
1

Autonomous Learning of High-Level States and
Actions in Continuous Environments

Jonathan Mugan and Benjamin Kuipers, Fellow, IEEE

Abstract—How can an agent bootstrap up from a low-level
representation to autonomously learn high-level states and actions
using only domain-general knowledge? In this paper we assume
that the learning agent has a set of continuous variables describ-
ing the environment. There exist methods for learning models
of the environment, and there also exist methods for planning.
However, for autonomous learning, these methods have been used
almost exclusively in discrete environments.

We propose attacking the problem of learning high-level states
and actions in continuous environments by using a qualitative
representation to bridge the gap between continuous and discrete
variable representations. In this approach, the agent begins with
a broad discretization and initially can only tell if the value
of each variable is increasing, decreasing, or remaining steady.
The agent then simultaneously learns a qualitative representation
(discretization) and a set of predictive models of the environment.
These models are converted into plans to perform actions. The
agent then uses those learned actions to explore the environment.

The method is evaluated using a simulated robot with realistic
physics. The robot is sitting at a table that contains a block
and other distractor objects that are out of reach. The agent
autonomously explores the environment without being given a
task. After learning, the agent is given various tasks to determine
if it learned the necessary states and actions to complete them.
The results show that the agent was able to use this method to
autonomously learn to perform the tasks.

Index Terms—unsupervised learning, reinforcement learning,
qualitative reasoning, intrinsic motivation, active learning.

I. INTRODUCTION

WE would like to build intelligent agents that can
autonomously learn to predict and control the envi-

ronment using only domain-general knowledge. Such agents
could simply be placed in an environment, and they would
learn it. After they had learned the environment, the agents
could be directed to achieve specified goals. The intelligence
of the agents would free engineers from having to design
new agents for each environment. These agents would be
flexible and robust because they would be able to adapt to
unanticipated aspects of the environment.

Designing such agents is a difficult problem because the
environment can be almost infinitely complex. This complexity
means that an agent with limited resources cannot represent
and reason about the environment without describing it in a
simpler form. And possibly more importantly, the complexity
of the environment means that it is a challenge to generalize
from experience since each experience will be in some respect

J. Mugan is with the School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213 USA (e-mail: jmugan@cs.cmu.edu).

B. Kuipers is with the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
kuipers@umich.edu).

different. A solution to the difficulty of learning in a complex
environment is for the agent to autonomously learn useful and
appropriate abstractions.

There are approaches that do impressive learning in specific
scenarios [1]–[3]. But most autonomous learning methods
require a discrete representation and a given set of discrete
actions [4]–[8]. Our goal is to enable autonomous learning to
be done in a continuous environment and to enable an agent
to learn its first actions.

The Problem: The world is continuous and infinitely com-
plex (or effectively so). The dynamics of the world are also
continuous, and add further complexity. An agent acts in that
world by sending continuous low-level motor signals. Our
goal is to show how such an agent can learn a hierarchy of
actions for acting effectively in such a world. We simplify the
problem of perception for our agent. Instead of dealing with
continuous high-bandwidth pixel-level perception, we assume
that the agent has trackers for a small number of moving
objects (including its own body parts) within an otherwise
static environment. These trackers provide the agent with a
perceptual stream consisting of a relatively small number of
continuous variables. Learning such trackers and the models
that provide dynamically updated model parameters is done
by methods outside the scope of this project, such as the
Object Semantic Hierarchy [9]. Our solution to the problem
of learning a hierarchy of actions in continuous environments
is the Qualitative Learner of Action and Perception, QLAP.1

A. The Qualitative Learner of Action and Perception, QLAP

QLAP has two major processes:
(1) Modeling Events: An event is a qualitative change in

the value of some state variable (Section II). QLAP starts by
identifying contingencies between events: situations where the
observation of one event E1 means that another event E2 is
more likely to occur soon after. QLAP searches for improved
descriptions of the conditions for contingencies, trying to find
sufficiently reliable simple models that predict the results of
actions (Section III).

This is done by introducing new distinctions into the qual-
itative abstractions of the domains of particular variables, and
by identifying additional dependencies on context variables,
making predictions more reliable. These improved models of
the forward dynamics of the environment are represented as

1Portions of this material were previously presented at conferences [10]–
[14]. This journal article is based on the first author’s Ph.D. thesis [15] and
extends the method and provides both a more unified description and a more
detailed evaluation.

2

dynamic Bayesian networks (DBNs). This process is depicted
in Figure 1.

(2) Modeling Actions: Define an action to be the occurrence
of a particular event: a particular qualitative change to some
variable. A reliable DBN model that leads to that event can
be transformed (by familiar RL methods) into a plan for
accomplishing that consequent event by means of achieving
antecedent events, and thus for carrying out that action. Since
the plan thus consists of embedded actions, we get a natural
hierarchical structure on actions, via the plans available to
carry them out (Section IV).

A hierarchy of actions and plans must ground out in motor
actions: qualitative changes to the values of motor variables
that the agent can carry out simply by willing them. QLAP en-
sures that its higher-level actions and plans have this grounding
in motor actions because it learns everything autonomously,
starting from random exploration of the consequences of
setting its motor variables (i.e. “motor babbling”). The process
of modeling actions is depicted in Figure 2.

To perform exploration and learning, the two processes of
Modeling Events and Modeling Actions run continuously as
the agent acts in the world (Section V). Those actions can
be driven initially by random motor babbling. However, they
can be driven by autonomous exploration through various
intrinsic motivation drives. They can also be driven by explicit
coaching, or by “play” — posing various goals and making
plans to achieve them.

QLAP uses a qualitative representation (Section II) to
discretize quantitative (continuous) variables. The quantitative
representation includes important but implicit distinctions that
the agent needs to capture, which we refer to as “natural
joints.” However, the quantitative representation is so complex
that inference is intractable. Therefore, we need an abstraction
to a discrete representation. But if we pick an abstraction in
advance, before we understand the domain, we are likely to
discard distinctions we need. So to get the best of both worlds,
QLAP dynamically constructs a qualitative representation.

QLAP starts by constructing an overly-abstract qualitative
description. Non-deterministic contingencies draw the agent’s
attention to qualitative states in this representation that need
further distinctions. We can then use statistical methods like
Fayyad and Irani [16] to identify new distinctions, letting
experience with the environment tell us how to change the
granularity of the qualitative abstraction. QLAP does this in
a greedy, hill-climbing way, adding just enough qualitative
distinctions to allow reasonably reliable predictions. (After
the representations and inferences are explained, Algorithm 1
in Section V gives a high-level description of the QLAP
algorithm. See [17] for a video explaining QLAP.)

B. Contributions
To the best of our knowledge, QLAP is the only algorithm

that learns states and hierarchical actions through autonomous
exploration in continuous, dynamic environments with contin-
uous motor commands. For the field of Autonomous Mental
Development, QLAP provides a method for a developing agent
to learn its first temporally-extended actions and to learn more
complex actions on top of previously-learned actions.

…

…

time

Images

Continuous
variables

Models of the
environment

Discrete
variables

Feedback from model to discretization

(a)

(b)

(c)
(d)

(e)

Fig. 1: Perception in QLAP.

(a) Models are converted into plans. (b) Plans are different ways to do actions.

(c) Actions and plans are put together into a hierarchy.

Low-level
motor

commands

…

Action

Action

Action

Action

Action

Action

Action

…

Action

Action

Action

…

…

…
(,)Q s a

()

argmax (,)
a

s

Q s a

(,)Q s a

()

argmax (,)
a

s

Q s a

(,)Q s a

()

argmax (,)
a

s

Q s a

(,)Q s a

()

argmax (,)
a

s

Q s a

(,)Q s a

()

argmax (,)
a

s

Q s a

(,)Q s a

()

argmax (,)
a

s

Q s a

(,)Q s a

()

argmax (,)
a

s

Q s a

(,)Q s a

()

argmax (,)
a

s

Q s a

(,)Q s a

()

argmax (,)
a

s

Q s a

(,)Q s a

()

argmax (,)
a

s

Q s a

(,)Q s a

()

argmax (,)
a

s

Q s a

Action

…

(,)nQ s a

()

argmax (,)

n

n
a

s

Q s a

1(,)Q s a

1

1

()

argmax (,)
a

s

Q s a

Fig. 2: Actions in QLAP.

The related field of reinforcement learning is about enabling
an agent to learn from experience to maximize a reward
signal [18]. QLAP addresses three challenges in reinforce-
ment learning: (1) continuous states and actions, (2) auto-
matic hierarchy construction, and (3) automatic generation
of reinforcement learning problems. Continuous states and
actions are a challenge because it is hard to know how to
generalize from experience since no two states are exactly
alike. There exist many function approximation methods, and
other methods that use real values [3], [19]–[23], but QLAP
provides a method for discretizing the state and action space
so that the discretization corresponds to the “natural joints”
in the environment. Finding these natural joints allows QLAP
to use simple learning algorithms while still representing the
complexity of the environment.

Learning of hierarchies can enable an agent to explore
the space more effectively because it can aggregate smaller
actions into larger ones. QLAP creates a hierarchical set
of actions from continuous motor variables. Currently, most
reinforcement learning problems must be designed by the hu-
man experimenter. QLAP autonomously creates reinforcement
learning problems as part of its developmental progression.

Section II discusses the qualitative representation used to
discretize the continuous data. Section III explains how QLAP

3

learns models of events, and Section IV describes how models
of events are converted into actions. Section V discusses
how the QLAP agent explores and learns about the world.
Experimental results are presented in Section VI, and the paper
concludes with a discussion (Section VII), an overview of
related work (Section VIII), and a summary (Section IX).

II. QUALITATIVE REPRESENTATION

A qualitative representation allows an agent to bridge the
gap between continuous and discrete values. It does this by
encoding the values of continuous variables relative to known
landmarks [24]. The value of a continuous variable can be
described qualitatively. Its qualitative magnitude is described
as equal to a landmark value or as in the open interval
between two adjacent landmark values. Its qualitative direction
of change can be increasing, steady, or decreasing. Because
a landmark is intended to represent an important value of a
variable where the system behavior may change qualitatively,
a qualitative representation allows the agent to generalize and
to focus on important events.

