
The GOMS Family
of User Interface Analysis Techniques:

Comparison and Contrast

Bonnie E. John
Computer Science, Psychology

and the Human-Computer Interaction Institute
Carnegie Mellon University

Pittsburgh, PA 15213
Phone: (412) 268-7182

Email: bonnie.john@cs.cmu.edu

&

David E. Kieras
Department of Electrical Engineering and Computer Science

University of Michigan
Advanced Technology Laboratory Building

1101 Beal Avenue
Ann Arbor, MI 48109-2110

Phone: (313) 763-6739
Email: kieras@eecs.umich.edu

10 June 1996

*** To appear in ACM ToCHI ***

Copyright © 1996 by the Association for Computing Machinery, Inc.  Permission to make digital or hard copies of
part or all of this work for personal or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM must be honored.  Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.



GOMS Family Comparison                                                                                                   p. 2

2

Keywords: GOMS, cognitive modeling, usability engineering



ABSTRACT

Since the publication of The psychology of human-computer interaction (Card, Moran & Newell,
1983), the GOMS model has been one of the most widely known theoretical concepts in HCI.
This concept has produced several GOMS analysis techniques that differ in appearance and form,
underlying architectural assumptions, and predictive power.  This paper compares and contrasts
four popular variants of the GOMS family (the Keystroke-Level Model, the original GOMS
formulation, NGOMSL, and CPM-GOMS) by applying them to a single task example.

1.  INTRODUCTION

Since the publication of The psychology of human-computer interaction  (Card, Moran &
Newell, 1983, hereafter, CMN), GOMS analysis has been one of the most widely known
theoretical concepts in HCI.  The GOMS concept, that it is useful to analyze knowledge of how to
do a task in terms of Goals, Operators, Methods, and Selection rules, provided the stimulus for
much research that verifies and extends the original work.  Today, there are several variants of the
GOMS analysis technique, and many applications of the technique in real-world design situations
(John & Kieras, in press).  However, the clear differences between these techniques can create
confusion about how they relate to each other and to the original concept.  The purpose of this
paper is to compare several of the popular variants, demonstrating and discussing their similarities
and differences.

This paper is not a tutorial in how to use any version of GOMS; that information is elsewhere in
textbooks, handbooks and tutorial notes (CMN; John & Gray, 1995; Kieras, 1988, in press).  It is
also not a guide for deciding when to use the variants of GOMS in a particular design situation; that
information is in the preceding paper (John & Kieras, in press).  This paper presents how different
GOMS techniques are related.

We will examine four variants of GOMS: the simplest version presented by Card, Moran and
Newell, called the Keystroke-Level Model (KLM); the original formulation of GOMS, which we
will refer to as CMN-GOMS; a more rigorous version called NGOMSL; and a version that can
model overlapping human activities, CPM-GOMS.  To make the comparison, we analyze the same
task in each of these variants, then discuss the qualitative and quantitative similarities and
differences.

1.1.  The example task.

Throughout this presentation, we use a single example task, and present how each GOMS
technique represents this task. A GOMS model can, and should, start at a high level of a task such
as collaboratively writing a research paper with a co-author.  At such a high level, the subtasks
involve many different applications: a word processor to actually write the paper, a graphics
application to make figures, bibliographies to look up related work, e-mail to send the drafts back
and forth, the operating system used to manage the files, and so forth.  This wide inclusion of
applications, many of which were not designed with the others in mind, gives a broad perspective
on the knowledge people need to accomplish such a complex task.  GOMS models can then show
how knowledge transfers from one application to another, or how much additional time is spent
moving information between applications that do not fit together well.  However, presenting such a
broad task is impossible within the confines of this article, so we will present a very small part of
it, editing a paragraph in a word-processor (Figure 1), and make reference to the larger task as
appropriate.

Text-editing was the original task used in the development of GOMS, and is of course still an
important task domain.  However, it is incorrect to assume that GOMS is somehow limited to text-
editing; GOMS is much more general.  In fact, nine cases presented in John & Kieras (in press)
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concern task domains radically different from text editing, as do other published work (e.g.,
Beard, Smith, & Denelsbeck, in press; Vera & Rosenblatt, 1995).  But this familiar domain, with
task goals and typical procedures familiar to all readers, makes the best example context to present
and compare the different GOMS techniques.

Before presenting the analyses, we define each of the components of the GOMS model and
discuss an important distinction between two forms that GOMS model take.

In order to understand GOMS models that have arisen in the last

decade and the relationships between them, an analyst must

understand each of the components of the model (goals, operators,

methods, and selection rules), the concept of level of detail, and the

different computational forms that GOMS models take.  In this

section, we will each of these concepts; in subsequent sections we

will categorize existing GOMS models according to these concepts.

Figure 1.  The example task: editing a marked-up manuscript.

1.2.  Definitions of GOMS Components

1.2.1.  Goals.

Goals are what the user has to accomplish.  The common-sense meaning of the term applies here;
a goal is the "end towards which effort is directed" (Webster's, 1977, p. 493).  In the collaborative
writing example mentioned above, the highest-level goal is to write the paper.  Goals are often
broken down into sub-goals; all of the subgoals must be accomplished in order to achieve the
overall goal.  Some subgoals for collaborative-writing might be to format the bibliography, send
the current draft to the second author, or incorporate marked-up comments into the text file (Figure
1).  Expanding the latter, the subgoal could be EDIT-MANUSCRIPT and its subgoals might be
MOVE-TEXT, DELETE-PHRASE and INSERT-WORD.  All of the subgoals must be accomplished to
accomplish the higher-level goal.

Goals and sub-goals are often arranged hierarchically, but a strict hierarchical goal structure is
not required.  In particular, some versions of GOMS models allow several goals to be active at
once, and some versions represent extremely well-practiced behavior in a "flattened" structure that
does not contain an explicit hierarchy of subgoals.

1.2.2.  Operators.

An operator is an action performed in service of a goal.  Operators can be perceptual, cognitive,
or motor acts, or a composite of these.  Operators can change the user's internal mental state or
physically change the state of the external environment.  The important parameters of operators, in
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particular execution time, are assumed to be independent of how the user or the system got into the
current state (i.e., independent of the history of operators).  Execution time may be approximated
by a constant, by a probability distribution, or by a function of some parameter.  For instance, the
time to type a word might be approximated by a constant (e.g., the average time for an average
word by an average typist), or a statistical distribution, or by a function involving the number of
letters in the word and the time to type a single character (which could, in turn be approximated by
a constant or a distribution).  The accuracy of execution time predictions obtained from a GOMS
model depends on the accuracy of this assumption and on the accuracy of the duration estimates.
In our text-editing example, with the goal-hierarchy defined above, some operators could be
MOVE-MOUSE, CLICK-MOUSE-BUTTON, SHIFT-CLICK-MOUSE-BUTTON and HIT-DELETE-KEY.

1.2.3.  Methods.

Methods are sequences of operators and subgoal invocations that accomplish a goal.  If the goals
have a hierarchical form, then there is a corresponding hierarchy of methods.  The content of the
methods depends on the set of possible operators and on the nature of the tasks represented.  One
method for accomplishing the goal DELETE-PHRASE (in the text editor we are using to write this
paper) would be to MOVE-MOUSE to the beginning of the phrase, CLICK-MOUSE-BUTTON, MOVE-
MOUSE to the end of the phrase, SHIFT-CLICK-MOUSE-BUTTON, and finally, HIT-DELETE-KEY (the
mark-and-delete method).

