeh, \Improving the accuracy of dynamic branch prediction
using branch correlation," in Proceedings of the 5th International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, pp. 76{84, October
1992.

[15] D. W. Wall, \Limits of instruction-level parallelism," in Proceedings of the 4th Interna-

tional Conference on Architectural Support for Programming Languages and Operating

Systems, pp. 176{188, April 1991.

[16] M. Butler, T. Yeh, Y. Patt, M. Alsup, H. Scales, and M. Shebanow, \Single instruction
stream parallelism is greater than two," in Proceedings of the 18th International Sympo-

sium on Computer Architecture, pp. 276{286, May 1991.

[17] P. Y. Hsu and E. S. Davidson, \Highly concurrent scalar processing," in Proceedings of

the 13th International Symposium on Computer Architecture, pp. 386{395, June 1986.

[18] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle, \The Cydra 5 departmental super-
computer," IEEE Computer, vol. 22, pp. 12{35, January 1989.

[19] J. R. Allen, K. Kennedy, C. Porter�eld, and J. Warren, \Conversion of control depen-
dence to data dependence," in Proceedings of the 10th ACM Symposium on Principles of

Programming Languages, pp. 177{189, January 1983.

[20] J. C. Park and M. S. Schlansker, \On predicated execution," Tech. Rep. HPL-91-58,
Hewlett-Packard Laboratories, Palo Alto, CA, May 1991.

[21] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, \E�ective
compiler support for predicated execution using the hyperblock," in Proceedings of the

25th International Symposium on Microarchitecture, pp. 45{54, December 1992.

[22] R. Gupta and M. L. So�a, \Region scheduling: An approach for detecting and redis-
tributing parallelism," IEEE Transactions on Software Engineering, vol. 16, pp. 421{431,
April 1990.

[23] G. E. Haab, \Data dependence analysis for Fortran programs in the IMPACT compiler,"
M.S. thesis, Department of Electrical and Computer Engineering, University of Illinois,
Urbana, IL, 1995.

[24] D. M. Gallagher, \Memory disambiguation to facilitate instruction-level parallelism com-
pilation," Ph.D. dissertation, Department of Electrical and Computer Engineering, Uni-
versity of Illinois, Urbana, IL, 1995.

[25] K. Subramanian, \Loop transformations for parallel compilers," M.S. thesis, Department
of Computer Science, University of Illinois, Urbana, IL, 1993.

[26] S. Anik, \Architectural and software support for executing numerical applications on high
performance computers," Ph.D. dissertation, Department of Electrical and Computer
Engineering, University of Illinois, Urbana, IL, 1993.

269

[27] Y. Yamada, \Data relocation and prefetching for programs with large data sets," Ph.D.
dissertation, Department of Computer Science, University of Illinois, Urbana, IL, 1995.

[28] W. W. Hwu and P. P. Chang, \Achieving high instruction cache performance with an
optimizing compiler," in Proceedings of the 16th International Symposium on Computer

Architecture, pp. 242{251, May 1989.

[29] P. P. Chang, \Compiler support for multiple instruction issue architectures," Ph.D. dis-
sertation, Department of Electrical and Computer Engineering, University of Illinois,
Urbana, IL, 1991.

[30] P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, \Pro�le-guided automatic inline
expansion for C programs," Software Practice and Experience, vol. 22, pp. 349{370, May
1992.

[31] S. A. Mahlke, \Design and implementation of a portable global code optimizer," M.S.
thesis, Department of Electrical and Computer Engineering, University of Illinois, Urbana,
IL, 1991.

[32] R. A. Bringmann, \Compiler-controlled speculation," Ph.D. dissertation, Department of
Computer Science, University of Illinois, Urbana, IL, 1995.

[33] P. P. Chang, D. M. Lavery, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, \The impor-
tance of prepass code scheduling for superscalar and superpipelined processors," IEEE

Transactions on Computers, vol. 44, pp. 353{370, March 1995.

