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Abstract

An important part of development is ac-
quiring actions to interact with the envi-
ronment. We have developed a computa-
tional model of autonomous action acquisi-
tion, called QLAP. In this paper we investi-
gate different strategies for developmental ac-
tion acquisition within this model. In par-
ticular, we introduce a way to actively learn
actions and we compare this active action ac-
quisition with passive learning of actions. We
also compare curiosity based exploration with
random exploration. And finally, we exam-
ine the effects of resource restrictions on the
agent’s ability to learn actions.

1. Introduction

We seek to understand how an agent (human or oth-
erwise) can learn to adapt to its environment through
the process of development. Gibson (1988) proposed
that human children are endowed with systems to al-
low them to explore and learn about the world. She
emphasized that it was this exploration that enabled
cognitive development. One such system appears to
be that for learning contingencies. It has been pro-
posed that humans have an innate contingency detec-
tion module (Gergely and Watson, 1999). Human
infants can detect contingencies in their environment
shortly after birth (DeCasper and Carstens, 1981),
and they can link these contingencies with observ-
able effects (Adolph and Joh, 2007).

Inspired by this idea that learning can take
place through the acquisition of contingencies,
we created the Qualitative Learner of Action
and Perception (QLAP). QLAP is constructivist
in the tradition of Piaget (1952) because the
agent constructs representations of the environment.
QLAP learns contingencies and actions through au-
tonomous exploration. QLAP learns contingen-
cies by observing events in the environment and
looking for correlations (Mugan and Kuipers, 2008,

Mugan and Kuipers, 2007). Once a contingency is
found that is sufficiently deterministic, QLAP cre-
ates a plan to perform an action based on that con-
tingency (Mugan and Kuipers, 2009).

Adolf and Joh (2007) note the importance of
action learning in the role of providing agent-
centered input to the perceptual systems. Gen-
erating agent-centered experience by learning ac-
tions requires that the agent autonomously explore
its environment. This type of exploration has
been characterized as intrinsically motivated learn-
ing (Berlyne, 1965) and is essential for autonomous
development (Ryan and Deci, 2000). The problem
of picking which action to choose has been stud-
ied extensively, for example see (Schmidhuber, 1991,
Huang and Weng, 2002, Marshall et al., 2004). One
promising approach is picking actions that maximize
the learning gradient (Oudeyer et al., 2007). How-
ever, exploration for learning actions is more than
picking which action to choose. The agent must first
form the actions.

QLAP assumes that the agent has motor primi-
tives but no initial complex actions. From these mo-
tor primitives, QLAP learns actions such as reach-
ing out to hit a block. However, some more complex
actions may have to be learned using active action
acquisition. Active action acquisition involves two
steps. First, the agent tunes its search for contingen-
cies related to a desired action to be more sensitive,
so that it finds contingencies that it might otherwise
overlook. And second, the agent makes it more likely
that a found contingency will become a plan to per-
form the action by lowering the required reliability
of the contingency.

The contribution of this paper is to provide an
evaluation of exploration strategies for learning ac-
tions. We evaluate different exploration strategies in
an environment inspired by the sticky mittens experi-
ments (Needham et al., 2002). In these experiments,
children wore mittens covered with Velcro that al-
lowed them to more easily grasp objects. They found
that infants trained with the sticky mittens exhibited
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Figure 1: (a) An action brings a qualitative variable v

to a desired value q. Each action can have one or more

plans. Each plan is a different way to perform the action.

(b) Each plan is learned by first learning a contingency.

A contingency links an antecedent event E1 with a con-

sequent event E2. Associated with each contingency is a

probability table that gives the probability of event E2

following event E1 for each value of the variables in con-

text C. (c) Each event is able to be perceived because of

the discretization created by the landmarks.

more object engagement and more sophisticated ob-
ject exploration strategies.

We evaluated the effect of using active action
acquisition. We found that active acquisition im-
proved the agent’s performance on the task of
picking up the block with the sticky mitten, but
hurt the agent’s performance on the easier task
of moving the block. We found that using ac-
tive action acquisition in combination with the ex-
ploration method of Intelligent Adaptive Curiosity
(IAC) (Oudeyer et al., 2007) worked best in this con-
tinuous domain for enabling the agent to develop so
that it could learn to pick up the block using the
sticky mitten. We also evaluated the use of devel-
opmental restrictions and we found that certain de-
velopmental restrictions allowed the agent to reduce
the number of learned contingencies without hinder-
ing learning. And finally, we found that the develop-
mental trajectory allows that agent to progress from
actions being used mostly as exploration to actions
being used as subactions for other actions.