1.2.4.  Selection rules.

There is often more than one method to accomplish a goal.  Instead of the mark-and-delete
method just described, another method for accomplishing the DELETE-PHRASE goal in Figure 1
would be MOVE-MOUSE to the end of the phrase, CLICK-MOUSE-BUTTON, and HIT-DELETE-KEY
11 times (the delete-characters method).  If there is more than one method applicable to a goal, then
selection rules are necessary to represent the user's knowledge of which method should be applied.
Typically such rules are based on specific properties of the task instance.  Selection rules can arise
through a user's personal experience with the interface or from explicit training.  For example, a
user may have a rule for the delete-phrase goal that says if the phrase is more than eight characters
long, then use the mark-and-delete method, otherwise use the delete-characters method.

1.2.5.  Goals vs. Operators: Level of Detail

It is important to clarify a common point of confusion about goals and operators.  The distinction
is strictly one of the required level of detail:

The difference between a goal and an operator in a GOMS analysis is merely a matter
of the level of detail chosen by the analyst.  For a goal, the analyst provides a method
that uses lower-level operators to specify the details of how it is to be accomplished; in
contrast, operators are not broken down any further.

That is, an analyst will decide that certain user activities do not need to be "unpacked" into any
more detail, and thus will represent them as operators, while other activities do need to be
considered in more detail so the analyst will represent these in terms of goals with their associated
methods.  Thus, any particular GOMS analysis assumes a certain grain of analysis, a "stopping
point" in the level of detail, chosen to suit the needs of the analysis.  Continuing the text-editing
example, a GOMS analysis could have only one goal (EDIT-MANUSCRIPT) and a few high-level
operators (e.g., MOVE-TEXT, DELETE-PHRASE and INSERT-WORD).  Or, if the design situation
required a finer level of detail, the analysis could have four goals (EDIT-MANUSCRIPT, with MOVE-
TEXT, DELETE-PHRASE and INSERT-WORD as subgoals) and finer-grained operators like MOVE-
CURSOR, CLICK-MOUSE-BUTTON, DOUBLE-CLICK-MOUSE-BUTTON, SHIFT-CLICK-MOUSE-
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BUTTON and HIT-DELETE-KEY to accomplish these goals.

In principle, the goals and operators of a task could be described at much higher levels (e.g.,
collaboratively writing a paper) or ever-deeper levels of detail, down to muscle group twitches.
However, at any stopping point, the analyst must be sure that it is reasonable to assume that the
execution times of the lowest-level operators (primitive operators) are constant regardless of the
surrounding context (or are a constant function of some given parameter) .  The times can be
estimated from data, often from previous similar tasks found in the literature, and used to predict
performance on new tasks.  The dual constraints that primitive operators be context-free and
already estimated leads most GOMS models to stop at the command or keystroke level.

It is not necessary to bring all parts of an analysis down to the same level of primitive operators.
In many design situations, different parts of a system or different user tasks may require different
levels of scrutiny, and GOMS allows such selective detail of analysis.  Starting from the high-level
user goals, the analyst expands only those parts of the goal hierarchy as necessary for the
questions at hand.  Other parts can be expanded later as other questions arise.  For instance, in
collaborative writing, a GOMS analyst might first chose to expand all the search-functions in the
different applications (word-processor, bibliography, e-mail), and weeks later expand on the spell-
checking functions.  Thus, decomposing goals into sub-goals and primitive operators is a very
flexible analysis tool that suits many design situations.

1.3.  Form of a GOMS Model

Different GOMS models in the literature differ substantially in the basic form and appearance of
their methods.  There are two basic forms: the program form and the sequence form.

1.3.1.  Program form.

A GOMS model in program form is analogous to a parameterized computer program.  The
methods take any admissible set of task parameters and will execute the corresponding instance of
the task correctly.  For example, if the mark-and-delete method described above was represented in
program form, it would take as task parameters the starting and ending locations of the to-be-
deleted phrase, and when executed, would move the mouse to the corresponding locations.  Thus,
a GOMS model in program form describes how to accomplish a general class of tasks, with a
specific instance of the class being represented by a set of values for the task parameters.
Typically, such a model will explicitly contain some form of conditional branching and invocations
of submethods to accomplish subgoals.  The procedural knowledge represented in program form is
fixed, but the execution pathway and sequence of operators through the task will depend on the
specific properties of the task instance.  Once the model is defined, all of the possible tasks can be
covered by different execution pathways through the model.  Thus, a program form model is a
compact, generative1

 description that explicitly represents the knowledge of what features of the
task environment the user should attend to and how the user should operate the system to
accomplish the task goals.

The program form has the advantage that all procedural knowledge is visible to the analyst.  In
addition, if many task instances need to be analyzed, the generative nature of the program form
allows those tasks to be instantiated quickly, especially if implemented in a running computer

                                                

1  The term generative is used analogously to its sense in formal linguistics.  The syntax of a
language can be represented compactly by a generative grammar, a set of rules for generating all of
the grammatical sentences in the language.
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program.  However, program form has two disadvantages.  First, the only way to determine the
sequence of operators used in a task instance is to run the model (either by hand or machine) and
obtain a trace of the method execution steps.  Second, defining and expressing a complete and
accurate program form model can be quite time consuming, especially if it is represented as a
machine-executable model.

1.3.2.  Sequence form.

In contrast, the methods in a sequence-form GOMS model contain a fixed sequence of operators
for accomplishing a particular task instance.  There may be some conditionality and parameters
included in the sequence model.  For instance, in the text-editing example above, listing the exact
operators necessary to delete the phrase indicated in Figure 1 is a GOMS model in sequence form
(e.g., MOVE-MOUSE, CLICK-MOUSE-BUTTON, 11*HIT-DELETE-KEY).  A more general sequence
model would take the number of characters in the phrase as a parameter and contain an implicit
iteration.  For example, for the delete-characters method, there would be a MOVE-MOUSE operator,
a CLICK-MOUSE-BUTTON operator, and then the HIT-DELETE-KEY operator would be repeated until
there were no more characters in the phrase.

The advantages and disadvantages of the sequence form are the inverse of the program form.
That is, the analyst does not have to explicitly define the procedural knowledge for every possible
task situation in program-like detail, and the sequence of operators is clearly visible to the analyst.
But there may be more information about the structure of the methods than can be captured by the
operator sequences for a set of task instances;  such unrepresented aspects will not be inspectable.
Finally, even though listing the operator sequence for an individual task instance is usually easy, if
a large number of task instances are involved, it could be time-consuming to construct and evaluate
the corresponding large number of sequence-form models.

2.  COMPARISON OF GOMS TASK ANALYSIS TECHNIQUES

We now apply each technique to the example task, discuss the underlying architectural basis and
the ensuing constraints for each technique, and compare and contrast the analysis with that of the
other GOMS variants.

2.1.  The Keystroke-Level Model (KLM)

The Keystroke-Level Model (KLM) is the simplest GOMS technique (Card, Moran, & Newell,
1980a; CMN, Ch. 8).  To estimate execution time for a task, the analyst lists the sequence of
operators and then totals the execution times for the individual operators.  In particular, the analyst
must specify the method used to accomplish each particular task instance.  Other GOMS techniques
discussed below predict the method given the task situation, but the KLM does not.  Furthermore,
the specified methods are limited to being in sequence form and containing only keystroke-level
primitive operators.  Given the task and the method, the KLM uses preestablished keystroke-level
primitive operators to predict the time to execute the task.

