
Autonomously Learning an Action Hierarchy Using a Learned
Qualitative State Representation

Jonathan Mugan
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712 USA
jmugan@cs.utexas.edu

Benjamin Kuipers
Computer Science and Engineering

University of Michigan
Ann Arbor, MI 48109 USA

kuipers@umich.edu

Abstract
There has been intense interest in hierarchical rein-
forcement learning as a way to make Markov de-
cision process planning more tractable, but there
has been relatively little work on autonomously
learning the hierarchy, especially in continuous do-
mains. In this paper we present a method for learn-
ing a hierarchy of actions in a continuous environ-
ment. Our approach is to learn a qualitative repre-
sentation of the continuous environment and then
to define actions to reach qualitative states. Our
method learns one or more options to perform each
action. Each option is learned by first learning a
dynamic Bayesian network (DBN). We approach
this problem from a developmental robotics per-
spective. The agent receives no extrinsic reward
and has no external direction for what to learn. We
evaluate our work using a simulation with realistic
physics that consists of a robot playing with blocks
at a table.

1 Introduction
Reinforcement learning (RL) is a popular method for en-
abling agents to learn in unknown environments [Sutton and
Barto, 1998]. Much work in RL focuses on learning to max-
imize a reward given a set of states S and a set of actions A.
In this paper we focus on continuous environments and we
present a method for learning a qualitative state representa-
tion S∗ and a hierarchical set of qualitative actions A∗ using
only intrinsic reward. We call the actions that the agent learns
qualitative actions because they allow the agent to reach qual-
itative states. We call our algorithm the Qualitative Learner
of Actions and Perception, QLAP.

QLAP makes use of the options framework [Sutton et al.,
1999] and learns one or more options to perform each quali-
tative action, where each option serves as a different way to
perform the action. Boutilier [1995] proposed making MDP
planning more tractable by exploiting structure in the problem
using dynamic Bayesian networks (DBNs). In QLAP there is
a one-to-one correspondence between DBNs and options, and
each option is treated as a small MDP problem. Each option
is learned by first learning a small dynamic Bayesian network
(DBN). The variables in the DBN determine the initial state

space for the option. This leads to a state abstraction in the
option, because the variables in the DBN are a subset of the
available variables. The conditional probability table of the
DBN is used to specify the transition function for the option.
Since the option’s state space is small, the policy can then be
learned using dynamic programming.

In QLAP, the agent begins with a very coarse discretiza-
tion that indicates if the value of each variable is increasing,
decreasing, or remaining steady. Using this discretization,
the agent first motor babbles and then explores by repeatedly
choosing a qualitative action and an option to achieve that ac-
tion, and then following the policy of that option. While it
is exploring it is learning DBNs. Once a DBN is sufficiently
deterministic an option is created based on it. The agent also
learns new distinctions to improve previously learned DBNs.
These new distinctions update the agent’s qualitative state
representation.

We consider the options that QLAP learns to be hierarchi-
cal options because (1) they invoke qualitative actions instead
of primitive actions, (2) they use a state abstraction that is spe-
cific to the option, and (3) they use a pseudo-reward to learn
the policy independent of the calling context. The disadvan-
tage of this hierarchical approach is that the agent may not
always find the optimal solution. One important advantage
is that the temporal abstraction afforded by the options de-
creases the task diameter (the number of actions needed to
achieve the goal) and therefore reduces the amount of time
that the agent spends randomly exploring. Another important
advantage is that the agent is able to ignore variables that are
not necessary to complete the task. QLAP options are each
created to achieve a goal, and since they use a state abstrac-
tion and a pseudo-reward, they share similarities with MAXQ
subtasks [Dietterich, 1998].

In [Mugan and Kuipers, 2007] a method was proposed
for learning both a discretization and small models to de-
scribe the dynamics of the environment. In [Mugan and
Kuipers, 2008] a method was proposed for enabling an agent
to use those models to autonomously formulate reinforcement
learning problems. The contributions of this paper are to put
the learned small models into the DBN framework and to or-
ganize the formulated reinforcement learning problems into a
hierarchy using options.