A. Landmarks

A landmark is a symbolic name for a point on a number line.
Using landmarks, QLAP can convert a continuous variable ṽ
with an infinite number of values into a qualitative variable v
with a finite set of qualitative values Q(v) called a quantity
space [24]. A quantity space Q(v) = L(v) ∪ I(v), where
L(v) = {v∗1 , · · · , v∗n} is a totally ordered set of landmark val-
ues, and I(v) = {(−∞, v∗1), (v∗1 , v∗2), · · · , (v∗n,+∞)} is the
set of mutually disjoint open intervals that L(v) defines in the
real number line. A quantity space with two landmarks might
be described by (v∗1 , v

∗
2), which implies five distinct qualitative

values, Q(v) = {(−∞, v∗1), v∗1 , (v∗1 , v∗2), v∗2 , (v∗2 ,+∞)}. This
is shown in Figure 3.

1 1 1 2 2 2() , , , , , , ,v v v v v v v

1v 2v

Fig. 3: Landmarks divide the number line into a discrete set
of qualitative values.

QLAP perceives the world through a set of continuous input
variables and affects the world through a set of continuous
motor variables.2 For each continuous input variable ṽ, two
qualitative variables are created: a discrete variable v(t) that
represents the qualitative magnitude of ṽ(t), and a discrete
variable v̇(t) that represents the qualitative direction of change
of ṽ(t). Also, a qualitative variable u(t) is created for each
continuous motor variable ũ.3 The result of these transforma-
tions is three types of qualitative variables that the agent can

2QLAP can handle discrete (nominal) input variables. See [15, app. A] for
details.

3When the distinction between motor variables and non-motor variables is
unimportant, we will refer to the variable as v.

use to affect and reason about the world: motor variables,
magnitude variables, and direction of change variables. The
properties of these variables are shown in Table I.

TABLE I: Types of Qualitative Variables

Type of Variable Initial Landmarks Learn Landmarks?
motor {0} yes
magnitude {} yes
direction of change {0} no

Each direction of change variable v̇ has a single in-
trinsic landmark at 0, so its quantity space is Q(v̇) =
{(−∞, 0), 0, (0,+∞)}, which can be abbreviated as Q(v̇) =
{[−], [0], [+]}. Motor variables are also given an initial land-
mark at 0. Magnitude variables initially have no landmarks,
treating zero as just another point on the number line. Initially,
when the agent knows of no meaningful qualitative distinctions
among values for ṽ(t), we describe the quantity space with
the empty list of landmarks, {}, as Q(v̇) = {(−∞,+∞)}.
However, the agent can learn new landmarks for magnitude
and motor variables. Each additional landmark allows the
agent to perceive or affect the world at a finer granularity.

B. Events

If a is a qualitative value of a qualitative variable A,
meaning a ∈ Q(A), then the event At→ a is defined by
A(t − 1) 6= a and A(t) = a. That is, an event takes place
when a discrete variable A changes to value a at time t, from
some other value. We will often drop the t and describe this
simply as A→a. We will also refer to an event as E when the
variable and value involved are not important, and we use the
notation E(t) to indicate that event E occurs at time t.

For magnitude variables, At → a is really two possible
events, depending on the direction that the value is coming
from. If at time t− 1, A(t) < a, then we describe this event
as ↑At→a. Likewise, if at time t − 1, A(t) > a, then we
describe this event as ↓At→a. However, for ease of notation,
we generally refer to the event as At→a. We also say that
event At→a is satisfied if At = a.

III. MODELING EVENTS

There are many methods for learning predictive models in
continuous environments. Such models have been learned, for
example, using regression [3], [19]–[21], neural networks [22],
and Gaussian processes [23]. But as described in the intro-
duction, we want to break up the environment and represent
it using a qualitative representation.

In a discretized environment, dynamic Bayesian networks
(DBNs) are a convenient way to encode predictive models.
Most work on learning DBNs learn a network to predict each
variable at the next timestep for each action, e.g. [25]–[27].
However, QLAP learns the set of actions, and QLAP works in
environments where events may take more than one timestep.

QLAP learns two different types of DBN models. The first
type of DBN models are those that predict events on change
variables (change DBNs). The second type of DBN models

4

are those for reaching magnitude values (magnitude DBNs);
Section III-E. To learn change DBNs, QLAP uses a novel
DBN learning algorithm. Given the current discretization,
QLAP tracks statistics on all pairs of events to search for
contingencies (Section III-A) where an antecedent event leads
to a consequent event. When such a contingency is found,
QLAP converts it to a DBN with the antecedent event as the
parent variable and the consequent event as the child variable.
QLAP adds context variables to the DBN one at a time as
they make the DBN more reliable. For each DBN, QLAP also
searches for a new discretization that will make the DBN more
reliable. This new discretization then creates new possible
events and allows new DBNs to be learned. This method is
outlined in Figure 4.

A. Searching for Contingencies

The search for change DBNs begins with a search for
contingencies. A contingency represents the knowledge that
if the antecedent event occurs, then the consequent event will
soon occur. An example would be if you flip a light switch,
then the light will go off. QLAP searches for contingencies
by tracking statistics on pairs of events E1, E2 and extracting
those pairs into a contingency where the occurrence of event
E1 indicates that event E2 is more likely to occur soon after
E1 than it would otherwise.

1) Definition: To define contingencies in a continuous envi-
ronment, we have to discretize both variable values and time.
To discretize variable values, we create a special Boolean vari-
able event(t,X, x). For clarity, we can rewrite event(t,X, x)
as event(t,X→x). Variable event(t,X→x) is true if event
Xt→x occurs

event(t,X→x) ≡ Xt→x (1)

To discretize time, we use a time window. We define the
Boolean variable soon(t, Y, y) (rewritten as soon(t, Y →y))
that is true if event Yt→y occurs within a time window of
length k

soon(t, Y→y) ≡ ∃t′ [t ≤ t′ < t+ k ∧ event(t′, Y→y)] (2)

(The length of the time window k is learned by noting how
long it takes for motor commands to be observed as changes
in the world, see [15, app. C].) With these variables, we define
a contingency as

event(t,X→x)⇒ soon(t, Y→y) (3)

which represents the proposition that if the antecedent event
X→x occurs, then the consequent event Y →y will occur
within k timesteps.

2) The Pairwise Search: QLAP looks for contingencies
using a pairwise search by tracking statistics on pairs of events
X→x and Y →y to determine if the pair is a contingency.
QLAP learns a contingency E1 ⇒ E2 if when the event E1

occurs, then the event E2 is more likely to soon occur than it
would have been otherwise

Pr(soon(t, E2)|E1(t)) > Pr(soon(t, E2)) (4)

(, ,)soon t Y y(, ,)event t X x

antecedent
event

consequent
event

1()V t

()
n
V t

(, ,)soon t Y y(, ,)event t X x

context
variables

(a) Pairwise search
for contingencies

(b) Found contingency converted
to DBN

(c) Add context variables and
landmarks

(d) Landmarks refine pairwise search

…

consequent events

an
te

ce
d
en

t
ev

en
ts

Fig. 4: (a) Do a pairwise search for contingencies that use one
event to predict another. The antecedent events are along the
y-axis, and the consequent events are along the x-axis, The
color indicates the probability that the consequent event will
soon follow the antecedent event (lighter corresponds to higher
probability). When the probability of the consequent event is
sufficiently high, it is converted into a contingency (yellow).
(b) When a contingency is found, it is used to create a DBN.
(c) Once a DBN is created, context variables are added to
make it more reliable. (d) The DBN creates a self-supervised
learning problem to predict when the consequent event will
follow the antecedent event. This allows new landmarks to be
found. Those landmarks create new events for the pairwise
search. (Best viewed in color.)

where Pr(soon(t, E2)) is the probability of event E2 occur-
ring within a random window of k timesteps. Specifically, the
contingency is learned when

Pr(soon(t, E2)|E1(t))− Pr(soon(t, E2)) > θpen (5)

where θpen = 0.05 is a penalty term whose value was deter-
mined by experimentation. This is an important parameter. If it
is set too small, then too many contingencies may be learned,
and if it is set too large, then it might be difficult to learn new
contingencies.

QLAP performs this search considering all pairs of events,
excluding those where

1) The consequent event is a magnitude variable (since these
are handled by the models on magnitude variables as
discussed in Section III-E).

2) The consequent event is on a direction of change variable
to the landmark value [0] (since we want to predict
changes that result in moving towards or away from
landmarks).

3) The magnitude variable corresponding to the direction
of change variable on the consequent event matches the
magnitude variable on the antecedent event (since we
want to learn how the values of variables are affected
by other variables).

B. Converting Contingencies to DBNs

In this section we describe how QLAP converts a contin-
gency of the form event(t,X→x) ⇒ soon(t, Y →y) into
a dynamic Bayesian network. A dynamic Bayesian network
(DBN) is a compact way to describe a probability distribution
over time-series data. For a particular variable, the DBN
indicates the other variables that affect its value. Dynamic

5

1 2:r E E

1 2, , ,
n

v v v

a)

with
1()v t

2 ()v t

2(,)soon t E1(,)event t Eantecedent
event

context
variables

consequent event

()
n
v t

b)QLAP notation DBN representation

Fig. 5: Correspondence between QLAP DBN notation and
traditional graphical DBN notation. (a) QLAP notation of a
DBN. Context C consists of a set of qualitative variables. Event
E1 is an antecedent event and event E2 is a consequent event.
(b) Traditional graphical notation. Boolean parent variable
event(t, E1) is true if event E1 occurs at time t. Boolean
child variable soon(t, E2) is true if event E2 occurs within
k timesteps of t. The other parent variables are the context
variables in C. The conditional probability table (CPT) gives
the probability of soon(t, E2) for each value of its parents.
For all elements of the CPT where event(t, E1) is false,
the probability is undefined. The remaining probabilities are
learned through experience.

Bayesian networks allow QLAP to identify situations when
the contingency will be reliable.

1) Adding a Context: The consequent event may only
follow the antecedent event in certain contexts, so we also
want to learn a set of qualitative context variables C that
predict when event Y→y will soon follow X→x. This can be
represented as a DBN r of the form

r = 〈C : event(t,X→x)⇒ soon(t, Y→y)〉 (6)

which we abbreviate to

r = 〈C : X→x⇒ Y→y〉 (7)

In this notation, event E1 = X→x is the antecedent event,
and event E2 = Y→y is the consequent event. We can further
abbreviate this QLAP DBN r as

r = 〈C : E1 ⇒ E2〉 (8)

Figure 5 shows the correspondence between this notation
and standard DBN notation. Because we consider only cases
where event E1 occurs, we can treat the conditional probability
table (CPT) of DBN r as defined over the probability that event
Y→y will soon follow event X→x for each qualitative value
in context C. If the antecedent event does not occur, then the
CPT does not define the probability for the consequent event
occurring. If the antecedent event occurs, and the consequent
event does follow soon after, we say that the DBN succeeds.
Likewise, if the antecedent event occurs, and the consequent
event does not follow soon after, we say that the DBN fails.
These models are referred to as dynamic Bayesian networks
and not simply Bayesian networks because we are using them
to model a dynamic system. An example of a DBN learned
by QLAP is shown in Figure 6.