The original KLM presentation included six types of operators: K to press a key or button, P to
point with a mouse to a target on a display, H to home hands on the keyboard or other device, D to
draw a line segment on a grid, M to mentally prepare to do an action or a closely-related series of
primitive actions, and R to represent the system response time during which the user has to wait
for the system.  Each of these operators has an estimate of execution time, either a single value, a
parameterized estimate (e.g., K is dependent on typing speed and whether a key or mouse button
click, press, or release is involved), or a simple approximating function.  As presented in CMN,
the KLM technique includes a set of five heuristic rules for placing mental operators to account for
mental preparation time during a task that requires several physical operators.  For example, Rule 0
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reads "Insert M's in front of all K's that are not part of argument strings proper (e.g., text or
numbers).  Place M's in front of all P's that select commands (not arguments)." (CMN, p. 265)

Subsequent research has refined these six primitive operators, improving the time estimates or
differentiating between different types of mental operations (Olson & Olson, 1990).  Practitioners
often tailor these operators or define new ones to suit their particular user group and interface
requirements (e.g., Haunold & Kuhn, 1994).  In addition, the heuristics for placing mental
operators have been refined for specific types of subtasks (e.g., for making a fixed series of menu
choices, Lane, Napier, Batsell & Naman, 1993).  Since the original heuristic rules were created
primarily for command-based interfaces, they had to be updated for direct manipulation interfaces.
Thus, heuristic Rule 0 should be expanded to read, "Insert M's in front of all K's that are not part
of argument strings proper (e.g., text or numbers).  Place M's in front of all P's that select
commands (not arguments) or that begin a sequence of direct-manipulation operations belonging to
a cognitive unit.2"

2.1.1.  Architectural basis and constraints

The KLM is based on a simple underlying cognitive architecture, a serial stage model of human
information-processing in which one activity is done at a time until the task is complete.  All of the
human information-processing activity is assumed to be contained in the primitive operators,
including internal perceptual and cognitive actions, which are subsumed by black-box Mental (M)
operators.  This restricts the KLM to tasks that can be usefully approximated by a series of
operators, with no parallel activities, no interruptions, and no interleaving of goals.  Luckily, many
single-user computer tasks are usefully approximated with these restrictions.  However, these
restrictions, along with primitive operators defined to be at the keystroke-level, make the KLM
impractical for representing an entire high-level task like collaboratively writing a research paper.
The next two GOMS variants are more able to handle that task.

2.1.2.  Example KLM

Figure 2 provides a sample KLM for moving the circled phrase in Figure 1.  To construct this
model, we used heuristics for placing Ms that have been updated for mouse-based interfaces
(CMN, p. 265 and above) and the original operator types and times supplied in CMN (p. 264).
Figure 2 also includes illustrative observations that an analyst might make about the model.

Quantitatively, the KLM makes the prediction that this task will take about 14 seconds.
Qualitatively, the analyst can use the model to highlight several ideas.  The subgoal structure is not
explicit in the KLM itself, but an analyst can see it in the model (as annotated) and use it to look for
recurring subprocedures that might be combined or shortened.  For instance, the analyst has made
an annotation to consider a MOVE command instead of CUT and PASTE .  A KLM for MOVE would
show what time savings this would provide, which could then be weighed against other
considerations like users' prior knowledge or other functionality (e.g. the ability to paste multiple
copies).  Considering the sub-goal structure is an important use of all GOMS versions, and the
next two variants will make it explicit in the model itself.

                                                

2  The concept of a cognitive unit is discussed in CMN, p. 268.
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Moving text with the MENU-METHOD
    Description        Operator       Duration (sec)   
Mentally prepare by Heuristic Rule 0 M 1.35
Move cursor to beginning of phrase P 1.10
   (no M by Heuristic Rule 1)
Click mouse button K 0.20
   (no M by Heuristic Rule 0)
Move cursor to end of phrase P 1.10
   (no M by Heuristic Rule 1)
Shift-click mouse button
   (one average typing K) K 0.28
   (one mouse button click K) K 0.20
Mentally prepare by Heuristic Rule 0 M 1.35
Move cursor to Edit menu P 1.10
   (no M by Heuristic Rule 1)
Press mouse button K 0.10
Move cursor to Cut menu item P 1.10
   (no M by Heuristic Rule 1)
Release mouse button K 0.10
Mentally prepare by Heuristic Rule 0 M 1.35
Move cursor to insertion point P 1.10
Click mouse button K 0.20
Mentally prepare by Heuristic Rule 0 M 1.35
Move cursor to Edit menu P 1.10
   (no M by Heuristic Rule 1)
Press mouse button K 0.10
Move cursor to Paste menu item P 1.10
   (no M by Heuristic Rule 1)
Release mouse button K 0.10

TOTAL PREDICTED TIME 14.38

Figure 2.  A Keystroke-Level Model for moving the text in Figure 1.  The notes on the right represent
hand-written notes an analyst might add to the KLM to highlight ideas.

2.2.  Card, Moran, & Newell GOMS (CMN-GOMS)

CMN-GOMS is the term we use to refer to the form of GOMS model presented in CMN (Ch.  5;
Card, Moran, & Newell, 1980b).  CMN-GOMS has a strict goal hierarchy.  Methods are
represented in an informal program form that can include submethods and conditionals.  A CMN-
GOMS model, given a particular task situation, can thus predict both operator sequence and
execution time.

CMN do not describe the CMN-GOMS technique with an explicit "how to" guide, but their
presentation of nine models at different levels of detail illustrates a breadth-first expansion of a goal
hierarchy until the desired level of detail is attained.  CMN report results in which such models
predicted operator sequences and execution times for text editing tasks, operating systems tasks,
and the routine aspects of computer-aided VLSI layout.  These examples are sufficiently detailed
and extensive that researchers have been able to develop their own CMN-GOMS analyses (e.g.,
Lerch, Mantei, & Olson, 1989).
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2.2.1.  Architectural basis and constraints

In the context of the CMN book, it would appear that CMN-GOMS is based on the Model
Human Processor (MHP), a simple conventional model of human information processing with
parallel stages described by CMN (Ch. 2, and summarized in section 2.6.1 below).  But in fact
CMN do not establish this relationship, and do not derive the GOMS concept from the specific
properties of the MHP.

Rather, CMN-GOMS is based on two of the MHP "Principles of Operation", the Rationality
Principle and the Problem Space Principle, both of which developed in the problem-solving
theoretical literature (e.g., Newell & Simon, 1972; see CMN Ch. 11).  The Problem Space
Principle postulates that a user's activity can be characterized as applying a sequence of actions,
called operators, to transform an initial state into a goal state.  With experience, the sequence of
operators to accomplish a goal no longer has to be inferred; rather the sequence, termed a method,
can be routinely recalled and executed when the same goal situation is recognized (CMN Ch. 11).
The Rationality Principle asserts that users will develop methods that are efficient, given the
structure of the task environment (i.e., the design of the system) and human processing abilities
and limitations.  Thus, human activity with a computer system can be viewed as executing methods
to accomplish goals, and because humans strive to be efficient, these methods are heavily
determined by the design of the computer system. This means that the user's activity can be
predicted to a great extent from the system design.  Thus, constructing a GOMS model based on
the task and the system design can predict useful properties of the human interaction with a
computer.