We first discuss how QLAP learns the action hierarchy. We
then discuss how the agent executes QLAP. We then evaluate

Figure 1: Correspondence between QLAP DBN notation and
traditional graphical DBN notation. (a) QLAP notation of
a DBN. Context C consists of a set of qualitative variables.
Event E1 is an antecedent event and event E2 is a consequent
event. (b) Traditional graphical notation. Boolean variable
event(t, E1) is true if event E1 occurs at time t. Boolean
variable soon(t, E2) is true if event(t, E1) is true and event
E2 occurs within k timesteps of t. The conditional prob-
ability table (CPT) gives the probability of soon(t, E2) for
each value of its parents. For all elements of the CPT where
event(t, E1) is false, the CPT gives a probability of 0. The
remaining probabilities are learned through experience.

QLAP using a simulated robot with realistic physics, and we
show that using QLAP the agent can learn an action hierarchy
that allows it to perform both temporal abstraction and state
abstraction to complete the task of hitting a block. We then
discuss related work and conclude.

2 Learning the Action Hierarchy
2.1 Qualitative Representation
QLAP uses a qualitative representation to abstract the con-
tinuous world. A qualitative representation allows an agent
to cope with incomplete information and to focus on impor-
tant distinctions while ignoring unimportant ones [Kuipers,
1994]. A qualitative state representation includes both the
continuous state variables, called magnitude variables, as
well as change variables that encode the direction of change
(increasing, decreasing, or steady) of each magnitude vari-
able. The values of the variables are represented qualitatively
using landmarks, and the value of a qualitative variable can be
either at a landmark or between two landmarks. In this way,
landmarks can convert a continuous variable ṽ with an infinite
number of values into a qualitative variable v with a finite set
of qualitative values Q(v) called a quantity space [Kuipers,
1994]. A quantity space Q(v) = L(v) ∪ I(v), where
L(v) = {v∗1 , · · · , v∗n} is a totally ordered set of landmark val-
ues, and I(v) = {(−∞, v∗1), (v∗1 , v

∗
2), · · · , (v∗n,+∞)} is the

set of mutually disjoint open intervals that L(v) defines in the
real number line. A quantity space with two landmarks might
be described by (v∗1 , v

∗
2), which implies five distinct qualita-

tive values, Q(v) = {(−∞, v∗1), v∗1 , (v
∗
1 , v
∗
2), v∗2 , (v

∗
2 ,+∞)}.

The magnitude variables initially have no landmarks, and
the agent must learn the important distinctions. Each direc-
tion of change variable v̇ has a single intrinsic landmark at 0,
so its quantity space is Q(v̇) = {(−∞, 0), 0, (0,+∞)}. Mo-
tor variables are a third type of qualitative variable. They are

also given an initial landmark at 0, but the agent must learn
further distinctions. For example, in the evaluation the agent
learns that it takes a force of at least 300.0 to move the hand.

Using a qualitative representation allows the agent to focus
its attention on events and ignore unimportant sensory input.
We define the event Xt→x to be when X(t − 1) 6= x and
X(t) = x, where x ∈ Q(X) is a qualitative value of a quali-
tative variable X .

2.2 Qualitative Actions
The qualitative representation defines a set of qualitative ac-
tions. QLAP creates a qualitative action qa(v, q) to achieve
each qualitative value q ∈ Q(v) for each qualitative variable
v. There are three types of qualitative actions corresponding
to the three types of qualitative variables: motor, magnitude,
and change. A motor action qa(v, q) sets ṽ to a random con-
tinuous value within the range covered by q.

Magnitude and change actions are high-level actions.
When a magnitude or change action is executed it chooses
an option and executes the policy for that option. Each option
is associated with only one qualitative action, and the actions
that an option can invoke are qualitative actions.

A magnitude action qa(v, q) has one option to achieve v =
q if the value of v is currently less than q, and another option
to achieve v = q if the value of v is currently greater than q. A
change action qa(v, q) may have multiple options to choose
from to achieve v = q. To learn each option, QLAP first
learns a DBN. There is a one-to-one correspondence between
DBNs and options.