[]
x
h(300,)

x
u

x
h

0.50 0.98 0.97 0.04 0.50

x
h

Pr

(, 2.5) [2.5] (2.5, 2.5) [2.5] (2.5,)

CPT

Fig. 6: An example DBN. This DBN says that if the motor
value of ux becomes greater than 300, and the location of the
hand, hx, is in the range −2.5 ≤ hx < 2.5, then the variable
ḣx will most likely soon become [+] (the hand will move to
the right). (The limits of movement of hx are −2.5 and +2.5,
and so the prior of 0.5 dominates outside of that range.)

The set C = {v1, . . . , vn} consists of the variables in the
conditional probability table (CPT) of the DBN r = 〈C : E1 ⇒
E2〉. The CPT is defined over the product space

Q(C) = Q(v1)×Q(v2)× · · · × Q(vn) (9)

Since C is a subset of the variables available to the agent,
Q(C) is an abstraction of the overall state space S

Q(C) ⊆ Q(v1)×Q(v2)× · · · × Q(vm) = S (10)

where m ≥ n is the number of variables available to the
agent.4

2) Notation of DBNs: We define the reliability for q ∈
Q(C) for DBN r as

rel(r, q) = Pr(soon(t, E2)|E1(t), q) (11)

which is the probability of success for the DBN for the value
q ∈ Q(C). (Note that we may also use rel(r, s) to mean the
reliability of DBN r in state s.) These probabilities come from
the CPT and are calculated using observed counts.

The best reliability of a DBN gives the highest probability
of success in any context state. We define the best reliability
brel(r) of a DBN r as

brel(r) = max
q∈Q(C)

rel(r, q) (12)

(We require 5 actual successes for q ∈ Q(C) before it can
be considered for best reliability.) By increasing the best
reliability brel(r) we increase the reliability of DBN r. And
we say that a DBN r is sufficiently reliable if at any time
brel(r) > θSR where θSR = 0.75. Like θpen, it is important
that the value of θSR is not too big or too small. A thor-
ough evaluation of robustness remains to be done. However,
as experimental evidence that QLAP is robust, neither this
parameter nor any other parameters had to be changed for any
environment evaluated in this paper or in [15].

The entropy of a DBN r = 〈C : E1 ⇒ E2〉 is a measure
of how well the context C predicts that event E2 will soon
follow event E1. Since we only consider the timesteps where
event E1 occurs, we define the entropy H(r) of a DBN r as

H(r) =
∑

q∈Q(C)

H(soon(t, E2)|q, E1(t))Pr(q|E1(t)) (13)

By decreasing the entropy H(r) of DBN r, we increase the
determinism of DBN r.

4In our experiments, we limit n to be 2.

6

C. Adding Context Variables

QLAP iteratively adds context variables to DBNs to make
them more reliable and deterministic. This hillclimbing pro-
cess of adding one context variable at a time is inspired
by the marginal attribution process in Drescher’s [5] schema
mechanism. To implement marginal attribution, QLAP initially
hillclimbs on best reliability brel(r) because the DBN models
will eventually be used for planning. In our experiments,
we found this to be necessary to make good plans because
we want to find some context state in which the model is
reliable. This allows the agent to set a subgoal getting to that
reliable context state. However, we also want the model to be
deterministic, so after a model is sufficiently reliable, QLAP
hillclimbs on reduction of entropy H(r).

Essentially, if r is sufficiently reliable, then an improved
DBN r′ must provide a reduction in entropy. If r is not
sufficiently reliable, then r′ must provide an increase in best
reliability. The required amount of reduction in entropy or
increase in best reliability is greater when the context for r′

is larger than the context for r. (See [15, sect. 4.3.1].)
The hillclimbing procedure is not completely greedy. QLAP

also considers the possibility that the DBN needs fewer context
variables. So the hillclimbing algorithm first sets aside the
current context C. Then, QLAP creates an entirely new context
C′ by hillclimbing by adding variables to improve the DBN.
QLAP then compares the new context C′ with the original
context C to see if the new context is an improvement over r
with the original context C. See [15, sect. 4.3.2] for details.

D. Learning New Landmarks

Learning new landmarks allows the agent to perceive and
represent the world at a higher resolution. This increase in
resolution allows existing models to be made more reliable and
allows new models to be learned. QLAP has two mechanisms
for learning landmarks. The first is to learn a new landmark to
make an existing DBN more reliable. The second is to learn
a new landmark that predicts the occurrence of an event.

In both cases, when a new landmark is learned, it applies to
all DBNs, and each DBN recalculates the reliability statistics
of that variable. To recalculate these statistics, for each DBN,
QLAP saves the real value of each variable the last 200 times
the antecedent event of the DBN occurred (although in the
implementation, the data trace is saved and the DBN just stores
the line number).

1) New Landmarks on Existing DBNs: QLAP learns new
landmarks based on previously-learned models (DBNs). For
any particular DBN, predicting when the consequent event
will follow the antecedent event is a supervised learning
problem. This is because once the antecedent event occurs, the
environment will determine if the consequent event will occur.
QLAP takes advantage of this supervisory signal to learn new
landmarks that improve the predictive ability of DBNs.

For each DBN r = 〈C : E1 ⇒ E2〉, QLAP searches
for a landmark on each magnitude and motor variable v in
each open interval q ∈ Q(v). Finding this landmark is done
using the information theoretic method of Fayyad and Irani
[16]. The best candidate is then adopted if it has sufficient

information gain, and the product of the information gain and
the probability of being in that interval Pr(v = q) is sufficient,
and the adopted landmark would improve DBN r. See [15,
sect. 4.4] for details.

2) New Landmarks to Predict Events: QLAP also learns
new landmarks to predict events. QLAP needs this second
landmark learning process because some events may not be
preceded by another known event. An example of this is when
an object moves because it is hit by another object. In this
case, it needs to learn that a distance of 0 between objects is
significant, because it causes one of the objects to move.

To find these landmarks, QLAP needs to compare the
distribution of a variable ṽ just before an event E with
the overall distribution of ṽ. Since we are looking at the
continuous values of variables, we use bins to estimate the
distributions. We let the bin size for each bin bṽ for variable
ṽ be two times the average change value (excluding the first
timestep t = 0). A change is determined to occur if t > 1 and
|ṽ(t)− ṽ(t− 1)| > 0.001. QLAP then creates a landmark v∗

for a bin bṽ when

Pr(ṽt−1 ∈ bṽ|E(t))− Pr(ṽt−1 ∈ bṽ) > θE (14)

where θE = 0.30, and bṽ corresponds to the bin that has
the highest value of Pr(ṽt−1 ∈ bṽ|E(t)) − Pr(ṽt−1 ∈ bṽ).
The range [lb, ub] of the landmark corresponding to bṽ are the
bounds of the bucket bṽ .

These probabilities are computed under two different nor-
malization conditions. The first is that QLAP normalizes over
three buckets in each direction from bṽ . This allows QLAP to
find local spikes in differences of the probability distributions.
The second normalization condition is to normalize the proba-
bility over all of the buckets. QLAP first looks for a landmark
using the first normalization condition. If none is found, QLAP
looks for a landmark using the second normalization condition.

E. Magnitude DBN Models

A magnitude value can be less than, greater than, or equal
to a qualitative value. We want to have models for a variable
ṽ reaching a qualitative value q. Intuitively, if we want v = q
and currently v(t) < q, then we need to set v̇ = [+]. This
section describes how this process is modeled.

For each magnitude variable v and each qualitative value
q ∈ Q(v), QLAP creates two models, one that corresponds
to approaching the value v = q from below on the number
line, and another that corresponds to approaching v = q from
above. For each magnitude variable Y and each value y ∈
Q(Y), these models can be written as

r+ = 〈C : Ẏ→[+]⇒ Y→y〉 (15)
r− = 〈C : Ẏ→[−]⇒ Y→y〉 (16)

DBN r+ means that if Yt < y and Ẏ = [+], then eventually
event Y→y will occur (DBN r− is analogous in this discus-
sion). As the notation suggests, we can treat Ẏ→[+] ⇒ Y→y
similarly to how we treat a contingency, and we can learn
context variables for when this model will be reliable. These
models are based on the test-operate-test-exit (TOTE) models
of Miller et al. [28].

7

Magnitude DBNs do not use the “soon” predicate because
how long it takes to reach a qualitative value is determined by
how far away the variable is from that value. Instead, statistics
are gathered on magnitude DBNs when the agent sets Ẏ = [+]
to bring about Y→y. DBN r+ is successful if Y→y occurs
while Ẏ = [+], and it fails if the agent is unable to maintain
Ẏ = [+] long enough to bring about event Y→y. Like change
DBNs, magnitude DBNs will be used in planning as described
in Section IV.5

IV. MODELING ACTIONS

QLAP uses the learned DBN models to create plans for
performing actions. There are two broad planning frameworks
within AI: STRIPS-based goal regression [29], and Markov
Decision Process (MDP) planning [30]. Goal regression has
the advantage of working well when only some of the variables
are relevant, and MDP planning has the advantage of providing
a principled framework for probabilistic actions [31]. Planning
in QLAP was designed to exploit the best of both frameworks.
A broad principle of QLAP is that the agent should learn
a factored model of the environment to make learning and
planning more tractable. QLAP uses MDP planning to plan
within each learned factor and uses goal regression to stitch
the factors together.

QLAP defines an action to achieve each qualitative value
of each variable. Once QLAP learns a qualitative value on a
motor variable, the agent considers achieving that value to be
a primitive action and can just set that motor variable to a
real value (determined randomly) within the range specified
by the qualitative value. Actions on non-motor variables are
performed using plans. Actions can have multiple plans, and
each plan is a different way to perform an action and each
plan is learned from a DBN.