CMN-GOMS, like the KLM, is based on the simple serial stage architecture, and even though it
has program methods and goal structure, no further assumptions are made about how these
methods are executed or represented.  Consequently, CMN-GOMS is easy to write, but the lack of
an explicit description of the method representation and mechanisms involved in task execution
means that CMN-GOMS models are relatively vague and unspecified compared to the next two
GOMS techniques.

2.2.2.  Example CMN-GOMS model

Because the goal hierarchy is explicitly represented, a CMN-GOMS model could start at the level
of collaboratively writing a research paper, with subgoals like SEND-DRAFT-TO-CO-AUTHOR,
FORMAT-BIBLIOGRAPHY, or EDIT-MANUSCRIPT.  Figure 3 displays only those goals and operators
at and below the EDIT-MANUSCRIPT subgoal.  It includes details for the MOVE-TEXT subgoal and
illustrative analyst annotations.  Moving is accomplishing by first cutting the text and then pasting
it.  Cutting is accomplished by first selecting the text, and then issuing the CUT command.  As
specified by a selection rule, selecting of text can be done in two different ways, depending on the
nature of the text to be selected.  Finally pasting requires selecting the insertion point, and then
issuing the PASTE command.

Quantitatively, CMN-GOMS models predict the operator sequence and execution time.
Qualitatively, CMN-GOMS models focus attention on methods to accomplish goals; similar
methods are easy to see, unusually short or long methods jump out (as annotated) and can spur
design ideas.  In addition, the annotations indicate that this analyst has observed that the VERIFY
operator explicitly records points of feedback to the user.

2.2.3.  Comparison  to the KLM.

A major difference between the KLM and the CMN-GOMS models is that CMN-GOMS is in
program form; therefore, the analysis is general and executable.  That is, any instance of the
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GOAL: EDIT-MANUSCRIPT
. GOAL: EDIT-UNIT-TASK ...repeat until no more unit tasks
. . GOAL: ACQUIRE UNIT-TASK ...if task not remembered
. . . GOAL: TURN-PAGE ...if at end of manuscript page
. . . GOAL: GET-FROM-MANUSCRIPT
. . GOAL:EXECUTE-UNIT-TASK ...if a unit task was found
. . . GOAL: MODIFY-TEXT
. . . . [select: GOAL: MOVE-TEXT* ...if text is to be moved
. . . . GOAL: DELETE-PHRASE ...if a phrase is to be deleted
. . . . GOAL: INSERT-WORD] ...if a word is to be inserted
. . . .   VERIFY-EDIT

*Expansion of MOVE-TEXT goal
GOAL: MOVE-TEXT
. GOAL: CUT-TEXT
. . GOAL: HIGHLIGHT-TEXT
. . . [select**: GOAL: HIGHLIGHT-WORD
. . . . MOVE-CURSOR-TO-WORD
. . . . DOUBLE-CLICK-MOUSE-BUTTON
. . . . VERIFY-HIGHLIGHT
. . . GOAL: HIGHLIGHT-ARBITRARY-TEXT
. . . . MOVE-CURSOR-TO-BEGINNING 1.10
. . . . CLICK-MOUSE-BUTTON 0.20
. . . . MOVE-CURSOR-TO-END 1.10
. . . . SHIFT-CLICK-MOUSE-BUTTON 0.48
. . . . VERIFY-HIGHLIGHT] 1.35
. . GOAL: ISSUE-CUT-COMMAND
. . . MOVE-CURSOR-TO-EDIT-MENU1.10
. . . PRESS-MOUSE-BUTTON 0.10
. . . MOVE-MOUSE-TO-CUT-ITEM 1.10
. . . VERIFY-HIGHLIGHT 1.35
. . . RELEASE-MOUSE-BUTTON 0.10
. GOAL: PASTE-TEXT
. . GOAL: POSITION-CURSOR-AT-INSERTION-POINT
. . . MOVE-CURSOR-TO-INSERTION-POINT 1.10
. . . CLICK-MOUSE-BUTTON 0.20
. . . VERIFY-POSITION 1.35
. . GOAL: ISSUE-PASTE-COMMAND
. . . MOVE-CURSOR-TO-EDIT-MENU1.10
. . . PRESS-MOUSE-BUTTON 0.10
. . . MOVE-MOUSE-TO-PASTE-ITEM1.10
. . . VERIFY-HIGHLIGHT 1.35
. . . RELEASE-MOUSE-BUTTON 0.10

TOTAL TIME PREDICTED (SEC) 14.38

**Selection Rule for GOAL: HIGHLIGHT-TEXT:
If the text to be highlighted is a single word, use the
HIGHLIGHT-WORD method, else use the HIGHLIGHT-ARBITRARY-TEXT method.

Figure 3.  Example of CMN-GOMS text-editing methods showing the top-level unit-task method
structure, an expansion of one method,  and a selection rule.  
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described class of tasks can be performed or simulated by following the steps in the model, which
may take different paths depending on the specific task situation.  Subgoal invocation and method
selection are predicted by the model given the task situation, and need not be dictated by the analyst
as they must for the KLM.  Another major difference is that the goal-hierarchy is explicit in CMN-
GOMS, while it was implicit in the KLM.

Comparing Figure 3 with Figure 2 shows the relationship between CMN-GOMS and the KLM.
For instance, there is a one-to-one mapping between the physical operators in the CMN-GOMS
model and the Ks and Ps in the KLM.  The CMN-GOMS model has other operators at this level:
VERIFY-LOCATION and VERIFY-HIGHLIGHT, which are not overt physical actions.  The KLM has
no explicit goals or choices between goals, whereas the CMN-GOMS model represents these
explicitly.  Roughly, the VERIFY operators, subgoal invocations, and selection rules of the CMN-
GOMS model are represented as the M operators in the KLM.  That is, such operators appear in
the CMN-GOMS model in groups that roughly correspond to the placement of Ms in the KLM.
This is only approximately the case, as the VERIFY operators sometimes occur in the middle of a
group of physical operators, but the approximation is close.

Given the task specified by the manuscript in Figure 1, this model would predict the trace of
operators shown with the estimates of operator times in the far right column.  The estimates for the
physical operators are identical to the ones in the KLM. The VERIFY-HIGHLIGHT and VERIFY-
POSITION operators are assigned 1.35 sec, the same value as the KLM's M operator because this is
CMN's best estimate of mental time in the absence of other information.3  Thus, the CMN-GOMS
model produces the same estimate for task completion as the KLM.

Notice that the CMN-GOMS technique assigns time only to operators, not to any "overhead"
required to manipulate the goal hierarchy.  In their results, CMN found that time predictions were
as good with the assumption that only operators contributed time to the task as they were when
goal manipulation also contributed time.  However, they suggested that at more detailed levels of
analysis such cognitive activity might become more important.  Also notice that where the KLM
puts Ms at the beginning of subprocedures, the CMN-GOMS model puts the mental time in verify
operators at the end of subprocedures.  Since mental time is observable only as pauses between
actions, it is difficult to distinguish between these two techniques empirically, and only appeals to
more detailed cognitive architectures can explain the distinction.  Pragmatically, however, this
difference is irrelevant in most design situations.  We will discuss the issue of mental time again
after presenting all the GOMS techniques.

