
Map Learning with Uninterpreted Sensors and Effectors�

David Pierce and Benjamin Kuipers
Department of Computer Sciences

University of Texas at Austin, Austin, TX 78712 USA
dmpierce@cs.utexas.edu , kuipers@cs.utexas.edu

Artificial Intelligence92: 169–229, 1997.

Abstract

This paper presents a set of methods by which a learning agent can learn a sequence of increasingly abstract and
powerful interfaces to control a robot whose sensorimotor apparatus and environment are initially unknown. The
result of the learning is a rich hierarchical model of the robot’s world (its sensorimotor apparatus and environment).
The learning methods rely on generic properties of the robot’s world such as almost-everywhere smooth effects
of motor control signals on sensory features. At the lowest level of the hierarchy, the learning agent analyzes the
effects of its motor control signals in order to define a new set of control signals, one for each of the robot’s degrees
of freedom. It uses a generate-and-test approach to define sensory features that capture important aspects of the
environment. It uses linear regression to learn models that characterize context-dependent effects of the control
signals on the learned features. It uses these models to define high-level control laws for finding and following paths
defined using constraints on the learned features. The agent abstracts these control laws, which interact with the
continuous environment, to a finite set of actions that implement discrete state transitions. At this point, the agent
has abstracted the robot’s continuous world to a finite-state world and can use existing methods to learn its structure.
The learning agent’s methods are evaluated on several simulated robots with different sensorimotor systems and
environments.

Keywords: spatial semantic hierarchy, map learning, cognitive maps, feature learning, abstract interfaces, action
models, changes of representation.

�This work has taken place in the Qualitative Reasoning Group at the Artificial Intelligence Laboratory, The University of Texas at Austin.
Research of the Qualitative Reasoning Group is supported in part by NSF grants IRI-9216584 and IRI-9504138, by NASA grants NCC 2-760 and
NAG 2-994, and by the Texas Advanced Research Program under grant no. 003658-242.

1

Pierce & Kuipers, AIJ, 1997 2

Sensory input Control

Figure 1:The learning problem addressed in this paper is illustrated by this interface between a learning agent and a teleoperated
robot in an unknown environment. The learning agent’s problem is to learn a model of the robot and its environment with no initial
knowledge of the meanings of the sensors or the effects of the control signals (except that nothing changes when the control signals
are all zero).

1 Introduction

Suppose a creature emerges into an unknown environment, with no knowledge of what its sensors are sensing or what
its effectors are effecting. How can such a creature learn enough about its sensors and effectors to learn about the
nature of its environment? What primitive capabilities are sufficient to support such a learning process?

This problem is idealized to clarify the goals and results of our research. A real robot embodies knowledge
designed and programmed in by engineers who select sensors and effectors appropriate to the environment, and im-
plement control laws appropriate to the goals of the robot. A real biological organism embodies knowledge, acquired
through evolution, that matches the sensorimotor capabilities of the organism to the demands of the environment. We
idealize both of these to the problem faced by an individual learning agent with very little domain-specific knowledge,
but with the ability to apply a number of sophisticated, domain-independent learning methods. In addition to its scien-
tific value, this idealized learning agent would be of considerable practical value in allowing a newly-designed robot
to learn the properties of its own sensorimotor system. We report here on one learning agent that solves a specific in-
stance of this problem, along with several variations that begin to explore the range of possible solutions to the general
problem.

Henceforth, we make a distinction between the learning agent and the robot. The robot is a machine (physical or
simulated) that the learning agent must learn how to use. The robot’s sensorimotor apparatus is comprised of a set of
sensors and effectors. The sensorimotor apparatus isuninterpreted, meaning that the agent that is learning how to use
the robot has noa priori knowledge of the meaning of the sensors, of the structure of the sensory system, or of the
effects of the motor’s control signals. From the learning agent’s perspective, the sensorimotor apparatus is represented
as araw sense vectors and araw motor control vectoru. The former is a vector of real numbers giving the current
values of all of the sensors. The latter is a vector of real numbers, called control signals, produced by the learning
agent and sent to the robot’s motor apparatus. The learning agent’s situation is illustrated in Figure 1.

This paper solves the learning problem by presenting a set of methods that the learning agent can use to learn (1) a
model of the robot’s set of sensors, (2) a model of the robot’s motor apparatus, and (3) a set of behaviors that allow the
learning agent to abstract the robot’s continuous world to a discrete world of places and paths. These methods have
been demonstrated on a simulated mobile robot with a ring of distance sensors.

These learning methods comprise a body of knowledge that is given to the learning agenta priori. They incorpo-
rate a knowledge of basic mathematics, multivariate analysis, and control theory. The learning methods are domain
independent in that they are not based on a particular set of sensors or effectors and do not make assumptions about
the structure or even the dimensionality of the robot’s environment.

In the rest of this paper, we describe a number of learning methods and show how they are used by a learning agent
as it develops an understanding of a robot’s world by defining a sequence of increasingly powerfulabstract interfaces
to the robot. The learning agent’s problem and solution are given below:

Problem

Pierce & Kuipers, AIJ, 1997 3

Given: a robot with an uninterpreted,almost-everywhere approximately linearsensorimotor apparatus in a
continuous, staticenvironment.

Learn: descriptions of the structure of the robot’s sensorimotor apparatus and environment and an abstract
interface to the robot suitable forpredictionandnavigation.

Solution
Representation: a hierarchical model. At the bottom of the hierarchy are egocentric models of the robot’s
sensorimotor apparatus. At the top of the hierarchy is a discrete abstraction of the robot’s environment defined
by a set of discrete views and actions.

Method: a sequence of statistical and generate-and-test methods for learning the objects of the hierarchical
model.

An almost-everywhere approximately linearsensorimotor apparatus satisfies the following: The derivatives with re-
spect to time of the sensor values can be approximated by linear functions of the motor control vector. Acontinuous
world (which includes both the robot and its environment) is one whose state can be represented by a vectorx of
continuous, real-valued state variables. Adiscreteworld, on the other hand, is represented by a finite set of states. The
primary example in this paper1 is a mobile robot in a continuous world with three state variables: two for its position
(e.g., longitude and latitude) and one for its orientation (i.e., the direction in which it is facing). Astaticworld is one
whose state does not change except as the result of a nonzero motor control vector. A static world exhibits no inertia.
When the motor controls go to zero, the robot comes to an immediate stop. In a static world, there are no active agents
(e.g., pedestrians) besides the robot itself.

The learning agent’s goal is to understand its world, that is, to learn a model of it suitable for prediction and
navigation. Prediction refers to the ability to predict the effects of the motor control signals.Navigation refers
to the ability to move efficiently from one place to another. These definitions do not apply perfectly to the learn-
ing agent’s world: places do not exista priori — they must be discovered or invented by the learning agent itself.
The raw sense vector and the raw motor control vectors are at the wrong level of abstraction for describing the
global structure of a world. People do not understand their world in terms of sequences of visual images — they
use abstractions from visual scenes to places and objects. In order to understand its continuous world, the learning
agent must also use abstractions. Instead of trying to make predictions based on the raw sense vector, it needs to
learn high-level features and behaviors. Understanding the world thus requires a hierarchy of features, behaviors,
and accompanying descriptions. The hierarchy that the learning agent uses is called thespatial semantic hierarchy
[Kuipers and Byun, 1988, Kuipers and Byun, 1991, Kuipers and Levitt, 1988, Kuipers, 1996].

1.1 The spatial semantic hierarchy

The spatial semantic hierarchy (SSH) is a hierarchical structure for a substantial body of commonsense knowledge,
showing how acognitive mapcan be built on sensorimotor interaction with the world. The cognitive map is the
body of knowledge an agent has about the large-scale spatial structure of its environment. (“Large-scale” here means
significantly larger than the sensory horizon of the agent, meaning that the map must be constructed by integrating
observations over time as the agent travels through its environment.) Since we already have an SSH-based solution for
the cognitive mapping problem for a simulated robot with a ring of distance sensors, we focus on learning the sensory
features and control strategies necessary to support that solution. The result we obtained was successful, but at the
same time revealed some subtle but important changes required to the SSH approach to cognitive mapping.2

The spatial semantic hierarchy is comprised of five levels: sensorimotor, control, causal, topological, and metrical.
At the sensorimotorlevel, the abstract interface to the robot is defined by the raw sense vector, a set of primitive
actions (one for each degree of freedom of the robot, Section 3), and a set of learned features. At thecontrol level,
action models are learned in order to predict the context-dependent effects of motor control vectors on features. Local
state variables are learned and behaviors for homing and path-following are defined (Section 5). The abstract interface

1Experiments with other robots are described in connection with particular learning methods.
2The most important change is the use of local state variables (Section 4).

Pierce & Kuipers, AIJ, 1997 4

to the robot is defined by the set of local state variables, homing behaviors, and path-following behaviors. At the
causallevel, sense vectors are abstracted to a finite set ofviewsand behaviors are abstracted to a finite set ofactions
(Section 7). The abstract interface gives the current view and the set of currently applicable actions.

The contribution of this paper is a set of methods for learning these first three levels. This paper’s work is comple-
mentary to the work done by Kuipers and Byun [Kuipers and Byun, 1988, Kuipers and Byun, 1991] in which all levels
of the descriptive ontology were engineered by hand, and the focus of the learning agent was on learning the structure
of the environment. The agent selected appropriate control laws from a fixed set to form the control level, which was
abstracted to the topological and metrical levels. At thetopologicallevel, perceptual ambiguities (in which multiple
states map to the same view) are resolved and a global representation of the world’s structure as a finite-state graph
is learned. At themetrical level, the topological map is supplemented with distances, directions, and other metrical
information.

By showing how to learn the first three levels of the spatial semantic hierarchy, this paper lays the groundwork for
building a learning agent that can learn the entire spatial semantic hierarchy using only domain-independent knowl-
edge.

1.2 Overview

Sections 2 through 7 describe a sequence of methods for learning a model of a robot’s sensorimotor apparatus and a
set of behaviors that allow the learning agent to abstract the robot’s continuous world to a discrete world of places and
paths. Figure 30 summarizes the entire set of representations, learning methods, and resulting behaviors, after they
have been described in detail in the rest of the paper.

Section 2 describes a method for learning a model of the structure of the robot’s sensory apparatus. Section 3
describes a method for learning a model of the structure of the robot’s motor apparatus. Section 4 describes a method
for learning a set of variables suitable for representing the local state of the robot. Section 5 describes a method for
learning a set of robust, repeatable behaviors for navigation through the robot’s state space. Section 6 describes a
number of experiments (in addition to those described in the previous sections) that demonstrate the generality and
some limitations of these learning methods. Finally, Section 7 shows how to define an abstract interface that abstracts
from the continuous sensorimotor apparatus to a discrete sensorimotor apparatus.

These learning methods provide a particular solution to the learning problem described in Section 1. This particular
solution is an instance of the more general solution outlined below:

1. Apply a generate-and-test algorithm to produce a set of scalar features.

2. Try to learn how to control the generated scalar features. Those that can be controlled are identified aslocal
state variables.

3. Definehoming behaviors— behaviors that move a local state variable to a target value.

4. Definepath-following behaviors— behaviors that move the robot while keeping a local state variable at its
target value.

The set of learning methods that are presented in this paper does not represent the final word on the problem of
learning to use an uninterpreted sensorimotor apparatus. Instead it is one path to the goal. Clearly, there are other
ways to instantiate the above sequence of steps. Future work will involve both improving the current set of methods
and identifying alternate paths to the solution.

The learning methods and experimental results are interleaved throughout the paper: each section describes a
learning method, the representations or objects produced by the method, the source of information used by the method,
and one or more demonstrations of the method applied to a simulated robot.

1.3 Contributions

The results of this research are the following:

Pierce & Kuipers, AIJ, 1997 5

1. the demonstration of a learning agent that can solve a nontrivial instance of the learning problem;

2. the identification of a plausible though not unique set of primitive capabilities that a robot must have to support
such a learning agent;

3. the identification of a set of learning methods and intermediate representations that enable the learning agent to
go from no domain-specific knowledge to useful cognitive maps of complex environments.

These learning methods are interesting in their own right. First, each one identifies a source of information available
through experimentation with an uninterpreted sensorimotor apparatus and, second, each provides a method for ex-
ploiting that information to give the learning agent a new way of understanding the robot’s sensory input or a new way
of interacting with the robot’s environment.

The result of this work is an existence proof, demonstrating one path from the beginning to the end of an ideal-
ized but important learning problem. We hope that this result can support further work to establish minimal sets of
primitives, necessary conditions for success, and the limits of this heterogeneous bootstrapping method for learning.

As intended, the learned set of features and control laws are specific to the robot and the type of environment
used for these experiments. The learning method itself also has some degree of dependence on the type of robot
and environments used. We used three methods to move towards generality in these results. First, as we needed to
add primitive inference capabilities, we required that they be independent of the choice of robot or environment, and
that they be plausible to implement using low-level symbolic or neural-net mechanisms.3 Second, we attempted to
minimize, and then make explicit, the assumptions our inference methods make about the nature of the robot or the
environment. For example, several feature generators require almost-everywhere temporal and spatial continuity of the
sensory inputs.4 Third, we tested the generality of several key steps in our learning method empirically by applying
them to different robot sensorimotor systems and different environments. These results are shown throughout the
paper. Naturally, the generality we are able to establish by these means remains limited.

In spite of the limitations of an existence proof, we believe that the approach we have demonstrated is important.
First, it shows how a heterogeneous set of learning methods can be used to construct a deep hierarchy of sensory fea-
tures and control laws. Only a very few previous learning methods such as AM [Lenat, 1977] (see also [Shen, 1990])
have constructed similarly deep concept hierarchies. Second, the knowledge contained in this hierarchy shows how a
foundational domain of symbolic commonsense knowledge can be grounded in continuous sensorimotor interaction
with a continuous world.

2 Learning a model of the sensory apparatus

The learning agent’s first step is to learn a model of the robot’s sensory apparatus. The output of the learning method
used in this step (i.e., the learned model of the sensory apparatus) is a set of groups of related sensors and a description
of the physical layout of the sensors. The source of information for this step is the sequence of values produced by the
robot’s sensors while the agent wanders by choosing motor control vectors randomly. The rest of this section describes
the learning method in detail and demonstrates the method on two very different simulated robots.

2.1 A simulated robot

For concreteness, the learning methods are illustrated with a particular robot and environment. The robot’s world is
simulated as a rectangular room of dimensions 6 meters by 4 meters. The room has a number of walls and obstacles
in it. The robot itself is modeled as a point. The robot has 29 sensors. Each sensor’s value lies between0:0 and
1:0. Collectively, these define the raw sense vectors, which is the input from the robot to the learning agent. The
first 24 elements of the raw sense vector give the distances to the nearest objects in each of 24 directions. These

3We did not always follow this restriction in the implementation itself. For example, we use a fairly sophisticated method called principal
component analysis [Krzanowski, 1988] as a feature identification method. However, principal component analysis may be implemented as a
neural network [Oja, 1982].

4Real sonar sensors may not satisfy this requirement due to specular reflection, a property of sonar sensors that makes them difficult to use, even
in systems that are engineered by hand.

Pierce & Kuipers, AIJ, 1997 6

have a maximum value of 1.0, which they take on when the nearest object is beyond one meter away. The sonars
are numbered clockwise from the front. The 21st element is defective and always returns a value of 0.2. The 25th
element is a sensor giving the battery’s voltage, which decreases slowly from an initial value of 1.0. The 26th through
29th elements comprise a digital compass. The element with value 1 corresponds to the direction (E, N, W, or S) in
which the robot is most nearly facing. There is no sensor noise. The robot has a “tank-style” motor apparatus. Its
two motor control signalsa0 anda1 tell how fast to move the right and left treads. Moving the treads together at the
same speed produces pure forward or backward motion; moving them in opposition at the same speed produces pure
rotation. Moving the treads at different speeds causes the robot to move in a circular arc. The learning agent does not
know what any of these sensors or effectors do. The learning agent only knows that that robot’s raw sense vector has
29 elements and its raw motor control vector has two elements.

2.2 A language of features

The learning agent develops an understanding of the robot’s sensory apparatus by learning newfeatures. A feature, as
defined in this paper, is a function over time whose current value is completely determined by the history of current
and past values of the robot’s raw sense vector. The type of the feature is determined by the type of that function’s
value (thus a vector feature is one whose value at any point in time is a vector.) The types of features used in this
paper are the following:scalar, vector, group, matrix, scalar field(or image), image element, focused image, vector
field, andvector field element. Scalar, vector, and matrix features are based on standard mathematical constructs. The
group feature (a type of vector feature) is defined in Section 2.3. The image and image-element features are defined in
Section 2.4. The focused-image feature is defined in Section 4.1.1. The vector-field and vector-field-element features
are defined in Section 3.2. Examples of features are the raw sense vector (a vector feature) and the elements of the raw
sense vector (scalar features). The learning agent produces new features usingfeature generators. A feature generator
is a rule that creates a new feature or set of features based on already existing features.