The actions that can be called by each plan are QLAP
actions to bring about qualitative events. This stitches the
plans together and leads to an action hierarchy because the
plans to perform one QLAP action call other QLAP actions
as if they were primitive actions. This ability to treat high-
level actions as primitive actions is what makes the action
network that QLAP learns hierarchical. QLAP can simply call
an action such as “hit the block right” within a plan, and
even though such an action may require hundreds of low-
level timesteps and will be performed differently in different
situations, QLAP does not have to consider the details of how
this action is carried out while making a plan to use this action
as part of a plan to perform some, yet, higher-level action. This
hierarchical action network encodes all of the learned skills of
the agent. See Figure 7.

In this section, we define actions and plans in QLAP. We
discuss how change and magnitude DBNs are converted into
plans. We then discuss how QLAP can learn when variables
need to be added to the state space of a plan, and we conclude
with a description of how actions are performed in QLAP.

5While context variables are learned on magnitude DBNs, experiments
showed that landmarks learned from these models were not useful to the
agent, so these models are not used for learning landmarks in QLAP.

…

…

(,)jQ s a

()

arg max (,)

j

j
a

s

Q s a

(,)iQ s a

()

arg max (,)

i

i
a

s

Q s a

(,)kQ s a

()

arg max (,)

k

k
a

s

Q s a

(,)lQ s a

()

arg max (,)

l

l
a

s

Q s a

Action

Y y

Z

W

Y yX x

Action

X x

(a)

(b)

(c) (d)

Fig. 7: Planning in QLAP. (a) QLAP defines an action for
each qualitative value of each variable. This action is to bring
variable Y to value y. (b) Each action can have multiple plans,
which are different ways to perform the action. Each plan
comes from an MDP. The value Qi(s, a) is the cumulative,
expected, discounted reward of choosing action a in state s
in MDP Mi. Given the function Qi, the policy πi can be
computed. (c) Plans are created from models. The state space
for an MDP is the cross product of the values of X , Y , Z, and
W from the model (although more can be added if needed,
see Section IV-D). (d) The actions for each plan are QLAP
actions to move to different locations in the state space of the
MDP. This is reminiscent of goal-regression. Above, we see
that one of the actions for Mi is to call the QLAP action to
bring about X→x. This link results from event X→x being
the antecedent event of the DBN model to bring about event
Y→y.

A. Actions and Plans in QLAP

Actions are how the QLAP agent brings about changes in
the world. An action a(v, q) is created for each combination
of qualitative variable v and qualitative value q ∈ Q(v). An
action a(v, q) is called by the agent and is said to be successful
if v = q when it terminates. Action a(v, q) fails if it terminates
with v 6= q. Statistics are tracked on the reliability of actions.
The reliability of an action a is denoted by rel(a), which gives
the probability of succeeding if it is called.

When an action is called, the action chooses a plan to carry
it out. Each plan implements only one action, and an action
can have multiple different plans where each plan is a different
way to perform the action. This gives QLAP the advantage of
being able to use different plans in different situations instead
of having one big plan that must cover all situations. As with
actions, we say that a plan associated with action a(v, q) is
successful if it terminates with v = q and fails if it terminates
with v 6= q.

Models learned by QLAP can result in plans. Each
plan is represented as a policy πi over an MDP Mi =
〈Si,Ai, Ti, Ri〉. A Markov Decision Process (MDP) is a
framework for temporal decision making [30]. Since QLAP
learns multiple models of the environment, QLAP learns
multiple MDPs. And as with models, each MDP represents
a small part of the environment. The actions used within each
MDP are QLAP actions. And since these actions, in turn, use
plans that call other QLAP actions, the actions and plans of

8

QLAP are tied together, and planning takes the flavor of goal
regression.

We can think of this policy πi as being part of an option
oi = 〈Ii, πi, βi〉 where Ii is a set of initiation states, πi is the
policy, and βi is a set of termination states or a termination
function [32] . An option is like a subroutine that can be called
to perform a task. Options in QLAP follow this pattern except
that πi is a policy over QLAP actions instead of being over
primitive actions or other options.

We use the terminology of a plan being an option because
options are common in the literature, and because QLAP takes
advantage of the non-Markov termination function βi that
can terminate after a fixed number of timesteps. However,
plans in QLAP differ from options philosophically because
options are usually used with the assumption that there is some
underlying large MDP. QLAP assumes no large, underlying
MDP, but rather creates many little, independent MDPs that
are connected by actions. Each small MDP Mi created by
QLAP has one policy πi.

B. Converting Change DBNs to Plans

When a DBN of the form ri = 〈C : X→x ⇒ Y → y〉
becomes sufficiently reliable it is converted into a plan to bring
about Y → y.6 This plan can then be called by the action
a(Y, y).

This plan is based on an MDP Mi (there is a one-to-one
correspondence between MDPs and plans). In this section, we
will first describe how QLAP creates MDP Mi from a DBN
ri. We will then describe how QLAP learns a policy for this
MDP. And finally, we will describe how this policy is mapped
to an option.

1) Creating the MDP from the DBN: QLAP converts DBNs
of the form ri = 〈C : X→x ⇒ Y →y〉 to an MDP of the
formMi = 〈Si,Ai, Ti, Ri〉. The state space Si consists of the
Cartesian product of the values of the variables in DBN ri. The
actions in Ai are the QLAP actions to bring the agent to the
different states of Si. The transition function Ti comes from
the CPT of ri and the reliability rel(a) of different actions
a ∈ Ai. The reward function simply penalizes each action
with a cost of 2 and gives a reward of 10 for reaching the
goal of Y = y. The value 10 for reaching the goal and the
cost of 2 were chosen through experimentation.

2) Learning a Policy for the MDP: QLAP uses three
different methods to learn the policy πi for each MDPMi. (1)
QLAP uses the transition function Ti and the reward function
Ri to learn the Q-table Qi using dynamic programming with
value iteration [33]. The Q-table value Qi(s, a) represents
the cumulative, expected discounted reward of taking action
a ∈ Ai in state s ∈ Si. The policy πi then follows directly
from Qi because for each state s, the agent can choose action
a that maximizes Qi(s, a) (or it can choose some other action
to explore the world). (2) As the agent further experiences
the world, policy πi is updated using the temporal difference

6There are some restrictions on this to limit resource usage. For example,
actions that can be reliably performed successfully do not get more plans, the
agent must be able to bring about the antecedent event X→x with sufficient
reliability, and each action may have at most three plans. See [15, sect. 6.2].

learning method Sarsa(λ) [33]. (3) And as the agent gathers
more statistics, its transition model may be improved. QLAP
also updates the model by occasionally running one loop of
the dynamic programming.

3) Mapping the Policy to an Option: An option has the
form oi = 〈Ii, πi, βi〉. We have described how the policy πi
is learned. When an option oi is created for a DBN ri = 〈C :
X→x⇒ Y→y〉, the set of initiation states Ii is the set of all
states.

The termination function βi terminates option oi when it
succeeds (the consequent event occurs) or when it exceeds
resource constraints (300 timesteps, or 5 action calls) or when
the agent gets stuck. The agent is considered stuck if none of
the self variables (see Section V-C for a discussion of how the
agent learns which variables are part of “self”) or variables in
Si change in 10 timesteps.

C. Converting Magnitude DBNs into Plans
As discussed in Section III, each qualitative value y ∈ Q(Y)

on each magnitude variable Y has two DBNs

r+ = 〈C : Ẏ→[+]⇒ Y→y〉 (17)
r− = 〈C : Ẏ→[−]⇒ Y→y〉 (18)

that correspond to achieving the event Y→y from below and
above the value Y = y, respectively. Both of these DBN
models are converted into plans to achieve Y→y. And like
with change DBNs, each magnitude DBN ri is converted into
a plan based on an MDP Mi. For MDP Mi, the state space
Si, the set of available actions Ai, the transition function Ti,
and the reward function Ri are computed similarly as they are
for change plans.

The result of this is that each action a(v, q) on a magnitude
variable has two plans. There is one plan to perform the action
when v < q, and another plan to perform the action when
v > q. See [15, sect. 5.3] for further details.

D. Improving the State Space of Plans
The state space of a plan consists of the Cartesian product

of the quantity spaces Q(v) of the variables in the model
from which it was created. But what if there are variables
that were not part of the model, but that are nonetheless
necessary to successfully carry out the plan? To learn when
new variables should be added to plans, QLAP keeps statistics
on the reliability of each plan and uses those statistics to
determine when a variable should be added.

1) Tracking Statistics on Plans: QLAP tracks statistics on
plans the same way it does when learning models. For change
DBN models, QLAP tracks statistics on the reliability of
the contingency. For magnitude DBN models, QLAP tracks
statistics on the ability of a variable to reach a qualitative value
if moving in that direction. For plans, QLAP tracks statistics
on the agent’s ability to successfully complete the plan when
called.

To track these statistics on the probability of the plan oi =
〈Ii, πi, βi〉 of MDP Mi being successful, QLAP creates a
second-order DBN

r2oi = 〈Coi : call(t, oi)⇒ succeeds(t, oi)〉 (19)

9

The child variable of second-order DBN r2oi is succeeds(t, oi),
which is true if option oi succeeds after being called at
time t and is false otherwise. The parent variables of r2oi
are call(t, oi) and the context variables in Coi . The Boolean
variable call(t, oi) is true when the option is called at time t
and is false otherwise. When created, model r2oi initially has
an empty context, and context variables are added in as they
are for magnitude and change DBNs when they are found to
make the model more reliable and deterministic. The notation
for these models is the same as for magnitude and change
models: QLAP computes rel(oi), brel(oi), and rel(oi, s) in
particular states s. Therefore a plan can also be sufficiently
reliable if at any time brel(oi) > θSR where θSR = 0.75.

2) Adding New Variables to the State Space: Second-order
DBN allow the agent to identify other variables necessary for
the success of an option oi because those variables will be
added to its context. Each variable that is added to r2oi is also
added to the state space Si of its associated MDP Mi. For
example, for a plan created from model ri = 〈C : X→x ⇒
Y→y〉, the state space Si is updated so that

Si = Q(Coi)×Q(C)×Q(X)×Q(Y) (20)

(variables in more than one of Coi , C, {X}, or {Y } are
only represented once in Si). For both magnitude and change
options, an action a(v, q) where v ∈ Q(Coi) is treated the
same way as v ∈ Q(C).

E. Performing Actions

QLAP actions are performed using plans, and these plans
call other QLAP actions. This leads to a hierarchy of plans
and actions.