2.3.  Natural GOMS Language (NGOMSL)

NGOMSL is a structured natural language notation for representing GOMS models and a
procedure for constructing them (Kieras, 1988, in press).  An NGOMSL model is in program
form, and provides predictions of operator sequence, execution time, and time to learn the
methods.  An analyst constructs an NGOMSL model by performing a top-down, breadth-first
expansion of the user's top-level goals into methods, until the methods contain only primitive
operators, typically keystroke-level operators.  Like CMN-GOMS, NGOMSL models explicitly
represent the goal structure, and so can represent high-level goals like collaboratively writing a
research paper.

                                                

3  Some design situations may require, or provide opportunity for, using better estimates of specific types of
mental operators.  Analysts can look at the additional empirical work of CMN in Chapter 5 where they measure
many specific mental times, or other HCI empirical work (e.g. John & Newell, 1987 for estimates of time to recall
command abbreviations, Olson & Olson, 1990, for mental preparation in spreadsheet use).
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2.3.1.  Architectural basis and constraints

The NGOMSL technique refines the basic GOMS concept by representing methods in terms of a
cognitive architecture called cognitive complexity theory (CCT:  Kieras & Polson, 1985; Bovair,
Kieras, & Polson, 1990).  CCT assumes a simple serial stage architecture in which working
memory triggers production rules that apply at a fixed rate.  These rules alter the contents of
working memory or execute primitive external operators such as making a keystroke.  GOMS
methods are represented by sets of production rules in a prescribed format.  Learning procedural
knowledge consists of learning the individual production rules. Learning transfers from a different
task if the rules had already been learned (see also Anderson, 1993).  CCT has been shown to
provide good predictions of both execution time, learning time, and transfer of procedure learning
(Kieras & Bovair, 1986; Bovair, Kieras & Polson, 1988, 1990).

NGOMSL originated from attempts to define a higher-level notation to represent the content of a
CCT model (Bennett, Lorch, Kieras, & Polson, 1987; Butler, Bennett, Polson, and Karat, 1989).
It is a structured natural language notation in which methods are represented in program form as a
list of steps which contain operators, both external keystroke-level operators, and also internal
operators that represent operations of the CCT architectural mechanisms, such as adding and
removing working memory information, or setting up subgoals.  The relationship between the
NGOMSL notation and the CCT architecture is direct: there is essentially a one-to-one relationship
between statements in the NGOMSL language and the production rules for a GOMS model written
in the CCT format.  Therefore, the CCT prediction results can be used by NGOMSL models to
estimate not only execution time like KLM and CMN-GOMS, but also the time to learn the
procedures.

Although an NGOMSL analysis can provide useful descriptions of a task at many levels of
analysis (Karat & Bennett 1991), quantitative predictions of learning and execution times are
meaningful only if the methods use operators that the user is assumed to already know and that
have known properties.  CCT and NGOMSL model have been empirically validated at the
keystroke-level of analysis (operators like DETERMINE-POSITION and CLICK-MOUSE-BUTTON),
thus, models at that level can produce reliable quantitative estimates.  In principle, other levels
could be researched and empirically validated, but this has not yet been done.

Because NGOMSL models specify methods in program form, they can characterize the
procedural complexity of tasks, both in terms of how much must be learned, and how much has to
be executed.  However, the underlying simple serial stage architecture of CCT limits NGOMSL to
hierarchical and sequential methods.  Thus, there is no provision for representing methods whose
steps could be executed in any order, or which could be interrupted and resumed.  Also, there is no
direct way to represent how perceptual, cognitive, and motor processing might overlap.  For
example, there is no provision for representing a user doing perceptual processing on an icon while
simultaneously homing the hand to the mouse and doing a retrieval from long-term memory.  To
some extent it is possible to approximate overlapping operations by setting certain operator times to
zero (as has been done in Figure 4, see Gong, 1993);.  Direct representation of processing overlap
requires a different underlying cognitive architecture; such an approach is represented by the CPM-
GOMS technique, to be discussed next.

2.3.2.  Example NGOMSL model

Continuing the text editing example, Figure 4 shows the NGOMSL methods involved in moving
text.  Notice that more methods are represented here than are executed in the example task instance.

Quantitatively, NGOMSL provides learning time as well as execution time predictions, discussed in
detail below.  Qualitatively, NGOMSL provides all that KLM and CMN-GOMS provide, and



NGOMSL Statements Executions External
Operator
Times

Method for goal: Move text 1
Step 1.  Accomplish goal: Cut text. 1
Step 2.  Accomplish goal: Paste text. 1
Step 3.  Return with goal accomplished. 1

Method for goal: Cut text 1
Step 1.  Accomplish goal: Highlight text. 1
Step 2.  Retain that the command is CUT, and

accomplish goal: Issue a command. 1
Step 3.  Return with goal accomplished. 1

Method for goal: Paste text 1
Step 1.  Accomplish goal: Position cursor at insertion point. 1
Step 2.  Retain that the command is PASTE,

and accomplish goal: Issue a command. 1
Step 3.  Return with goal accomplished. 1

Selection rule set for goal: Highlight text 1
If text-is word, then accomplish goal: Highlight word.
If text-is arbitrary, then accomplish goal: Highlight arbitrary text. 1
Return with goal accomplished. 1

Method for goal: Highlight word
Step 1.  Determine position of middle of word.
Step 2.  Move cursor to middle of word.
Step 3.  Double-click mouse button.
Step 4.  Verify that correct text is selected
Step 5.  Return with goal accomplished.

Method for goal: Highlight arbitrary text 1
Step 1.  Determine position of beginning of text. 1 1.20
Step 2.  Move cursor to beginning of text. 1 1.10
Step 3.  Click mouse button. 1 0.20
Step 4.  Determine position of end of text. (already known) 1 0.00
Step 5.  Move cursor to end of text. 1 1.10
Step 6.  Shift-click mouse button. 1 0.48
Step 7.  Verify that correct text is highlighted. 1 1.20
Step 8.  Return with goal accomplished. 1

Method for goal: Position cursor at insertion point 1
Step 1.  Determine position of insertion point. 1 1.20
Step 2.  Move cursor to insertion point. 1 1.10
Step 3.  Click mouse button. 1 0.20
Step 4.  Verify that correct point is flashing 1 1.20
Step 5.  Return with goal accomplished. 1

Method for goal: Issue a command 1
Step 1.  Recall command name and retrieve from LTM the menu name for it,

and retain the menu name. 1
Step 2.  Recall the menu name, and move cursor to it on Menu Bar. 1 1.10
Step 3.  Press mouse button down. 1 0.10
Step 4.  Recall command name, and move cursor to it. 1 1.10
Step 4.  Recall command name, and verify that it is selected. 1 1.20
Step 5.  Release mouse button. 1 0.10
Step 6.  Forget menu name, forget command name, and

return with goal accomplished. 1

Predicted Pure Procedure Learning Time for 44 statements + 6 LTM chunks =  784 sec
Total Predicted Execution Time = 16.38 sec

Figure 4.  An example of NGOMSL methods for moving text, showing a generic command-issuing method
that uses items in long-term memory to associate menu names to the contained commands.  Adapted from
Kieras (in press).
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more.  For example, NGOMSL makes the similarity between methods explicit, i.e., all menu-
commands use a submethod for issuing a command.  Like CMN-GOMS, VERIFY operators draw
the analyst's attention to feedback.  In addition, NGOMSL models explicitly represent working
memory and long-term memory usage, allowing the analyst to assess the demands of the design on
those cognitive resources.  In this example, working memory need only store the command name
and the menu name, a reasonable amount of information.  This model assumes that users will have
learned which commands are in which menus; if they haven't they will either systematically search
through all the menus, or guess. Because these assumptions are explicit, they can be questioned,
and considered in design.