2.3 Discovering related sensory subgroups

A sensory apparatus may contain a structured array of similar sensors. Examples of such arrays are a ring of distance
sensors, an array of photoreceptors in a video camera, and an array of touch sensors. The learning agent uses the
group-feature generatorto recognize such arrays of similar sensors. Agroup featureis a vector feature,x, whose
elements,xi, are all related in some way (e.g., all correspond to sensors in an array of similar sensors).

The group-feature generator is based on the following observation. Given a well engineered array of sensors (e.g.,
a ring of distance sensors) that measure a property that typically varies continuously with sensor position (e.g., the
distance between the robot and nearby objects), the following holds: Sensors that are physically close together in
the array “behave similarly.” Two sensors are said to behave similarly if (1) the two sensors’ values at each instant
in time tend to be similar and (2) the two sensors’frequency distributionsare similar. Given a scalar featurex, the
frequency distribution(dist x) is ann-element vector that gives, for each ofn subintervals in the variable’s domain,
the percentage of time that the variable assumes a value in that subinterval.

Corresponding to these two criteria are two distance metrics (examples of matrix features) that are used by the
group-feature generator.

� The first metricd1 is based on the principle that in a continuous world, adjacent sensors generally have similar
values. The metric is defined, for vector featurex, as a matrix feature:

d1;ij(t) =
1

t+ 1

tX
�=0

jxi(�) � xj(�)j:

Here,d1;ij(t) is the distance between sensorsxi andxj measured at timet. The variable� is a time index
ranging from 0 tot.

� The second metricd2 is based on the observation that sensors in a homogeneous array have similar frequency
distributions. For example, an array of binary touch sensors can be distinguished from an array of photoreceptors

Pierce & Kuipers, AIJ, 1997 7

by the fact that the different types of sensors have radically different frequency distributions. Binary touch
sensors can assume value 0 or 1 whereas photoreceptors can assume any value from a continuous range.d2;ij is
proportional to the sum over the distribution intervals of absolute differences in frequency for elementsi andj:

d2;ij =
1

2

X
l

j(dist xi)l � (dist xj)lj

wherel ranges over the subintervals of the frequency distributions. In the implementation, the frequency distri-
butions use 50 subintervals uniformly distributed over the range [-1, 1].

This generator computes these two distance metrics over a period of several minutes while the learning agent moves
the robot using the following strategy: choose a random motor control vector; execute it for one second (10 time
steps); repeat.5 The values of the distance metrics,d1 andd2, after the example robot has explored for 5 minutes (3000
observations) are given in Figure 2.

5
10

15
20

25

0
5

10
15

20
25

00.10.20.30.40.50.60.70.8

5
10

15
20

25

0
5

10
15

20
25

0
0.5

1

d1 d1

Figure 2: Two measures of dissimilarity,d1;ij andd2;ij , between theith andjth elements of the raw sensory feature after the
robot has wandered for five minutes. The coordinates are indicesi andj.

The group-feature generator exploits these distance metrics in two steps: (1) formation of subgroups of sensors
that are similar according to all of the distance metrics, and (2) taking the transitive closure of the similarity relation
to form close groups of related sensors.

1. Formation of subgroups of similar sensors. The group-feature generator’s first step is to use the distance metrics
dk to form subgroups of similar sensors. Elementsi andj are similar, writteni � j, if they are similar according to
each distance metricdk:

i � j i� 8k : i �k j:

The definition ofi �k j requires the use of a threshold. One way to define this threshold, that has proven to be more
robust than the use of a constant, is this:

�k;i = 2 min
j
fdk;ijg:

Each elementi has its own threshold based on the minimum distance fromi to any of its neighbors. Elementsi andj
are considered similar if and only if bothdk;ij < �k;i anddk;ij < �k;j , that is ifj is close toi from i’s perspective and
vice versa. Combining these constraints gives

i �k j if dk;ij < minf�k;i; �k;jg:

5Our experiments have shown that this strategy is more effective for efficiently exploring a large subset of the robot’s state space than choosing
motor control vectors randomly at each time step.

Pierce & Kuipers, AIJ, 1997 8

2. Formation of closed subgroups. The group-feature generator’s second step is to take the transitive closure of the
similarity relation to produce therelated-torelation�. Consider again the ring of distance sensors. Adjacent sensors
tend to be very similar according to the distance metric, but sensors on opposite sides of the ring may be dissimilar
(according tod1) since they detect information from distinct and uncorrelated regions of the environment. In spite
of this fact, the entire array of distance sensors should be grouped together. This is accomplished by defining the
related-torelation� as the transitive closure of thesimilarity relation�. Two elementsi andj arerelated to each
other, writteni � j, if i � j or if there exists some other elementk such thati � k andk � j:

i � j i� i � j _ 9k : (i � k) ^ (k � j):

The related-to relation� is clearly reflexive, symmetric, and transitive and is therefore an equivalence relation. Com-
puting the relation� for i andj given the relation� is straightforward (e.g., [Cormen et al., 1990]). An equivalence
class of the relation�, if not a singleton, is described as a group feature ofs.

For the example robot, the raw sensory feature has 29 elements. In order, these are: 24 distance sensors (one of
which is defective), a battery-voltage sensor, and a four-element digital compass. The distance metric is computed
while the robot wanders randomly for 3000 steps. For each of the elements of the raw sensory feature, the set of
similar elementsfj j i � jg is computed and shown below:

(0 1 2 22 23) (0 1 2 3 23) (0 1 2 3 4) (1 2 3 4 5) (2 3 4 5 6) (3 4 5 6 7) (4 5 6 7) (5 6 7 8 9) (7 8 9 10)
(7 8 9 10 11) (8 9 10 11 12) (9 10 11 12 13) (10 11 12 13 14) (11 12 13 14 15) (12 13 14 15 16)
(13 14 15 16 17) (14 15 16 17 18) (15 16 17 18 19) (16 17 18 19) (17 18 19 21) (20) (19 21 22 23)
(0 21 22 23) (0 1 21 22 23) (24) (25) (26) (27) (28).

Notice that the distance sensors are grouped together into groups of neighboring sensors. For example, the group
(0 1 2 22 23) contains two elements on each side of element 0. The related-to relation� is obtained by taking the
transitive closure of the similarity relation and is described by the following equivalence classes:

(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23)
(20)defective
(24)battery voltage
(25)east
(26)north
(27)west
(28)south

The distance sensors have all been grouped together into a group containing no other sensors.

2.4 A structural model of the sensory apparatus

The grouping of the sensors into subgroups is a first step but it tells nothing about the relative positions of the sensors
in the array. This is accomplished by theimage-feature generator. The image-feature generator is a rule that takes
a group feature and associates a position vector with each element of the group feature in order to produce animage
feature(which represents the structure of the group of sensors). An image feature is a function over time, completely
determined by the current and past values of the raw sense vector, whose value at any given time is animage. An
image is an ordered list ofimage elements. An image element is a scalar with an associated position vector (a vector
of n real numbers that represents a position in a continuous,n-dimensional space). An example of the use of an image
feature is to represent the pattern of light intensities hitting the photoreceptors in a camera.

The task of the image-feature generator is to find an assignment of positions to elements that captures the structure
of an array of sensors as reflected in the distance metricd1. This means that the distance between the positions of
any two elements in the image should be equal to the distance between those elements according to the metricd1.
Expressed mathematically, image featurey should satisfy

k(posyi)� (posyj)k = d1;ij

where(posyi) is the position vector associated with theith element in the image andk(posyi) � (posyj)k is the
Euclidean distance between the positions of theith andjth elements.

Pierce & Kuipers, AIJ, 1997 9

Finding a set of positions satisfying the above equation is a constraint-satisfaction problem. If the group feature
x hasn elements, then the metricd1 providesn(n� 1)=2 constraints.6 Specifying the positions ofn points inn� 1
dimensions requiresn(n� 1)=2 parameters: 0 for the first point, which is placed at the origin; 1 for the second, which
is placed somewhere on thex axis; 2 for the third, which is placed somewhere on thex-y plane; etc. Thus, to satisfy
the constraints,n position vectors of dimensionn� 1 are required. Solving for the position vectors given the distance
constraints can be done using a technique calledmetric scaling[Krzanowski, 1988].7

The problem remains thatn points of dimensionn � 1 are inconvenient to use, if not meaningless, for largen.
In general, sensory arrays are 1-, 2-, or 3-dimensional objects. What is needed is a method for finding the smallest
number of dimensions that are needed to satisfy the given constraints without excessive error, where the error is given
by the equation

E =
1

2

X
ij

(k(posyi)� (posyj)k � dij)
2:

Metric scaling helps by ordering the dimensions according to their contribution toward minimizing the error term.
Ignoring all but the first dimension (i.e., using only the first element of the position vectors), yields a rough

description of the sensory array with large error (unless the array really is a one-dimensional object). Using alln� 1
dimensions yields a description that has zero error but contains a lot of useless information. Statisticians use a graph
called a “scree diagram” (Figure 3a) that shows the amount of variance in the data that is accounted for by each
dimension, to subjectively choose the right number of dimensions. The image-feature generator chooses the number
of dimensions to be equal tom wherem maximizes the expression�2(m)� �2(m+ 1) where�2(m) is the variance
in the data accounted for by themth dimension. For the example,m = 2. The set of two-dimensional positions found
by metric scaling for the group of distance sensors is shown in Figure 3b.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

Metric scaling eigenvalues

0
1
2
3

4
5

6789
10

11
12
13
14
15
16

17
1819 21 22

23
0
1
2
3

4
5

6789
10

11
12
13
14
15
16

17
1819 2122

23

a b c

Figure 3:Learning a structural model of a ring of distance sensors. (a) The scree diagram gives the amount of variance (vertical
axis) accounted for by each dimension (horizontal axis) and shows that the first two dimensions account for most of the variance.
(b) Metric scaling is used to assign positions to elements of the group of distance sensors. The 22-dimensional position vectors are
projected onto the first two dimensions to produce the representation shown above. (c) A relaxation algorithm is used to find a set
of two-dimensional positions for the group of distance sensors that best satisfies the constraintskpi�pjk = dij : (The usefulness of
the relaxation algorithm is more obvious in the example of the next section.) Notice the gap corresponding to the defective distance
sensor. The element with index 0 corresponds to the robot’s forward sensor.

The set of(n�1)-dimensional position vectors optimally describe the structure of a group, but when these positions
are projected onto a subspace of lower dimensionality, the resulting description is no longer optimal. Elements that
were the right distance apart inn� 1 dimensions are generally too close together in the two-dimensional projection.
To compensate for this, a relaxation algorithm is used to find the best set of positions in a small-dimension space to
approximate the given distances inn�1 dimensions.The relaxation algorithm is an iterative process. On each iteration,

6The metric can be represented as a symmetric matrix with zeros on the diagonal. Such a matrix hasn(n� 1)=2 free parameters.
7It seems plausible that metric scaling could be implemented using a neural net analogous to that used to implement principal component

analysis (Oja, 1982) since in both cases the main computation is the decomposition of an input matrix into a set of eigenvectors.

Pierce & Kuipers, AIJ, 1997 10

each position vector is adjusted slightly in a direction that reduces the value of the error term E (defined above). The
process continues until the error is very small or ceases to decrease appreciably on each iteration.8

The relaxation algorithm could be used without metric scaling by simply initializing the vector of positions ran-
domly. Metric scaling provides two benefits. It shows how many dimensions are needed for the image feature, and
it provides a starting point for the relaxation algorithm, decreasing the chance that the algorithm finds a local but not
global minimum of the error function. The application of the relaxation algorithm to the group of distance sensors is
illustrated in Figure 3c.

To summarize, the image-feature generator takes a group featurex and produces an image featurey whose position
vectorspi are found using metric scaling and a relaxation algorithm so that they approximately satisfy the constraints

kpi � pjk = k
X
t

jxi(t)� xj(t)j

while keeping the dimensionality of the position vectorspi small. The result of the experiment is a structural descrip-
tion of the robot’s ring of distance sensors (Figure 3c) that is used later to analyze the robot’s motor apparatus.

2.5 Learning a sensory model of the roving eye

The learning methods are further demonstrated using a more fanciful robot called a “roving eye.” Its primary sensory
array is a retina of photoreceptors.

This robot is a simulation of a small camera mounted on the movable platform of an X-Y plotter, pointing down
at a square picture 10 centimeters on a side. The camera sees one square centimeter of the picture at a time. The robot
has 3 degrees of freedom (translation in two directions and rotation) and its state space is described by three state
variables (two for position and one for orientation). The robot’s structure is shown in Figure 4a. The actual picture

x

y θ

Picture

Camera
image

a b

Figure 4:(a) The robot is a “roving eye” that can see a 1 centimeter wide image that is part of a picture that is 10 centimeters wide.
(b) The picture used for the roving-eye experiment is a close-up view of the Oregon coast.

used is shown in Figure 4b. The sensory system is as before except that the ring of distance sensors has been replaced
by a 5 by 5 retinal array looking down on a picture. The motor control vector of this robot has three elements:rotate,
slip (for motion to the left or right), andslide(for motion forward or backward).

The results parallel those of the previous experiment. The group-feature generator identified seven equivalence
classes: six singletons and one candidate for application of the image-feature generator. Metric scaling produces the
scree diagram of Figure 5a indicating that the sensory array is best modeled as a two-dimensional object. Metric
scaling assigns positions to each element of the group feature. Projecting these positions onto the first two dimensions

8See Pierce (1995) p. 65 for a description of the algorithm.

Pierce & Kuipers, AIJ, 1997 11

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

1 2 3 4 5 6 7 8 9 10

Metric scaling eigenvalues

0
1234

5
6789

10
11121314

15161718
19

20212223
24

01234

56789

10
111213

14

15
161718

19

202122
2324

a b c

Figure 5: (a) The metric-scaling scree diagram for the group of photoreceptors indicates that the sensors are organized in a
two-dimensional array. (b) The 2-D projection of the set of positions produced by metric scaling for the group of photoreceptors
provides an initial approximation of the grid structure of the array of photoreceptors. (c) The final set of positions are produced
using the constraint-satisfaction relaxation algorithm, with the previous set of positions as initial values.

produces the mapping shown in Figure 5b. The set of positions produced by metric scaling is improved by the
relaxation algorithm so that the distances in the resulting image more closely match the distance metricd1. The
resulting set of positions is shown in Figure 5c.

3 Learning a model of the motor apparatus

Using its learned model of the robot’s sensory system, the learning agent’s second step is to learn a model of the
robot’s motor apparatus. The result of the learning is a new abstract interface to the robot that identifies the types of
motion that the robot’s motor apparatus is capable of producing and that tells how to produce each type of motion.
The source of information for this step is the sequence of values of a learnedmotion feature(a type of field feature,
defined in Section 3.2) as the agent wanders by choosing motor control vectors randomly. In the simulations, if the
robot is touching a wall, it is capable of turning but cannot change its position unless it is facing away from the wall.9

The image feature makes it possible to define spatial attributes of the sensory input, in terms of the locations of
sensors in the image. With spatial attributes, it is possible to define spatial as well as temporal derivatives, so motion
features can be defined, even without knowledge of the physical structure of the environment. The learning agent uses
the new motion feature to analyze its motor apparatus using the following steps:

1. Sample the space of motor control vectors.The robot’s infinite space of motor control vectors is discretized
into a finite set of representative vectors,fuig.

2. Compute average motion vector fields(amvf’s). The agent repeatedly executes each representative control
vector many times in different locations and measures the average value of the resulting motion feature. It is
this average value that characterizes the effect of that control vector.

3. Apply principal component analysis (PCA).The set of computedamvf’s is a representation of the effects that
the motor apparatus is capable of producing. PCA is used to decompose this set into a basis set ofprincipal
eigenvectors, a set of representativeamvf’s from which allamvf’s may be produced by linear combination.

4. Identify primitive actions. Each principal eigenvector is matched against theamvf’s produced by the repre-
sentative control vectors to find a control vector that produces that effect or its opposite. Such a motor control
vector, if it exists, is identified as aprimitive actionand can be used to produce motion for one of the robot’s
degrees of freedom.

9The use of a physical robot would require a provision such as an innate obstacle-avoidance behavior to prevent the robot from damaging itself.

Pierce & Kuipers, AIJ, 1997 12

5. Define a new abstract interface.For each degree of freedom, a new control signal is defined that allows the
agent to specify the amount of motion for that degree of freedom.

