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Abstract

We present a two-layer representation of the locally
sensed 3D indoor environment. Our representation moves
one step forward from capturing the geometric structure of
the environment to reason about the navigation opportuni-
ties for an agent in the environment. The first layer is the
Planar Semantic Model (PSM), a geometric representation
in terms of meaningful planes (ground and walls). PSM
captures more semantics of the indoor environment than a
pure planar model because it represents a richer set of re-
lationships among planar segments. In the second layer, we
present the Action Opportunity Star (AOS), which describes
the set of qualitatively distinct opportunities for robot ac-
tion available in the neighborhood of the robot. Our two-
layer representation is a concise representation of indoor
environments, semantically meaningful to both robot and to
human. It is capable of capturing incomplete knowledge of
the local environment so that unknown areas can be incre-
mentally learned as observations become available. Exper-
imental results on a variety of indoor environments demon-
strate the expressive power of our representation.

1. Introduction

An agent must perceive its local environment to act ef-
fectively. By focusing on a vision sensor for a mobile agent,
we considered the input to visual perception to be a tempo-
rally continuous stream of monocular images, not simply a
single image or a collection of atemporal images. The out-
put of visual perception must be a coherent, concise, repre-
sentation of the agent’s surrounding environment, at a gran-
ularity that supports the agent to make plans. Moreover, vi-
sual processing must be done on-line and real-time to keep
up with the robot’s needs.

A useful representation for an agent needs to concisely
represent both the spatial information of the local environ-
ment and the semantic meaning of the environment in terms
of the agent’s action opportunities. The representation must

be capable of capturing incomplete knowledge of the lo-
cal environment so that unknown areas can be incremen-
tally constructed as observations become available. Since
different agents may have different action capabilities, the
representation for different agents may differ. While many
existing works has been proposed to represent human se-
mantics [27, 10, 15], this paper focuses on representing the
semantics of a wheeled robot that navigates in indoor envi-
ronments. A useful representation for an indoor navigating
robot is a concise model that captures the free-space of the
environment.

There are many previous work on geometric scene un-
derstanding from a single image. A common scene repre-
sentation in the image space is by labeling each pixel with
a local surface orientation or a 3D depth value [13, 14, 20],
where a 3D model can then be inferred. These represen-
tation are fine-grained and thus, provides no constraints
on regularizing the possible 3D structure of indoor envi-
ronments. A common representation specifically for in-
door scenes is the image projection of a 3D planar model
[4, 17, 12, 26, 21]. The planar model is concise but due to
the limited field of view of a monocular camera, the scene
captured in the image does not reflect the robot’s imme-
diate surrounding, so it does not provide sufficient infor-
mation for the robot to make plans. A temporally coher-
ent scene understanding result may be difficult to achieve if
each frame is independently processed.

Methods such as Structure-from-Motion [11, 18, 2, 19]
and Visual SLAM [3, 5, 16] take a stream of visual obser-
vations and produce a model of the scene in the form of
a 3D point cloud. A more concise, large-granularity model
that would be useful for navigation must then be constructed
from the point cloud. Other methods [8, 6, 7] use the
Manhattan-world assumption to reconstruct a planar model
of an indoor environment from a collection of images. A
planar model is concise and specifies free-space for naviga-
tion. However, these methods are off-line and computation-
ally intensive, making them difficult to apply in real-time
robot navigation.

In this paper, we present a two-layer representation of
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Figure 1. The proposed two-layer representation illustrated on the ground-plane map. (Best viewed in color). Each layer represents a
different level of understanding of the local environment. The first layer models the geometric structure of the local environment. The
second layer is a pure symbolic representation that describes the opportunities for robot action at a given location, based on the geometric
structure determined in the first layer. Both layers are capable of representing incomplete knowledge as shown in (b). In the physical
world, black solid lines represent the part of the environment that is observed by the robot, and the gray dashed lines represent the part
of the environment that is not observed by the robot. The first layer is the Planar Semantic Model (PSM), which models the geometric
structure of the local environment in terms of meaningful planes — the ground plane and a set of walls that are perpendicular to the ground
plane but not necessarily to each other. Each wall contains a set of disjoint wall segments (red lines), delimiting where the wall is present
and where is an opening. Each wall segment is represented by two endpoints, and each endpoint has its property indicating the level of
understanding of the bound of the wall segment. While a dihedral endpoint (green dot) provides the full knowledge of the bound of its
corresponding wall segment, an occluding endpoint (yellow dot) and an indefinite endpoint (red hollow dot) provide different types of
incomplete knowledge of the wall intersection. The second layer is the Action Opportunity Star (AOS), describing the robot’s surrounding
environment by a structured set of qualitatively distinct opportunities for robot action. Each opportunity is visualized by an arrow pointing
towards its associated direction, and the tip of the arrow reflects its type. The opportunity type reflects different purposes or different levels
of understanding of the opportunity. A green arrow is an opportunity that is observed and navigable, while a red line is an unnavigable
opportunity. A green hollow arrow is a navigable opportunity but the actual boundary of the opportunity is only partially observed.