    Learning time predictions.     NGOMSL models have been shown to be good predictors of
time to learn how to use a system, keeping in mind that what is predicted is the pure learning time
for the procedural knowledge represented in the methods.  Note that, as mentioned above, the user
is assumed to already know how to execute the operators; the GOMS methods do not represent the
knowledge involved in executing the operators themselves, but only represent the knowledge of
which operators to apply and in what order to accomplish the goal.  Innovative interface
technology often results in new operators; moving the cursor with a mouse was a new operator for
many users in the early 1980s, and selecting objects with an eye-movement tracker or manipulating
3D objects and flying about in virtual space with data-glove gestures will be new operators as these
technologies move into the workplace.  Clearly, the time to learn how to execute new operators is a
critical aspect of the value of new interface devices, but a GOMS model that assumes such
operators can not predict their learning time.  The time to learn new operators themselves would
have to be measured, or simply not included in the analysis.

The total elapsed time to learn to use a system depends not only on how much procedural
knowledge must be learned but on how much time it takes to complete the training curriculum
itself.  That is, most learning of computer use takes place in the context of the new user performing
tasks of some sort, and this performance would take a certain amount of time even if the user were
fully trained.  Thus the total learning time consists of the time to execute the training tasks plus the
extra time required to learn how to perform the tasks (the pure learning time).  As Gong (1993)
showed, training-task execution times can be estimated from a GOMS model of the training tasks.

The key empirical result is that the procedure learning time is approximately linear with the
number of NGOMSL statements that must be learned.  Thus, the pure learning time for the
methods themselves can be estimated just by counting the statements and multiplying by an
empirically-determined coefficient.  Transfer of training effects can be calculated by deducting the
number of NGOMSL statements in methods that are identical, or highly similar, to ones already
known to the learner (see Kieras, 1988, in press; also Bovair, Kieras, & Polson, 1988, 1990).
This characterization of interface consistency in terms of the quantitative transferability of
procedural knowledge is perhaps the most significant contribution of the CCT research and the
NGOMSL technique.  An important limitation of this result is that the accuracy of absolute
predictions of learning time will depend on whether the analyst has followed the same "style" in
writing the methods as was used to obtain the empirical coefficient.  This uncertainty can be dealt
with by performing relative comparisons using models written in a consistent style.  Further work
is needed to describe and document a style for analysts to follow that will yield consistently
accurate absolute predictions of learning time.

An additional component of the pure learning time is the time required to memorize chunks of
declarative information required by the methods, such as the menu names under which commands
are found.  Such items are assumed to be stored in long-term memory (LTM), and while not
strictly part of the GOMS methods, are required to be in LTM for the methods to execute correctly.



Including this component in learning time estimates is a way to represent the learning load imposed
by menu or command terms, and the heuristics suggested in CMN can be applied to estimate the
time to memorize these items based on the number of chunks.  However, heuristics for counting
chunks are not very well defined at this time (see Gong, 1993).

The validity and utility of the learning time predictions depend on the general requirements of the
learning situation.  Clearly, if the learner is engaged in problem-solving, or in an unstructured
learning situation, the time required for learning is more variable and ill-defined than if the learner
is trained in a tightly controlled situation.  The original work by Kieras, Polson, and Bovair used a
mastery learning situation, in which the users were explicitly trained on the methods and were
required to repeatedly execute each procedure fully and exactly before going to the next (Bovair,
Kieras, & Polson, 1990; Kieras & Bovair, 1986; Polson, 1988).  The CCT predictions were
extremely accurate in this sort of learning situation.  Gong (1993) used a more realistic learning
situation in which users were given a demonstration and explanation, and then had to perform a
series of training tasks at their own pace, without detailed feedback or correction.  The NGOMSL
method length, transfer measures, and the number of memory chunks were excellent predictors of
this more realistic training time, although the prediction coefficients were different than those in
Kieras (1988).  Finally, even in learning situations that are naturalistically unstructured, at least the
ordinal predictions of learning time should hold true, as suggested by results such as Ziegler,
Hoppe, & Fahnrich (1986).  It seems reasonable that regardless of the learning situation, systems
whose methods are longer and more complex will require more time to learn, because more
procedural knowledge has to be acquired, either by explicit study or inferential problem-solving.
But clearly more work on the nature of relatively unstructured learning situations is required.

The above discussion of estimating learning time can be summarized as follows, using the values
determined by Gong (1993):

Total Procedure Learning Time = Pure Procedure Learning Time
+ Training Procedure Execution Time

Pure Procedure Learning Time = NGOMSL Method Learning Time
+  LTM Item Learning Time

NGOMSL Method Learning Time = 17 sec
·  No. of NGOMSL Statements to be Learned

LTM Item Learning Time = 6 sec ·  Number of LTM Chunks to be Learned

These formulas give a pure procedure learning time estimate for the whole set of methods shown
in Figure 4 of 784 sec, in a "typical" learning situation, assuming no prior knowledge of any
methods, and assuming that learning the proper command words for the two menu terms will
require learning three chunks each.

    Execution time predictions.     Like the other GOMS models, execution time predictions are
based on the sequence of operators executed while performing the benchmark tasks.  A trace of the
example NGOMSL model performing the text moving example is summarized in Figure 4.  The
trace includes the same sequence of physical operators as the KLM and CMN-GOMS models in
Figures 2 and 3.  The predicted execution time is obtained by counting 0.1 sec for each NGOMSL
statement executed and adding the total external operator time, using values based on the KLM
recommended in Kieras (in press).  This gives a predicted execution time of 16.38 sec, which is
comparable to the predictions of the other two models (14.38 sec for both the KLM and CMN-
GOMS models).
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2.3.3.  Comparison with KLM and CMN-GOMS.

The primary difference between execution time predictions for NGOMSL, KLM and CMN-
GOMS is how time is assigned to cognitive and perceptual operators.  There are some stylistic
differences in how many large mental operators are assumed; for example, the NGOMSL example
follows the recommendations (Kieras, 1988; in press) for the number and placement of
DETERMINE-POSITION and VERIFY operators, and so has more M-like operators than do the CMN-
GOMS and KLM models.  These stylistic differences could be resolved with further research.

A more important difference is in the nature of the unobservable operators.  The KLM has a
single crude M operator that precedes each cognitive unit of action.  NGOMSL, because it is based
on CCT, uniformly requires some cognitive execution time for every step, manipulating goals and
working memory, and for entering and leaving methods.  In contrast, CMN-GOMS assigns no
time to such cognitive overhead.  But all three models include M-like operators for substantial
time-consuming mental actions such as locating information on the screen and verifying entries.
Thus, these methods assign roughly the same time to unobservable perceptual and cognitive
activities, but do so at different places in the trace.