The result of the learning is a new abstract interface to the robot comprised of a new set of control signals, one per
degree of freedom of the robot. The new interface hides the details of the motor apparatus. For example, whether
a mobile robot’s motor apparatus uses tank-style treads or a synchro-drive mechanism, the learned interface presents
the agent with two control signals: one for rotating and one for advancing. These learned control signals are used to
further characterize the robot’s motor apparatus using thestaticanddynamic action models(Sections 4 and 5). Steps
1 through 5 are explained in detail in the rest of this section.

3.1 Sample the space of motor control vectors

The choice of the set of representative motor control vectors must satisfy two criteria: first, they must adequately cover
the space of possiblemotor control vectorsso that the space of possibleeffects(amvf’s) is adequately represented.
Second, the distribution of motor control vectors must be dense enough so that, given a desired effect (e.g., anamvf
that corresponds to one of the robot’s degrees of freedom), a motor control vector that produces that effect can be
found.

Since we have already made the assumption that the motor apparatus is approximately linear, it suffices to char-
acterize the effects of a uniformly distributed set of unit motor control vectors. (A unit vector has a magnitude of 1
where its magnitude is equal to the square root of the sum of squares of its elements.) For two- and three-dimensional
spaces of motor control vectors, respectively, 32 and 100 vectors have been found to be adequate. For the 2-D case,
it is easy to find a set of vectors that are uniformly distributed on the unit circle. Theith of n vectors has value
(cos(2�i=n); sin(2�i=n)): For the 3-D case, a set of vectors uniformly distributed on the unit sphere is found using
the relaxation algorithm of Section 2.4. The vectors are constrained to lie on the unit sphere (i.e., to have magnitude
1), and the target distance between any pair of points is much larger than 2. The resulting configuration of vectors
is analogous to a collection of electrons on a charged sphere — each vector is as far from its neighbors as possible.
These vectors are used as the representative motor control vectors for sampling the continuous space of average motion
vector fields. This method generalizes to any dimension.

3.2 Compute average motion vector fields

A vector fieldfeature is a function over time, completely determined by the current and past values of the raw sense
vector, whose value at any given time is avector field. A field is an ordered list ofvector field elements. A vector
field element is a vector with an associated position vector. Given image featurex, (motion x) denotes a vector-field
feature (specifically, amotionvector-field feature) whose elements measure the amount of motion detected at the
corresponding points in the image.

To understand what this feature is measuring, suppose that, corresponding to an object in the robot’s environment,
there is a property of the image feature (e.g., a local minimum or discontinuity) that changes location from one image
element to another on subsequent time steps due to the motion of the robot. A vector from the position of the first
image element to the position of the second represents the motion of that object and is an example of alocal motion
vector. A list of local motion vectors, one for each image element, is amotion vector field.

The detection of these motion vectors does not require sophisticated object recognition. It simply requires spatial
and temporal information, both of which are provided by an image feature. The spatial information is provided by the
positions of the elements of the image; the temporal information is provided by the derivatives of the elements’ values
with respect to time. A temporal sequence of images, represented as vectors of values and associated positions, can be
viewed as an intensity functionE(p; t) that maps image positions to values, called intensities, as a function of time.
Such a function has both a spatial derivative,Ep and a temporal derivative,Et. The spatial derivativeEp, also called
thegradientof E, is a vector in image-position coordinates that gives the direction in which the intensity increases
most rapidly.

A large gradient in an image detected by a robot’s sensory array corresponds to a detectable property of the
environment such as the edge of an object. If the object moves relative to a robot’s sensory array (or vice versa), the
edges detected in the image will move. This motion results in a change in intensity. A point in the image with a large

Pierce & Kuipers, AIJ, 1997 13

gradient will, in the presence of motion, also have a large temporal derivative. This is an informal motivation for the
optical flowconstraint equation [Horn, 1986], which defines the optical flow at a point in an image to have magnitude
�Et=kEpk and directionEp:

v = �
Et

kEpk

Ep
kEpk

= �
EtEp
kEpk2

Here,kEpk is the magnitude of the vectorEp, equal to the square root of the sum of squares of the elements ofEp.
A problem with this formulation is that if the magnitude ofEp is small (or zero), then the calculation is prone to
error (or is undefined). Since the goal here is to measure average motion over time and since the measurement of the
optical flow is more precise at edges or, in general, when the gradientEp is large, we have found it useful to weight
the expression using the termkEpk2 and measure the value of:

v = �EtEp

In most computer vision applications, images are represented as regularly spaced arrays of pixels (picture ele-
ments). With such a representation, it is straightforward to define an approximation for the spatial derivative at a point
in the image. The images as defined here, however, do not have such a regular structure so we use a different approach
to defining what we call thesensory flow field. The sensory flow measured at elementi is taken to be a weighted sum
of local motion vectorsvij in the direction from elementi to elementj wherej ranges over all of the elements close
to elementi (as defined in Section 2.3). The weight is inversely proportional to the distance between elementsi andj.
The precise definition of themotion operator is given below, where(posx) denotes the vector of positions associated
with featurex, and(val x) denotes the vector of values associated with featurex.

pos(motion x)
def
= posx

(val(motion x))i
def
=

X
j�i

vij=kpijk

pij = (posxj)� (posxi)

vij = �Et;iEp;ij

Et;i =
d

dt
(val x)i

Ep;ij =
((val x)j � (val x)i)

kpijk

pij

kpijk

Here,kpijk is the distance in the image between the positions of elementsi andj; Et;i is the temporal derivative of
the intensity function for elementi; andEp;ij is the component of gradientEp at elementi in the direction toward
elementj.

Using themotion operator, the definition of theamvf associated with theith representative motor control vector
ui is

amvfi = � ((motion x) j (= u ui))

wherex is the image feature that has already been learned (Section 2.4),u is the motor control vector used to control
the motor apparatus, and� is an operator that computes the average value of its argument. In this case, the average
value is taken over all time steps during whichui was taken. Examples are shown in Figure 6. These are obtained after
the learning agent has wandered for 20 minutes using the exploration strategy of randomly choosing a representative
motor control vector and executing it for one second (ten time steps).

3.3 Apply principal component analysis

The goal of this step is to find a basis set for the space of effects of the motor apparatus, i.e., a set of representative
motion vector fields from which all of the motion vector fields may be produced by linear combination. This type of
decomposition may be performed using principal component analysis (PCA). (See Mardia et al. [Mardia et al., 1979]

Pierce & Kuipers, AIJ, 1997 14

(1.00 -0.01) (0.74 0.68) (-0.05 1.00) (-0.72 0.69)

(-1.00 0.01) (-0.74 -0.68) (0.05 -1.00) (0.72 -0.69)

Figure 6:Examples of average motion vector fields (amvf’s) (represented as collections of line segments) and associated motor
control vectors (shown in the lower-left corner of each picture). Anamvf associates an average local motion vector with each
position in an image (see Figure 3). Each line segment represents the position, direction, and magnitude of one of these average
local motion vectors.

for an introduction. Oja [Oja, 1982] discusses how a neural network can function as a Principal Component Analyzer.
Ritter et al. [Ritter et al., 1992] show that self-organizing maps [Kohonen, 1988] can be seen as a generalization of
PCA.)

Principal component analysis of a set of values for a variabley produces a set of orthogonal unit vectorsfvig,
calledeigenvectors, that may be viewed as a basis set for the variabley. The ith principal component ofy is the
dot product ofy and eigenvectorvi. In practice,y may be approximated as a linear combination of the first few
eigenvectors while throwing the remaining ones away.10 Principal component analysis may be performed using a
technique calledsingular value decomposition[Press et al., 1988], which identifies the eigenvectors and computes the
standard deviation of each principal component. The relative magnitudes of the standard deviations tell how important
each eigenvector is for the purposes of approximating the sample values fory. The first four eigenvectors obtained in
the experiment are shown in Figure 7.

1.61 0.35 0.27 0.15

u
0= (-0.66 0.74) u

1= (0.74 0.68)

Figure 7:The first four eigenvectors and the standard deviations of the associated principal components for the space of average
motion vector fields. The first corresponds to a pure rotation motion and the second corresponds to a forward translation motion.
In these diagrams, the top-left element is associated with the robot’s front sensor. The robot’s motor apparatus can produce the first
two effects directly using the motor control vectors shown.

10The principal components are ordered according to their standard deviations. This means that the first eigenvector accounts for the most
variance in the set of observed values fory, and so forth.

Pierce & Kuipers, AIJ, 1997 15

3.4 Identify primitive actions

In the previous step, principal component analysis was used to determine a basis set of effects for the motor apparatus,
namely, the set of eigenvectors. The goal of this step is to discover which motor control vectors can be used to
produce those effects. This is accomplished by matching the eigenvectors with theamvf’s of all of the representative
motor control vectors. The matching involves computing, for eachi andj, the angle�ij between theith eigenvector
and thejth amvf. This angle is defined by the equation�ij = vi � amvfj where the vector fieldsvi andamvfj are
treated as simple vectors by flattening theirnm-dimensional local motion vectors into a singlenm-dimensional vector
and ignoring the positions of the local motion vectors. An angle near zero indicates that theamvf is similar to the
eigenvector. An angle near 180 degrees indicates that theamvf is similar to the opposite of the eigenvector. If any
amvf’s match theith eigenvector to within 45 degrees, then actionui+ is defined to be the motor control vector whose
amvf is most collinear with theith eigenvector andui� is defined to be the motor control vector whoseamvf is most
anti-linear.11 The definitions of control laws (Section 5) assume that the robot’s motor apparatus is linear, implying
thatui+ = �ui�. In the case thatui+ � �ui�, they can be approximated by plus and minusui, respectively, where

ui def
= 1

2 (u
i+ �ui�). Subsequently, this will be used as the definition of theith primitive action. The values ofui are

shown in Figure 7. The analogous results for the roving-eye experiment are shown in Figure 8.

0.43 0.37 0.21 0.04

(-0.17 -0.99 -0.05) (0.03 0.03 -1.00) (-0.99 0.13 0.04)

Figure 8:The first four principal eigenvectors and associated singular values for the roving-eye robot. The first two correspond
to pure translation motions and the third corresponds to a pure rotation motion. The robot’s motor apparatus can produce the first
three effects directly using the motor control vectors shown.

3.5 Define a new abstract interface

The goal of this step is to define a new interface to the robot that abstracts away the details of the motor apparatus.
For each of the robot’s degrees of freedom, a new control signal is defined for producing motion along that degree of
freedom. Negative values of the control signal move the robot in the opposite direction. For the robot of the example,
there are two control signals, one for turning (left and right) and one for advancing (forward and backward). The effect
of the control signals is defined by the following equation:

u = u0u
0 + u1u

1

whereu0 andu1 (which range from -1 to 1) are the new control signals andu0 andu1 are the primitive actions
corresponding to the first two principal eigenvectors.

3.6 Discussion

The learning methods described in this section have also been applied to a simulated synchro-drive robot for which
the motor control signals directly specify how fast to turn and advance, respectively. The details of that experiment are
given in [Pierce, 1991b]. The synchro-drive and tank-style robots demonstrate two different motor apparatuses with
identical capabilities. The learned abstract interface, since it is grounded in sensory effects rather than motor control

11This matching criterion is more restrictive than it appears. In a high-dimensional space such as the space ofamvf’s, it is highly unlikely that
two random vectors will define an angle less than 45 degrees.

Pierce & Kuipers, AIJ, 1997 16

signals, is the same for both: it abstracts away the details of the motor apparatus, providing a new set of control signals,
one for each of the robot’s degrees of freedom.

The learning methods described in this section build on the sensory image structure learned in the previous section.
The result is a new abstract interface whose control signals are used in Section 5 to define behaviors for navigation.

4 Local state variables

The result of the agent’s learning so far is an abstract interface that includes a model of the robot’s sensorimotor
apparatus. The model of thesensoryapparatus is the description of its physical structure represented primarily by the
positions of the elements of the learned image feature. The model of themotorapparatus is the set of learned primitive
actions that tells the agent how many degrees of freedom it has, and how to produce motion in each.

The agent’s ultimate goal is to abstract the continuous world of the robot to acognitive mapby which the world
is viewed as a discrete set of recognizable places with well-defined paths connecting them. The cognitive map gives
the learning agent the ability to predict the effects of high-level behaviors and to navigate among a set of recognizable
places. Learning the cognitive map requires that the agent learn path-following behaviors for moving the robot through
its state space. In order to be useful for prediction, these behaviors must be repeatable in the sense that executing a
behavior from a given initial state always moves the robot to the same final state. The following paragraph gives a few
examples of such path-following behaviors.

If the learning agent has a feature that gives the distance from the robot to the wall and it knows how to make the
robot move while keeping this feature constant, then it can make the robot follow the wall. For a robot with a retina
(Section 2.5), a feature as simple as the sum of all of the inputs could be used to define a path-following behavior.
Moving while keeping the feature constant would correspond to following a path of constant intensity. A more complex
feature based on the retina is a line detector, which could be used as the basis for a line-following behavior. For a robot
with a continuous compass giving the robot’s heading, a path-following behavior based on the compass’s value would
move the robot in a constant direction. Finally, consider a robot with an omni-directional photo-sensor responding to a
light mounted on the robot and suppose that the robot is in a dark room with white walls. The amount of light detected
by the robot’s sensor would decrease with distance from the nearest wall. A wall-following behavior could be based
on an error signal that was the difference between the light level detected by the sensor and a nominal value (e.g., a
value in the middle of the sensor’s range of values).

In this section and the next, we describe the following three-step method for learning path-following behaviors:
(1) find a set of features that the learning agent can control, calledlocal state variablesand use them to define error
signals; (2) learn behaviors for minimizing the error signals; and (3) learn behaviors that move the robot while keeping
the errors near zero. This section shows how to learn local state variables. Section 5 shows how to use them to define
path-following behaviors.

What is required of a local state variable is that it be controllable, i.e., the learning agent must know how its control
signals affect it. A feature is controllable if it meets the following definition:

Let û be the vector of control signalsuj . A scalar featureyi is a local
state variableif the effect of the control signals onyi can be approxi-
mated locally by

_yi =mi � û (=
X
j

mij uj) (1)

wheremi is nonzero.

Determining whether a feature is a local state variable while learning the context-dependent value ofmi is the job of
the static action model (Section 4.2). The source of information for this step is the set of learned features produced
while the learning agent wanders by using its learned primitive actions.

Local state variables are analogous to state variables in the following sense. Ifx is a state variable, then the
constraint_x = 0 reduces the dimensionality of the robot’s state space by one. Ify is a local state variable, then the

Pierce & Kuipers, AIJ, 1997 17

constraint_y = 0 reduces the dimensionality of the robot’s motor control vector space by one.12 In other words, the
constraint reduces the robot’s degrees of freedom by one. Since the learning agent does not have access to the robot’s
state space, it defines local state variables using its knowledge of motor control vector space to which it does have
access. They are calledlocal state variables because they are not required to be defined everywhere in the robot’s state
space.

An important feature of local state variables is that they are controllable: featureyi may be moved to a target value
y�i using a simple control law. This fact is exploited in the definition of the homing behaviors (Section 5.2). The
discovery of local state variables has two components: generating new features (Section 4.1), and testing each feature
to see if it satisfies the definition of local state variable (Section 4.2).

4.1 Generating new features

If a sensory system does not directly provide useful features, it may be possible to generate features that are useful.
A generate-and-test approach is demonstrated in the following experiment using the tank-style mobile robot in which
the agent learns new scalar features that are better candidates for local state variables than are the elements of the raw
sense vector.

4.1.1 A set of feature generators

In this paper, we identify a small set of feature generators that are used to produce new features as candidates for local
state variables. Our feature generators are essentially a special case of the functional transformations of [Shen, 1990].
These feature generators are appropriate for a robot with a rich sensorimotor apparatus and are, as we will demonstrate,
sufficient for a particular set of environments and sensorimotor apparatuses. We do not claim that this particular set
of feature generators is necessary for the robots described in this paper nor that it is sufficient for all robots and
environments.

The generated features are based on a set of generic mathematical constructs (e.g., scalars, vectors, matrices,
scalar fields, and vector fields) rather than on a human-generated list of salient properties of a robot’s environment.
The feature generators used for the experiments described in this paper are described below:

� splitter takes a vector feature of lengthn and producesn scalar features.

� vmin andvmax apply to vector features of length greater than 1. They provide two different ways to reduce a
vector feature to a scalar feature.

� group andimage(described in Section 2) identify useful structure in the sensory apparatus. Group and image
features are not scalar features and thus are not able to serve as local state variables, but they do serve as the
basis for higher-level features that may turn out to be useful.

� lmin (local-min) andlmax (local-max) apply to image features. They producefocused-imagefeatures. A
focused-image feature is a (scalar field, boolean field) pair where the boolean field is used to mask the scalar
field. It can be viewed as an image feature for which each element has an associated weight (0 or 1). The
weights focus attention on particular properties of an image, e.g., local minima or maxima.