[34] N. J. Warter, \Modulo scheduling with isomorphic control transformations," Ph.D. dis-
sertation, Department of Electrical and Computer Engineering, University of Illinois,
Urbana, IL, 1993.

[35] W. Y. Chen, \Data preload for superscalar and VLIW processors," Ph.D. dissertation,
Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL,
1993.

[36] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W. W. Hwu, \Dynamic
memory disambiguation using the memory conict bu�er," in Proceedings of 6th Inter-

national Conference on Architectual Support for Programming Languages and Operating

Systems, pp. 183{193, October 1994.

[37] R. E. Hank, \Machine independent register allocation for the IMPACT-I C compiler,"
M.S. thesis, Department of Electrical and Computer Engineering, University of Illinois,
Urbana, IL, 1993.

[38] J. C. Gyllenhaal, \A machine description language for compilation," M.S. thesis, Depart-
ment of Electrical and Computer Engineering, University of Illinois, Urbana, IL, 1994.

[39] R. A. Bringmann, \Template for code generation development using the IMPACT-I C
compiler," M.S. thesis, Department of Computer Science, University of Illinois, Urbana,
IL, 1992.

270

[40] W. Y. Chen, \An optimizing compiler code generator: A platform for RISC performance
analysis," M.S. thesis, Department of Electrical and Computer Engineering, University
of Illinois, Urbana, IL, 1991.

[41] R. G. Ouellette, \Compiler support for SPARC architecture processors," M.S. thesis,
Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL,
1994.

[42] V. Kathail, M. S. Schlansker, and B. R. Rau, \HPL playdoh architecture speci�cation:
Version 1.0," Tech. Rep. HPL-93-80, Hewlett-Packard Laboratories, Palo Alto, CA 94303,
February 1994.

[43] E. M. Riseman and C. C. Foster, \The inhibition of potential parallelism by conditional
jumps," IEEE Transactions on Computers, vol. c-21, pp. 1405{1411, December 1972.

[44] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann,
R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery,
\The Superblock: An e�ective technique for VLIW and superscalar compilation," The

Journal of Supercomputing, vol. 7, pp. 229{248, January 1993.

[45] W. W. Hwu and Y. N. Patt, \HPSm, a high performance restricted data ow architecture
having minimal functionality," in Proceedings of the 13th International Symposium on

Computer Architecture, pp. 297{306, June 1986.

[46] W. W. Hwu, \Exploiting concurrency to achieve high performance in a single-chip mi-
croarchitecture," Ph.D. dissertation, Computer Science Division, University of California,
Berkeley, CA, 1988.

[47] W. M. Johnson, Superscalar Microprocessor Design. Englewood Cli�s, NJ: Prentice-Hall,
Inc., 1991.

[48] P. Tirumalai, M. Lee, and M. Schlansker, \Parallelization of loops with exits on pipelined
architectures," in Proceedings of Supercomputing '90, November 1990.

[49] J. Ellis, Bulldog: A Compiler for VLIW Architectures. Cambridge, MA: The MIT Press,
1985.

[50] P. P. Chang and W. W. Hwu, \Trace selection for compiling large C application programs
to microcode," in Proceedings of the 21st International Workshop on Microprogramming

and Microarchitecture, pp. 188{198, November 1988.

[51] P. P. Chang, S. A. Mahlke, and W. W. Hwu, \Using pro�le information to assist classic
code optimizations," Software Practice and Experience, vol. 21, pp. 1301{1321, December
1991.

[52] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools. Reading,
MA: Addison-Wesley, 1986.

[53] E. Morel and C. Renviose, \Global optimization by suppression of partial redundancies,"
Communications of the ACM, pp. 96{103, February 1979.

271

[54] L. Feigen, D. Klappholz, R. Cassazza, and X. Xue, \The revival transformation," in Con-

ference Record of POPL '94: 21st ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pp. 421{434, January 1994.

[55] J. Knoop, O. Ruthing, and B. Ste�en, \Partial dead code elimination," in Proceedings of

the ACM SIGPLAN 1994 Conference on Programming Language Design and Implemen-

tation, June 1994.