2.4.  Cognitive-Perceptual-Motor GOMS (CPM-GOMS)

CPM-GOMS, like the other GOMS models, predicts execution time based on an analysis of
component activities. However, CPM-GOMS requires a specific level of analysis where the
primitive operators are simple perceptual, cognitive and motor acts.  Unlike the other extant GOMS
techniques, CPM-GOMS does not make the assumption that operators are performed serially;
rather, perceptual, cognitive and motor operators can be performed in parallel as the task demands.
CPM-GOMS uses a schedule chart (or PERT chart, familiar to project managers, e.g. Stires &
Murphy, 1962) to represent the operators and dependencies between operators.  The acronym
CPM stands for both the Cognitive-Perceptual-Motor level of analysis and also Critical Path
Method, since the critical path in a schedule chart provides the prediction of total task time.

2.4.1.  Architectural basis and constraints

CPM-GOMS is based directly on the Model Human Processor (MHP; see CMN, Ch. 2), which
is a basic human information-processing architecture similar to those appearing in the human
cognitive and performance literature for the last few decades.  The human is modeled by a set of
processors and storage systems in which sensory information is first acquired, recognized, and
deposited in working memory by perceptual processors, and then a cognitive processor acts upon
the information and commands motor processors to make physical actions.  Each processor
operates serially internally, with a characteristic cycle time, but processors run in parallel with each
other.  The unique contribution of CMN was to present this standard picture of human-information
processing in the form of an engineering model, which by careful simplifications and
approximations, is able to quantitatively account for many basic phenomena relevant to human-
computer interaction (see CMN, Ch 2).  The CPM-GOMS technique directly applies the MHP to a
task analysis by identifying the operators that must be performed by each processor, and the
sequential dependencies between them.

The MHP architecture allows parallelism between CPM-GOMS operators, which is necessary
for analyzing some tasks, but it also forces the primitive operators to be at the level of the cycle-
times of the MHP's processors.  Thus, CPM-GOMS models are much more detailed than previous
GOMS variants.  As the following example will make clear, CPM-GOMS models are too detailed
for tasks that can be usefully approximated by serial operators.

CPM-GOMS models also make an assumption of extreme expertise in the user.  That is, they
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typically model performance that has been optimized to proceed as fast as the MHP and
information-flow dependencies will allow.  We will discuss the implications of this assumption in
the context of the text-editing example, below.

2.4.2.  Example CPM-GOMS model

To build a CPM-GOMS model, the analyst begins with a CMN-GOMS model of a task, (thereby
inheriting all the qualitative information obtained from doing a CMN-GOMS model).  The CMN-
GOMS model can start at any level but must stop with operators at the activity level, primarily
high-level perceptual (READ-SCREEN) or motor (ENTER-COMMAND) actions.  The analyst
continues by dropping to a lower level where these operators are then expressed as goals, which
are accomplished by methods containing MHP-level operators.  John & Gray (1995) have
provided templates (assemblies of cognitive, perceptual and motor operators and their
dependencies) for different activities under different task conditions.  For instance, Figure 5
contains the template for the READ-SCREEN goal when an eye-movement is required, and Figure 6
contains the template when the user is already looking at right spot on the display.  Each operator
in the templates has a duration estimate, or a set of estimates that depend on task conditions.  For
instance, visually perceiving and comprehending a 6-character word takes 290 ms, whereas
visually perceiving and comprehending that a symbol is merely present or absent (e.g., the
presence of highlighting) takes 100 ms (Figures 5 and 6).

These templates are first joined together serially, and then interleaved to take advantage of the
parallelism of the underlying cognitive architecture.  The operators, their estimates of duration, and
the pattern of dependencies between them, combine to produce a detailed model of which actions
will occur in the performance of the task and when they will happen.  The sequence of operators
which produces the longest path through this chart is called the critical path; the sum of the
durations of operators on the critical path estimates the total duration of the task.  If empirical data
about actual performance of observable motor operators is available from a current system that is
similar to the system being designed, it is desirable to verify the model against these data.  Then the
verified models are modified to represent the proposed design and quantitative predictions of
performance time can be determined from the critical path of the CPM-GOMS model.  Qualitative
analysis of what aspects of a design lead to changes in the performance time are quite easy once the
models are built, as are subtask profiling, sensitivity and parametric analyses, and playing "what-
if" with suggested design features (Chuah, John & Pane, 1994; Gray, John & Atwood, 1993).

Continuing the example of the MOVE-TEXT goal, Figure 7 shows a CPM-GOMS model of this
task.  For brevity, the model covers only the portion of the procedure involved with highlighting
the text to be moved.  Each box in the chart represents an operator, and each horizontal line of
boxes represents the sequence of operators executed by a perceptual, cognitive, or motor
processor.  The lines connecting the boxes indicate sequential dependencies between the operators,
and the highlighted lines correspond to the critical path.

Before discussing this example model in detail, it is important to note that text-editing is not a
good application of the CPM-GOMS technique and we present it here only to compare it to the
other GOMS techniques.  Text-editing is usefully approximated by serial processes, which is why
the KLM, CMN-GOMS and NGOMSL have been so successful at predicting performance on text
editors. CPM-GOMS is overly detailed for such primarily serial tasks and can underestimate the
execution time.  For examples of tasks for which a parallel-processing model is essential, and
where the power of CPM-GOMS is evident, see the telephone operator task in Gray, John and
Atwood (1993) and transcription typing (John, in press; John & Newell, 1989).
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info (x) 
attend 
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Eye Movement
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verify 
info (x)

50 msec50 msec 50 msec

100 msec if perceiving a
            simple binary visual signal
290 msec if perceiving a complex
            visual signal similar to a
            6-letter word

Figure 5.  Example of a template for building CPM-GOMS models adapted from John & Gray, 1995.
This template accomplished the goal READ-SCREEN, when an eye-movement is required in the task.

50 msec

info (x) 
attend Cognitive

Operators

Visual Perception perceive 
info (x)

verify 
info (x)

50 msec

100 msec if perceiving a
            simple binary visual signal
290 msec if perceiving a complex
            visual signal similar to a
            6-letter word

Figure 6.  Example of a template for building CPM-GOMS models adapted from John & Gray, 1995.
This template accomplished the goal READ-SCREEN, when an eye-movement is NOT required in the
task.

    Execution time predictions.     In Figure 7, the times for the operators shown on the boxes in
the schedule chart are based on the durations estimated by John & Gray (1995).  The highlighted
lines and boxes comprise the critical path.  Reading the total duration on the final item of the critical
path gives a total execution time through this subsequence of the task equal to 2.21 sec.

The ability of CPM-GOMS to represent parallel processing is illustrated in the set of operators
that accomplish the MOVE-TO-BEGINNING-OF-PHRASE goal.  These operators are not performed
strictly serially, that is, the eye-movement and perception of information occur in parallel with the
cursor being moved to the new location.  The information-flow dependency lines between the
operators ensure that the eyes must get there first, before the new position of the cursor can be
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verified to be at the right location, but the movement of the mouse takes longer than the eye-
movement and perception, so it defines the critical path.

Multiple active goals can be represented in CPM-GOMS models and are illustrated in Figure 7 in
the sets of operators that accomplish the MOVE-TO-END-OF-PHRASE goal and the SHIFT-CLICK-
MOUSE-BUTTON goal.  Because the shift key is hit with the left hand (in this model of a right-
handed person) and the mouse is moved with the right hand, pressing the shift-key can occur while
the mouse is still being moved to the end of the phrase.  Thus, the operators that accomplish the
SHIFT-CLICK-MOUSE-BUTTON goal are interleaved with the operators that accomplish the MOVE-
TO-END-OF-PHRASE goal.  This interleaving represents a very high level of skill on the part of the
user.