� tracker applies to focused-image features and producesimage-elementfeatures (single value-position pairs).
From the focused image produced by thelmin generator, thetracker generator produces one image-element
feature for each local minimum in the image. The tracker implements a form of focus of attention, abstracting
away small changes in value and position of an image element in order to produce a feature that tracks an
interesting property of the robot’s environment such as the minimum distance to a nearby object.

� val extracts a scalar value feature from an image-element feature.
12If _y = 0, then by Equation 1,̂u must lie in the subspace perpendicular to vectormi.

Pierce & Kuipers, AIJ, 1997 18

This set of feature generators has proven successful for the robot with a ring of distance sensors. To handle the “roving
eye” robot, we would augment this set with generators for features based on a variety of convolution masks and
other two-dimensional image-processing operators. An interesting open problem is to define a general set of feature
generators appropriate to learning mobile robots, analogous to the small and general set of functional transformations
used by Shen [Shen, 1990] to replicate the performance of AM [Lenat, 1977]. We conjecture that a reasonably sized
set of feature generators will apply to a broad class of mobile robots and that such a set of feature generators can be
discovered by developing solutions for a small subset of that class: initially, each new robot would require one or more
new feature generators; eventually the set of feature generators would converge to a generally applicable set.

4.1.2 Generating and testing features

The generate-and-test process of learning potentially useful features executes the following steps in a continuous loop.
Initially, there is only one feature, theraw sensory feature. This feature is marked as new.

1. Each generator is applied to each new feature to which it is applicable.

2. The features that were new are marked as old, and the features just generated are marked as new.

In generate-and-test approaches to learning, controlling the search through a large space of possibilities is an important
concern. Without any constraints, the number of features generated on each iteration of the generate-and-test loop
may grow exponentially. There are several ways to constrain a search algorithm. One way is to limit the depth of the
search. In the current implementation of the generate-and-test algorithm, it is possible to set a limit on the number of
generations of new features that are created. A second way is to limit the breadth of the search. This method is used in
genetic algorithms where population size is constrained to a certain number. This method requires a fitness measure
to tell which members of the population are worthy of survival. Such a fitness measure can be defined as a feature
tester, though this has not been done here. A third way to constrain a search space is to limit the branching factor. For
the feature-learning problem, this is the average number of new features that are generated for each old feature at each
step of the generate-and-test process. The branching factor for the feature learning problem is limited in two ways:
the total number of generators is kept reasonably small and the number of generators that apply to any given feature is
kept small by using strongly typed generators (e.g., the image-feature generator only applies to group features).

4.1.3 An experiment

In the experiments described in this paper, the combinatorial explosion of features has not been an issue. The gen-
erators form deep but narrow hierarchies with a tractable set of features. To study this, we devised an experiment in
which the agent explores by randomly choosing unit motor control vectors and executing them for one second (10
time steps) each. Figure 9 shows the complete hierarchy of features and generators for the learning agent’s feature-
learning process. At the top of the figure is the raw sense vectors. We refer to each feature using a name derived from
the sequence of feature generators used to produce that feature (where g=group, im=image, tr=tracker, val=value).
Thus, for example,s-g-vminresults from applying thevmin generator to the feature produced by applying thegroup
feature generator to the raw sense vectors. The features shown in the figure are, from top to bottom and from left
to right: s, s-g, s-vmin, s-vmax, s0, s1, : : :, s28, s-g-im, s-g-vmin, s-g-vmax, s-g-im-lmin, s-g-im-lmax, s-g-im-lmin-tr,
s-g-im-lmax-tr, s-g-im-lmin-tr-val, ands-g-im-lmax-tr-val. Notice that, depending on the robot’s position, there may
be multiples-g-im-lmin-tr-valor s-g-im-lmax-tr-valfeatures. Each of the generatedscalar features (the leaves of the
tree of generated features) is tested (Section 4.2) to see if it can serve as a local state variable.

4.2 The static action model

The purpose of the static action model (a set of equations of the form given in Equation 1 of Section 4) is to predict the
behavior of each scalar feature. The learning of the static action model for a feature proceeds in three steps. In the first
step, the learning agent tries to predict the behavior of the feature without taking into account which primitive action
is being used. If it fails, then it tries to predict the behavior of the feature as a function of the action being taken. If
this fails for a primitive action, then the agent tries to predict the context-dependent effect of that action on the feature.

Pierce & Kuipers, AIJ, 1997 19

vector

group

image

scalar

tracker

lmin lmax

group

image

tracker

vmin, vmax

scalar

value

focused
 image

 image
element

splittervmin
vmax

Figure 9: The complete hierarchy of features and generators in the learning agent’s feature-learning process used to produce
candidate local state variables. The feature generators are shown in bold face; the feature types are shown in italics.

Pierce & Kuipers, AIJ, 1997 20

If a feature is action dependent and is predictable in all contexts, then it can serve as a local state variable.13 With the
information contained in the static action model, it is a simple matter to define homing behaviors for moving the robot
so that the local state variable moves toward a target value.

When trying to predict the effects of actions on features, the learning agent looks for approximately linear rela-
tionships between action magnitudes and feature derivatives because the control laws used to define path-following
behaviors (Section 5) are based on the assumption that these relationships are approximately linear.

4.2.1 An action-independent model

The first step toward modeling the behavior of a featureyi is to see if it is possible to predict its behavior independently
of the motor control vector being used. The agent explores by repeatedly choosing a primitive action and executing it
for one second (ten time steps). It analyzes the behavior of the feature using a device that we call acorrelator. This
produces a set of statistics based on the plot of the feature’s value as a function of time (Figure 10). The coordinate for

�s0 vs.�t �s24 vs.�t lmin vs.�t

Figure 10:Plots of�yi (vertical axis) vs.�t (horizontal axis), used by the learning agent to try to predict the behavior of feature
yi independently of the motor control vector. Whenever a new motor control vector is used,�yi and�t are reset to 0 (at the
center of each plot). From the sets of(�t;�yi) points, statisticsmi, ri, andi are computed (see text). The numbers shown are
the correlationsri between�yi and�t. From these statistics the learning agent concludes that featuress0 and lmin (short for
s-g-im-lmin-tr-val) are unpredictable (is large andr is small) and thats24 is constant (< 0:001).

the horizontal axis is�t = t � t0 wheret0 is the last time the motor control vector changed. The vertical axis gives
�yi = yi(t)� yi(t0).

The statistics aremi, ri, andi. The value ofmi is the slope of the line that best fits the set of(�t;�yi) points.
The value ofri is the correlation between variables�yi and�t. The value ofi is the ratio of the standard deviations
of �yi and�t. It is a measure of how fast the feature changes as a function of time. A number of properties are
defined in terms of these statistics. The feature isconstant if i < 0:001. It is increasing if ri > 0:6; decreasingif
ri < �0:6. It is predictable if any of these properties holds. Otherwise, it is unpredictable and the learning agent tries
to predict the behavior of the feature using an action-dependent model.

For the running example, the featuress-vmin, s-vmax, s20 (the broken distance sensor),s24 (the battery voltage),
ands-g-vmaxare all diagnosed asconstant and are thus not suitable for use as local state variables. The rest are
candidates for the next step in the learning of the static action model.

4.2.2 An action-dependent model

If the previous step failed to produce a model that predicts the behavior of a featureyi, then the learning agent uses
one correlator for each primitive action to analyze its effect on the feature. In this case, the correlator characterizes
the relationship betweenuj�t and�yi where�t and�yi are defined as before. The agent continues to explore by
randomly selecting primitive actions and executing them for a second at a time. It computes the statisticsmij (the slope

13One could use a less constrained definition of local state variable: if a feature is action dependent and predictable in a given context, then it is a
local state variable for that context. We have chosen the more constraining definition because it results in more robust control laws.

Pierce & Kuipers, AIJ, 1997 21

of the line that best fits the set of(uj�t;�yi) points),rij (the correlation betweenuj�t and�yi), andij (the ratio
of the standard deviations ofuj�t and�yi). A feature is labeledconstant for control signaluj if ij < i=4. The
propertiesincreasing, decreasing, andpredictable for control signaluj are defined as before. For each predictable
feature-control signal pair, a rule of the form

_yi = mij uj

is added to the static action model. If a feature is predictable for all of the primitive actions, then the feature itself is

�s0 vs. u0�t �s0 vs.u1�t �lmin vs.u0�t �lmin vs. u1�t

Figure 11:Plots of�yi vs.uj�t for two features and two primitive actions. These are used to see if it is possible to predict the
behavior of the feature as a function of the motor control vector. Features0 is unpredictable for actionu0 (r is small and is large)
but predictable for actionu1 (r is large). Featurelmin is constant for actionu0 (< 0:001) but unpredictable for actionu1 (r is
small and is large).

predictable.
For the running example (Figure 11), all of the distance sensors are found to be unpredictable for primitive action

u0 (rotating). The effect ofu1 (advancing) is to decrease featuress0, s1, s2, s3, ands23; to increase featuress9 through
s14. Its effect is unpredictable for featuress4–s8, s15–s19, s21, ands22. The discrete compass sensorss25 throughs28
are unpredictable foru0 and constant foru1. The featuress-g-vminands-g-im-lmin-tr-val(a.k.a.lmin) are constant
for u0 and unpredictable foru1. Features-g-im-lmax-tr-val(a.k.a.lmax) is unpredictable for both primitive actions.
One might guess thatlmaxwould be constant foru0. In fact,lmax, which is only defined when the robot is in a corner,
fluctuates too rapidly with small turns to be diagnosed as constant.

4.2.3 A context-dependent model

If uj has an effect onyi that is unpredictable, then the learning agent tries to find a partition of sensory space into a
discrete set of contexts so that the relationship can be approximated by a linear equation for each context.14 In general,
a context featurezij , for local state variableyi and control signaluj , is an integer-valued feature that takes on a finite
set of values. This set defines a partition of the robot’s state space into a finite set of contexts defined by the predicates
zij = k. One way to define a context feature is to first choose a featurex and divide its range of values into a finite
set of intervals,fIkg, where each interval defines its own context. The context feature is then defined byzij = k iff
x 2 Ik . Using featurex to define a set of contexts is appropriate if the value ofx is a good predictor of the effect of
the control signaluj on the featureyi. To test the hypothesis thatx is a good predictor for the effect ofuj on yi, a
correlator can be used to determineuj ’s effect onyi for each context defined by the predicatezij = k.

Testing each of a large set of features to see if they improve the predictability of a control signal’s effect is ex-
pensive. Heuristics can be used to guide the search for relevant features to use in defining contexts. For example, it
makes sense to first look at features that are closely related to the feature being analyzed, in the sense that they are
close together in the tree of features produced by the generate-and-test process.

Currently, only one such heuristic is implemented: if a feature is based on the value of a element of an image, then
use the position of that element in the image to define the context. Since there is a discrete set of possible positions
for an image-element feature, it is trivial to break the space of possible positions into a discrete set of contexts. For

14This approach is analogous to Drescher’s marginal attribution [Drescher, 1991].

Pierce & Kuipers, AIJ, 1997 22

example, in the case of thelmin and lmax features, there are 23 possible positions and these can be used to break
sensory space into a partition of 23 contexts each defined by the predicatezij = k wherezij is an integer feature
whose value is between 0 and 22 and identifies the position associated with the local minimum or maximum.

For each contextzij = k, a correlator is used to try to predict the effect ofuj onyi given that the robot is in that
context. The agent continues to explore randomly while computing the statisticsmijk , rijk , andijk . The properties
constant, increasing, decreasing, andpredictable are defined as before. For each predictable context, a rule of the
form

_yi = mijk uj , if zij = k

is added to the static action model. Ifmijk is 0, then the predicatezij = k defines a “constant context” (which is
useful for defining path-following behaviors). If the primitive action’s effect on the feature is predictable for every
context, then the feature is predictable for that action.

For the running example, the only features with associated context features arelmin andlmax.

� lmin is already predictable (constant) for control signalu0.

� The effect ofu1 on lmin is predictable for every context. Its effect is to decreaselmin for contexts 0–5 and
19–22, and to increase it for contexts 7–17. For contexts 6 and 18 (in which the robot’s heading is parallel to the
wall), lmin is constant (see Figure 12).

� The effect ofu0 on lmax is unpredictable for almost every context.

� The effect ofu1 is to decreaselmax for contexts 0–5 and 20–22 and to increase it for contexts 8–16. The effect
is unpredictable for contexts 6, 7, 17, and 18.

k=0 k=6 k=12

Figure 12:Example plots of�yi vs.u1�t for thes-g-im-lmin-tr-valfeature for three different contexts. These are used to see if
it is possible to predict the behavior of the feature as a function of the motor control vector and the current context. For actionu1,
featurelmin is decreasing, constant, andincreasingfor contexts 0, 6, and 12, respectively.

At this point the only feature that is both predictable and action-dependent (and is thus a local state variable) islmin.
Its behavior can be modeled by the equation_yi = mi1k u1 wherek is the current value of the context featurezij that
represents the location of the local minimum in the image feature. The featurelmin was produced by thetracker
generator. This generator actually produces multiplelmin features, one for each local minimum in the input image
feature. The number of local state variables depends on the robot’s location. There are two local state variables in the
neighborhood of a corner, three in the neighborhood of a T-intersection, but just one if only a single wall is within
range.

5 Learning control laws

The goal of this step is to learn a suitable set ofhomingandpath-following behaviorsusing the results of the preceding
sections, specifically, the set of local state variables and the set of primitive actions. Recall that for the robot of the

Pierce & Kuipers, AIJ, 1997 23

running experiment, the local state variables are thelmin features, the only features identified as controllable by the
learning agent. The sources of information for this step are the learned static action model (Section 4.2) and dynamic
action model (Section 5.3.2).

A behavior, as the term is used in this paper, is an object with four components, calledoutput, app, done, and
init. The outputcomponent is a function that returns a vector of motor control signals. Theapp component is a
scalar function whose value indicates whether the behavior is currently applicable. The value of this feature may be
0 (indicating that the behavior is not applicable) or 1 (indicating that the behavior is applicable) or some number in
between (indicating a certainty less than 100% that the behavior is applicable). Thedonesignal is a Boolean function
that tells when the behavior has finished. Theinit signal is an input signal that tells the behavior to initialize itself (in
case it has internal state information that needs to be reset).

Path-following behaviors are learned in three steps: (1) continuous error signals are defined; (2) behaviors are
learned for minimizing the error signals; (3) behaviors are learned for moving while keeping the error signals near
zero.

5.1 Defining error signals for control laws

The learning agent’s approach to exploration, mapping, and navigation uses path-following behaviors in which the
robot moves while maintaining an error signal near zero. An example of a path-following behavior based on an error
signal involves a person walking down a corridor. The error signal ise = (y� � y) wherey is the distance from the
person to the right side of the corridor (left in Britain) andy� is a constant that depends on the person, his mood, and
the number of other people in the corridor. The error signal is used in a control law for moving along the corridor.
If the error is positive, the person moves to the left (away from the wall) while walking; if it is negative, he moves
to the right. The control law is efficient and repeatable: by using the control law, the person follows an efficient (i.e.,
straight) path from one end of the corridor to the other, and each time the person follows the path, he ends up in the
same place.

In this example,y is a local state variable. The agent’s approach to defining path-following behaviors is to first
define error signals of the forme = y� � y for each local state variabley.15

5.2 Learning homing behaviors

The purpose of ahoming behavioris to move an error signal toward zero so that path-following behaviors based on
that error signal will become applicable. While it would be possible to use reinforcement-learning methods to learn a
homing behavior given an error signal [Pierce and Kuipers, 1991, Lin and Hanson, 1993], most of the relevant learning
has already been done. The homing behavior can be defined as an instance of the generic, domain-independent control
law in Figure 13, drawing on the knowledge in the static action model.

For each local state variableyi and control signaluj , a homing behavior is defined for reducing the errore =
y�i � yi. It is applicable in every contextzij = k for which the static action model includes a rule of the form
_yi = mijkuj wheremijk is nonzero. It is done when the error is close to zero. Its output is given by a simple control
law. The definition is based on the partition of sensory space used by the static action model to characterize the effects
of uj on yi. This partition is described by the set of contextsfkg. The components of the homing behavior (app,
output, anddone) are defined for each possible contextk (Figure 13). A homing behavior that the agent learns for the
mobile robot is illustrated in Figure 14.

5.3 Learning path-following behaviors

The previous section presented a method for learning homing behaviors that minimize a given error signal. In this
section, a method is presented for moving while minimizing the error signal. The result is a path-following behavior.
Learning a path-following behavior involves two steps: 1) learning how to move in the general direction that keeps the

15Choosing an optimal target valuey� for a featurey is beyond the scope of this paper. The implemented learning agent chooses a value equal
to half the feature’s maximum value.