1) Calling and Processing Actions: When an action is
called, it chooses a plan and then starts executing the policy of
that chosen plan. Executing that policy results in more QLAP
actions being called, and this process continues until a motor
action is reached. When an action a(u, q) is called on a motor
variable u, then QLAP sends a random motor value within the
range covered by the qualitative value u = q to the body.

This hierarchical structure of actions and plans means that
multiple actions will be performed simultaneously. Each plan
only keeps track of what action it is currently performing. And
when that action terminates, the next action is called based on
the policy. So as the initial action called by the agent is being
processed, the path between that initial action and a motor
action continually changes.

2) Terminating Actions: An action a(v, q) terminates if v =
q, in which case it succeeds. It also terminates if it fails. An
action fails if
(a) it has no plans, or
(b) for every plan for this action, the action to bring about the

antecedent event of the plan is already in the call list, or
(c) its chosen plan fails.
Similar to an action, a plan to bring about v = q terminates if
v = q, in which case it succeeds. It also terminates if it fails.
A plan to bring about v = q fails if
(a) the termination function β is triggered by resource con-

straints, or

(b) there is no applicable action in the current state, or
(c) the action chosen by the policy is already in the call list,

or
(d) the action chosen by the policy immediately fails when it

is called.

V. EXPLORATION AND LEARNING

The QLAP agent explores and learns autonomously without
being given a task. This autonomous exploration and learning
raises many issues. For example, how can the agent decide
what is worth exploring? As the agent explores, it learns new
representations. How can it keep from learning unnecessary
representations and getting bogged down? Should the agent
use the same criteria for learning all representations? Or should
it treat some representations as especially important? And
finally, can the agent learn that some parts of the environment
can be controlled with high reliability and low latency so that
they can be considered part of “self”?

Previous sections have explained how QLAP learns rep-
resentations that take the form of landmarks, DBNs, plans,
and actions. This section explains how learning in QLAP
unfolds over time. We first discuss how the agent explores
the environment. We then discuss developmental restrictions
that determine what representations the agent learns and the
order in which it learns them. We then discuss how QLAP
pays special attention to goals that are hard to achieve. And
finally, we discuss how the agent learns what is part of “self.”

A. Exploration

The QLAP agent explores the environment autonomously
without being given a task. Instead of trying to learn to
do a particular task, the agent tries to learn to predict and
control all of the variables in its environment. However, this
raises difficulties because there might be many variables in
the environment, and some may be difficult or impossible
to predict or control. This section explains how the agent
determines what should be explored and the best way to go
about that exploration.

Initially, the agent motor babbles for 20,000 timesteps by
repeatedly choosing random motor values and maintaining
those values for a random number of timesteps. After that
point, QLAP begins to practice its learned actions. An outline
of the execution of QLAP is shown in Algorithm 1. Note that
Algorithm 1 references the deletion of DBNs and plans. DBNs
are deleted to save resources and this can occur if the action
corresponding to the consequent event of the DBN becomes
sufficiently reliable and that DBN is not already a plan, or if
the DBN does not become sufficiently reliable within 100,000
timesteps. There are a maximum of three plans for an action;
a plan can be deleted if a better plan is found to replace it, or
if the reliability rel(o) falls below 0.05.

The agent continually makes three types of choices during
its exploration. These choices vary in time scale from coarse to
fine. The agent chooses: a learned action a(v, q) to practice,
the best plan oi for performing the action a(v, q), and the
action based on policy πi for plan oi.

10

1) Choosing a Learned Action to Practice: One method
for choosing where to explore is to measure prediction error
and then to motivate the agent to explore parts of the space
for which it currently does not have a good model. This form
of intrinsic motivation is used in [34]–[36]. However, focusing
attention on states where the model has poor prediction ability
can cause the agent to explore spaces where learning is too
difficult.

Schmidhuber [37] proposed a method whereby an agent
learns to predict the decrease in the error of the model that
results from taking each action. The agent can then choose the
action that will cause the biggest decrease in prediction error.
Oudeyer, Kaplan, and Hafner [38] apply this approach with
a developing agent and have the agent explore regions of the
sensory-motor space that are expected to produce the largest
decrease in predictive error. Their method is called Intelligent
Adaptive Curiosity (IAC).

QLAP uses IAC to determine which action to practice. After
the motor babbling period of 20,000 timesteps, QLAP chooses
a motor babbling action with probability 0.1, otherwise it uses
IAC to choose a learned action to practice. Choosing a learned
action to practice consists of two steps: (1) determine the set
of applicable actions that could be practiced in the current
state s, and (2) choose an action from that set.

The set of applicable actions to practice consists of the set
of actions that are not currently accomplished, but could be
performed. For a change action, this means that the action
must have at least one plan. For a magnitude action a(v, q),
this means that if vt < q then a(v̇, [+]) must have at least one
plan (and similarly for vt > q).

QLAP chooses an action to practice by assigning a weight
wa to each action a in the set of applicable actions. The action
is then chosen randomly based on this weight wa. The weights
are assigned using a version of Intelligent Adaptive Curiosity
(IAC) [38] that measures the change in the agent’s ability to
perform the action over time and then chooses actions where
that ability is increasing.

2) Choosing the Best Plan to Perform an Action: When an
action is called, it chooses a plan to perform the action. QLAP
seeks to choose the plan that is most likely to be successful in
the current state. To compare plans, QLAP computes a weight
ws

o for each plan o in state s. To compute the weight ws
o for

plan o in state s, QLAP computes the product of the reliability
of the DBN r that led to the plan rel(r, s) and the reliability
of the second-order DBN rel(o, s) so that

ws
o = rel(r, s) · rel(o, s) (21)

To choose the plan to perform the action, QLAP uses ε-
greedy action plan selection (ε = 0.05). With probability 1−ε,
QLAP chooses the plan with the highest weight. And with
probability ε it chooses a plan randomly. To prevent loops in
the calling list, a plan whose DBN has its antecedent event
already in the call list is not applicable and cannot be chosen.

3) Choosing an Action within a Plan: Recall from Sec-
tion IV that QLAP learns a Q-table for each plan that gives a
value for taking each action a in state s. Here again, QLAP
uses ε-greedy selection. With probability 1 − ε, in state s,
QLAP chooses action a that maximizes Qi(s, a), and with

probability ε, QLAP chooses a random action. This action
selection method balances exploration with exploitation [33].

Algorithm 1 The Qualitative Learner of Action and Perception
(QLAP)

1: for t = 0 :∞ do
2: sense environment
3: convert input to qualitative values using current land-

marks
4: update statistics for learning new contingencies
5: update statistics for each DBN
6: if mod(t, 2000) == 0 then
7: learn new DBNs
8: update contexts on existing DBNs
9: delete unneeded DBNs and plans

10: if mod(t, 4000) == 0 then
11: learn new landmarks on events
12: else
13: learn new landmarks on DBNs
14: end if
15: convert DBNs to plans
16: end if
17: if current exploration action is completed then
18: choose new exploration action and action plan
19: end if
20: get low-level motor command based on current quali-

tative state and plan of current exploration action
21: pass motor command to robot
22: end for

B. Targeted Learning

Since QLAP creates an action for each variable and qual-
itative value combination, a QLAP agent is faced with many
potential actions that could be learned. QLAP can choose
different actions to practice based on the learning gradient,
but what about the thresholds to learn predictive DBN models
and plans? Some actions might be more difficult to learn
than others, so it seems reasonable that the requirements for
learning representations that lead to learning such actions
should be loosened.

QLAP does targeted learning for difficult actions. To learn
a plan for an action chosen for targeted learning, QLAP

1) Lowers the threshold needed to learn a contingency.
Recall from Section III-A2, that a contingency is learned
when

Pr(soon(t, E2)|E1(t))−Pr(soon(t, E2)) > θpen (22)

where θpen = 0.05. If event E2 is chosen for targeted
learning, QLAP makes it more likely that a contingency
will by learned by setting θpen = 0.02.

2) Lowers the threshold needed to learn a plan. Recall
from Section IV-B that one of the requirements to convert
a change DBN r into a plan is that brel(r) > θSR = 0.75.
If event E2 is chosen for targeted learning, QLAP makes
it more likely that a DBN will be converted to a plan by
setting θSR = 0.25.

11

This leaves the question of when to use targeted learning of
actions. An event is chosen as a goal for targeted learning if
the probability of being in a state where the event is satisfied
is less than 0.05; we call such an event sufficiently rare. This
is reminiscent of Bonarini et al. [39]. They consider desirable
states to be those that are rarely reached or are easily left once
reached.

C. Learning What Is Part of “Self”

One step towards tool use is making objects in the environ-
ment part of “self” so that they can be used to perform useful
tasks. The representation of self is straightforward in QLAP. A
change variable is part of self if it can be quickly and reliably
manipulated. QLAP learns what is part of self by looking for
variables that it can reliably control with low latency.

Marjanovic [40] enabled a robot to identify what was part
of self by having the robot wave its arm and having the robot
assume that the only thing moving in the scene was itself.
The work of Metta and Fitzpatrick [41] is similar but more
sophisticated because it looks for optical flow that correlates
with motor commands of the arm. Gold and Scassellati [42]
use the time between giving a motor command and seeing
movement to determine what is part of self. Our method for
learning self is similar to that of Gold and Scassellati, but we
learn what is part of self while learning actions.

A direction of change variable v̇ is part of self if:
1) the average time it takes for the action to set v̇ = [+] and

v̇ = [−] is less than k, and
2) the actions for both v̇ = [+] and v̇ = [−] are sufficiently

reliable. where k is how long it takes for motor commands
to be observed as changes in the world, see [15, app. C].

VI. EVALUATION

(a) Not grasping (b) Grasping

Fig. 8: The evaluation environment (shown here with floating
objects).

Evaluating autonomous learning is difficult because there
is no pre-set task on which to evaluate performance. The
approach we take is to first have the agent learn autonomously
in an environment; we then evaluate if the agent is able to
perform a set of tasks. It is important to note that during
learning the agent does not know on which tasks it will be
evaluated.