2.3 DBN Representation
In Mugan and Kuipers [2007] a method was presented for
learning small models to predict qualitative values of vari-
ables. In this paper we put those models into the dynamic
Bayesian network framework. We refer to these models as
dynamic Bayesian networks and not simply Bayesian net-
works because we are using them to model a dynamic system.
The notation we use for these DBNs is r = 〈C : E1 ⇒ E2〉
where C is a set of qualitative variables that serves as a con-
text, event E1 = X→x is the antecedent event, and event
E2 = Y → y is the consequent event (see Figure 1). This
DBN r can be written as

r = 〈C : X→x⇒ Y→y〉 (1)

DBN r gives the probability that event Y→y will soon follow
event X→x for each qualitative value in C. Focusing only
on timesteps in which event X→x occurs helps to focus the
agent’s attention to make learning more tractable. And using
a time window for event Y →y allows the DBN to account
for influences that may take more than one timestep to man-
ifest. Notice that these DBNs differ from the typical DBN
formulation, e.g. [Boutilier et al., 1995], in that there is no
action associated with the DBN. This is because QLAP does
not begin with a set of primitive actions, it only assumes that
the agent has motor variables. The DBNs in QLAP are tied to
the agent’s motors because the antecedent event of the DBN
can be on a motor variable.

To learn each DBN, QLAP finds a pair of events E1 and
E2 such that E2 is more likely to occur soon given that E1

has occurred than otherwise. It then creates a DBN with
an empty context. QLAP then iteratively adds context vari-
ables that improve the predictive ability of the DBN (cf.
marginal attribution [Drescher, 1991]). Additionally, predict-
ing when the Boolean child variable will be true is a super-
vised learning problem. This formulation allows the agent
to learn new landmarks (distinctions) that improve the pre-
dictive ability of the DBN (see [Mugan and Kuipers, 2007;
2008] for details.)

The DBNs we have just discussed predict events on change
variables and are called change DBNs. QLAP also uses
magnitude DBNs to predict events on magnitude variables.
For each magnitude variable v and each qualitative value
q ∈ Q(v), QLAP creates two DBNs, one that corresponds
to approaching the value v = q from below on the number
line, and another that corresponds to approaching v = q from
above. Magnitude DBNs are similar to change DBNs. For
example, if v < q and the robot successfully performs the
action to achieve v̇ = (0,+∞), then the DBN gives the prob-
ability, for each value of the variables in the context, of event
v→q occurring before v̇ 6= (0,+∞). Magnitude DBNs have
no concept of “soon,” as long as v < q and v̇ = (0,+∞), the
agent will wait for v→q.

For a DBN r, we denote the probability of the child vari-
able being true in state s by CPTr(s) (we only consider the
cases where the non-context parent variable is true). We call
the highest probability CPTr(s∗) for any state s∗ the best
reliability of DBN r.

2.4 Options
An option [Sutton et al., 1999] is like a subroutine that can be
called to perform a task. An option oi is typically expressed
as the triple oi = 〈Ii, πi, βi〉 where Ii is a set of initiation
states, πi is the policy, and βi is a set of termination states or
a termination function. Options in QLAP follow this pattern
except that πi is a policy over qualitative actions instead of
being over primitive actions or options. Additionally, since
each option in QLAP learns its policy using its own state ab-
straction, associated with option oi is a state space Si, a set of
qualitative actions As

i for each state s ∈ Si, and a transition
function Ti : Si ×As

i → Si.
QLAP creates a magnitude option for each magnitude

DBN. QLAP creates a change option for each change DBN
where (1) the best reliability is estimated to be greater than
θr = 0.75 and (2) the antecedent event can be achieved with
an estimated probability greater than θr = 0.75 and (3) the
option would not create a cycle of change options. (We also
limit the number of change options to 3 for any qualitative
action). The goal of the option is to make the child variable
of the DBN true. If this occurs, then the option succeeds. If
the option succeeds, then the qualitative action that invoked it
also succeeds.

Creating an Option from a DBN
When an option or is created for a DBN r, the set of initiation
states Ir is the set of all states, and the termination function
βr terminates or when it succeeds (the child variable becomes
true) or when it becomes stuck for 10 timesteps or exceeds
resource constraints (300 timesteps, or 5 suboption calls). To

learn the policy πr, QLAP uses the DBN to create a transition
function Tr : Sr×As

r → Sr and then learns theQ-table using
dynamic programming with value iteration [Sutton and Barto,
1998]. The pseudo-reward is 10.0 for reaching the goal and a
transition cost of 0.50 is imposed for each transition.

We now describe how QLAP constructs the state space Sr,
the set of available actions As

r, and the transition function Tr

for option or from a change DBN r = 〈C : X→x⇒ Y→y〉.
Recall thatQ(v) is the set of qualitative values for qualitative
variable v. If we define the set Zr = C∪X∪Y , then the state
space Sr for option or is Sr =

∏
v∈Zr

Q(v). (We will see in
Section 2.5 how more variables can be added to state spaces.)