the local indoor environment. Each layer represents a dif-
ferent level of understanding of the environment. The first
layer (Section 2) models the geometric structure of the local
environment in terms of planes from the image stream. The
second layer (Section 3) is a pure symbolic representation
that describes the opportunities for robot action (naviga-
tion), based on the geometric structure in the first layer. Fig-
ure 1 illustrates our representation. Building on top of the
on-line scene understanding method [25, 22], we demon-
strate an efficient method to construct the two-layer repre-
sentation from a stream of images.

For the first layer, we present the Planar Semantic Model
(PSM). PSM is a coarse-grained representation for the local
3D indoor environment, instead of a fine-grained represen-
tation like point clouds. PSM describes the environment in
terms of a set of meaningful planes — the ground plane and
a set of walls that are perpendicular to the ground but not
necessarily to each other. Note that PSM is less restrictive
than the Manhattan world assumption. In PSM, a wall is a
set of disjoint wall segments that are co-planar in 3D. Thus,

PSM is a step forward from a pure planar model because it
represents richer relationships among planer segments.

For the second layer, we present the Action Opportunity
Star (AOS) to describe a set of qualitatively distinctive op-
portunities for robot action at a given location. An opportu-
nity represents a group of trajectories that can be described
by the same semantic meaning of the robot’s action. AOS
captures where each opportunity is valid and the relation-
ships among these opportunities. Since AOS is an abstract
representation, if the surrounding PSM at two locations are
similar, AOSs extracted at both locations will be the same.
We present a method to extracts AOS from PSM.

Our representation is concise and useful to a navigat-
ing robot to make plans. It is able to represent incomplete
knowledge of the local environment so that unknown areas
can be incrementally built as observations become avail-
able. Compare to existing scene understanding work, in
addition to modeling the geometric structure of the local
environment, our representation takes a step forward to rea-
son about the opportunities for robot action. Our represen-



tation supports the robot to make plans at different levels.
While PSM provides information about the free-space for
the robot to precisely generate a trajectory to get from one
pose to another, AOS supports the robot to make plans at a
higher level, such as turning right at an intersection or go-
ing forward (rather than reverse) in a corridor. Moreover,
our representation supports topological mapping [1]. For
example, AOS makes it easy to detect whether a robot is at
a topological place, such as a hallway intersection, or on a
path that links two places.

2. Planar Semantic Model
In the first layer, we present the Planar Semantic Model

(PSM) to represent the locally sensed 3D indoor environ-
ment. PSM is a coarse-grained representation of an indoor
environment in terms of meaningful planes — the ground
plane G and a set of planar walls Wi that are perpendicular
to the ground plane but not necessarily to each other.

The formal definition of PSM, M is,

M = {G,W1,W2,W3, ...,Wn}. (1)

where n is the number of walls in the local environment.
There is a one-to-one correspondence between this repre-
sentation and a set of ground-wall boundary lines in the
ground plane (the ground-plane map), represented in the
same 3D coordinates. 1

A wall Wi contains a set of disjoint wall segments that
are co-planar in 3D. In the ground-plane map, the wall
plane is represented by a line parametrized by (αi, di).
αi ∈

(
−π2 ,

π
2

]
is the orientation of the line which implies

the normal direction Ni = (cosαi, sinαi, 0) of the 3D wall
plane, and di ∈ R is the directed distance from the origin of
the ground-plane map to the line. Ni and di determine the
3D equation of the wall plane.