2. The Qualitative Learner of Action
and Perception, QLAP

The Qualitative Learner of Action and Perception
(QLAP) is a computational model for learning both
important perceptual distinctions and actions (see
Figure 1). QLAP assumes that the agent can distin-
guish objects from the background and track them.
QLAP also assumes that the agent can measure dis-
tances between objects and that the agent has motor
variables for output. The result of these assumptions

is that the agent interacts with the world using a set
of real-valued variables.

2.1 Qualitative Representation

The distinctions that QLAP learns allows it to rep-
resent the state of the world qualitatively. It does
this by converting the continuous input and motor
variables to qualitative variables (Kuipers, 1994). A
qualitative representation allows the agent to focus
on important distinctions while ignoring others. The
qualitative variables are created by discretizing the
continuous variables using landmarks. A landmark
is a symbolic name for a point on a number line.
A variable v with two landmarks l1 and l2 would
have a set of five possible qualitative (discrete) val-
ues {(−∞, l1), l1, (l1, l2), l2, (l2,+∞)}. QLAP must
learn these landmarks. For example, QLAP learns
a landmark that a force of at least 300 is needed to
move the hand to the right. It also learns a land-
mark that a distance of 0 between the right side of
the hand and the left side of the block is important
to move the block to the right.

2.2 Landmarks to Events

Landmarks allow the agent to perceive events. An
event is the change in qualitative value of a variable.
We use the notation E = Xt→x to denote event
E where the value of qualitative variable X changes
to x at time t (although the t may be omitted for
brevity.) For example, when the distance between
the right side of the hand and the left side of the
block goes to 0.

2.3 Events to Contingencies

The perception of events allows the agent to learn
contingencies. Contingencies link an antecedent
event E1 = X→x with a consequent event E2 =
Y→y together in time. For each contingency, QLAP
learns a context C that gives the probability of the
consequent event following the antecedent event for
each value of the variables in C. We call the highest
probability of event E1 leading to event E2 the best
reliability of the contingency. Once the best reliabil-
ity of a contingency exceeds 0.75 the contingency is
labeled sufficiently deterministic.

New landmarks can be learned by finding new dis-
tinctions that make contingencies more reliable. For
example, the agent may learn a contingency that
states that the event of a positive force on the hand
will cause the event of the hand moving to the right.
Once this contingency is learned, QLAP can exam-
ine the real values of the variables and determine if
there is a new distinction that will make this contin-
gency more reliable. In this case, it takes a force of
300 units to move the hand to the right. The agent



can then update the contingency to reflect this new
distinction by introducing a landmark. The agent
can also learn that the hand will not move to the
right if it is already all the way to the right. It can
then learn a landmark on the location of the hand to
indicate when it is in its rightmost position.

2.4 Contingencies to Plans for Actions

In QLAP, the agent learns actions to achieve the
qualitative values of variables. Each action sets
the qualitative value of a variable to a desired
value. In QLAP, actions may be performed in
more than one way. Each way to perform the ac-
tion is called a plan. Each plan is represented
as an option (Sutton et al., 1999). Once a con-
tingency is sufficiently deterministic it is converted
into a plan. These plans are learned using re-
inforcement learning (Sutton and Barto, 1998), see
(Mugan and Kuipers, 2009) for details.

3. Developmental Learning in QLAP

QLAP is not given a learning objective but learns
in a developmental progression. This developmen-
tal progression comes from incrementally learning
contingencies, actions, and landmarks. In addition,
it comes from developmental restrictions that take
three forms:

1. restrictions on learning contingencies
In QLAP, a contingency can only be learned if its
antecedent event can be reliably predicted by a
previously learned contingency.

2. restrictions on learning plans
A contingency can only be converted to a plan
if the antecedent event can be reliably achieved
using an existing action.

3. restrictions on cognitive load
An agent has limited cognitive resources and an
important part of development is freeing up re-
sources. QLAP designates an action as open,
full, or closed. An action is closed if it can be
achieved 75% of the time; otherwise, it is full if
it has 5 plans; and it is open otherwise. Actions
that are closed or full do not accept additional
plans. When an action is closed, it also affects
the learning of contingencies. QLAP does not
add a contingency if the action to bring about
the consequent event is closed.