Pierce & Kuipers, AIJ, 1997 24

For each contextzij = k,

app(k) = maxf0; 2jrijk j � 1g

output(k) = uijk uj

done �
jy�i � yij

y�i
< 0:1

where

uijk =
2�!

mijk

ei +
!2

mijk

Z
ei dt

ei = y�i � yi:

Figure 13: A homing behavior is defined for each local state variableyi and for each primitive actionuj to achieve the goal
yi = y�i . The applicability and output are defined as functions of the current context as defined by the context featurezij . The
applicability has a maximum value of 1.0 if the correlationrijk betweenuj and _yi has a magnitude of 1.0 and a minimum value of
zero if the correlation has a magnitude of 0.5 or less. The output is given by a proportional-integral (PI) control law with parameters
� = 1:0, ! = 0:05 (see [Kuo, 1982]) that minimizes the difference betweenyi andy�i . The behavior is done when this difference
is close to zero. Theinit function resets the value of the integral of the error to zero.

y=y*

Figure 14:An example of a homing behavior for the mobile robot with distance sensors and tank-style motor apparatus. The
agent’s static action model predicts that in this context the second primitive actionu

1 decreases the value of local state variabley.
This information is used in the definition of a homing behavior that is (a) applicable in this context, (b) uses primitive actionu

1 to
move the robot so as to minimize the errore = y� � y, and (c) is done wheny � y�.

error near zero and 2) learning the necessary feedback for error correction to avoid straying off the path defined by the
minimum of the error signal.

The learning agent uses its static action model to determine which primitive action to use to provide motion along
a path. It learns adynamic action modelto tell how to use the remaining primitive actions to provide error correction.

5.3.1 Learning open-loop path-following behaviors

The static action model does not give the agent enough information to defineclosed-looppath-following behaviors
with error correction, but it does give the agent enough information to defineopen-looppath-following behaviors.16

An open-loop path-following behavior lacks error correction but is useful for learning the dynamic action model,
which is in turn useful for defining path-following behaviors with error correction. Recall that the static action model
identifies constant contextszij = k in which primitive actionuj has no effect on local state variableyi.

For each local state variableyi and primitive actionuj , for each constant contextzij = k, two open-loop behaviors
are defined, one for each direction of motion. The behaviors’ outputs are given by

u = u� +
X
Æ 6=j

uÆ u
Æ

16In a closed-loop control law, an error signal is used as feedback to determine a motor control vector that minimizes that error.

Pierce & Kuipers, AIJ, 1997 25

whereu� = �uj andjuÆj � 1. TheuÆ components are used in learning the dynamic action model. The purpose of
an open-loop path-following behavior is to allow the agent to learn the effects of theorthogonalcontrol signals on the
feature while motor control vectoru� is used.17 With this knowledge, it is possible to use the other control signals
for error correction. The definition of open-loop path-following behaviors is summarized in Figure 15. A behavior is

app �
jy�i � yij

y�i
< 0:1 ^ zij = k

output = u� +
X
Æ 6=j

uÆu
Æ

done �
jy�i � yij

y�i
> 0:4

_ (a new behavior becomes applicable)

Figure 15:An open-loop path-following behavior is defined for each local state variableyi, for each primitive action (or opposite)
u
� , and for each constant contextzij = k. The predicatezij = k defines a constant context if it implies thatu� maintainsyi

constant according to the static action model. The behavior is applicable when the error signaly�i � yi is small. The output has
two components: a base motor control vector and a small orthogonal component. During learning of the dynamic action model, the
orthogonal component changes every 3 seconds. Only one of theuÆ ’s is nonzero at a time. The behavior is done when the error
signal is too large or a new behavior becomes applicable.

done when the robot strays too far off the path or when a new behavior becomes applicable indicating that the agent
has a choice to make: to continue the current behavior or start a new one.

For the mobile robot of the running example, there is an open-loop path-following behavior based onu0 (for
turning) for each local state variableyi (see Figure 16a). It is applicable wheneveryi = y�i since, according to the

y=y*

(a) (b)

Figure 16:Two examples of open-loop path-following behaviors. (a) A behavior based onu
0 (for turning) and constraintyi = y�i

is applicable wheneveryi = y�i sinceu0 never changes the value ofyi. (b) A behavior based on primitive actionu1 (advancing)
and constraintyi = y�i is applicable wheneveryi = y�i and the robot’s heading is parallel to the wall on its left (i.e.,zij = 18)
since in this contextu1 keeps the errore = y�i � yi near zero.

static action model, turning has no effect onyi. There is also an open-loop path-following behavior based onu1

(for advancing) for each featureyi (see Figure 16b). It is applicable when the robot is facing parallel to the object
being detected byyi (that is, when context featurezij has value 6 or 18). Figure 20b shows a trace of the behavior of
the robot that results as the learning agent uses its learned open-loop path-following behaviors to explore the robot’s
environment.

5.3.2 The dynamic action model

The static action model predicts the context-dependent effects of a control signal on the local state variables. The
dynamicaction model predicts the context-dependent effects of control signals on the local state variables while an
open-loop path-following behavior is being executed.

17The primitive actions are orthogonal to each other in the sense that theiramvf’s are orthogonal to each other (see Section 3.3).

Pierce & Kuipers, AIJ, 1997 26

The dynamic action model tells, for each open-loop path-following behavior, the effect of each orthogonal action
(each primitive action other than the path-following behavior’s base action), on the local state variable that is used
in the definition of the path-following behavior’s error signal. To learn the dynamic action model, an exploration
behavior is used that randomly chooses applicable homing and open-loop path-following behaviors. A behavior runs
until it is no longer applicable, or a new path-following behavior becomes applicable. Linear regression is used to
learn the relationships between the orthogonal actionsuÆ and the featuresyi in the context of running the open-loop
path-following behavior based on featureyi, motor control vectoru� = �uj , and contextzij = k. While it is running,
linear regressors test the hypotheses_yi = mijkÆ1 uÆ and�yi = mijkÆ2 uÆ by computing the correlationsrijkÆn between

uÆ andy(n)i . If rijkÆ1 > rijkÆ2 andjrijkÆ1 j > 0:6, then the rule

_yi = mijkÆ1 uÆ; if zij = k ^ u = �uj + uÆu
Æ

is added to the dynamic action model. Otherwise, ifjrijkÆ2 j > 0:6, then the rule

�yi = mijkÆ2 uÆ if zij = k ^ u = �uj + uÆu
Æ

is added to the dynamic action model. Otherwise, the relationship betweenuÆ andyi is either zero or unpredictable.18

Suppose that the mobile robot of the running experiment has a wall to its left and that its heading is parallel to
the wall (Figure 16b). In this context, primitive actionu1 (advancing) maintains the distance to the wall,yi, constant
(mijk = 0). Therefore, the open-loop path-following behavior based onu1 andyi is applicable. While executing
this behavior, the effects of other control signals (i.e.,u0) can be diagnosed. In this example,u0 affects the second
derivative of the feature:�yi = mi1k0;2 u0: This is because turning changes the robot’s direction of motion relative to
the wall and this direction determines how fast the robot moves toward or away from the wall as it advances. Examples
of the linear regressors used to learn the dynamic action model for the robot of the running example are illustrated
in Figure 17.19According to the dynamic action model,u0 has a predictable effect onyi while any of the open-loop
behaviors based onu1 is executing. For the open-loop path-following behaviors based onu0, the effect ofu1 onyi is
unpredictable.

0; 0; 0; 1; 1 0; 0; 0; 1; 2 0; 1; 6; 0; 1 0; 1; 6; 0; 2

Figure 17:Plots illustrating the relationships measured by the linear regressors used in learning the dynamic action model. The
labels under the plots give the values ofi, j, k, Æ, andn, wheren is the number of the derivative ofyi being tested. The first
two plots show the effect ofu1 (advancing) on_y0 and �y0 respectively while an open-loop path-following behavior based onu

0 is
executed. Herey0 is one of the local state variables (instances oflmin) produced by the tracker generator. The second two plots
show the effect ofu0 (turning) on _y0 and �y0 respectively while an open-loop path-following behavior based onu

1 is executed in
contextz0;1 = 6. This is the context in which the robot heading parallel to a wall on its right.

18For the dynamic action model, it is necessary to consider both first and second derivatives of the features. Informally, this is becauseu
Æ may

affect the derivative ofmij in the equation_yi = mij uj , that is, _mij = mjÆ uÆ . Together, these give�yi = _mij uj = mjÆ uÆ uj = mijÆ2 uÆ ,
using the product rule and the fact thatuj is constant for a path-following behavior.

19The linear regressors operate on filtered versions ofyi anduj to remove noise that would otherwise hide the relationship between the signals.
The signals are filtered using a moving average taken over several seconds.

Pierce & Kuipers, AIJ, 1997 27

Figure 18:Defining closed-loop path-following behaviors. The learning agent uses the dynamic action model to add error cor-
rection to an open-loop path-following behavior in order to obtain a closed-loop path-following behavior. In this example, a small
turning motion is used to keep the robot on the path as it advances.

5.3.3 Learning closed-loop path-following behaviors

The final step in learning path-following behaviors is to add error correction to the open-loop path-following behaviors
in order to define closed-loop path-following behaviors. Aclosed-loopbehavior is one that receives feedback from the
environment in the form of an error signal which it uses to modify its motor control signals so as to minimize the error.
Consider again the case where the robot is facing parallel to a wall on its left. In this context, the learning agent knows,
because of its static action model, that primitive actionu1 leaves featureyi (the distance to the wall) approximately
constant. Moreover, the agent knows, because of its dynamic action model, how control signalu0 (turning) affects
yi while u1 is being taken. Together, this information is sufficient to define a closed-loop path-following behavior
that robustly moves the robot along the wall. Ifyi goes below its target value (i.e., if the robot gets too close to the
wall), then the agent knows to increase the value ofu0 (i.e., to turn right as shown in Figure 18). Because of the
error correction implemented using control signalu0, the path-following behavior is robust in the face of noise in
the sensorimotor apparatus, small perturbations in the shape of the wall, and even inaccuracies in the action models
themselves.

A closed-loop path-following behavior is defined using the generic template in Figure 19 for each constrainty =
y�, for each primitive action or oppositeu� = �uj , and for each constant contextz = k. The predicatez = k (where
z is a vector of context featureszij andk is a vector of context valueski) defines a constant context if for eachzij 2 z
andki 2 k, zij = ki defines a constant context foryi anduj according to the static action model. The variablerijkÆn

is the correlation betweenuÆ andy(n)i while motor control vectoru� is used in contextk. The behavior is applicable
when all of the elements ofy are near their target values (i.e.,y � y�) and whenz = k indicating that the static action
model predicts that motor control vectoru� keeps the error vectory� � y near zero. The behavior is done when a
new path-following behavior becomes applicable indicating that the agent now has a choice — to continue the current
path-following behavior or to choose a new one.

For the example robot, the set of path-following behaviors contains behaviors for turning in place as well as for
following walls. For the behavior based onu1 (advancing), the effect of the orthogonal primitive actionu0 on the
local state variables is predictable and thus it can be used for error correction. For the behaviors based onu0 (turning),
no error correction is used since the effect ofu1 is unpredictable.20

Figure 20 shows the behavior of the robot at three different stages as the agent learns the set of path-following
behaviors. Section 6 demonstrates the learning of the set of homing and path-following behaviors for a rectangular
environment containing a number of obstacles and a T-shaped environment. In Section 7, the path-following behaviors
learned in this section are used as the basis for an exploration and mapping strategy that allows the agent to develop a
discrete abstraction of the robot’s continuous world.

6 Additional Experiments

The previous sections have demonstrated a set of learning methods that a learning agent may use to learn the sen-
sorimotor and control levels of the spatial semantic hierarchy. The purpose of this section is to describe a number
of experiments (in addition to those described in the previous sections) that demonstrate the generality and some
limitations of the methods for learning the sensorimotor and control levels.

20The implemented learning agent learns a context-dependentstaticaction model. An extension would be to learn a context-dependentdynamic
action model for each open-loop path-following behavior. In this way the effect ofu

1 could become predictable and the action could be used for
error correction in a context-dependent control law.

Pierce & Kuipers, AIJ, 1997 28

app � 8yi 2 y :

�
jy�i � yij

y�i
< 0:1

�
^ 8zij 2 z : (zij = ki)

output = u
� +
X
Æ 6=j

uÆ u
Æ

done = 9yi 2 y :

�
jy�i � yij

y�i
> 0:4

�

_ (a new behavior becomes applicable)

where

uÆ =
X
yi2y

uÆi

uÆi =
2�!

mijkÆ1

ei +
!2

mijkÆ1

Z
ei dt if jrijkÆ1j � jrijkÆ2j; 0:6

uÆi =
!2

mijkÆ2

ei +
2�!

mijkÆ2

_ei if jrijkÆ2j > jrijkÆ1j; 0:6

uÆi = 0; otherwise

ei = y
�
i � yi:

Figure 19:Definition of a closed-loop path-following behavior. Here,y is a vector of local state variablesyi; y� is the correspond-
ing vector of target values;u� = �uj is one of the primitive actions or their opposites;z is a vector of context featureszi, one for
each local state variableyi; andk is the corresponding vector of context valueski. The equationz = k defines a context in which
u
� maintainsy constant according to the static action model. The values ofmijkÆn andrijkÆn are taken from the dynamic action

model. Simple PI and PD (proportional-derivative) controllers are used (see [Kuo, 1982]) depending on whether the primary effect
of uÆ is on _yi or �yi, respectively. Again,�=1.0,!=0.05.

(a) (b) (c)

Figure 20:Exploring a simple world at three levels of competence. (a) The robot wanders randomly while learning a model of its
sensorimotor apparatus. (b) The robot explores by randomly choosing applicable homing and open-loop path-following behaviors
based on the static action model while learning the dynamic action model. (c) The robot explores by randomly choosing applicable
homing and closed-loop path-following behaviors based on the dynamic action model.

Pierce & Kuipers, AIJ, 1997 29

The learning methods are first demonstrated for the mobile robot in a cluttered room. Then, to demonstrate that
the learned model of the sensorimotor apparatus applies beyond the particular environment in which the model was
learned, the learning agent is transferred to a new, T-shaped environment after its control-level learning has been
erased. Here it re-learns the control level and demonstrate a set of learned path-following behaviors. Finally, to
demonstrate that the learning of the control level applies beyond the particular environment in which it was learned,
the learning agent is transferred to an empty room where it again demonstrates the learned path-following behaviors.

Sections 6.4 and 6.5 describe two experiments in which various of the learning methods failed and explain why
they failed. Section 6.4 describes an experiment in which the image-feature generator fails to produce a ring-shaped
representation of the structure of the ring of distance sensors. Section 6.5 describes an experiment in which the learning
agent fails to discover any local state variables. Section 6.6 summarizes the ways in which the learning methods can
fail. Finally, Section 6.7 identifies a number of ways in which the learning methods can be improved.

6.1 A cluttered room

The environment used in this experiment is a rectangular room with dimensions six meters by four meters, containing
four rectangular obstacles (Figure 23). The simulated mobile robot used throughout this section is the same as that
described in Section 2.1.

6.1.1 Modeling the sensory apparatus

The first step in modeling the robot’s sensory apparatus is to apply the group-feature generator. The learning agent
computes distance metricsd1 andd2 after wandering for 20 minutes. Their values are qualitatively similar to those
shown in Figure 2. The group-feature generator identifies the same groups as those in Section 2.3. The second step in
modeling the robot’s sensory apparatus is to apply the image-feature generator. The learning agent computes distance
metricd1 for the group of 23 related sensors after wandering for 40 minutes.21 The outputs of the metric scaling and
relaxation algorithm are qualitatively similar to those shown in Figure 3.

6.1.2 Modeling the motor apparatus

The first step in modeling the robot’s motor apparatus is to characterize the effects of each of a large set of representa-
tive motor control vectors. In this experiment, 100 representative motor control vectors of unit magnitude are chosen.
Eight exampleamvf’s and their associated motor control vectors are shown in Figure 21. These were obtained while
the learning agent wandered for 60 minutes, repeatedly choosing a representative motor control vector at random and
executing it for one second (ten time steps). The first four eigenvectors produced by principal component analysis
from are shown in Figure 22. The first corresponds to a pure rotation motion and the second corresponds to a pure
translation motion. The two motor control vectors identified as primitive actions are shown above under the two prin-
cipal eigenvectors. None of the other eigenvectors match any of theamvf’s. Notice that the primitive actions identified
here very closely match those shown in Figure 7. The result of the analysis is that the robot’s motor apparatus has two
degrees of freedom and that the above primitive actions can be used to produce motion for each degree of freedom.

6.1.3 Learning behaviors

As described in Section 4, the learning agent identifies the set of local-minimum features (s-g-im-lmin-tr-val) as local
state variables (they are the only generated features that are identified as both action dependent and predictable).