A. Evaluation Environment

The evaluation environment is implemented in Breve [43]
and has realistic physics. Breve simulates physics using the
Open Dynamics Engine (ODE) [44]. The simulation consists
of a robot at a table with a block and floating objects. The
robot has an orthogonal arm that can move in the x, y, and z
directions. The environment is shown in Figure 8, and the
variables perceived by the agent for the core environment
are shown in Table II. The block has a width that varies
between 1 and 3 units. The block is replaced when it is
out of reach and not moving, or when it hits the floor. Each
timestep in the simulator corresponds to 0.05 seconds. I.e., 20
timesteps/second is equal to 1200 timesteps/minute is equal
to 72, 000 timesteps per hour. See [15, sect. 7.1] for further
details.

The robot can grasp the block in a way that is reminiscent
of both the palmer reflex [45] and having a sticky mitten [46].
The palmer reflex is a reflex that is present from birth until
the age 4-6 months in human babies. The reflex causes the
baby to close its hand when something touches the palm. In
the sticky mittens experiments, three-month-old infants wore
mittens covered with Velcro that allowed them to more easily
grasp objects.

Grasping is implemented on the robot to allow it to grasp
only when over the block. Specifically, the block is grasped
if the hand and block are colliding, and the Euclidean 2D
distance from the center of the block in the x and y directions
is less than half the width of the palm, 3/2 = 1.5 units.

In addition to the core environment, QLAP is also evalu-
ated with distractor objects. This is done using the floating
extension environment, which adds two floating objects that
the agent can observe but cannot interact with. The purpose
of this environment is to evaluate QLAP’s ability to focus on
learnable relationships in the presence of unlearnable ones.
The objects float around in an invisible box. The variables
added to the core environment to make the floating extension
environment are shown in Table III.

B. Experimental Conditions

We compare the performance of QLAP after autonomous
learning with the performance of a directed reinforcement
learning algorithm trained only on the evaluation tasks This
puts QLAP at a disadvantage on the evaluation tasks because
QLAP is not informed of the evaluation tasks and QLAP
learns more than the evaluation tasks. We hope QLAP can
demonstrate developmental learning by getting better at the
tasks over time, and that QLAP can do as well as the directed
learner.

Each agent is evaluated on three tasks. These are referred
to as the core tasks.

1) move the block The evaluator picks a goal to move the
block left (ṪL = [+]), right (ṪR = [−]), or forward
(ṪT = [+]). The goal is chosen randomly based on the
relative position of the hand and the block. A trial is
terminated early if the agent hits the block in the wrong
direction.

12

2) hit the block to the floor The goal is to make bang =
true.

3) pick up the block The goal is to get the hand in just the
right place so the robot can grasp the block and make
T = true. A trial is terminated early if the agent hits the
block out of reach.

The directed learner (SupLrn) is trained using the algorithm
that Sutton and Barto [33] refer to as “linear, gradient-descent
Sarsa(λ)” with binary features where the binary features come
from tile coding, and a reward function that provides a large
reward upon reaching the goal and small penalties for each
step.7 Tile coding is a way to discretize continuous input
for reinforcement learning. Both the QLAP and the directed
learning agents are evaluated on the core tasks in both the
core environment and the floating extension environment under
three experimental conditions.

1) QLAP The QLAP algorithm.
2) SupLrn-1 Directed learning, choosing an action every

timestep. (Sarsa(λ) with tile coding.)
3) SupLrn-10 Directed learning, choosing an action every

10 timesteps. (Sarsa(λ) with tile coding.)
SupLrn-1 and SupLrn-10 are both used because SupLrn-1 has
difficulty learning the core tasks due to high task diameter (a
large number of steps are required to reach the goal).

QLAP learns autonomously for 250,000 timesteps (cor-
responding to about 3.5 hours of physical experience) as
described in Section V. The directed learning agents repeatedly
perform trials of a particular core task for 250,000 timesteps.
At the beginning of each trial, the core task that the directed
learning agent will practice is chosen randomly. The state
of the agent is saved every 10,000 timesteps (about every 8
minutes of physical experience). The agent is then evaluated on
how well it can do the specified task using the representations
from each stored state.

At the beginning of each trial, a block is placed in a random
location within reach of the agent and the hand is moved to
a random location. Then, the goal is given to the agent. The
agent makes and executes plans to achieve the goal. If the
QLAP agent cannot make a plan to achieve the goal, it moves
randomly. The trial is terminated after 300 timesteps or when
the goal is achieved. The agent receives a penalty of −0.01
for each timestep it does not achieve the goal and a reward of
9.99 on the timestep it achieves the goal. (SupLrn-10 gets a
penalty of −0.1 every 10th timestep it does not reach the goal
and a reward of 9.99 on the timestep it reaches the goal.)

Each evaluation consists of 100 trials. The rewards over the
100 trials are averaged, and the average reward is taken as a
measure of ability. For each experiment, 20 QLAP agents and

7There were 16 tilings and a memory size of 65,536. The motor
variables ux and uy were each divided into 10 equal-width bins, so
that there were 20 actions with each action either setting ux or uy to
a nonzero value. The change variables were each divided into 3 bins:
(−∞,−0.05), [−0.05, 0.05], (0.05,∞). The goal was represented with a
discrete variable. The remaining variables were treated as continuous. They
were normalized to the range [0, 1] using the minimum and maximum values
observed during a typical run of QLAP. The generalization was 0.25, and the
parameter values used were λ = 0.9, γ = 1.0, and α = 0.2. Action selection
was ε-greedy where ε = 0.05. The code for the implementation came from
PLASTK [47].

20 directed learning agents are trained.

TABLE II: Variables of the core environment

Variable Meaning
ux, uy , uz force in x, y, and z directions
uUG ungrasp the block
hx, hy , hz global location of hand in x, y, and z directions
ḣx, ḣy , ḣz derivative of hx, hy , hz
yTB , ẏTB top of hand in frame of reference of bottom of block

(y direction)
yBT , ẏBT bottom of hand in frame of reference of top of block

(y direction)
xRL, ẋRL right side of hand in frame of reference of left side of

block (x direction)
xLR, ẋLR left side of hand in frame of reference of right side of

block (x direction)
zBT , żBT bottom side of hand in frame of reference of top of

block (z direction)
zF , żF distance to the floor
TL, ṪL location of nearest edge of block in x direction in

coordinate frame defined by left edge of table
TR, ṪR location of nearest edge of block in x direction in

coordinate frame defined by right edge of table
TT , ṪT location of nearest edge of block in y direction in

coordinate frame defined by top edge of table
cx, ċx location of hand in x direction relative to center of block
cy , ċy location of hand in y direction relative to center of block
T block is grasped, true or false. Becomes true when the

hand is touching the block and the 2D distance between
the center of the hand and the center of the block is less
than 1.5.

bang true when block hits the floor

TABLE III: Variables added to the core environment to make
up the floating extension environment

Variable Meaning
f1x , f1y , f1z location of first floating object in x, y, and z directions
ḟ1x , ḟ1y , ḟ1z derivative of f1x , f1y , f1z
f2x , f2y , f2z location of second floating object in x, y, and z directions
ḟ2x , ḟ2y , ḟ2z derivative of f2x , f2y , f2z

C. Results

The results are shown in Figures 9 and 10. Figure 9 com-
pares QLAP and directed learning on the task of moving the
block in the specified direction. As can be seen in Figure 9(a),
SupLrn-1 was not able to do the task well compared to QLAP
due to the high task diameter. Having the directed learning
agents choose an action every 10 timesteps improved their
performance, as can be seen in Figure 9(b). But as can be
seen by visually inspecting Figure 9(c), the performance of
directed learning degrades much more than the performance
of QLAP degrades when the distractor objects are added.

This same pattern of QLAP outperforming SupLrn-1,
SupLrn-10 doing as well or better than QLAP in the envi-
ronment without the distractor objects, but then QLAP not
degrading with the distractor objects was also observed for
the tasks of hitting the block off the table and picking up the
block. Figure 10 shows the performance of QLAP and directed
learning on the tasks of hitting the block off the table and
picking up the block. For brevity, this figure only contains the

13

0 5 10 15 20 25

Timesteps (x 10,000)

-3

-2

-1

0

1

2

3

4

5

A
v
e
r
a
g
e

r
e
w
a
r
d

p
e
r

e
p
i
s
o
d
e

(
m
o
v
e

t
a
s
k
)

QLAP

SupLrn-1

(a) QLAP and SupLrn-1

0 5 10 15 20 25

Timesteps (x 10,000)

-3

-2

-1

0

1

2

3

4

5

A
v
e
r
a
g
e

r
e
w
a
r
d

p
e
r

e
p
i
s
o
d
e

(
m
o
v
e

t
a
s
k
)

QLAP

SupLrn-10

(b) QLAP and SupLrn-10

0 5 10 15 20 25

Timesteps (x 10,000)

-3

-2

-1

0

1

2

3

4

5

A
v
e
r
a
g
e

r
e
w
a
r
d

p
e
r

e
p
i
s
o
d
e

(
m
o
v
e

t
a
s
k
)

QLAP

SupLrn-10

(c) Float: QLAP and SupLrn-10

Fig. 9: Moving the block. (a) QLAP does better than SupLrn-1 because of the high task diameter. (b) SupLrn-10 does better
than QLAP. (c) When the floating objects are added, the performance of SupLrn-10 degrades much more than the performance
of QLAP degrades.

0 5 10 15 20 25

Timesteps (x 10,000)

-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

-1.4

-1.2

A
v
e
r
a
g
e

r
e
w
a
r
d

p
e
r

e
p
i
s
o
d
e

(
h
i
t

t
o

f
l
o
o
r
)

QLAP

SupLrn-10

(a) Float: QLAP and SupLrn-10

0 5 10 15 20 25

Timesteps (x 10,000)

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

A
v
e
r
a
g
e

r
e
w
a
r
d

p
e
r

e
p
i
s
o
d
e

(
p
i
c
k
u
p

t
a
s
k
)

QLAP

SupLrn-10

(b) Float: QLAP and SupLrn-10

Fig. 10: QLAP outperforms reinforcement learning using tile
coding on the more difficult tasks in the floating extension
environment. (a) Knock the block off the table. (b) Pick up
the block.

final comparison of QLAP and SupLrn-10 with floating objects
on those tasks. We see that QLAP does better than SupLrn-10
on these more difficult tasks in the environment with floating
objects. For all three tasks, QLAP displays developmental
learning and gets better over time.

These results suggest the following conclusions: (1) QLAP
autonomously selects an appropriate coarse temporal coding
for actions, outperforming the fine-grained actions used in
SupLrn-1, due to the resulting large task diameter; (2) QLAP
is more robust to distractor events than SupLrn-10.