Contingencies can also be deleted. If the con-
tingency does not become a plan after 100,000
timesteps, it is deleted. When an action is closed,
all of the related contingencies that are not part
of plans for that action are deleted.

Plans can also be deleted. A plan and its as-
sociated contingency are deleted if its associated

action is still not closed and the reliability of the
plan is less than 5%.

3.1 Choices Made During Exploration

The agent continually makes three types of choices
during its exploration. These choices vary in time
scale from coarse to fine.

1. The agent chooses an exploration action, which
is a previously learned action that it can prac-
tice. This can be done randomly or by using a
version of Intelligent Adaptive Curiosity (IAC)
(Oudeyer et al., 2007) which first measures the
change in the agent’s ability to perform the action
over time and then chooses actions where that
ability is increasing. For IAC, we use a time win-
dow τ = 25 and a smoothing parameter θ = 25
(before the time window of τ = 25 is full, actions
are chosen based on the product of probability of
success in the current state and the entropy of
their overall reliability).

2. The agent chooses the best plan for performing
the action. The agent chooses the plan most
likely to succeed in the current state with proba-
bility 0.95 and chooses a random plan otherwise.

3. The agent chooses the subaction within the
plan. This is done using the standard re-
inforcement learning technique ε-greedy
that balances exploration with exploitation
(Sutton and Barto, 1998).

3.2 Execution

An outline of the execution of QLAP is shown in Al-
gorithm 1. Note that for the first 20,000 timesteps
the agent chooses random motor babbling explo-
ration actions. After that point it chooses a mo-
tor babbling action with probability 0.1, otherwise
it chooses an exploration action and action plan ac-
cording to (Mugan and Kuipers, 2009).

4. Active Action Acquisition

A plan to perform an action is formed when the con-
tingency is sufficiently deterministic. In the develop-
mental progression just described, the agent learns
these plans without paying special attention to what
the goal of the associated action is. We call this ap-
proach passive action acquisition. This method of
passive learning may not be sufficient to learn dif-
ficult actions. To learn difficult actions, the agent
may have to employ active action acquisition. To
learn a plan for an action chosen for active action
acquisition, QLAP

1. lowers the threshold needed to learn a con-
tingency. QLAP learns a contingency linking an
event E1 and an event E2, if E2 is more likely to



Algorithm 1 The Qualitative Learning of Action
and Perception (QLAP)
1: for t = 1 :∞ do
2: Sense environment
3: Convert input to qualitative values using cur-

rent landmarks
4: Update statistics to learn new contingencies
5: Update statistics for each contingency
6: if mod(t, 2000) == 0 then
7: Learn new contingencies
8: Delete unneeded contingencies and plans
9: Learn new landmarks to change qualitative

representation
10: Learn new actions
11: end if
12: if current exploration action is completed

then
13: Choose new exploration action and action

plan
14: end if
15: Get low-level motor command based on plan

of current exploration action
16: Pass motor command to robot
17: end for

soon occur given that E1 has occurred than oth-
erwise. More formally, if we define a time window
with the predicate soon(t, E) that is true if event
E occurs within a window if k = 5 timesteps
starting at time t, then we can say that the con-
tingency is formed if

Pr(soon(t, E2)|E1(t))− Pr(soon(t, E2)) > θp

where θp = 0.05. If event E2 is chosen to be the
goal of an actively acquired action, we make it
more likely that a contingency will by learned by
using θa = 0.02 instead if θp = 0.05.

2. lowers the threshold needed to learn a
plan. A contingency becomes a plan if its best
reliability is greater than 0.75. For a contingency
with a consequent event that is chosen to be the
goal of an actively acquired action, this threshold
is reduced to 0.25.

This leaves the question of when to specify events
as goals of actively acquired actions. An event is cho-
sen as a goal for active action acquisition if the prob-
ability of being in a state where the event is satisfied
is less than 0.05; we call such an event sufficiently
rare. This is reminiscent of Bonarini et al. (2006).
They consider desirable states to be those that are
rarely reached or are easily left once reached.