[56] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe, \Dependence graphs
and compiler optimizations," in Proceedings of the 8th ACM Symposium on Principles of

Programming Languages, pp. 207{218, January 1981.

[57] T. Nakatani and K. Ebcioglu, \Combining as a compilation technique for VLIW archi-
tectures," in Proceedings of the 22nd International Workshop on Microprogramming and

Microarchitecture, pp. 43{55, September 1989.

[58] A. Aiken and A. Nicolau, \Optimal loop parallelization," in Proceedings of the ACM SIG-

PLAN 1988 Conference on Programming Language Design and Implementation, pp. 308{
317, June 1988.

[59] K. Anantha and F. Long, \Code compaction for parallel architectures," Software Practice
and Experience, vol. 20, pp. 537{554, June 1990.

[60] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein, R. P. Nix, J. S.
O'Donnell, and J. C. Ruttenberg, \The Multiow Trace scheduling compiler," The Jour-
nal of Supercomputing, vol. 7, pp. 51{142, January 1993.

[61] J. C. Dehnert and R. A. Towle, \Compiling for the Cydra 5," The Journal of Supercom-

puting, vol. 7, pp. 181{227, January 1993.

[62] K. Ebcioglu, R. D. Groves, K. Kim, G. M. Silberman, and I. Ziv, \VLIW compilation
techniques in a superscalar environment," in Proceedings of the ACM SIGPLAN '94 Con-

ference on Programming Language Design and Implementation, pp. 36{48, June 1994.

[63] J. L. Baer and D. P. Bovet, \Compilation of arithmetic expressions for parallel computa-
tions," in Proceedings of IFIP Congress, pp. 34{46, 1968.

[64] D. J. Kuck, The Structure of Computers and Computations. New York, NY: John Wiley
and Sons, 1978.

[65] R. M. Stallman, Using and porting GNU CC. Free Software Foundation, Inc., 1989.

[66] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu, \IMPACT: An
architectural framework for multiple-instruction-issue processors," in Proceedings of the

18th International Symposium on Computer Architecture, pp. 266{275, May 1991.

[67] P. P. Chang, N. J. Warter, S. A. Mahlke, W. Y. Chen, and W. W. Hwu, \Three ar-
chitectural models for compiler-controlled speculative execution," IEEE Transactions on

Computers, vol. 44, pp. 481{494, April 1995.

272

[68] B. R. Rau and C. D. Glaeser, \Some scheduling techniques and an easily schedulable hori-
zontal architecture for high performance scienti�c computing," in Proceedings of the 20th

Annual Workshop on Microprogramming and Microarchitecture, pp. 183{198, October
1981.

[69] K. Ebcioglu, \A compilation technique for software pipelining of loops with conditional
jumps," in Proceedings of the 20th Annual Workshop on Microprogramming and Microar-

chitecture, pp. 69{79, December 1987.

[70] M. D. Smith, M. S. Lam, and M. A. Horowitz, \Boosting beyond static scheduling in a
superscalar processor," in Proceedings of the 17th International Symposium on Computer

Architecture, pp. 344{354, May 1990.

[71] M. D. Smith, M. A. Horowitz, and M. S. Lam, \E�cient superscalar performance through
boosting," in Proceedings of the Fifth International Conference on Architecture Support

for Programming Languages and Operating Systems, pp. 248{259, October 1992.

[72] R. A. Bringmann, S. A. Mahlke, R. E. Hank, J. C. Gyllenhaal, and W. W. Hwu, \Specu-
lative execution exception recovery using write-back suppression," in Proceedings of 26th

Annual International Symposium on Microarchitecture, December 1993.

[73] R. P. Colwell, R. P. Nix, J. J. O'Donnell, D. B. Papworth, and P. K. Rodman, \A VLIW
architecture for a trace scheduling compiler," in Proceedings of the 2nd International

Conference on Architectural Support for Programming Languages and Operating Systems,
pp. 180{192, April 1987.