Recall that the notation qa(v, q) means the qualitative ac-
tion to bring about v = q. The set of qualitative actions As

r
available in state s ∈ Sr is

As
r = AC

⋃
{qa(X,x)} − {qa(v, q)|s(v) = q} (2)

The definition of As
r consists of three parts. (1) The qualita-

tive actions AC allow the agent to move within the context
AC = {qa(v, q)|v ∈ C and q ∈ Q(v)} (3)

(although any action on the corresponding magnitude vari-
able of Y is excluded fromAC to prevent infinite regress). (2)
The qualitative action qa(X,x) brings about the antecedent
event of r. (3) QLAP subtracts those actions whose goal is
already achieved in state s.

To construct Tr : Sr × As
r → Sr, QLAP must compute a

set of possible next states for each s ∈ Sr and a ∈ As
r. It

must then compute the distribution P (s′|s, a). To compute
P (s′|s, a), QLAP uses the statistics gathered on DBN r and
the statistics gathered to estimate the probability Pr(a) of
success for qualitative action a. When calculating the possi-
ble next states after a qualitative action, QLAP limits its scope
to those next states that are most important for learning the
Q-table. For a qualitative action a = qa(v, q) with v ∈ C to
change the value of a context variable, QLAP considers two
possible next states. State s′1 where the action is successful
and the only change is that s′1(v) = q, and state s′2 where the
action fails and s′2 = s. The probability distribution over s′
then is Pr(s′1|s, a) = Pr(a) and Pr(s′2|s, a) = 1 − Pr(a).
For the qualitative action a = qa(X,x) to bring about the an-
tecedent of r, QLAP also considers two possible next states.
State s′1 is where the antecedent event occurs and the conse-
quent event follows, so that s′1 is the same as s except that
s′1(X) = x and s′1(Y) = y. State s′2 is where the antecedent
event occurs but the consequent event does not follow, so
that s′2 is the same as s except that s′2(X) = x. The prob-
ability distribution over s′ is Pr(s′1|s, a) = CPTr(s) and
Pr(s′2|s, a) = 1− CPTr(s).

For a magnitude option the state space Sr, the set of avail-
able actions As

r, and the transition function Tr are computed
similarly as they are for change options. One difference is
that magnitude options have a special action called wait. For
the option to reach v = q from below on the number line, the
action wait can be taken if the value of variable v is less than
q and is moving towards q.

2.5 Second-Order DBNs
Once a change or magnitude option is created, a second-order
DBN is created to track its progress. The statistics stored

for second-order DBNs help the agent choose which option it
should invoke to perform a qualitative action. Second-order
DBNs also allow the agent to determine if there are additional
variables necessary for the success of an option. A second-
order DBN r2o created for option o has the form

r2o = 〈Co : invoke(t, o)⇒ succeeds(t, o)〉 (4)
The child variable of second-order DBN r2o is succeeds(t, o),
which is true if option o succeeds after being invoked at
time t and is false otherwise. The parent variables of r2o are
invoke(t, o) and and the context variables in Co. The Boolean
variable invoke(t, o) is true when the option is invoked at
time t and is false otherwise. When created, DBN r2o initially
has an empty context, and context variables are added in as
they are for magnitude and change DBNs.

Second-order DBNs allow the qualitative action to choose
an option that has a high probability of success in the current
state. The option is chosen randomly based on the weight wo.
Weight wo is calculated using the current state, the original
change or magnitude DBN r, and the second-order DBN r2o
where

wo(s) = CPTr(s)× CPTr2
o
(s) (5)

(To prevent loops in the call stack, an option whose DBN has
its antecedent event already in the call stack is not considered
a valid choice.)

Second-order DBNs allow the agent to identify other vari-
ables necessary for the success of an option o because those
variables will be added to its context. Each variable that is
added to r2o is also added the state space Sr of its associ-
ated change or magnitude DBN r. For example, if DBN
r = 〈C : X→x ⇒ Y →y〉, the state space Sr is updated
so that Sr =

∏
v∈Z′

r
Q(v) where Z ′r = Co ∪ C ∪ X ∪ Y .

For both magnitude and change options, a qualitative action
qa(v, q) where v ∈ Q(Co) is treated the same way as those
where v ∈ Q(C).