The learned static and dynamic action models are qualitatively similar to those learned in Sections 4 and 5. In this
experiment, the learning agent again discovers that it can use the first (turning) primitive action for error correction
while executing an open-loop path-following behavior based on the second (advancing) primitive action. It uses this
information to define closed-loop path-following behaviors. Figure 23 shows a trace of a random exploration behavior
demonstrating the learning agent’s learned behaviors.

21We use fairly long wandering periods so that the robot adequately explores its state space. For the uncluttered, rectangular room, shorter periods
were used because the group- and image-feature generators quickly converged. See Section 6.7 for a discussion of improved feature generators that
automatically detect when they have converged.

Pierce & Kuipers, AIJ, 1997 30

(1.00 -0.00) (0.69 0.73) (0.00 1.00) (-0.73 0.69)

(-1.00 0.00) (-0.69 -0.73) (-0.00 -1.00) (0.73 -0.69)

Figure 21:Exampleamvf’s and associated motor control vectors for the cluttered-room experiment.

1.40 1.10 0.27 0.22

u
0= (-0.706 0.707) u

1= (0.728 0.683)

Figure 22:The first four eigenvectors and the primitive actions for the cluttered-room experiment.

Figure 23:The path taken by the robot while the learning agent randomly selects learned homing and path-following behaviors.
When no other behavior is applicable, it randomly selects primitive actions. The robot is initially in the middle. The learning agent
begins by using a homing behavior to move toward the long obstacle and then using a path-following behavior to move along it.
The diagonal trajectories in the corners are the results of homing behaviors that move the robot from a wall to a path.

Pierce & Kuipers, AIJ, 1997 31

Figure 24:Re-learning behaviors in a T-shaped room. Path-following behaviors based on the advancing primitive action produce
the straight-line trajectories that are parallel to the walls. Path-following behaviors based on the turning primitive action leave the
robot in the same place while changing the robot’s heading. The homing behaviors based on the advancing action produce most
of the rest of the trajectories shown in the picture. A few of the trajectories are produced by a random wandering behavior that is
used whenever none of the other behaviors are applicable. (The learning agent selects its behaviors stochastically and occasionally
selects a random wandering behavior even when other behaviors are applicable.)

6.2 Re-learning the behaviors in a T-shaped room

For this experiment, the robot was moved from the cluttered room to a T-shaped environment and the learning agent’s
control-level learning (i.e., static action model, dynamic action model, and learned behaviors) was erased. Its task
was to begin with an intact model of the robot’s sensorimotor apparatus and learn an appropriate set of homing and
path-following behaviors. The environment used in this experiment consists of two corridors connected to form a T.
The corridor forming the top of the T is 6 meters long and 1.5 meters wide. The shorter corridor is 4.5 meters long
and 1.5 meters wide.

The learning agent successfully learns the open-loop and closed-loop path-following behaviors. Figure 24 shows a
trace of a random exploration behavior demonstrating the learned behaviors. This experiment demonstrates that both
the set of features and the model of the sensorimotor apparatus that were learned in the first environment are applicable
in the second environment.

6.3 Using the behaviors in an empty room

For this experiment, the robot was moved from the T-shaped environment to an empty rectangular room (of dimensions
6 meters by 4 meters). The learning agent’s model of the robot’s sensorimotor apparatus and its set of learned behaviors
were left intact. Figure 25 shows a random exploration behavior demonstrating that the learned behaviors do not apply
only to the environment in which they were learned.

6.4 A long and narrow room

This experiment demonstrates an instance in which the image-feature generator does not produce a ring-shaped repre-
sentation of the structure of the ring of distance sensors. The environment used in this experiment is a long, narrow,
rectangular room. The room is six meters long and one half meter wide. This environment was designed to confuse
the image-feature generator. Since the room is so narrow, the values of distance sensors on opposite sides of the ring
are often similar: If a sensor detects the distance to one of the long walls of the room, then the sensor opposite to it

Pierce & Kuipers, AIJ, 1997 32

Figure 25:Using the learned homing and path-following behaviors in an empty room.

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

1 2 3 4 5 6 7 8 9 10

Metric scaling eigenvalues

0
1
2

34
5

6

7
8910

11
12

13

14
1516

17
18

19

2122
23

0
1

2
3

4
5

6

7

89
10

11
12
13

14
15

16
17

18 19

21
22
23

Figure 26:The outputs of the metric-scaling and relaxation algorithms for the narrow-room experiment.

detects the distance to the wall on the opposite side of the room. Both sensors produce a small value (less than 0.5).
On the other hand, if a sensor returns a large value, then there is a good chance that the sensor opposite to it will also
return a large value.

If opposite sensors return similar values, on average, then the image-feature generator will place them close to-
gether in the image feature. It is unlikely, in this case, that the image feature will capture the ring structure of the array
of distance sensors.

6.4.1 Modeling the sensory apparatus

The result of the group-feature generator is the same as before: The distance sensors are all grouped together. The
outputs of the metric scaling and relaxation algorithm are shown in Figure 26. According to the metric-scaling scree
diagram on the left, the structure of the array of sensors is best captured by a four-dimensional representation – there is
no arrangement of points in fewer than four dimensions for which the distance between any two points approximates
the distance between corresponding sensors as measured by distance metricd1. The middle figure below shows the
projection onto two dimensions of the set of points generated by the metric-scaling algorithm. The figure on the right
shows the results of the relaxation algorithm.22 Notice that sensors that are adjacent in the ring of sensors are close
together in the image.23

22The metric-scaling algorithm, the relaxation algorithm, and the definition of the image and motion features can all handle images of arbitrary
dimension. However, in the current implementation, we have constrained the image feature to be two-dimensional. A goal for future research is to
remove this artificial constraint and test the methods on sensory arrays that are genuinely three-dimensional.

23Though the results are not shown here, we have also run the relaxation algorithm for this distance metric in three dimensions. In that case the
resulting pattern of sensors resembles the pattern of stitching on a baseball.

Pierce & Kuipers, AIJ, 1997 33

1.36 0.83 0.30 0.27

u
0= (-0.723 0.680) u

1=(-0.532 -0.837) u
2= (-0.877 -0.481)

Figure 27:The first four eigenvectors and the primitive actions for the narrow-room experiment.

1.11 0.71 0.24 0.21

u
0= (-0.746 0.659 u

1= (0.765 0.632)

Figure 28:The first four eigenvectors and the primitive actions for the circular-room experiment.

6.4.2 Modeling the motor apparatus

The first four principal eigenvectors for the space of average motion vector fields are shown in Figure 27. The method
actually identifies the turning motor control vector correctly. The second primitive action is primarily an advanc-
ing action but has a significant turning component to it. The method erroneously identifies three primitive actions.
The second and third primitive actions are both poor approximations of a motor control vector that produces a pure
advancing motion.

6.5 A circular room

This experiment demonstrates an instance in which the learning agent fails to discover any local state variables. The
robot’s environment is a circular room three meters in diameter. The results of the learning of the sensorimotor
apparatus are summarized by the set of principal eigenvectors and primitive actions shown in Figure 28. The learning
agent identifies two primitive actions corresponding to turning and advancing, but fails to discover any local state
variables. The following analysis explains why this happened.

For a feature to be a local state variable, it must be both action-dependent and predictable. For a feature to
be predictable, the effects of the primitive actions on the feature must be known for all possible contexts. In the
rectangular and T-shaped environments, the local-minimum features (which give distances from the robot to nearby
objects or walls) were identified as local state variables. Here is a summary of what was learned by the learning agent
(and represented in the static action model) for the robot in the rectangular environment:

� The first primitive action (turning) does not affect the local-minimum features. The effects of the primitive
action are thus predictable for all contexts.

� The effect of the second primitive action (advancing) is context dependent:

– When the robot is facing toward a wall, the primitive action reliably decreases the value of the local-
minimum feature.

Pierce & Kuipers, AIJ, 1997 34

– When the robot is facing away from a wall, the primitive action reliably increases the value of the local-
minimum feature.

– When the robot is facing parallel to the wall (in either direction), the primitive action leaves the value of
the feature constant.

For this experiment (with the circular environment), the learning agent’s learned static action model is identical
to that described above, but with the following exception: When the robot is facing parallel to the wall, the effect of
the second primitive action on the local-minimum feature is unpredictable. Here is an explanation for the difference.
When facing parallel to a straight wall, a robot can move for many steps without changing the distance to the wall
significantly. This is why it is possible for the linear regression tester that analyzes the effect of the primitive action to
conclude that its effect is, to a good approximation, zero in this context. In the circular world, on the other hand, the
robot can only advance a few steps without changing the distance to the wall. The only conclusion that the learning
agent is able to draw from the linear regression tester is that the effect of advancing is unpredictable in this context.

6.6 Failure modes

Sections 6.4 and 6.5 gave two examples of cases in which the learning agent failed to learn a set of homing and path-
following behaviors. This section provides a more exhaustive list of ways in which the learning methods described in
this paper can fail. The next section discusses how the learning methods may be improved.

Modeling the sensory apparatus. If there is no structured array of sensors, then the group-feature generator will
produce only small or singleton groups and the image-feature generator will not apply. If there is an array of sensors but
the sensors do not adequately sample a continuous property of the environment, then the group and image features will
fail to produce a representation of the structure of those sensors. For example, if there are only four distance sensors,
then the values of adjacent sensors may not be similar enough for the group-feature generator to group them together.
If the environment is large and the learning agent does not adequately explore the environment before applying the
group- and image-feature generators, then the measured inter-sensor distance metrics may not accurately reflect the
structure of the sensory apparatus.

Representing motion. The motion-feature generator requires an image feature (either learned, as is the case here, or
givena priori by the robot’s designer). If there is no image feature, then the motion-feature generator will not apply.
If the robot’s motion is so fast that successive image-feature values are unrelated, then the motion feature will fail to
produce meaningful results.

Modeling the motor apparatus. The matching process that identifies primitive actions (i.e., motor control vectors
whoseamvf’s match the principal eigenvectors) can fail to correctly identify a primitive action if theamvf’s have not
converged (i.e., if the learning agent has not wandered long enough and the values of theamvf’s are still fluctuating
with time). This is one possible explanation for the failure to identify just two primitive actions in Section 6.4.2.

Generating candidate local state variables. The discovery of local state variables may fail if the language of
features and feature generators is not general enough. In such a case, none of the generated scalar features would
satisfy the definition of local state variable (as in the experiment described in Section 6.5). On the other hand, if
the language of features and generators is too general, the learning agent will quickly become bogged down in a
combinatorial explosion of mostly useless features. In this paper, we identified a small set of feature generators that
are appropriate for a robot with a rich sensorimotor apparatus and then demonstrated that they are sufficient for a
particular set of environments and sensorimotor apparatuses.

Learning action models. The learning agent will fail to correctly learn the static and dynamic action models if it
does not explore long enough for the linear-regression calculations to converge. In the case that the learning agent
must learn the relationships between a motor control vector and a feature for a large number of contexts, the method
requires that the learning agent experiment with the motor control vector in each of those contexts.

Pierce & Kuipers, AIJ, 1997 35

Learning path-following behaviors. The learning of path-following behaviors can depend on the set of learned
primitive actions. If none of the primitive actions can be used to maintain any of the local state variables constant, then
no path-following behaviors will be learned.

In the experiments described in this paper, each learning method builds on the results of the preceding methods,
which means that one source of failure for a method is the failure of a preceding method. This observation, if left
unqualified, sells the learning methods short. First, the methods are interesting in their own right (for example, the
modeling of the motor apparatus could be applied to a sensory system whose structure was given by the robot’s
designer rather than being learned). Second, the sequential nature of the learning is partially an artifact of our particular
learning problem. For example, the discovery of local state variables does not, in general, depend on the success of
the image-feature generator but is instead the result of an independent process of generate and test.

6.7 Future work

Section 6.6 identified a number of ways in which the learning methods can fail. This section provides suggestions for
improvements to the learning methods.

Improved feature testers. One way that several of the learning methods can fail is by jumping to a conclusion pre-
maturely. For example, if the group-feature generator uses a distance metric before the distance metric has converged,
then the output of the generator may be incorrect. If primitive actions are identified before theamvf’s have converged,
then the model of the motor apparatus may be incorrect.

In these examples, the distance metrics and theamvf’s are examples offeature testers— features that are used to
characterize other features. A solution to the problem of drawing premature conclusions is to have each feature tester
tell when its output is meaningful. It can do this by providing a measure of confidence in addition to its output value.
For example, the confidence level for a tester might be close to 1 if the tester’s output is stable (changing slowly) and
close to 0 if the tester’s output is still fluctuating.

For a linear regression tester, the confidence level should be a function of the set of inputs it has received. Consider,
for example, how the static action model uses linear regression testers. It uses a separate linear regression tester for
eachhfeature, primitive action, contexti triple. If the robot is never in a given context, then the confidence level for any
linear regression tester based on that context should be zero. The confidence level for a linear regression tester might
be defined in terms of the90% confidence interval24 for the correlation between the input variables. The smaller the
confidence interval, the greater the tester’s confidence level. Associating confidence levels with features could improve
all of the learning steps listed in the previous section by reducing the chance of producing inaccurate or incomplete
models.

An improved static action model. The learning agent uses the static action model to define a set of open-loop path-
following behaviors — behaviors that move the robot while maintaining a local state variable constant. In the current
implementation, open-loop path-following behaviors are based on primitive actions. If a primitive action maintains a
local state variable constant, according to the static action model, then it can be used as the “base action” for a path-
following behavior. Using only primitive actions as base actions is a limitation of the current implementation. The
method for learning path-following behaviors would be improved if the static action model could predict the effects of
arbitrary motor control vectors, not just the primitive actions. With a more comprehensive static action model, more
path-following behaviors could be defined. For example, in the circular room, a path-following behavior could be
based on a motor control vector with a large advancing component and a small turning component.

One approach to improving the static action model would be to discretize the space of all motor control vectors
into a set of representative motor control vectors and then to learn models of all of these instead of just the primitive
actions. Another approach would be to use a neural network [Jordan and Rumelhart, 1992] to learn to predict the
context-dependent effects of arbitrary actions. The network could then serve as the static action model and could be
used to find base actions for path-following behaviors.

24See, for example, [Krzanowski, 1988, p. 415].

Pierce & Kuipers, AIJ, 1997 36

Reinforcement learning. It may be possible to use reinforcement learning [Chapman and Kaelbling, 1990, Lin, 1993,
Ring, 1994, Sutton, 1990, Williams, 1987] to learn homing and path-following behaviors without the need for the
primitive actions or explicit action models. An advantage of such an approach is that it does not presume that a partic-
ular model of the sensorimotor apparatus has been learned. A disadvantage is that it is difficult to train more than one
behavior at a time [Whitehead et al., 1993] whereas it is possible to learn action models for a large number of features
simultaneously.

Learning composite primitive actions. Consider a robot that is capable of rotating and advancing and that has a
ring of distance sensors that is always oriented in the same direction. The learning methods of Section 2 will succeed
in identifying the structure of the ring of sensors. The first three steps of Section 3 will succeed in identifying two
basic motions: one for translating in one direction, and one for translating in a perpendicular direction. The fourth step
of Section 3, as currently implemented, will fail to identify two corresponding primitive actions since the robot is not
capable of directly translating in two directions.

This suggests a topic for future research: to extend the learning of primitive actions to allow for composite actions
(action sequences). In the example of the robot with the fixed sensor ring, a primitive action could be composed of a
turn to a particular direction followed by an advance. An alternate solution is that of the preceding section: to learn
homing and path-following behaviors directly using reinforcement learning without first learning primitive actions.
This example illustrates that it is more difficult to learn a model of a sensorimotor apparatus for which an important
action has no immediate effect on the sensors.

7 From continuous world to finite-state world

The learning agent has made the transition from raw senses and motor control vectors to local state variables and
high-level behaviors (which comprise the control level of the spatial semantic hierarchy). The goal of the next step is
to abstract from the continuous sensorimotor apparatus to a discrete sensorimotor apparatus by defining finite sets of
viewsandactions. The source of information for this step is the set of learned behaviors (including the knowledge of
when each is applicable).

For any given state of the robot, there is a finite set of homing and path-following behaviors. These behaviors are
theactionsof the discrete sensorimotor apparatus. Executing one of the actions involves running the corresponding
behavior until it terminates. The set of states in which actions terminate is also finite. These states are named via
a mapping from sense vectors to symbols calledviews. In our experiments, this mapping is implemented using a
matching predicate: two sense vectors are judged to be similar if their Euclidean distance is less than a small constant.
If the current sense vector is new then a new view is created and associated with it. If the current sense vector matches
one previously seen, it is associated with the same view as the previous sense vector.