Also note that QLAP generally learns between 0 and 5

landmarks per variable, and in the core environment QLAP
learns fewer than 400 DBNs on average.

D. Additional evaluation: QLAP learns landmarks that are
generally useful

We want to show that the learned landmarks really do
represent the “natural joints” in the environment. Since we
have no ground truth for what the natural joints of the
environment are, we will compare the results of tabular Q-
learning using landmarks learned with QLAP with the results
of tabular Q-learning using randomly generated landmarks. If
the landmarks do represent the joints in the environment, then
the tabular Q-learner using learned landmarks should do better
than the one using random landmarks.

1) Experimental Environment: Tabular Q-learning does not
generalize well. During exploratory experiments, the state
space of the core environment was so large that tabular Q-
learning rarely visited the same state more than once. We
therefore evaluate this claim using a smaller environment and
a simple task. We use the 2D core environment where the hand
only moves in two dimensions. It removes the variables of the
z direction from the core environment. It subtracts uz , uUG,
hz , ḣz , zBT , żBT , cx, ċx, cy , ċy , T , and bang.

2) Experimental Conditions:

(a) QLAP landmarks Tabular Q-learning using landmarks
learned using QLAP after a previous run of 100,000
timesteps on the 2D core environment.

(b) random landmarks Tabular Q-learning using randomly
generated landmarks.

To generate the random landmarks, for each magnitude or
motor variable v, a random number of landmarks between 0
and 5 is chosen. Each landmark is then placed in a randomly
chosen location within the minimum and maximum range
observed for v during a typical run of QLAP. Note that motor
variables already have a landmark at 0, so each motor variable
had between 1 and 6 landmarks.

3) Results: The results are shown in Figure 11. Tabular Q-
learning works much better using the learned landmarks than
using the random ones.

14

0 5 10 15 20 25

Timesteps (x 10,000)

-3

-2

-1

0

1

2

3

4

A
v
e
r
a
g
e

r
e
w
a
r
d

p
e
r

e
p
i
s
o
d
e

(
m
o
v
e

t
a
s
k
)

QLAP landmarks

random landmarks

Fig. 11: QLAP landmarks enable the agent to learn the task
better than do random landmarks.

VII. DISCUSSION

A. Description of Learned Representations

One of the first contingencies (models) that QLAP learns is
that if it gives a positive force to the hand, then the hand will
move to the right. But this contingency is not very reliable
because in the simulator it takes a force of at least 300 units
to move the hand. The agent learns a landmark at 300 on
that motor variable, and modifies the model to state that if the
force is at least 300, then the hand will move to the right.
But this model still is not completely reliable, because if the
hand is already all the way to the right, then it can’t move any
farther. But from this model, the agent can note the location of
its hand each time it applies a force of 300, and it can learn
a landmark to indicate when the hand is all the way to the
right. The completed model states that if the hand is not all
the way to the right and a force of at least 300 is given, then
the hand will usually move to the right. Even this model is
not completely reliable, because there are unusual situations
where, for example, the hand is stuck on the block. But the
model is probabilistic, so it can handle nondeterminism.

The agent also learns that the location of the right side of
the hand in the frame of reference of the left side of the block
has a special value at 0. It learns this because it notices that the
block begins to move to the right when that value is achieved.
It then creates a landmark to indicate that value and an action
to reach that value. Based on this landmark, QLAP can learn a
contingency (model) that says if the value goes to 0, then the
block will move to the right. It can then learn other landmarks
that indicate in which situations this will be successful. In a
similar way, it learns to pick up the block and knock the block
off the table.

B. Theoretical Bounds

QLAP is reasonably efficient in time and space. Let V be
the number of variables. QLAP searches for pairs of events
to form a contingency, so this process is O(V 2) in both time
and space. QLAP searches for context variables and landmarks
for each learned contingency. It does this by considering one
variable at a time for each DBN, thus these processes are
O(V 3) in time and space. This of course means that if you

had a very large number of variables, such as 1000, that the
variables would need to be categorized so that only a subset
of possible contingencies were considered.

MDP planning is known to be computationally expensive
because the state space grows exponentially with the number
of variables. However, this explosion is limited in QLAP
because QLAP builds many MDPs, each consisting of only
a few variables. Essentially, QLAP searches for the simplest
MDP models that give reasonable descriptions of the observed
dynamics of the environment. The search is a greedy search,
incrementally increasing the number of variables in the MDP
(via the DBN).

C. Assumptions of QLAP

QLAP assumes that any goal that an outside observer
would want the agent to accomplish is represented with an
input variable. QLAP also assumes that meaningful landmarks
can be found on single variables. In some cases when these
assumptions are violated, QLAP can do a search on combina-
tions of variables (see [15, sect. 10.3]).

QLAP also assumes a set of continuous motor primitives
that correspond to orthogonal directions of movement. QLAP
builds on the work of Pierce and Kuipers [48]. In their work,
an agent was able to use principal components analysis (PCA)
[49] to learn a set of motor primitives corresponding to turn
and travel for a robot that had motors to turn each of two
wheels independently.

VIII. RELATED WORK

QLAP learns states and hierarchical actions in continuous,
dynamic environments with continuous motors through au-
tonomous exploration. The closest direct competitor to QLAP
is the work of Barto, Jonsson, and Vigorito. Given a DBN
model of the environment, the VISA algorithm [50] creates
a causal graph which it uses to identify state variables for
options. Like QLAP, the VISA algorithm performs state ab-
straction by finding the relevant variables for each option. Jon-
sson and Barto [26] learn DBNs through an agent’s interaction
with a discrete environment by maximizing the posterior of
the DBN given the data by building a tree to represent the
conditional probability. Vigorito and Barto [51] extends [26],
[50] by proposing an algorithm for learning options when there
is no specific task.

This work differs from QLAP in that learning takes place in
discrete environments with events that are assumed to occur
over one-timestep intervals. The work also assumes that the
agent begins with a set of discrete actions. Because QLAP is
designed for continuous environments with dynamics, QLAP
uses a qualitative representation. This qualitative representa-
tion leads to a novel DBN learning algorithm for learning
predictive models, and a novel method for converting those
models into a set of hierarchical actions.

Shen’s LIVE algorithm [52] learns a set of rules in first-
order logic and then uses goal regression to perform actions.
The algorithm assumes that the agent already has basic actions,
and the experiments presented are in environments without
dynamics such as the Tower of Hanoi. Another method for

15

learning planning rules in first-order logic is [7], [8]. The rules
they learn are probabilistic, given a context and an action their
learned rules provide a distribution over results. This algorithm
assumes a discrete state space and that the agent already has
basic actions such as pick up.

QLAP’s structure of actions and plans is reminiscent of the
MAXQ value function decomposition [53]. QLAP defines its
own actions and plans as it learns, and as the agent learns
a more refined discretization the hierarchy changes. There
has also been much work on learning hierarchy. Like QLAP,
Digney [54] creates a task to achieve each discrete value of
each variable. However, QLAP learns the discretization. Work
has been done on learning a hierarchical decomposition of a
factored Markov decision process by identifying exits. Exits
are combinations of variable values and actions that cause
some state variable to change its value [50]. Exits roughly
correspond to the DBNs found by QLAP except that there
is no explicit action needed for QLAP DBNs. Hengst [55]
determined an order on the input variables based on how often
they changed value. Using this ordering, he identified exits to
change the next variable in the order and created an option
for each exit.

There has been other work on structure learning in sequen-
tial decision processes where the environment can be modeled
as a factored MDP. Degris et al. [25] proposed a method called
SDYNA that learns a structured representation in the form
of a decision tree and then uses that structure to compute
a value function. Strehl et al. [27] learn a DBN to predict
each component of a factored state MDP. Hester and Stone
[56] learn decision trees to predict both the reward and the
change in the next state. All of these methods are evaluated
in discrete environments where transitions occur over one-
timestep intervals.

IX. SUMMARY AND CONCLUSION

The Qualitative Learner of Action and Perception (QLAP)
is an unsupervised learning algorithm that allows an agent
to autonomously learn states and actions in continuous en-
vironments. Learning actions from a learned representation is
significant because it moves the state of the art of autonomous
learning from grid worlds to continuous environments. An-
other contribution of QLAP is providing a method for factoring
the environment into small pieces. Instead of learning one
large predictive model, QLAP learns many small models. And
instead of learning one large plan to perform an action, QLAP
learns many small plans that are useful in different situations.

QLAP starts with a bottom-up process that detects con-
tingencies and builds DBN models to identify the conditions
(i.e., values of context variables) under which there are near-
deterministic relations among events. Meanwhile, an action
is defined for each event, where the action has the intended
effect of making that event occur. The desirable situation is
for an action to have one or more sufficiently reliable plans for
implementing the action. If there are no plans for an action,
or if the plans are not sufficiently reliable, the action is still
defined, but it is not useful, so it will not be used as a step in a
higher-level plan. Each plan comes from a sufficiently reliable

DBN, where the overall structure is that DBNs lead to MDPs,
MDPs are converted into policies, and policies are plans.

QLAP explores autonomously and tries to learn to achieve
each qualitative value of each variable. To explore, the agent
continually chooses an action to practice. To choose which
action to practice, QLAP uses Intelligent Adaptive Curiosity
(IAC). IAC motivates the agent to practice actions that it is
getting better at, and IAC motivates the agent to stop practicing
actions that are too hard or too easy.

QLAP was evaluated in environments with simulated
physics. The evaluation was performed by having QLAP
explore autonomously and then measuring how well it could
perform a set of tasks. The agent learned to hit a block in a
specified direction and to pick up the block as well or better
than a directed learner trained only on the task. The evaluation
also showed that the landmarks learned by QLAP were broadly
useful. Future work will consist of incorporating continuous
learning methods within the discretized representation learned
by QLAP. This should enable QLAP to leverage the best of
both discrete learning and continuous learning.

ACKNOWLEDGMENT

This work has taken place in the Intelligent Robotics Lab at
the Artificial Intelligence Laboratory, The University of Texas
at Austin. Research of the Intelligent Robotics lab is supported
in part by grants from the Texas Advanced Research Program
(3658-0170-2007), and from the National Science Foundation
(IIS-0413257, IIS-0713150, and IIS-0750011).

REFERENCES

[1] A. Saxena, J. Driemeyer, J. Kearns, and A. Ng, “Robotic grasping
of novel objects,” Advances in neural information processing systems,
vol. 19, p. 1209, 2007.