[74] G. R. Beck, D. W. Yen, and T. L. Anderson, \The Cydra 5 minisupercomputer: Architec-
ture and implementation," The Journal of Supercomputing, vol. 7, pp. 143{180, January
1993.

[75] Hewlett-Packard Company, Cupertino, CA, PA-RISC 1.1 Architecture and Instruction

Set Reference Manual, 1990.

[76] D. L. Weaver and T. Germond, The SPARC Architecture Manual. SPARC International,
Inc., Menlo Park, CA, 1994.

[77] S. A. Mahlke, W. Y. Chen, W. W. Hwu, B. R. Rau, and M. S. Schlansker, \Sentinel
scheduling for superscalar and VLIW processors," in Proceedings of the 5th International

Conference on Architectural Support for Programming Languages and Operating Systems,
pp. 238{247, October 1992.

[78] S. A. Mahlke, W. Y. Chen, R. A. Bringmann, R. E. Hank, W. W. Hwu, B. R. Rau,
and M. S. Schlansker, \Sentinel scheduling: A model for compiler-controlled speculative
execution," Transactions on Computer Systems, vol. 11, November 1993.

[79] G. Kane, MIPS R2000 RISC Architecture. Englewood Cli�s, NJ: Prentice-Hall, Inc.,
1987.

[80] D. I. August, B. L. Deitrich, and S. A. Mahlke, \Sentinel scheduling with recovery blocks,"
Tech. Rep. CRHC-95-05, Center for Reliable and High-Performance Computing, Univer-
sity of Illinois, Urbana, IL, February 1995.

273

[81] J. R. Goodman and W. C. Hsu, \Code scheduling and register allocation in large basic
blocks," in Proceedings of the 1988 International Conference on Supercomputing, pp. 442{
452, July 1988.

[82] S. Freudenberger and J. Ruttenberg, \Phase ordering of register allocation and instruction
scheduling," in Code Generation - Concepts, Tolls, Techniques, May 1991.

[83] J. W. C. Fu and J. H. Patel, \How to simulate 100 billion references cheaply," Tech.
Rep. CRHC-91-30, Center for Reliable and High-Performance Computing, University of
Illinois, Urbana, IL, 1991.

[84] W. Y. Chen, P. P. Chang, T. M. Conte, and W. W. Hwu, \The e�ect of code expanding
optimizations on instruction cache design," IEEE Transactions on Computers, vol. 42,
pp. 1045{1057, September 1993.

[85] Microprocessor Forum, (San Francisco, CA), October 1994.

[86] Hot Chips VII, (Stanford University, Palo Alto, CA), August 1995.

[87] J. C. Dehnert, P. Y. Hsu, and J. P. Bratt, \Overlapped loop support in the Cydra
5," in Proceedings of the Third International Conference on Architectural Support for

Programming Languages and Operating Systems, pp. 26{38, April 1989.

[88] A. V. Someren and C. Atack, The ARM RISC Chip, A Programmer's Guide. Reading,
MA: Addison-Wesley Publishing Company, 1994.

[89] Digital Equipment Corporation, Alpha Architecture Handbook. Maynard, MA: Digital
Equipment Corporation, 1992.

[90] Intel Corporation, Mt. Prospect, IL, Pentium Pro Family Developer's Manual, 1996.

[91] D. S. Blickstein, P. W. Craig, C. S. Davidson, R. N. Faiman, K. D. Glossop, R. B. Grove,
S. O. Hobbs, and W. B. Noyce, \The GEM optimizing compiler system," Digital Technical
Journal, vol. 4, no. 4, pp. 121{136, 1992.

[92] H. Zima and B. Chapman, Supercompilers for Parallel and Vector Computers. Reading,
MA: Addison-Wesley Publishing Company, 1991.

[93] J. E. Smith and A. R. Pleszkun, \Implementation of precise interrupts in pipelined pro-
cessors," in Proceedings of the 12th Annual International Symposium on Computer Ar-

chitecture, pp. 36{44, June 1985.