This interface abstracts from continuous time to discrete time. While a path-following behavior is executing, the
interface is undefined. When the behavior terminates, the interface identifies the current view and lists the current set
of applicable behaviors. Figure 29 demonstrates this interface. Initially (v1), no wall is within sensor range and the
only available action is the wandering behavior. When the wandering behavior terminates (v2), a homing behavior
is applicable. Selecting this behavior leads to viewv3 where two path-following behaviors based onu0 (turning) are
applicable. Selecting the first leads to viewv4. Selecting it again leads to viewv5. At this point, two 1-degree-of-
freedom path-following behaviors based onu1 (advancing) are applicable. Choosing the first leads tov6. The figure
shows the behavior of the robot during a user-guided exploration that leads it tov12. The rest of the exploration around
the room (not shown) eventually returns the robot to the southeast corner. Using its matching predicate, the learning
agent recognizes that it has returned to viewv6. The robot’s experience is represented as a collection of(Vi; Aj ; Vk)
triples, calledschemas. This knowledge is the basis for the causal level of the spatial semantic hierarchy.

8 Learning the topology of the environment

In Section 1.1, we described the spatial semantic hierarchy, which is comprised of five levels: sensorimotor, control,
causal, topological, and metrical. We have demonstrated a learning agent that has learned the first three levels: The

Pierce & Kuipers, AIJ, 1997 37

v1v2

v3

v4 v5 v6

v7

v8

v9

v10

v11
v12

a b

Figure 29:A demonstration of the discrete abstract interface. We used the abstract interface of the discrete sensorimotor apparatus
to select appropriate behaviors to drive it around the room. At each step, the interface provides the view name (e.g.,v1) that identifies
the current state, and a finite set of applicable homing and path-following behaviors. The dotted arrows represent behaviors based
on left turn motor control vectors (u0 > 0). The solid arrows represent behaviors based on forward advance motor control vectors
(u1 > 0). During this exploration, the robot identifies the 12 unique views shown in the figure on the right.

sensorimotor level was learned in Sections 2 and 3. The control level was learned in Sections 4 and 5. The causal level
was learned in Section 7. We now describe how the result of the agent’s learning could be used to learn the remaining
levels of the spatial semantic hierarchy.

The robot’s path-following behaviors constrain its motion to a one-dimensional subspace of the robot’s complete
state space. This 1-D skeleton is the basis for an abstraction of the robot’s environment as a graph (a set of nodes and
a set of edges connecting the nodes together). The edges correspond to paths — trajectories in the robot’s state space
produced by path-following behaviors. The nodes correspond to states where paths terminate, that is, states where a
new path-following behavior becomes applicable and the agent stops to choose one of the currently applicable paths.
The agent’s goal is to construct this graph.

In the case where views uniquely identify states, the problem is straightforward. The agent keeps track, for each
state it has seen, of all the actions applicable at that state. Each time it takes an action,Aj , that takes it from viewVi
to Vk , it adds the edge(Vi; Aj ; Vk) to the graph. It continues to explore (intelligently or randomly) until there are no
state-action pairs that it has not explored.

In the case that views do not uniquely identify states, a more sophisticated exploration strategy is required. Such
strategies are generally based on the following idea: If the current view does not uniquely identify the current state,
the agent supplements the current sense vector with the sense vectors of nearby states. With enough information about
the surrounding area, the current state can be uniquely identified.

Finally, metrical information can be added to the topological representation by recording the time taken to traverse
each path. With this information, navigation including shortest-path planning is possible.

To summarize, the learning agent has made a critical change of representation by abstracting a continuous senso-
rimotor apparatus to a discrete sensorimotor apparatus with a finite set of sense values and actions. Understanding a
continuous world is very difficult. Our learning agent demonstrates a way to reduce the problem of understanding a
continuous world to the problem of understanding a discrete world, a problem that has been extensively studied (see
Section 9.1).

9 Related Work

The work mentioned in this section deals with the general problem of learning a model of an environment. A complete
model of an environment is a description that is sufficient for predicting the input/output behavior of the environment,
i.e., for predicting the sensory input that will be received from the environment in response to any sequence of actions.
In some cases, learning a complete model is impractical, in which case a partial model may be learned.

Methods for learning a model of an environment can be divided into two types: those that deal with finite-state
worlds and those that deal with continuous worlds. Examples of the first type are given in Section 9.1. Examples of

Pierce & Kuipers, AIJ, 1997 38

the second type are given in Section 9.2. Our contribution has been to show how a learning agent can abstract a robot’s
continuous world to a finite-state world to which finite-state learning methods may be applied.

9.1 Inferring the structure of finite-state worlds

The task of inferring the structure of a finite-state environment is the task of finding a finite-state automaton that ac-
curately captures the input-output behavior of the environment. In the case that the learning agent is passively given
examples of the environment’s input/output behavior, it has been shown that finding the smallest automaton consis-
tent with the behavior is NP-complete [Angluin, 1978, Gold, 1978]. With active learning, in which the agent actively
chooses its actions, the problem becomes tractable. Kuipers [Kuipers, 1978] describes the TOUR model, a method for
understanding discrete spatial worlds based on a theory of cognitive maps. Dudek, et al. [Dudek et al., 1991] general-
ize Kuipers and Byun’s [Kuipers and Byun, 1988, Kuipers and Byun, 1991] strategy for topological map-learning and
provide algorithms for discriminating perceptually identical states. Angluin [Angluin, 1987] gives a polynomial-time
algorithm using active experimentation and passively received counterexamples. Rivest & Schapire [Rivest and Schapire, 1993]
improve on Angluin’s algorithm and give a version that does not require the reset operation (returning to the start state
after each experiment).

Dean et al. [Dean et al., 1992] have extended Rivest and Schapire’s theory to handle stochastic FSA’s. They as-
sume that actions are deterministic but that the output function mapping states to senses is probabilistic. The key to
their method is “going in circles” until the uncertainty washes out. Dean, Basye, and Kaelbling [Dean et al., 1993]
give a good review of learning techniques for a variety of stochastic automata. Drescher’s schema mechanism
[Drescher, 1991] employs a statistical learning method called marginal attribution. Schemas emphasize sensory effects
of actions rather than state transitions and are ideal for representing partial knowledge in stochastic worlds.

Wei-Min Shen’s LIVE system [Shen, 1994] learns the structure of a finite-state environment from experience (and
experimentation) within it. His complementary discrimination learning algorithm exploits observed counterexamples
to a hypothesized concept definition to refine the boundary between positive and negative examples of the concept.
When the environment is only partially observable, LIVE uses locally distinguishing experiments to test the hypothe-
sized properties of unobserved state variables.

A primary focus of the work of Shen and other constructive inductionists [Hiraki, 1994, Matheus, 1991, Shen, 1990,
Shen and Simon, 1989] is the learning of new features. At this level of description, our approach and Shen’s are sim-
ilar. However, in terms of the actual methods used and the domains of applicability, the two approaches are very
different and are in fact complementary.

We focus on feature-learning methods applicable to robots with continuous-valued sensors and control signals
situated in a 2-dimensional approximation of a 3-dimensional world. We provide a language of features and generators
especially suitable for robots with structured arrays of sensors. Our emphasis is on learning of sensory features and
continuous control laws. Shen, on the other hand, focuses on learning rules (consisting of conditions, actions, and
predictions) that are expressed symbolically. The conditions and predictions are expressed in terms of “percepts,”
which are high-level, symbolic descriptions (e.g., ON(disk, peg)). The actions may have continuous parameters (e.g.,
rotate(�)), but each action is atomic rather than continuous.

The two approaches might be combined in the following way: a learning agent first uses our methods to learn to
navigate using its continuous sensorimotor apparatus, viewing the world in terms of discrete states and actions. It then
uses Shen’s methods to learn relationships expressed in terms of these states and actions and to acquire nonspatial
knowledge such as the effects of pushing objects, flipping switches, or opening doors.

A more specific example of a potential combination of the two approaches is the use of Shen’s complementary
discrimination learning in learning context-dependent action models (see Section 4.2.3). We currently use a brute-
force method for determining whether a control signalu has a predictable effect on a given featurex. The method
involves testing a large set of features to see if any can be used to define a partition of the robot’s state space as a set
of contexts such that in each context there is a simple, linear relationship betweenu andx. We expect that methods
such as Shen’s complementary discrimination learning could be used to generate such partitions more efficiently and
more intelligently.

Pierce & Kuipers, AIJ, 1997 39

9.2 Inferring the structure of continuous worlds

Applying finite-state automaton learning methods to the real world or a continuous simulation of it requires an ab-
straction from a continuous environment to a discrete representation. Kuipers and Byun [Kuipers and Byun, 1988,
Kuipers and Byun, 1991] demonstrate an engineered solution to the continuous-to-discrete abstraction problem for
the NX robot. NX’sdistinctive placescorrespond to discrete states and itslocal control strategiescorrespond to state
transitions. These constructs have to be manually redesigned in order to apply to a robot with a different sensorimotor
apparatus. Mataric [Mataric, 1991, Mataric, 1992] and Kortenkamp & Weymouth [Kortenkamp and Weymouth, 1994]
have engineered similar solutions on physical robots.

Lin and Hanson [Lin and Hanson, 1993] use a physical robot, called Ratbot, with 16 sonar sensors and 16 infrared
sensors to demonstrate learning of a topological map of locally distinctive places. Their work is inspired by the work
of Kuipers and Byun, but they use reinforcement learning25 to train the local control strategies, rather than engineering
them by hand. The target behaviors (e.g., corridor following) are specified by a human teacher. For example, when
learning the corridor-following behavior, the robot is rewarded when it moves along the corridor without running into
obstacles.

Our approach [Pierce, 1991a, Pierce, 1991b, Pierce, 1995, Pierce and Kuipers, 1994] is complementary to that of
Lin and Hanson. They specify the desirable behaviors by defining appropriate reward signals and then letting the robot
learn on its own how to gain the rewards. Our learning agent, on the other hand, specifies its own target behaviors,
eliminating the need for the human teacher. It does this by first learning a set of local state variables and then using them
to define a set of error signals. Homing and path-following behaviors are then specified as behaviors that minimize the
error signals or move the robot while maintaining them near zero. All of this is accomplished in a domain-independent
manner — the robot does not need to be given any knowledge about corridors or corridor-following behaviors.

Once the error signals are defined, there are a number of ways in which the homing and path-following behaviors
might be learned. Reinforcement learning is one approach.26 The approach used in this paper is to learn static and
dynamic action models that characterize the effects of actions on the local state variables and then to use these models
to directly define the homing and path-following behaviors. This approach does require that the learning agent be given
some knowledge of control theory, but the required knowledge consists of domain-independent templates. It would be
interesting to combine our approach with that used by Lin & Hanson’s Ratbot to produce a learning method that uses
neither domain-dependent knowledge nor a knowledge of control theory. The error signals would be defined as for our
learning agent and a neural-net version of Q learning would be used to learn the local control strategies based on those
error signals. The control laws would be implemented as mappings from sensory inputs to motor control signals. If
the sensory inputs include the error signals, their derivatives, and their integrals, then the set of control laws that can
be defined in this way includes the PI and PD control laws used by our implemented learning agent.

An important difference between our approach and that of Lin and Hanson is that our approach handles context
dependence at the feature level rather than at the behavior level: Our learning agent learns, given the current context,
the effects of each primitive action on each feature. Lin and Hanson’s learning agent learns, given the current context,
which action to take in order to produce a particular behavior. There are two advantages to learning at the feature level.
First, what is learned about one feature may be used to define multiple behaviors, e.g., a homing behavior (in which
a primitive action is used to increase or decrease the value of the feature) and a path-following behavior (in which
a primitive action is used to move while maintaining the feature constant). Second, the learning agent can learn the
effects of motor control signals on multiple features simultaneously, whereas it is only possible for Lin and Hanson’s
learning agent to learn one behavior at a time.

10 Discussion

10.1 What is the value of an existence proof?

As discussed in Section 1.3, the results presented here are an existence proof, demonstrating one path from the begin-
ning to the end of a complex learning problem. Once a single path has been demonstrated, however narrow, future

25The reinforcement-learning algorithm is a neural-network version of Q learning [Watkins, 1989, Lin, 1993].
26In earlier work we explored the use of reinforcement learning to learn homing behaviors [Pierce and Kuipers, 1991].

Pierce & Kuipers, AIJ, 1997 40

research can broaden the way and find alternate routes.
We have made some progress toward assessing the width and solidity of the path, first by applying the same

learning methods to a significantly different robot (Section 2.5), and second by applying our methods to a variety of
different environments systematically designed to demonstrate both success and failure of the methods (Section 6).
This is a step toward determining how much and what type of sensory input a robot must have to learn a meaningful
cognitive map of a continuous environment, and how observable and predictable the environment must be for the robot
to be able to comprehend it.

The existence proof demonstrates that a hard and interesting learning problem may have a heterogeneous solution,
combining the strengths of several focused learning algorithms. While this solution does rely on a number of assump-
tions about the sensorimotor system and the environment (Section 6.6), we believe that several of those assumptions
can be eliminated by future research (Section 6.7). An irreducible minimum set of assumptions would be a significant
scientific result.

10.2 Why learn what can be programmed directly?

This paper has shown, among other things, how a learning agent can learn a model of its sensorimotor apparatus.
There are several reasons why it is worthwhile to take the trouble to learn what could be directly programmed by a
robot’s designer.

Sensor variation and failure. Direct programming does not take sensor failure into consideration. For example, if
one of a set of distance sensors fails, the learning methods will accommodate the failure with no additional human
intervention. These methods will also accommodate random variation in the position or direction of distance sensors.
Such variation is inevitable if robots are mass produced.

Generality. Ideally, one learning algorithm applies to many different types of sensorimotor apparatuses and thus can
replace the process of designing a particular solution for each sensorimotor apparatus.

A deeper understanding of the problem domain. The design of the learning agent required the identification of
sources of information that could be exploited by the learning agent and the development of general-purpose learn-
ing algorithms to exploit that information. These sources of information and learning algorithms comprise a deeper
understanding of the problem domain.27

10.3 What about innate goals?

We have characterized a robot in terms of its set of sensors and effectors, without concern for its innate goals (e.g.,
survival, curiosity, pain avoidance). The learning methods we have developed function by observing the sensory effects
of actions, either during a random walk through the environment (as described in this paper) or during goal-directed
behavior.

Reactive behavior in pursuit of innate goals can support the learning methods described here. With a goal such as
pain avoidance, for example, a learning agent might quickly learn a reflexive behavior for obstacle avoidance. Such
a behavior would help keep the learning agent out of danger as it applies the higher-level learning methods. On the
other hand, by operating in the background of goal-directed behavior, the learning agent could receive a biased set of
experiences and observations of the environment.

Conversely, the learned methods can serve as a foundation for goal-directed learning. When the agent has learned
higher-level sensorimotor primitives, it can search for behaviors in an action space of larger granularity, describing
the environment at a higher level (see Figure 20), and making it easier to achieve innate goals such as survival and
curiosity.

27Of course, designing a learning agent does notguaranteea deeper understanding of the problem domain. An opaque method such as neural
net or genetic algorithm learning could conceivably learn a model of its sensorimotor apparatus without teaching us anything about perception,
behavior, or map building.

Pierce & Kuipers, AIJ, 1997 41

10.4 How general are the learning methods?

This paper has identified and demonstrated a number of generic methods for modeling and using an uninterpreted
sensorimotor apparatus. This section lists several examples where a generic object or method is used that subsumes a
more specific object or method but is more general because it makes fewer assumptions.

The learned features are based on a set of generic mathematical constructs (e.g., scalars, vectors, matrices, scalar
fields, and vector fields) rather than on a human-generated list of salient properties of a robot’s environment. The
method for identifying the structure of a sensory apparatus uses generic distance metrics that make no assumptions
about what the sensors are sensing (for example, the method does not assume that the sensors measure distances
to objects). The method for characterizing the effects of motor control vectors is based on spatial and temporal
derivatives, not motion of objects (which would require the identification and tracking of objects). The local state
variables learned by the learning agent in the example are defined in terms of the purely generic concept of local
minimum, rather than the concept of distance-to-wall, which is only meaningful to the robot’s designer. The learned
control laws are based on error signals derived from the learned local state variables – the learning agent of the example
needed no concept of wall when defining its path-following behaviors. The path-following behaviors are implemented
using generic control laws. The parameters used in the control laws are found by analyzing relationships between
control signals and local state variables without any understanding of the meanings of the control signals or local
state variables. The views of the learning agent’s discrete abstract interface are the terminal states of path-following
behaviors, as opposed to places meaningful only to the robot’s designer.

Related to the concept of generality is the concept of extensibility. The current implementation may be extended
by adding new types of features and feature generators. For example, new distance metrics could be used with the
group-feature generator to capture new ways of distinguishing different types of sensors; the method for generating
and recognizing local state variables could be made more general by adding new feature generators.