5. Evaluation

We run experiments using the environment shown
in Figure 2. The environment is implemented in

Breve (Klein, 2003) and has realistic physics. The
simulation consists of a robot at a table with a
block. The robot has an orthogonal arm that can
move in the x, y, and z directions. During learning,
the agent chooses exploration actions autonomously.
Each time the agent knocks the block out of reach,
the block is replaced with a different block and put on
the table. The block size varies randomly in length
from 1.0 to 3.0 units.

For each experiment we trained 40 agents. We
trained each for 250,000 timesteps, which corre-
sponds to about 3.5 hours of physical experience.
The robot has a “sticky mitten.” If the center of
the block touches the bottom of the hand, then the
block is “grabbed.” For simplicity, there is no un-
grab action. Instead, the block has a probability of
0.1 of becoming ungrabbed at each timestep. Then
when the block becomes ungrabbed, it falls to the
table with probability 0.5 or gets moved to another
place on the table with probability 0.5. To make the
environment more realistic, there are two distractor
objects that float in front of the agent. The agent
can perceive the distractor objects and learn contin-
gencies about them, but cannot interact with them.

5.1 Evaluation Tasks

We measure the performance on two tasks. The first
task is that of moving the block in a specified direc-
tion. The agent is told to move the block either left,
right, or forward. The second task is picking up the
block using the sticky mitten.

QLAP autonomously learns without being speci-
fied a task. We can be confident that it will learn
the specified tasks because the number of variables
in the environment is small. However, during learn-
ing, the agent does not know that it will be evaluated
on these tasks.

Every 10,000 timesteps (about every 8 minutes of
physical experience) we save the state of the agent.
We then test how well each can do that task starting
from this stored learned state. Each evaluation con-
sisted of 100 episodes. Each episode lasted for 300
timesteps or until the block was moved. The agent
received a penalty of −0.01 for each timestep, and it
received a reward of 10.0 if it completed the task.

5.2 Experimental Conditions

active random This case used active action acqui-
sition with exploration actions chosen randomly
from a uniform distribution.

active IAC This case used active action acquisition
with exploration actions chosen using Intelligent
Adaptive Curiosity.

passive random This case used passive action ac-
quisition with exploration actions chosen ran-
domly.



(a) Not grasping (b) Grasping (c) Above view

Figure 2: The robot is implemented in Breve; a simulator with realistic physics. The robot has a torso with a 3-dof

orthogonal arm and is sitting in front of a table with a block and two floating distractor objects. The robot has three

motor variables ũx, ũy and ũz that move the hand in the x, y, and z directions, respectively. The location of the

hand is given by three time-varying continuous proprioceptive variables h̃x, h̃y, h̃z that represent the location of the

hand in the x, y, and z directions, respectively. The relationship between the hand and the block is represented by

the continuous variables x̃rl, x̃lr, ỹtb, ỹbt, and z̃du. The variable x̃rl is the x value of the location of the right side of

the hand in a coordinate system whose origin is centered on the left side of the block (variable x̃lr is analogous). The

variable ỹtb is the y value of the location of the far (top) side of the hand in a coordinate system whose origin is centered

on the bottom (near) side of the block (variable ỹbt is analogous). And variable z̃up is the z value of the location of the

down side of the hand in a coordinate system whose origin is centered on the up side of the block. Additionally, the

variables c̃x and c̃y represent the two-dimensional coordinates of the center of the hand in the frame of reference of the

center of the block. There is also a Boolean touch variable T that is true if the block is colliding with the hand and

the center of the top of the block is underneath the bottom of the hand. There are also two distractor floating objects

f1 and f2. The variables for f1 are f̃1
x , f̃1

y , and f̃1
z and the variables for f2 are analogous. Including the direction of

change variables, there are 32 variables total.

passive IAC This case used passive action acquisi-
tion with exploration actions chosen using Intel-
ligent Adaptive Curiosity.

active random NDRC This case used active ac-
tion acquisition with exploration actions chosen
randomly, but with no developmental restriction
on learning contingencies. This means the an-
tecedent event of a contingency does not have to
be sufficiently reliably predicted by another con-
tingency for the contingency to be learned.

active random NDRA This case used active ac-
tion acquisition with exploration actions chosen
randomly, but with no developmental restriction
on learning plans for actions. Thus, the agent
does not have to be able to achieve the antecedent
event of a contingency with sufficient capability
before it can become a plan for an action.

all active random This case used active action ac-
quisition with exploration actions chosen ran-
domly with the change that all actions are ac-
quired using active action acquisition.