[94] G. S. Sohi and S. Vajapeyam, \Instruction issue logic for high-performance interrupt-
able pipelined processors.," in Proceedings of the 14th Annual Symposium on Computer

Architecture., pp. 27{34, June 1987.

[95] M. Schlansker, V. Kathail, and S. Anik, \Height reduction of control recurrences for ILP
processors," in Proceedings of the 27th International Symposium on Microarchitecture,
pp. 40{51, December 1994.

274

[96] M. Schlansker and V. Kathail, \Critical path reduction for scalar programs," in Pro-

ceedings of the 28th International Symposium on Microarchitecture, pp. 57{69, December
1995.

[97] R. M. Tomasulo, \An e�cient algorithm for exploiting multiple arithmetic units," IBM

Journal of Research and Development, vol. 11, pp. 25{33, January 1967.

[98] E. Sprangle and Y. Patt, \Facilitating superscalar processing via a combined
static/dynamic register renaming scheme," in Proceedings of the 27th International Sym-

posium on Microarchitecture, pp. 143{147, December 1994.

[99] S. A. Ziegler, \Aggressive hardware support for predicated execution in out-of-order ex-
ecution superscalar processors," M.S. thesis, Department of Electrical and Computer
Engineering, University of Illinois, Urbana, IL, 1993.

[100] J. Ferrante, K. J. Ottenstein, and J. D. Warren, \The program dependence graph and its
use in optimization," ACM Transactions on Programming Languages and Systems, vol. 9,
pp. 319{349, July 1987.

[101] D. C. Lin, \Compiler support for predicated execution in superscalar processors," M.S.
thesis, Department of Electrical and Computer Engineering, University of Illinois, Urbana,
IL, 1992.

[102] N. J. Warter, S. A. Mahlke, W. W. Hwu, and B. R. Rau, \Reverse if-conversion," in
Proceedings of the ACM SIGPLAN 1993 Conference on Programming Language Design

and Implementation, pp. 290{299, June 1993.

[103] R. C. Johnson and M. S. Schlansker, \Analysis techniques for predicated code," Tech.
Rep. to appear, Hewlett-Packard Laboratories, Palo Alto, CA, 1996.

[104] A. E. Eichenberger and E. S. Davidson, \Register allocation for predicated code," in
Proceedings of 28th Annual International Symposium on Microarchitecture, pp. 180{191,
December 1995.

[105] D. I. August, \Hyperblock performance optimizations for ILP processors," M.S. thesis,
Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL,
1996.

[106] D. N. Pnevmatikatos and G. S. Sohi, \Guarded execution and branch prediction in dy-
namic ILP processors," in Proceedings of the 21st International Symposium on Computer

Architecture, pp. 120{129, April 1994.

[107] S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C. Gyllenhaal, D. M. Gallagher, and
W. W. Hwu, \Characterizing the impact of predicated execution on branch prediction,"
in Proceedings of the 27th International Symposium on Microarchitecture, pp. 217{227,
December 1994.

[108] G. Tyson, \The e�ects of predicated execution on branch prediction," in Proceedings of

the 27th International Symposium on Microarchitecture, pp. 196{206, December 1994.

275

[109] S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and W. W. Hwu, \A compar-
ison of full and partial predicated execution support for ILP processors," in Proceedings

of the 22nd International Symposium on Computer Architecture, pp. 138{149, June 1995.

276

VITA

Scott Alan Mahlke was born on May 12, 1967, in Carbondale, Illinois. He pursued his

undergraduate studies at the University of Illinois in Urbana, Illinois, where he received the

B.S. degree in Electrical Engineering in May of 1988. In the fall of 1988, he began his graduate

studies at the University of Illinois. During his graduate tenure, he was a member of the

Center for Reliable and High-Performance Computing and the IMPACT project directed by

Professor Wen-mei Hwu. He completed the M.S. degree in Electrical Engineering in 1991.

After completing the Ph.D. work in 1995, he joined Hewlett-Packard Laboratories in Palo Alto,

California. He is currently a member of the compiler and architecture research group at HP

Laboratories.

277