10.5 Changes of representation

Each abstract interface that the agent learns provides a new representation to reason with.

� At the sensorimotor level, the group and image-feature generators analyze inter-sensor correlations to produce
the image feature, which has substantially more structure than the raw sense vector.

The learned set of primitive actions provide a new representation of the robot’s motor capabilities that is
grounded in sensory effects.

� At the control level, behaviors and features are learned that are no longer purely egocentric. Whereas the
primitive actions are grounded in sensory effects averaged over time, the homing and path-following behaviors
are grounded in the structure of the external environment as reflected by the local state variables.

� At the causal level, the continuous state space is reduced to a finite set of states and trajectories, which can then
be represented as the nodes and edges of a graph in the topological map.

11 Summary

This paper has presented a sequence of learning methods sufficient for learning a cognitive map of a robot’s continuous
world in the absence of domain-dependent knowledge of the robot’s sensorimotor apparatus or of the structure of its
world. The reader may object that the sequence is tenuous: if any method failed, then the subsequent methods would
not even apply. While this is true, we maintain that each of the learning methods is interesting in its own right
and is applicable beyond the particular learning problem investigated here. Each learning method identifies a source
of information available through experimentation with an uninterpreted sensorimotor apparatus and each provides a
method for exploiting that information to give the learning agent a new way of understanding the robot’s sensory input
or a new way of interacting with the robot’s environment.

The learning methods are summarized below and in Figure 30. Section 2 showed how to use the group and image-
feature generators to learn a structural model of a sensory apparatus. They exploit the fact that, in a well engineered

Pierce & Kuipers, AIJ, 1997 42

Sensorimotor Level

Control Level

Causal Level

a0

a1

Raw senses and actions Sensory Structure

+

−

+

−
u1 u0

Motion detection Primitive actions

< Vi, Aj, Vk >

Discrete Abstract Interface

Homing behaviors

y=y*

Open−loop
path−following
behaviors

Closed−loop
path−following
behaviors

Static
Action
Model

Local
State
Variables Dynamic

Action
Model

Figure 30:A graphical summary of the learning methods used in this paper, showing the objects learned at each of the first three
levels of the spatial semantic hierarchy.

Pierce & Kuipers, AIJ, 1997 43

array of sensors sampling an almost-everywhere continuous property of the environment, the layout of the sensors
may be reconstructed based on inter-sensor similarities. Section 3 showed how to use this structural knowledge to
first define motion detectors and then use them to characterize the capabilities of a motor apparatus using a set of
primitive actions, one for each of the robot’s degrees of freedom. Section 4 showed how to recognize local state
variables — scalar features whose derivatives can be approximated by context-dependent linear functions of the motor
control signals. The effects of the primitive actions on the local state variables are captured by the static action
model. Section 5 showed how to use the static action model to define homing and open-loop path-following behaviors,
how to learn a dynamic action model to predict the effects of the primitive actions on the local state variables while
open-loop path-following behaviors execute, and how to use the dynamic action model to define robust, closed-loop
path-following behaviors. Finally, Section 7 showed how to use the homing and path-following behaviors to define
a discrete abstract interface that allows the learning agent to abstract its continuous world to a finite-state world. By
using the finite-state automaton as the target abstraction, the learning agent inherits a powerful set of methods for
inferring the structure of its world.

In the biological world, the newly hatched organism embodies a great deal more knowledge than our learning
agent. However, we hope that an exploration like that reported here will shed light on the structure and learnability of
fundamental knowledge about an agent’s relationship with its world. If so, it could provide insights into the evolution,
development, and learning of spatial knowledge in biological organisms.

The potential for application of these methods to mechanical robots is much more direct. New robots, with new
sensors and effectors, are being designed and built all the time. Robots will one day be sent into environments
that humans have never directly experienced (e.g., the deep ocean floor or the surface of another planet). For a
newly-created robot to be able to orient itself to its sensorimotor system and its environment through autonomous
experimentation would be of substantial value. We believe that the methods presented here are a step in that direction.

A Computational Complexity

This appendix summarizes the complexities of the various learning methods described in this paper. The overall
complexity of the sequence of learning methods is potentially exponential in the size of the raw sense vector and the
depth of the tree of generated features. In our experience, this level of complexity can be drastically reduced by using
an appropriate set of feature generators as is explained in Section A.3.

A.1 Modeling the sensory apparatus

Computing the distance metricd1 (used by both the group-feature generator and the image-feature generator) is of
complexityO(n2T) wheren is the number of elements in the raw sense vector andT is the number of time steps
taken before the group-feature generator is applied. Computing the distance metricd2 (used by the group-feature
generator) requires anO(1) computation for each element of the raw sense vector at each time step (to update the
frequency distributions) and anO(n2) computation when the group-feature generator is applied for a total complexity
of O(nT + n2).

Identifying similar subgroups is anO(n2) computation. Using transitive closure to identify closed subgroups is an
O(n3) computation. The metric-scaling is performed with an iterative algorithm for which each iteration involves an
O(n3) computation. The relaxation algorithm is also iterative with each iteration beingO(n2). Since the dependence
of the number of iterations onn is unknown, these are lower limits on the actual complexities. In our experiments,T
is much greater thann so the overall complexity of the sensory-modeling step can be approximated byO(n2T).28

A.2 Modeling the motor apparatus

The calculation of the motion feature requires anO(n2) computation at each time step. The calculation of theamvf’s
is thus of complexityO(n2T). The principal component analysis algorithm is of complexityO(n3). Again, sinceT
is much greater thann, the overall complexity can be approximated byO(n2T).

28An open problem is to predict the value of T for each learning method that requires an exploration phase.

Pierce & Kuipers, AIJ, 1997 44

A.3 Identifying local state variables

The first step in identifying local state variables is to generate new features. If every subset of the current set of
defined features can be used to produce a new set of features, then the complexity of generating and testing features
will be at leastO(2n) wheren is the number of elements of the raw sense vector. In our experience, this potential
combinatorial explosion can be avoided by using an appropriate set of feature generators (e.g., generators that collapse
many input features into a small set of output features, or that only apply to certain types of features). For example,
the group generator does not create arbitrary subsets of the raw sense vector – it creates at mostn non-overlapping
group features.

The second step in identifying local state variables is to compute the static action model. The complexity of the
computation of the action-dependent model isO(sT) wheres is the number of singleton features that have been
learned andT is the number of time steps over which the model is learned. The complexity of the computation of the
action-independent model isO(sTa) wherea is the number of primitive actions, The complexity of the computation
of the context-dependent model isO(sTac) wherec is the average number of contexts associated with each feature.

A.4 Learning control laws

The number of open-loop path-following behaviors isO(vac) wherev is the number of learned local state variables,
a is the number of primitive actions, andc is the average number of contexts associated with each local state variable.
The complexity of the computation of the dynamic action model isO(vacT (a�1)). The number of generated closed-
loop path-following behaviors (worst-case) isO(2va2c). In practice, the number of path-following behaviors can be
made much less than this upper bound. For example, the terms2v and2c can be replaced byv3 andc3 by only defining
path-following behaviors whose error vectors are based on at most three local state variables.

In our experiments, the number of path-following behaviors is kept reasonable by the following facts: (1) the
number of learned local state variables is small and (2) the number of contexts in which a primitive action maintains
a local state variable constant is small relative to the total number of contexts. In our example,v is at most 3 andc is
around 20.

B Acknowledgments

The authors would like to thank Rick Froom, Wan Yik Lee, Risto Miikkulainen, Ray Mooney, Lyn Pierce, Mark Ring,
Boaz Super, and two anonymous reviewers for their technical, editorial, and moral support.

References

[Angluin, 1978] Angluin, D. (1978). On the complexity of minimum inference of regular sets.Information and
Control, 39:337–350.

[Angluin, 1987] Angluin, D. (1987). Learning regular sets from queries and counterexamples.Information and
Computation, 75:87–106.

[Chapman and Kaelbling, 1990] Chapman, D. and Kaelbling, L. P. (1990). Learning from delayed reinforcement in a
complex domain. Tech. Report TR-90-11, Teleos Research, Palo Alto, California.

[Cormen et al., 1990] Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990).Introduction to Algorithms. MIT
Press/McGraw-Hill Book Company, Cambridge, MA.

[Dean et al., 1992] Dean, T., Angluin, D., Basye, K., Engelson, S., Kaelbling, L., Kokkevis, E., and Maron, O. (1992).
Inferring finite automata with stochastic output functions and an application to map learning. InProceedings, Tenth
National Conference on Artificial Intelligence, pages 208–214, San Jose, CA. AAAI Press/MIT Press.

Pierce & Kuipers, AIJ, 1997 45

[Dean et al., 1993] Dean, T., Basye, K., and Kaelbling, L. (1993). Uncertainty in graph-based map learning. In
Connell, J. H. and Mahadevan, S., editors,Robot Learning, pages 171–192. Kluwer Academic Publishers, Boston.

[Drescher, 1991] Drescher, G. L. (1991).Made-Up Minds: A Constructivist Approach to Artificial Intelligence. MIT
Press, Cambridge, MA.

[Dudek et al., 1991] Dudek, G., Jenkin, M., Milios, E., and Wilkes, D. (1991). Robotic exploration as graph construc-
tion. IEEE Transactions on Robotics and Automation, 7(6):859–865.

[Gold, 1978] Gold, E. M. (1978). Complexity of automaton identification from given data.Information and Control,
37:302–320.

[Hiraki, 1994] Hiraki, K. (1994). Abstraction of sensory-motor features. InProceedings of the Sixteenth Annual
Conference of the Cognitive Science Society, Hillsdale, NJ. Lawrence Erlbaum Associates.

[Horn, 1986] Horn, B. K. P. (1986).Robot Vision. MIT Press, Cambridge, MA.

[Jordan and Rumelhart, 1992] Jordan, M. I. and Rumelhart, D. E. (1992). Forward models: Supervised learning with
a distal teacher.Cognitive Science, 16:307–354.

[Kohonen, 1988] Kohonen, T. (1988).Self-Organization and Associative Memory. Springer-Verlag, Berlin, second
edition.

[Kortenkamp and Weymouth, 1994] Kortenkamp, D. and Weymouth, T. (1994). Topological mapping for mobile
robots using a combination of sonar and vision sensing. InProceedings of the Twelfth National Conference on
Artificial Intelligence (AAAI-94).

[Krzanowski, 1988] Krzanowski, W. J. (1988).Principles of Multivariate Analysis: A User’s Perspective. Oxford
Statistical Science Series. Clarendon Press, Oxford.

[Kuipers, 1978] Kuipers, B. J. (1978). Modeling spatial knowledge.Cognitive Science, 2:129–153.

[Kuipers, 1996] Kuipers, B. J. (1996). An ontological hierarchy for spatial knowledge. InProc. 10th Int. Workshop
on Qualitative Reasoning About Physical Systems, Fallen Leaf Lake, California, USA.

[Kuipers and Byun, 1988] Kuipers, B. J. and Byun, Y.-T. (1988). A robust, qualitative method for robot spatial learn-
ing. In Proceedings of the National Conference on Artificial Intelligence (AAAI-88), pages 774–779.

[Kuipers and Byun, 1991] Kuipers, B. J. and Byun, Y.-T. (1991). A robot exploration and mapping strategy based on
a semantic hierarchy of spatial representations.Journal of Robotics and Autonomous Systems, 8:47–63.

[Kuipers and Levitt, 1988] Kuipers, B. J. and Levitt, T. S. (1988). Navigation and mapping in large-scale space.AI
Magazine, 9(2):25–43.

[Kuo, 1982] Kuo, B. C. (1982).Automatic Control Systems. Prentice-Hall, Inc., Englewood Cliffs, N.J., 4 edition.

[Lenat, 1977] Lenat, D. B. (1977). On automated scientific theory formation: A case study using the AM program. In
Hayes, J. E., Michie, D., and Mikulich, L. I., editors,Machine Intelligence 9, pages 251–286. Halsted Press, New
York.

[Lin, 1993] Lin, L.-J. (1993). Reinforcement Learning for Robots Using Neural Networks. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA.

[Lin and Hanson, 1993] Lin, L.-J. and Hanson, S. J. (1993). On-line learning for indoor navigation: Preliminary
results with RatBot. InNIPS93 Robot Learning Workshop.

[Mardia et al., 1979] Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979).Multivariate Analysis. Academic Press, New
York.

Pierce & Kuipers, AIJ, 1997 46

[Mataric, 1991] Mataric, M. J. (1991). Navigating with a rat brain: A neurobiologically-inspired model for robot
spatial representation. In Meyer, J.-A. and Wilson, S. W., editors,From Animals to Animats: Proceedings of
The First International Conference on Simulation of Adaptive Behavior, pages 169–175, Cambridge, MA. MIT
Press/Bradford Books.

[Mataric, 1992] Mataric, M. J. (1992). Integration of representation into goal-driven behavior-based robots.IEEE
Transactions on Robotics and Automation, 8(3):304–312.

[Matheus, 1991] Matheus, C. J. (1991). The need for constructive induction. In Birnbaum, L. A. and Collins, G. C.,
editors,Machine Learning: Proceedings of the Eighth International Workshop (ML91), pages 173–177, San Mateo,
CA. Morgan Kaufmann Publishers, Inc.

[Oja, 1982] Oja, E. (1982). A simplified neuron model as a principal component analyzer.Journal of Mathematical
Biology, 15:267–273.

[Pierce, 1991a] Pierce, D. (1991a). Learning a set of primitive actions with an uninterpreted sensorimotor appara-
tus. In Birnbaum, L. A. and Collins, G. C., editors,Machine Learning: Proceedings of the Eighth International
Workshop (ML91), pages 338–342, San Mateo, CA. Morgan Kaufmann Publishers, Inc.

[Pierce, 1991b] Pierce, D. (1991b). Learning turn and travel actions with an uninterpreted sensorimotor apparatus.
In Proceedings IEEE International Conference on Robotics and Automation, pages 246–251, Los Alamitos, CA.
IEEE Computer Society Press.

[Pierce, 1995] Pierce, D. (1995).Map Learning with Uninterpreted Sensors and Effectors. PhD thesis, University of
Texas at Austin. (http: //ftp.cs.utexas.edu /pub /qsim /papers /Pierce-PhD-95.ps.Z).

[Pierce and Kuipers, 1991] Pierce, D. and Kuipers, B. (1991). Learning hill-climbing functions as a strategy for
generating behaviors in a mobile robot. In Meyer, J.-A. and Wilson, S. W., editors,From Animals to Animats:
Proceedings of The First International Conference on Simulation of Adaptive Behavior, pages 327–336, Cambridge,
MA. MIT Press/Bradford Books. Also University of Texas at Austin, AI Laboratory TR AI91-137.

[Pierce and Kuipers, 1994] Pierce, D. and Kuipers, B. (1994). Learning to explore and build maps. InProceedings of
the National Conference on Artificial Intelligence (AAAI-94), Cambridge, MA. AAAI/MIT Press.

[Press et al., 1988] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1988).Numerical Recipes
in C. Cambridge University Press.

[Ring, 1994] Ring, M. (1994).Continual Learning in Reinforcement Environments. PhD thesis, University of Texas
at Austin.

[Ritter et al., 1992] Ritter, H. J., Martinez, T., and Schulten, K. J. (1992).Neural Computation and Self-Organizing
Maps: An Introduction. Addison-Wesley, Reading, Massachusetts.

[Rivest and Schapire, 1993] Rivest, R. L. and Schapire, R. E. (1993). Inference of finite automata using homing
sequences.Information and Computation, 103(2):299–347.

[Shen, 1990] Shen, W.-M. (1990). Functional transformations in AI discovery systems.Artificial Intelligence,
41(3):257–272.

[Shen, 1994] Shen, W.-M. (1994).Autonomous Learning from the Environment. W. H. Freeman and Company.

[Shen and Simon, 1989] Shen, W.-M. and Simon, H. A. (1989). Rule creation and rule learning through environmen-
tal exploration. InProceedings IJCAI-89, pages 675–680.

[Sutton, 1990] Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on approximat-
ing dynamic programming. In Porter, B. W. and Mooney, R. J., editors,Proceedings of the Seventh International
Conference on Machine Learning, pages 216–224. Morgan Kaufmann Publishers, Inc.

Pierce & Kuipers, AIJ, 1997 47

[Watkins, 1989] Watkins, C. (1989).Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge.

[Whitehead et al., 1993] Whitehead, S., Karlsson, J., and Tenenberg, J. (1993). Learning multiple goal behavior via
task decomposition and dynamic policy merging. In Connell, J. H. and Mahadevan, S., editors,Robot Learning,
pages 45–78. Kluwer Academic Publishers, Boston.

[Williams, 1987] Williams, R. J. (1987). Reinforcement-learning connectionist systems. Technical Report NU-CCS-
87-3, College of Computer Science, Northeastern University.