3 Execution
The agent motor babbles for the first 20,000 timesteps (1000
seconds of physical experience) by picking random motor
values and maintaining those values for random numbers of
timesteps (≤ 40). During this time the agent learns land-
marks on motor variables and its first DBNs, options, and
qualitative actions. Exploration then follows a developmental
progression as the agent randomly chooses qualitative actions
for execution among those actions that have at least one op-
tion.

To perform an action the agent chooses one of the action’s
options and then follows the policy. When following a pol-
icy QLAP uses ε-greedy action selection and updates the Q-
tables using Sarsa(λ). The reward for reaching the goal is
10.0, the step cost is 0.01 for each timestep, and it uses the
parameter values λ = 0.9, ε = 0.05, γ = 1.0, and α = 0.2.

Every 2000 timesteps the agent learns new DBNs, aug-
ments the contexts of existing DBNs, and learns new land-
marks (see [Mugan and Kuipers, 2007]). QLAP also creates
new options corresponding to the new DBNs and it does a
Dyna-inspired [Sutton and Barto, 1998] update of the exist-
ing Q-tables by recalculating the transition function and then
doing a one-step update of each Q-table.

Figure 2: The simulated agent and environment implemented
in Breve. It has a torso with a 2-dof orthogonal arm and is
sitting in front of a table with a block. The robot has two
motor variables ũx and ũy that move the hand in the x and
y directions, respectively. The hand is described by two con-
tinuous variables h̃x(t), h̃y(t) that represent the location of
the hand in the x and y directions, respectively. The variables
b̃x(t), and b̃y(t) give the location of the block in the x and y
direction. The relationship between the hand and the block
is represented by the continuous variables x̃rl, x̃lr, and ỹtb,
where x̃rl is the distance from the right side of the hand to
the left side of the block in the x direction, x̃lr is the distance
from the left side of the hand to the right side of the block in
the x direction, and ỹtb is the distance from the top of the hand
to the bottom of the block in the y direction. There are also
two distractor floating objects f1 and f2. The variables for
f1 are f̃1

x ,f̃1
y , and f̃1

z . (The variables for f2 are analogous.)

4 Evaluation
4.1 The Environment and Task
We evaluate QLAP using the environment shown in Figure 2.
The environment is implemented in Breve [Klein, 2003] and
has realistic physics. The simulation consists of a robot at a
table with a block, and in some experiments there are floating
objects that the robot can perceive but cannot interact with.
As the agent explores, each time the block is knocked out of
reach it is replaced with a different block. Each block has the
same mass, but the block size varies randomly in length from
1.0 to 3.0.

QLAP autonomously learns without being specified a task.
To evaluate QLAP, we choose the task of having the agent hit
the block in a specified direction, either left, right, or forward.
During learning, the agent does not know that it will be eval-
uated on this task. We know of no other RL algorithm that
learns in an unsupervised way that would be appropriate for
this task, so we compare our method to reinforcement learn-
ing using tile coding, which we call RL-Tile. RL-Tile was
trained only on the evaluation task. This puts QLAP at a dis-
advantage on the evaluation task because QLAP learns more
than the evaluation task. For example, QLAP learns to move
its hand away from the block as well as towards it. It is be-

(a) Base Comparison (b) RL-Tile Extended Actions (c) With Distractor Objects

Figure 3: Comparison of QLAP and RL-Tile. (All error bars are standard error.) (a) QLAP compared to RL-Tile in the
environment with no distractor objects. The high task diameter causes RL-Tile to learn more slowly than QLAP. QLAP learns in
its developmental progression to hit the block at about 80,000 timesteps. (b) QLAP compared to RL-Tile-10 in the environment
with no distractor objects, with the change that actions of RL-Tile-10 last for 10 timesteps. The temporally extended actions
allow RL-Tile-10 to perform well immediately. (c) QLAP compared to RL-Tile-10 in the environment with distractor objects.
QLAP outperforms RL-Tile-10 because QLAP uses state abstraction to ignore irrelevant variables.

cause of the simplicity of the environment that we can count
on QLAP learning the task that was assigned to RL-Tile.

RL-Tile was trained using linear, gradient-descent Sarsa(λ)
with binary features [Sutton and Barto, 1998] where the bi-
nary features came from tile coding. There were 16 tilings
and a memory size of 65,536. The motor variables ux and
uy were each divided into 10 equal-width bins, so that there
were 20 actions with each action either setting ux or uy to a
nonzero value. The change variables were each divided into 3
bins: (−∞,−0.05), [−0.05, 0.05], (0.05,∞). The goal was
represented with a discrete variable that took on three values,
one for each of the three goals. The remaining variables were
treated as continuous (normalized to the range [0, 1]) with
a generalization of 0.25. The parameter values used were
λ = 0.9, γ = 1.0, and α = 0.2. Action selection was ε-
greedy where ε = 0.05. The code for the implementation
came from PLASTK [Provost, 2008].