The bound of each wall segment is defined by two lines
that are on the wall plane and are vertical to the ground
plane in 3D. By projecting these vertical lines onto the
ground-plane map, the wall segment is represented by a pair
of endpoints, (Eij , E

i
j+1), along the corresponding ground-

wall boundary line. The formal definition of a wall Wi is,

Wi = 〈αi, di, Ei1, Ei2, Ei3, ...Ei2mi
〉 (2)

where mi is the number of wall segments along wall i. The
endpoints are ordered from the left to the right of the canon-
ical view of the wall plane. The ordering specifies which
side of the wall is free space and which side is occluded.

Each endpoint Eij is represented by,

Eij = 〈xij , yij , cij〉 (3)

1For a robot rolling or walking on the ground plane, the ceiling is much
less relevant than the ground plane and the walls, so it can safely be omit-
ted from the representation. An indoor flying vehicle would require us to
extend this representation to include the ceiling.

where (xij , y
i
j) represent the location of the endpoint in the

ground-plane map, and cij specifies the type of the endpoint.
There are three different types of endpoints: dihedral, oc-
cluding and indefinite, representing different levels of un-
derstanding of the bound of the wall segment. A dihedral
endpoint corresponds to two visible wall segments, where
the location of the endpoint is the intersection point of the
two walls. An occluding endpoint corresponds to only one
visible wall segment. An indefinite endpoint is the furthest
observed point along its corresponding wall segment, but
the actual location of the wall bound has not yet been ob-
served due to occlusions or the end of robot’s field of view.
While a dihedral endpoint provides full knowledge of the
bound of its corresponding wall segments, an occluding and
an indefinite endpoint provide different types of incomplete
knowledge of the wall intersection.

To extract the PSM, we implemented the method pro-
posed in [22]. The method incrementally generates a set
of qualitatively distinct hypotheses about the structure of
the environment from 2D image features (e.g. points and
lines), and then tests the hypotheses through a Bayesian fil-
ter based on their abilities to explain the 2D motion of a set
of points tracked over a period of time.

3. Action Opportunity Star
An Action Opportunity Star (AOS) is a qualitative de-

scription of the small finite set of opportunities for robot ac-
tion abstracted from an infinite number of trajectories that
are available within the region around the robot (the field
of interest). An opportunity is an abstraction, representing
a group of trajectories that have the same qualitative effect
on the robot’s state. An opportunity for action is intended
to be similar to the concept of an affordance [9]. We de-
fine a gateway as a line segment on the metric map, PSM,
that specifies which trajectories belong to an opportunity.
All trajectories that cross a particular gateway from the side
closer to the robot to the side farther from the robot belong
to the same opportunity.

In addition to representing individual opportunities, AOS
models the relationships among opportunities in terms of
the paths they are on. Two opportunities that unambigu-
ously represent opposite directions from the same field of
interest are considered to be on the same path. We say
that when the robot has exactly two opportunities unam-
biguously representing opposite directions, then the robot
is on a path. In any other situation, the robot is at a place,
which typically requires it to make a decision, selecting
among the available opportunities [1]. For example, when
the robot is at a T-intersection, it has three opportunities,
associated with two paths, one of which passes through the
place, while the other ends at that place.

Formally, at a given robot location, the AOS, S is de-
fined by a list of opportunities Ai circularly ordered in the



observed
unnavigable
exiting

(a) w/ complete knowledge

observed
partially observed
unnavigable
potential
beginning
exiting

(b) w/ incomplete knowledge

Figure 2. Examples of AOS at different locations. (Best viewed in
color.) Each opportunity is visualized by an arrow and the arrow
tip reflects the opportunity type. Since AOS is an abstract repre-
sentation, AOSs extracted at all location within a region that has
the same surrounding geometric structure are the same. The re-
gions are shown in different colors. (b) Due to the limited field of
view of a camera, the robot may have incomplete observations of
the environment. Black solid lines: observed; Gray dashed-lines
unobserved. AOS is capable of capturing incomplete knowledge.

counter-clockwise direction,

S = {A1, A2, ..., Ak} (4)

where k is the number of opportunities around the given
location. Each opportunity, Ai, is defined as,

Ai = 〈πi, ρi, τi,gi〉 (5)

where πi ∈ {0, 1, ..., Np} is the path that the opportunity
is on, among the Np paths that pass through the field of in-
terest. ρi ∈ {+,−} is the direction along the path that the
opportunity is leading onto. The path πi and the direction
ρi specify the relation between opportunity Ai and another
opportunityAj where πi = πj and ρi = −ρj . gi is the gate-
way associated to opportunity Ai, which is a line segment
φi parameterized by two ends (p1

i ,p
2
i ) in the ground-plane

map, and the qualitative traveling direction ψi of the oppor-
tunity is the normal direction of the gateway pointing away
from the robot. τi specifies the type of the opportunity.