To make the evaluation fair between active and
passive action learning, during evaluation a contin-
gency must be deterministic to be used as a plan.

6. Results

6.1 Ability to Perform Tasks

The results of the move task are shown in Figure 3.
On this task passive action acquisition did better.
This is likely because moving the block was suffi-
ciently rare and using active acquisition the maxi-
mum number of plans was filled up with plans from
inferior contingencies.

The results of the pickup task are shown in Fig-
ure 4. How the agent was able to do on this task
largely depended on its ability to learn a sufficiently
deterministic contingency. The method of active
IAC did the best. It also had the most experience
picking up the block (see Figure 7). The method of
all active random did poorly, most likely because
it spent too much time trying to move the distractor
objects (see Figure 8).

6.2 Exploration Using Various Actions

We evaluated how often various exploration tech-
niques explored different actions. Figures 5-7 show
the cumulative exploratory calls to various types of
actions. Figure 5 shows that Intelligent Adaptive
Curiosity has the nice property of not continually ex-
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Figure 3: The agent’s ability to move the block increases

as it develops. Passive action acquisition outperforms

active action acquisition.
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Figure 4: The agent’s ability to pickup the block in-

creases as it develops. In this case active acquisition using

curiosity-based exploration performs the best.

ploring actions that the agent has already mastered.
Figure 6 shows that Intelligent Adaptive Curiosity
causes the agent to explore the relatively difficult ac-
tion of moving the block. We see this behavior as well
with Figure 7 for the case of active IAC. Figure 8
shows that the agent should not pursue all actions
actively. In this case, all active random spends
time trying to manipulate the distractor objects.

6.3 Developmental Restrictions

We see in Figures 3 and 4 that active random does
about as well as active random NDRC, which has
no developmental restriction on learning contingen-
cies, and active random NDRA, which has no
developmental restrictions on learning plans for ac-
tions. However, we see in Figure 9 that during the
early course of the agent’s development that active
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Figure 5: Exploration calls to moving the hand. The

curiosity based exploration methods (active IAC and

passive IAC) efficiently use exploration time by making

fewer calls to this relatively easy action.
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Figure 6: Cumulative exploratory calls to hit the block

left, right, or forward.

random has fewer open contingencies, and thus uses
fewer resources for those contingencies.

6.4 Exploration Action to Subaction

When the agent first learns an action it is often called
as part of exploration. An interesting part of the
developmental progression is that these actions are
often later called more often as subactions of other
actions. We show graphs from the method active
IAC that compare exploration calls to subaction
calls. Figure 10 shows the calls for moving the hand
relative to the block (cx and cy in Figure 2). These
actions are first used more as exploration actions and
then later more as subactions.
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Figure 7: Cumulative exploratory calls to pickup the

block. Active acquisition using curiosity-based explo-
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Figure 8: Cumulative exploratory calls to manipulate the

floating objects. The method all active random has the

most calls to this distractor task.

7. Conclusion

In this paper we have presented an evaluation of ex-
ploration strategies for learning actions. We found
that a combination of active action acquisition and
curiosity-based exploration worked best to enable an
agent to develop so that it could pick up a block with
a sticky mitten. However, we found that active ac-
tion acquisition was detrimental to the simpler task
of moving the block. This is an interesting result
that warrants further investigation.

The results indicated that curiosity-based explo-
ration enabled the agent to spend more time ex-
ploring the relatively more advanced tasks of moving
the block and picking up the block, and enabled the
agent to spend less time on the easily masted task of
moving the hand. The results also indicated that we
could add restrictions on resources without hindering
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Figure 9: This graph shows that the number of contin-

gencies does not increase without bound. We see two

drops in the number of contingencies. The first drop cor-

responds to learning to move the hand and those actions

becoming closed. The second drop corresponds to con-

tingencies being deleted after 100,000 timesteps because

they did not become plans to perform actions.
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Figure 10: Action calls to moving the hand relative to

the block for the method active IAC. This task is first

called mostly as exploration and then later more as a

subaction.

learning.

There are, of course, other approaches that en-
able agents to learn actions. For example, Metta
and Fitzpatrick (2003) focus on learning affordances
(Gibson, 1979). However, the focus of QLAP is on
enabling an agent to autonomously learn actions
from motor primitives. The results presented here
will most closely apply to models where the agent
picks which action to learn during the process of au-
tonomous development.
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