[2] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and G. Sandini, “Learning
about objects through action-initial steps towards artificial cognition,”
in IEEE International Conference on Robotics and Automation, 2003.
Proceedings. ICRA’03, vol. 3, 2003.

[3] S. Vijayakumar, A. D’souza, and S. Schaal, “Incremental online learning
in high dimensions,” Neural Computation, vol. 17, no. 12, pp. 2602–
2634, 2005.

[4] C. M. Vigorito and A. G. Barto, “Intrinsically motivated hierarchical
skill learning in structured environments,” IEEE Transactions on Au-
tonomous Mental Development (TAMD), vol. 2, no. 2, 2010.

[5] G. L. Drescher, Made-Up Minds: A Constructivist Approach to Artificial
Intelligence. Cambridge, MA: MIT Press, 1991.

[6] P. R. Cohen, M. S. Atkin, T. Oates, and C. R. Beal, “Neo: Learning
conceptual knowledge by sensorimotor interaction with an environment,”
in Agents ’97. Marina del Rey, CA: ACM, 1997.

[7] L. S. Zettlemoyer, H. Pasula, and L. P. Kaelbling, “Learning planning
rules in noisy stochastic worlds.” in Proc. 20nd Conf. on Artificial
Intelligence (AAAI-2005), 2005, pp. 911–918.

[8] H. Pasula, L. Zettlemoyer, and L. Kaelbling, “Learning symbolic models
of stochastic domains,” Journal of Artificial Intelligence Research,
vol. 29, pp. 309–352, 2007.

[9] C. Xu and B. Kuipers, “Towards the Object Semantic Hierarchy,” in
Proc. of the Int. Conf. on Development and Learning (ICDL 2010),
2010.

[10] J. Mugan and B. Kuipers, “Learning to predict the effects of actions:
Synergy between rules and landmarks,” in Proc. of the Int. Conf. on
Development and Learning, 2007.

[11] ——, “Learning distinctions and rules in a continuous world through
active exploration,” in Proc. of the Int. Conf. on Epigenetic Robotics,
2007.

[12] ——, “Towards the application of reinforcement learning to undirected
developmental learning,” in Proc. of the Int. Conf. on Epigenetic
Robotics, 2008.

16

[13] ——, “A comparison of strategies for developmental action acquisition
in QLAP,” in Proc. of the Int. Conf. on Epigenetic Robotics, 2009.

[14] ——, “Autonomously learning an action hierarchy using a learned
qualitative state representation,” in Proc. of the Int. Joint Conf. on
Artificial Intelligence, 2009.

[15] J. Mugan, “Autonomous Qualitative Learning of Distinctions and Ac-
tions in a Developing Agent,” Ph.D. dissertation, University of Texas at
Austin, 2010.

[16] U. Fayyad and K. Irani, “On the handling of continuous-valued attributes
in decision tree generation,” Machine Learning, vol. 8, no. 1, pp. 87–
102, 1992.

[17] J. Mugan and B. Kuipers, “The qualitative learner of action and
perception, QLAP,” in AAAI Video Competition (AIVC 2010), 2010,
http://videolectures.net/aaai2010 mugan qlap.

[18] R. S. Sutton and A. G. Barto, Reinforcement Learning. Cambridge
MA: MIT Press, 1998.

[19] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted learn-
ing,” Artificial Intelligence Review, vol. 11, no. 1/5, pp. 11–73, 1997.

[20] ——, “Locally weighted learning for control,” Artificial Intelligence
Review, vol. 11, no. 1/5, pp. 75–113, 1997.

[21] S. Vijayakumar and S. Schaal, “Locally weighted projection regression:
An O(n) algorithm for incremental real time learning in high dimensional
space,” in Proceedings of the Seventeenth International Conference on
Machine Learning (ICML 2000), vol. 1, 2000, pp. 288–293.

[22] M. Jordan and D. Rumelhart, “Forward models: Supervised learning
with a distal teacher,” Cognitive Science, vol. 16, pp. 307–354, 1992.

[23] C. Rasmussen, “Gaussian processes in machine learning,” Advanced
Lectures on Machine Learning, pp. 63–71, 2006.

[24] B. Kuipers, Qualitative Reasoning. Cambridge, Massachusetts: The
MIT Press, 1994.

[25] T. Degris, O. Sigaud, and P. Wuillemin, “Learning the structure of
factored Markov decision processes in reinforcement learning problems,”
in ICML, 2006, pp. 257–264.

[26] A. Jonsson and A. Barto, “Active learning of dynamic bayesian networks
in markov decision processes,” Lecture Notes in Artificial Intelligence:
Abstraction, Reformulation, and Approximation - SARA, pp. 273–284,
2007.

[27] A. Strehl, C. Diuk, and M. Littman, “Efficient structure learning in
factored-state MDPs,” in AAAI, vol. 22, no. 1, 2007, p. 645.

[28] G. A. Miller, E. Galanter, and K. H. Pribram, Plans and the Structure
of Behavior. Holt, Rinehart and Winston, 1960.

[29] N. J. Nilsson, Principles of Artificial Intelligence. Tioga Publishing
Company, 1980.

[30] M. Puterman, Markov Decision Problems. New York: Wiley, 1994.
[31] C. Boutilier, T. Dean, and S. Hanks, “Decision theoretic planning:

Structural assumptions and computational leverage,” Journal of Artificial
Intelligence Research, vol. 11, no. 1, p. 94, 1999.

[32] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning,”
Artificial Intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[33] R. S. Sutton and A. G. Barto, Reinforcement Learning. Cambridge
MA: MIT Press, 1998.

[34] X. Huang and J. Weng, “Novelty and Reinforcement Learning in the
Value System of Developmental Robots,” Proc. 2nd Inter. Workshop on
Epigenetic Robotics, 2002.

[35] J. Marshall, D. Blank, and L. Meeden, “An emergent framework for
self-motivation in developmental robotics,” Proc. of the 3rd Int. Conf.
on Development and Learning (ICDL 2004), 2004.

[36] R. Brafman and M. Tennenholtz, “R-max-a general polynomial time
algorithm for near-optimal reinforcement learning,” The Journal of
Machine Learning Research, vol. 3, pp. 213–231, 2003.

[37] J. Schmidhuber, “Curious model-building control systems,” in Proc. Int.
Joint Conf. on Neural Networks, vol. 2, 1991, pp. 1458–1463.

[38] P. Oudeyer, F. Kaplan, and V. Hafner, “Intrinsic Motivation Systems for
Autonomous Mental Development,” Evolutionary Computation, IEEE
Transactions on, vol. 11, no. 2, pp. 265–286, 2007.

[39] A. Bonarini, A. Lazaric, and M. Restelli, “Incremental Skill Acquisition
for Self-Motivated Learning Animats,” in From Animals to Animats 9:
9th International Conference on Simulation of Adaptive Behavior, SAB.
Springer, 2006, pp. 357–368.

[40] M. Marjanovic, B. Scassellati, and M. Williamson, “Self-taught visually
guided pointing for a humanoid robot,” in From Animals to Animats
4: Proc. Fourth Int l Conf. Simulation of Adaptive Behavior, 1996, pp.
35–44.

[41] G. Metta and P. Fitzpatrick, “Early integration of vision and manipula-
tion,” Adaptive Behavior, vol. 11, no. 2, pp. 109–128, 2003.

[42] K. Gold and B. Scassellati, “Learning acceptable windows of contin-
gency,” Connection Science, vol. 18, no. 2, pp. 217–228, 2006.

[43] J. Klein, “Breve: a 3d environment for the simulation of decentralized
systems and artificial life,” in Proc. of the Int. Conf. on Artificial Life,
2003.

[44] R. Smith, Open dynamics engine v 0.5 user guide, http://ode.org/ode-
latest-userguide.pdf., 2004.

[45] V. G. Payne and L. D. Isaacs, Human Motor Development: A Lifespan
Approach. McGraw-Hill Humanities/Social Sciences/Languages, 2007.

[46] A. Needham, T. Barrett, and K. Peterman, “A pick-me-up for infants’
exploratory skills: Early simulated experiences reaching for objects using
‘sticky mittens’ enhances young infants’ object exploration skills,” Infant
Behavior and Development, vol. 25, no. 3, pp. 279–295, 2002.

[47] J. Provost, sourceforge.net, 2008.
[48] D. M. Pierce and B. J. Kuipers, “Map learning with uninterpreted sensors

and effectors.” Artificial Intelligence, vol. 92, pp. 169–227, 1997.
[49] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. Wiley-

Interscience Publication, 2000.
[50] A. Jonsson and A. Barto, “Causal graph based decomposition of factored

MDPs,” The Journal of Machine Learning Research, vol. 7, pp. 2259–
2301, 2006.

[51] C. M. Vigorito and A. G. Barto, “Autonomous hierarchical skill acqui-
sition in factored mdps,” in Yale Workshop on Adaptive and Learning
Systems, New Haven, Connecticut, 2008.

[52] W.-M. Shen, Autonomous Learning from the Environment. W. H.
Freeman and Company, 1994.

[53] T. Dietterich, “The MAXQ method for hierarchical reinforcement learn-
ing,” ICML, 1998.

[54] B. Digney, “Emergent hierarchical control structures: Learning reac-
tive/hierarchical relationships in reinforcement environments,” in From
animals to animats 4: proceedings of the Fourth International Confer-
ence on Simulation of Adaptive Behavior. The MIT Press, 1996, p.
363.

[55] B. Hengst, “Discovering hierarchy in reinforcement learning with
HEXQ,” in Proceedings of the Nineteenth International Conference on
Machine Learning, 2002, pp. 243–250.

[56] T. Hester and P. Stone, “Generalized model learning for reinforcement
learning in factored domains,” in Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems-Volume
2. International Foundation for Autonomous Agents and Multiagent
Systems, 2009, pp. 717–724.

Jonathan Mugan is a Postdoctoral Fellow at
Carnegie Mellon University. He received his Ph.D.
in computer science from the University of Texas
at Austin. He received his M.S. from the University
of Texas at Dallas, and he received his M.B.A. and
B.A. from Texas A&M University.

Benjamin Kuipers joined the University of Michi-
gan in January 2009 as Professor of Computer
Science and Engineering. Prior to that, he held an
endowed Professorship in Computer Sciences at the
University of Texas at Austin. He received his B.A.
from Swarthmore College, and his Ph.D. from MIT.