There are six different types of opportunity: observed,
partially observed, unnavigable, potential, beginning and
exiting, representing different purposes or different levels
of understanding of the opportunity. An observed opportu-
nity is navigable and leads the robot into or out of a path
intersection where more than two unaligned opportunities
are presented. Both ends of an observed gateway, p1

i and
p2
i , are fully determined. A partially observed opportu-

nity plays the same role as an observed opportunity, except
only one of the two gateway-ends is determined, leaving
the actual width of the gateway undetermined. Thus, this
opportunity is navigable but it contains incomplete knowl-
edge. An unnavigable opportunity prohibits the robot to
travel along the path due to obstacles. A potential opportu-

nity exists when an opportunity leads the robot to an unob-
served region, and thus, its navigability is unknown. As the
robot acquires more observations around this opportunity,
it can become an observed or an unnavigable opportunity.
Similar to a potential opportunity, a beginning opportunity
crosses the boundary between observed and unobserved re-
gions, except a beginning opportunity leads the robot into
the observed region. A beginning opportunity only occurs
at the beginning of an episode (the first few frames of an
image stream), where the robot only observes the environ-
ment in front of it, instead of its surrounding environment.
Thus, a beginning opportunity is navigable but contains in-
complete knowledge. The ends of the associated gateway
of a potential or a beginning opportunity are specified so
that the right side of the vector

−−−→
p1
ip

2
i is the observed re-

gion while the left side of the vector is unobserved. While
the above five opportunity types reflect the structure of the
local environment, an exiting opportunity leads the robot
out of the robot’s field of interest. This type of opportunity
usually appears when a robot is traveling on a long corri-
dor where going forward and turning backward are the only
two possible qualitative actions. Figure 2 shows examples
of AOS in different situations.

3.1. Extracting Opportunities from PSM

Since a gateway links its associated opportunity to the
geometric structure of the environment, we start by extract-
ing a set of gateways within the field of interest, given a
robot location. In this section, we determine only the gate-
way g = (p1,p2) and the type τ of each opportunity. In
Section 3.2, we determine the other two elements, π and
ρ, of the opportunities by comparing the gateways to see
which opportunities are well-aligned to be on the same path.

Given the PSM, there are two major steps to collect the
set of gateways within the field of interest. The first step
extracts gateways that reflect the structure of the surround-
ing environment. All of these gateways have at least one
end anchored at a PSM endpoint. The type of the PSM end-
point at which a gateway is anchored affects the type of its
associated opportunity. Possible opportunity types at this
stage are observed, partially observed, potential and begin-
ning. The rest of this section describes how we extract these
gateways in detail. Given the gateways from the first step,
the second step extracts exiting opportunities from regions
that are not explained by either a PSM wall segment or an
existing gateway, through a circular scan around the field
of interest. The gateway of an exiting opportunity is per-
pendicular to, and intersects with, a PSM wall segment or
another gateway.

By using each PSM endpoint as an anchor p1, four gate-
ways can be extracted with their directions ĝ parallel or per-
pendicular to the associated PSM wall. A gateway is valid
only if it lies along the free space of PSM. A gateway must
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Figure 3. Examples of matching opportunities to construct AOS.
(Best viewed in color.) Three opportunities with their gateways
(pink lines) are extracted from PSM at the robot location (blue
dot). If a single, unambiguous match is found between two gate-
ways, their associated opportunities are considered to be on the
same path. (a) Gateway 1 and 3 are an unambiguous match so
they are on the same path. Gateway 2 does not aligned to any
gateways so it is on its own path. (b) In a Y-intersection, Gate-
way 4 is aligned with Gateway 5 but Gateway 5 is aligned to both
Gateway 4 and 6. There are no unambiguous matches among the
gateways so the three opportunities are on separate paths.

lie on the free space side of all associated walls of the PSM
endpoint that it is anchoring at. Furthermore, only gateways
that are within the field of interest are considered.