For each experiment we trained 30 QLAP agents and 30
RL-Tile agents, and we trained each for 150,000 timesteps
(about two hours of physical experience). The QLAP agents
autonomously explored the environment, and the RL-Tile
agents continually repeated the task. We compare QLAP and
RL-Tile by storing the learned state of each every 10,000
timesteps (about every 8 minutes of physical experience).
We then test how well each can do that task starting from
this stored learned state. Each evaluation consisted of 100
episodes. Each episode lasted for 300 timesteps or until the
block was moved. The agent received a penalty of −0.01 for
each timestep, and it received a reward of 10.0 if it hit the
block in the specified direction.

4.2 How QLAP Achieves the Task
The QLAP agent learns a qualitative action to hit the block in
each specified direction. For example, to hit the block to the
right, QLAP learned the qualitative action qa(ḃx, (0,+∞)).
QLAP is able to perform this action because it learned an
option or to bring about ḃx = (0,+∞). QLAP learned

this option by learning the DBN r = 〈ytb : xrl→ [0] ⇒
ḃx→ (0,+∞)〉, which predicts that if the distance between
the right side of the hand and the left side of the block
goes to 0, then the block will soon move to the right. The
CPT of this DBN says that in order for this to occur reli-
ably the top of the hand must be above the bottom of the
block. QLAP learned the landmarks at 0 on both ytb and
xrl. These landmarks allow the agent to make the important
distinctions of the hand being above the bottom of the block
and being to the left of the block. The second order DBN
r2o = 〈xrl : invoke(t, or)⇒ succeeds(t, or)〉 predicted that
for or to work the hand must be to the left of the block. This
allowed the agent to add moving the hand to the left of the
block as an action in or.

4.3 Results

In the first experiment we compare QLAP with RL-Tile in
the environment without the distractor objects. The results
are shown in Figure 3(a). QLAP learns the necessary actions
at around 80,000 timesteps. Although it appears that RL-Tile
could eventually overtake QLAP, RL-Tile learns much more
slowly. This is because the task diameter is so high that the
RL-Tile agent initially does a lot of flailing around before it
reaches the goal.

In the second experiment we make the task easier for RL-
Tile by reducing the task diameter by making its actions last
for 10 timesteps (we call this RL-Tile-10). The results are
shown in Figure 3(b). RL-Tile-10 learns the task quickly and
then improves only gradually because it cannot take actions
that last for less than 10 timesteps.

To demonstrate that QLAP ignores irrelevant variables, the
third experiment was conducted using distractor objects. The
results are shown in Figure 3(c). When the distractor ob-
jects are added, RL-Tile’s reward per episode degrades sig-
nificantly, but QLAP is unaffected.

5 Related work
Given a DBN model of the environment, the VISA algorithm
[Jonsson and Barto, 2006] learns a hierarchical decomposi-
tion of a factored Markov decision process. VISA learns op-
tions and finds a state abstraction for each option. However,
VISA requires a discretized state and action space. QLAP
learns actions from the agent’s continuous motors and learns
a discretized state representation.

Options can be learned by first identifying a subgoal and
then learning an option to achieve that subgoal. McGovern
and Barto [2001] proposed a method whereby an agent au-
tonomously finds subgoals based on bottleneck states that are
visited often during successful trials and rarely during unsuc-
cessful ones. Subgoals have also been found by construct-
ing a transition graph based on recent experience and then
searching for “access states” [Simsek et al., 2005] that allow
the agent to go from one partition of the graph to another.
In Barto et al. [2004] options are learned to achieve salient
events. However, these salient events are determined outside
the algorithm, and all of this work takes place in discrete en-
vironments.

Once an option is identified, the agent must learn how to
achieve it. One way to do this is by learning a model. In
environments with large state spaces, the model in the form
of a transition function cannot be represented explicitly and
the agent must learn a structured representation. Degris et
al. [2006] proposed a method called SDYNA that learns a
structured representation and then uses that structure to com-
pute a value function. Similarly, Strehl et al. [2007] learn
a DBN to predict each component of a factored state MDP.
Both of these methods are evaluated in discrete environments
where transitions occur over one-timestep intervals. Another
method is learning probabilistic planning rules [Pasula et al.,
2007]. In the domain of first-order logic they learn rules that
given a context and an action provide a distribution over re-
sults. This algorithm also assumes a discrete state space and
that the agent already has basic actions such as pick up.