Given p1 and the direction ĝ of the gateway, we find the
other gateway-end p2. If the gateway anchors at an occlud-
ing endpoint that connects a wall segment and a wall open-
ing along the same wall, p2 is the other PSM endpoint that
associates to the opening. Otherwise, p2 is the closest in-
tersection point of a ray pointing from p1 in ĝ direction and
a wall segment in PSM that is perpendicular to ĝ. In the
case where no perpendicular wall segment intersects with
the ray, p2 is left undetermined and thus, the gateway width
is also undetermined. We exclude a gateway if p2 is de-
termined but it is too narrow for the robot to pass through.
Finally, a gateway is removed, if its direction and gateway-
ends are too similar to another gateway.

From each remaining gateway, we form an opportunity
and determine its type τ by: 1) the type of the anchoring
PSM endpoint; 2) whether p2 is determined; and 3) the
robot’s location. A gateway that anchors at a dihedral or
an occluding endpoint forms an observed opportunity if p2

is determined, and forms a partially observed opportunity
otherwise. A gateway that anchors at an indefinite endpoint
is a boundary line between an observed and an unobserved
region in the PSM, and thus forms a potential or a begin-
ning opportunity. We arrange the order of (p1,p2) so that

the observed region is on the right side of vector
−−−→
p1
ip

2
i and

the unobserved region is on the left. A potential opportunity
is formed if the robot is located on the observed side of the
vector, and a beginning opportunity is formed otherwise.

3.2. Extracting AOS from Opportunities

Given a set of opportunities, each provided with only the
gateway g and the opportunity type τ , this section deter-

mines the other two elements 〈π, ρ〉 of each opportunity and
the ordering among the opportunities to construct the com-
plete AOS. Since 〈π, ρ〉 of the opportunities captures the re-
lationships among them, the complete AOS is extracted by
pairing up opportunities if their gateways are well-aligned
to form a path. Thus, AOS is extracted by determining the
number of paths Np passing through the field of interest.

First, we define a bounding box to represent the smallest
bounding box enclosing all gateways. Second, for each pair
of opportunities, their gateways (gi,gj) are compared using
the similarity measurement,

sim(gi,gj) = − cos(ψi − ψj) max(0,
lgi,gj

lgi

) (6)

where ψi is the normal direction of gateway gi pointing
away from the robot. lgi is the length of the bounding box
edge that intersects by a line in the opposite direction of
ψi, and lgi,gj

is the shortest distance from the gateway line
φi to the center of gateway gj . Note that this quantity is
not symmetric, sim(gi,gj) 6= sim(gj ,gi). The similarity
measurement is designed to account for two factors. The
first metric considers how similar the gateway directions
are. Orthogonal gateways are not on the same path, while
gateways with ψg pointing in opposite directions may be
on the same path. The second metric considers the amount
of overlap between the gateways relative to the size of the
bounding box enclosing all gateways. Two gateways with
more overlap are more likely to be on the same path. If
there is no overlap, the gateways are not on the same path.

Starting from an empty set of paths Π that pass through
the field of interest, we carry out an exhaustive search
among the opportunities to find unambiguous matches us-
ing the similarity measurement. If a single, unambiguous
match is found between two opportunities, they are consid-
ered to be on the same path, and thus the path is added to
the set Π. If an opportunity belongs to no paths or to more
than one path in the existing path set Π, a separate path is
created for the opportunity. Figure 3 shows examples for
aligned and unaligned gateways. After the search is done,
if a path in Π is associated to only one opportunity Ai, an
unnavigable opportunity Aj is generated with πj = πi and
ρj = −ρi to describe the opposite side of the path. Finally,
the complete AOS is formed by ordering the opportunities
so that the normal directions of their gateways are sorted in
the counter-clockwise direction.

4. Results
We tested our approach on The Michigan Indoor Corri-

dor 2012 Video Dataset [22]. The dataset has four video
sequences with resolution 965×400 in various indoor envi-
ronments, (i.e. +, T, and L intersections). The field of view
of the camera is about 82 ◦. For all sequences, the robot
pose at each frame is provided.



observed

partially observed

unnavigable

potential

beginning

exiting

Figure 4. Visualization of different opportunity types. (Best
viewed in color.) Filled arrow: full knowledge; Hollow shaped
arrow: incomplete knowledge; Green: navigable; Yellow: poten-
tially navigable; Red: unnavigable.

For each frame t, we select the maximum a posteriori
PSM hypothesis at the current frame and extract the AOS
from the PSM at the current robot location. For each exam-
ple (Figure 5,6,7,8), the first column is the image projection
of the PSM ground-wall boundaries. The second column
visualizes the PSM in the ground-plane map with the robot
pose plotted in blue. In the PSM, a green dot represents
a dihedral endpoint, a yellow dot represents an occluding
endpoint, and a red hollow dot represents an indefinite end-
point. Each wall has an index automatically assigned by the
implemented system, and all the wall segments contained in
that wall are marked by the same index. The third column
is the AOS at the current robot location. Each opportunity
Ai is shown directed along its associated path with an arrow
reflecting its type (Figure 4), and a label for its path index
and its direction along the path 〈πi, ρi〉.

Figure 5 demonstrates our incremental method of build-
ing the PSM of the observed environment from a tempo-
rally continuous stream of images, and the AOSs extracted
in various locations within the PSM. Figure 6 demonstrates
that PSM is a step forward from a pure planar model be-
cause it represents a richer set of relationships among planar
segments. Figure 7 compares results from two sequences
acquired around the same intersection with different trajec-
tories. In all of these examples, due to the limited field of
view of the monocular camera, it is impossible for the robot
to realize that it is at an intersection solely from the current
image. Thus, a temporally continuous stream of images is
essential for coherent visual scene understanding.

The maximum a posteriori PSM hypothesis is correct 2,
92.18% of the time. The main reason that our method fails
to select the correct hypothesis is lack of feature. One can
overcome this problem by applying methods that maintains
a set of informative features to discriminate the hypothe-
ses [24]. Nevertheless, among the frames with an incorrect
PSM, our method is still able to extract the correct AOS,
73.72% of the time. This happens because the incorrect
PSM hypothesis has the same structure layout of the correct
one, except the actual locations of the walls are off. Figure
8 is an example of this situation.

2We consider a PSM hypothesis correct if the geometric structure
within 4 meters of the vision cone is correctly modeled. Thus, for a given
frame, it is possible to have more than one correct PSM hypothesis, if the
differences are further than 4 meters away.
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Figure 5. Examples of the two-layer representation on Dataset
L that demonstrates the on-line incremental process of building
the PSM [23] and the AOS extracted at various locations. (Best
viewed in color.) This sequence contains three L-intersections.
The robot traveled through two long corridors connected by two
adjacent L-intersections and finally made a U-turn at the last L-
intersection. Frame 20: Due to the field of view of the monocular
camera, no information of the PSM around the robot’s immediate
surrounding is available when the process begins. Only the en-
vironment in front of the robot is observed. Thus, the beginning
opportunity leads the robot into the region that has been modeled.
Frame 141: As more observations become available, PSM with
more detail (the first L-intersection) of the environment are incre-
mentally built. Although there is still incomplete knowledge in
the PSM in the distance, the robot is now in a long corridor with
full knowledge of its current surrounding. Thus, in the AOS, the
observed opportunity leads the robot towards the L-intersection,
while the exiting opportunity leads the robot out of its field of in-
terest. Frame 170: The robot is at the first L-intersection and has
full knowledge of the opportunities available at the intersection.
Frame 200: More details of the environment is captured with the
PSM. The robot has incomplete knowledge of its surrounding. The
wall on the left side of the robot is unobserved, so the potential op-
portunity leads the robot towards the unobserved region. Frame
235: The robot is in the second L-intersection but unlike the first
one, the robot has incomplete knowledge of the intersection. Last
Frame: The final PSM is constructed from the sequence. At this
point, the system cannot yet conclude that the endpoint of Wall 4
is an dihedral endpoint that connects to Wall 1.
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Figure 7. Examples of the two-layer representation on Dataset T 1 and Dataset T 2. (Best viewed in color.) In the two video sequences,
the robot traveled around the same T-intersection in the physical world. In Dataset T 1, the robot traveled from the major corridor and
made a right turn onto the minor corridor at the intersection, whereas, in Dataset T 2, the robot traveled from the minor corridor to the
major corridor. We process each sequence independently and compare the results from the two. To clarify the comparison, we aligned the
wall indices so that the same wall in the physical world has the same index. (T1)Frame 200: PSM models the T-intersection by three walls
(Wall 0, 2 and 3). Wall 2 contains two disjoint wall segments, and the gap between the wall segments is the opening of the T-intersection.
The AOS captures the opportunities for actions at the T-intersection with full knowledge. (T1)Frame 410: PSM continues to model the
dead-end at the minor corridor. Due to lack of observations, the video sequence contains no clue for Wall 5 to intersect with Wall 2. Thus,
in AOS, the potential opportunity captures the incomplete knowledge of the missing information between Wall 5 and Wall 2. (T2)Frame
110: The robot is at approximately the same location as the robot in (T1)Frame 410 but in the opposite direction. Since the observations
of the two sequences of the same environment are different, PSMs from the two sequences captures different forms of partial knowledges
of the environment. Consequently, the AOSs extracted from the two sequences captures partial knowledge of different part of the robot’s
surrounding. The two AOSs contains no conflicting opportunities. Note that since the robot was facing in opposite direction in the two
sequences, one of the AOSs needs to be rotated at about 180 ◦ in order to match the other one. Thus, by acquiring more observations around
a potential opportunity, it can become an observed or an unnavigable opportunity. (T2)Frame 230: The robot is at the T intersection and
has full knowledge of intersection. Since the robot is at the same T-intersection as the (T1)Frame 200, the AOSs in both situations are the
same. In fact, any location within the T-intersection will have the same AOS. Moreover, if the structure and the knowledge of the robot’s
surrounding of two locations are similar, AOSs extracted in both locations will be the same.