6 Conclusion
We present QLAP, a method for enabling an agent to learn
a hierarchy of actions in a continuous environment. QLAP
assumes that the agent is able to change the values of indi-
vidual variables. Future work will focus on determining the
importance of this assumption and how QLAP can overcome
it. QLAP is designed for continuous environments where the
agent has very little prior knowledge. QLAP bridges an im-
portant gap between continuous sensory input and motor out-
put and a discrete state and action representation.

Acknowledgments
This work has taken place in the Intelligent Robotics Lab
at the Artificial Intelligence Laboratory, The University of
Texas at Austin. Research of the Intelligent Robotics lab is
supported in part by grants from the Texas Advanced Re-
search Program (3658-0170-2007), and from the National
Science Foundation (IIS-0413257, IIS-0713150, and IIS-
0750011). The authors would also like to thank Matt MacMa-

hon and Joseph Modayil, as well as the anonymous reviewers
for helpful comments and suggestions.

References
[Barto et al., 2004] A.G. Barto, S. Singh, and N. Chentanez.

Intrinsically motivated learning of hierarchical collections
of skills. ICDL, 2004.

[Boutilier et al., 1995] C. Boutilier, R. Dearden, and
M. Goldszmidt. Exploiting structure in policy construc-
tion. In IJCAI, pages 1104–1113, 1995.

[Degris et al., 2006] T. Degris, O. Sigaud, and P.H.
Wuillemin. Learning the structure of factored Markov
decision processes in reinforcement learning problems. In
ICML, pages 257–264, 2006.

[Dietterich, 1998] T.G. Dietterich. The MAXQ method for
hierarchical reinforcement learning. ICML, 1998.

[Drescher, 1991] Gary L. Drescher. Made-Up Minds: A
Constructivist Approach to Artificial Intelligence. Cam-
bridge, MA, 1991.

[Jonsson and Barto, 2006] A. Jonsson and A. Barto. Causal
graph based decomposition of factored MDPs. The Jour-
nal of Machine Learning Research, 7:2259–2301, 2006.

[Klein, 2003] Jon Klein. Breve: a 3d environment for the
simulation of decentralized systems and artificial life. In
Proc. of the Int. Conf. on Artificial Life, 2003.

[Kuipers, 1994] Benjamin Kuipers. Qualitative Reasoning.
The MIT Press, Cambridge, Massachusetts, 1994.

[McGovern and Barto, 2001] Amy McGovern and An-
drew G. Barto. Automatic discovery of subgoals in
reinforcement learning using diverse density. In ICML,
pages 361–368, 2001.

[Mugan and Kuipers, 2007] J. Mugan and B. Kuipers.
Learning to predict the effects of actions: Synergy be-
tween rules and landmarks. In ICDL, 2007.

[Mugan and Kuipers, 2008] J. Mugan and B. Kuipers. To-
wards the application of reinforcement learning to undi-
rected developmental learning. In Proc. of the Int. Conf.
on Epigenetic Robotics, 2008.

[Pasula et al., 2007] H.M. Pasula, L.S. Zettlemoyer, and L.P.
Kaelbling. Learning symbolic models of stochastic do-
mains. JAIR, 29:309–352, 2007.

[Provost, 2008] J. Provost. sourceforge.net, 2008.
[Simsek et al., 2005] O. Simsek, A. Wolfe, and A. Barto.

Identifying useful subgoals in reinforcement learning by
local graph partitioning. ICML, pages 816–823, 2005.

[Strehl et al., 2007] A.L. Strehl, C. Diuk, and M.L. Littman.
Efficient structure learning in factored-state MDPs. In
AAAI, volume 22, page 645, 2007.

[Sutton and Barto, 1998] R. S. Sutton and A. G. Barto. Re-
inforcement Learning. MIT Press, Cambridge MA, 1998.

[Sutton et al., 1999] R. S. Sutton, D. Precup, and S. Singh.
Between MDPs and semi-MDPs: A framework for tem-
poral abstraction in reinforcement learning. Artificial In-
telligence, 112(1-2):181–211, 1999.