5. Conclusion

We presented a two-layer representation of the locally
sensed 3D indoor environment. Each layer represents a dif-
ferent level of understanding of the environment. The first
layer, Planar Semantic Model (PSM), is a coarse-grained
geometric representation of the indoor environment in terms
of ground plane and walls. A wall consists of a set of dis-
joint wall segments that are co-planar in 3D. Thus, PSM
is a step forward of a pure planar model because it repre-
sents a richer set of relationships among planar segments.
The second layer, Action Opportunity Star (AOS), describes
a structured set of qualitatively distinct opportunities for
robot action at a given location. An opportunity is an ab-
straction of a group of trajectories that have the same se-
mantic meaning in terms of robot action. We demonstrated
an algorithm to extract AOS from PSM.

Our representation is a concise and semantically mean-
ingful representation of an indoor environment to both hu-
man and indoor navigating robots. It is able to repre-
sent incomplete knowledge of the local environment so that
missing information can be incrementally built as observa-
tions become available. Unlike existing scene understand-
ing works, in addition to modeling the geometric structure

of the environment, our representation takes a step forward
to reason about the robot’s action opportunities. Further-
more, our representation supports topological mapping [1]
because the robot can detect whether it is at a topological
place (e.g. hallway intersection) or not by checking the
number of paths in the AOS. Experimental results on a va-
riety of indoor environments demonstrated the expressive
power of our representation.

Our future work includes two directions. One direction
is to model cluttered environment with the proposed two-
layer representation. The main challenge is to model the
regions that are explained by the PSM and identify regions
that are not explained by the PSM. Once the PSM is ex-
tracted, the AOS can be extracted by our proposed method.
The second direction is to apply our representation for a
robot to explore the unknown parts of the environment. Our
representation allows the robot to make plans in different
levels. The robot will select a navigable opportunity that
has incomplete knowledge from the AOS to choose a target
pose, and find a trajectory to get from its current pose to that
target within the free-space of PSM.
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Figure 6. Examples of the two-layer representation on Dataset +
that demonstrates the expressive power of the PSM. (Best viewed
in color.) Dataset + has one +-intersection along a long corridor,
and the robot traveled from one end of the corridor to the inter-
section without making any turn. PSM models the +-intersection
by three walls (Wall 0, 2, and 3), each with two disjoint wall seg-
ments. Thus, PSM is a step forward from a pure planar model
because it represents a richer set of relationships among planar
segments. The robot is at the +-intersection, and has full knowl-
edge of the intersection. Notice that it is impossible for the robot
to realize that it is at a +-intersection solely from the current im-
age. Thus, a temporally continuous stream of images is essential
for coherent visual scene understanding.
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Figure 8. An example when the maximum a posteriori hypothe-
sis is not a correct PSM hypothesis but the AOS is correct. (Best
viewed in color.) Due to lack of feature points, our method may
fail to identify the correct hypothesis. In this case, the actual loca-
tion of Wall 7 is not correctly identified. However, if the incorrect
PSM has the correct structure layout, the extracted AOS will still
be the same as the correct PSM hypothesis.
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