2.4.3.  Comparison with KLM ,CMN-GOMS, and NGOMSL.

Although text-editing is not the best task to display the advantages of CPM-GOMS, there are
several interesting aspects of the model in Figure 7 compared to the other example models.  First,
there is a direct mapping from the CMN-GOMS model to the CPM-GOMS model, because all
CPM-GOMS models start with CMN-GOMS and the particular model in Figure 7 was built with
reference to the one in Figure 3.  As with the KLM, selection rules are not explicitly represented
because CPM-GOMS models are in sequence form, and the chooses a particular method for each
task instance.  For example, in Figure 7, the selection between HIGHLIGHT-ARBITRARY-PHRASE
and HIGHLIGHT-WORD that is explicitly represented in CMN-GOMS and NGOMSL, is only
implicit in the analyst's choice of the method for this particular model.

Although the qualitative process represented in this CPM-GOMS model is reasonable, its
quantitative prediction is much shorter than the estimates from the other models.  The CPM-GOMS
model predicts the total execution time to be 2.21 sec;  totaling the execution time over the same
steps in the other models gives 4.23 sec for both the KLM and CMN-GOMS and 6.18 sec for the
NGOMSL model. The primary source of the discrepancy between the GOMS variants is the basic
assumption in the CPM-GOMS technique that the user is extremely experienced and executes the
task as rapidly as the MHP architecture permits.

One aspect of the extreme-expertise assumption is that the CPM-GOMS model assumes that the
user knows exactly where to look for the to-be-moved-phrase.  This means that the model needs
only one eye-movement to find the beginning and one to find the end of the target phrase and that
the mouse movements to these points can be initiated prior to the completion of the eye
movements.  In some real-world situations, like telephone operators handling calls (Gray, John,
and Atwood, 1993), the required information always appears at fixed screen locations, and with
experience, the user will learn where to look.  But in a typical text editing task like our example,
the situation changes from one task instance to the next, and so visual search would be required to
locate the target phrase.  CPM-GOMS has been used to model visual search processes (Chuah,
John & Pane, 1994), but for brevity, we did not include this complexity in our example.

A second aspect of the assumed extreme expertise is that the example does not include any
substantial cognitive activity associated with selection of methods or complex decisions.  Such
cognitive activity is represented in the other GOMS variants with M-like operators of about a
second in duration.  In contrast, in Figure 7, the method selection is implicit in a single cognitive
operator (INITIATE-MOVE-TEXT-METHOD) which is the minimum cognitive activity required by the
MHP to recognize a situation and note it in working memory.  Likewise, VERIFY-POSITION
operators are included in the CPM-GOMS model, but they represent much more elementary
recognitions that the cursor is indeed in the location where the model is already looking rather than
complex verifications that a text modification has been done correctly required in CMN-GOMS and
NGOMSL.  Thus, Figure 7 represents a minimum of cognitive activity, which is an unreasonable
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Figure 7 (con't).  CPM-GOMS model of a move-text method for the text-editing task in Figure 1.
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assumption for a normal text-editing task.  However,  in an experiment by CMN (pp. 279-286),
the performance time of an expert user on a novel editing task was well predicted by the KLM, but
after 1100 trials on the exact same task instance, the performance time decreased by 35%, largely
because the M operators became much shorter.  It is this type of extreme expertise that our example
CPM-GOMS model represents.  A more elaborate CPM-GOMS model could represent complex
decisions as a series of MHP-level operators performing minute cognitive steps serially, as in the
earlier work on recalling computer command (John & Newell, 1987).  However, the technique for
modeling complex decisions in CPM-GOMS is still a research issue, and so it should be used only
for tasks in which method selection is based on obvious cues in the environment and decisions can
be represented very simply.

A final contributor to the short predicted time is that the mouse movements in CPM-GOMS are
calculated specifically for the particular target size and distance in this situation, yielding much
shorter times than CMN's 1.10 sec estimate of average pointing time used in the other models
(further discussion appears in the next section).

3.  Summary and Comparison of the GOMS Techniques

We have modeled the same goal, MOVE-TEXT, with four different GOMS task analysis
techniques.  For purposes of comparison, we included a CPM-GOMS model for the same text-
editing task, although the technique is not recommended for modeling such sequential tasks, and
for brevity, it was shown only for the text-highlighting submethod.

3.1.  Summary comparison of predictions.

The KLM, CMN-GOMS and NGOMSL models all produce the same sequence of observable
operators, as does the CPM-GOMS model (although at a more detailed level).  Table 1 summarizes
the quantitative predictions from the above presentation, both for the overall example task, and the
subtask consisting just of highlighting the to-be-moved text.

NGOMSL is the only one of the four techniques that makes learning time predictions, and these
are limited to the effects of the amount of procedural knowledge and related LTM information to be
learned, and to learning situations for which the coefficients have been empirically determined.

KLM, CMN-GOMS, and NGOMSL produce execution time predictions that are roughly the
same for both the overall task and the subtask, although they make different assumptions about
unobservable cognitive and perceptual operators and so distribute the time in different ways (see
below).  An important difference is that the NGOMSL technique currently entails more M-like
operators than the other techniques, as well as some cognitive overhead due to method step
execution.  Thus, NGOMSL will typically predict execution times that are longer than KLM or
CMN-GOMS predictions.

As shown in the execution time predictions for the text-highlighting submethod, the CPM-
GOMS model predicts a substantially shorter execution time than the other models.  As discussed
above, this is due to the assumption of extreme expertise, which produces maximum operator
overlapping, finer-grain time estimates for the individual operators, and the minimum of cognitive
activity allowed by the MHP.  An interesting similarity between NGOMSL and CPM-GOMS is the
roughly similar cognitive overhead time in the example submethod; in NGOMSL this value is the
statement execution time at 0.1 sec/statement; in CPM-GOMS it is the total time for which the
cognitive processor is on the critical path in Figure 7.
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Table 1. Predicted time measures (seconds) for each technique for the MOVE-TEXT example .

--------------------------------------------------------------------------------------------------------
KLM CMN-GOMS NGOMSL CPM-GOMS

--------------------------------------------------------------------------------------------------------

    Overall Measures   

Procedure Learning   ---   --- 784.00 ---
(both highlighting
methods)

Total Example Task 14.38 14.38 16.38 not shown in
Execution Time this example

          ------------------------------------------------------------------------------------------

    Text Highlighting Sub-Method    

Highlighting 4.23 4.23 6.18 2.21
Sub-Method
Execution Time

Total Cognitive   ---   --- 0.90 1.10
Overhead
--------------------------------------------------------------------------------------------------------

3.2.  Summary comparison of operator times.

Table 2 lists the operator times assumed in the different techniques and used in the MOVE-TEXT
example.  There are basically two types of operators: those that are directly observable when
looking at human performance (the motor operators) and those that are not or usually not
observable (perceptual and cognitive operators, eye-movements).4  The values for directly-
observable operators are quite similar across the GOMS techniques, while the assumptions about
unobservable operators vary more widely.

    Mouse button operations.     The times for mouse button operators and using the shift key in
KLM, CMN-GOMS, and NGOMSL are based on values from CMN.  The slightly different value
for CLICK-MOUSE-BUTTON in the CPM-GOMS technique can be read from the example in Figure
7.  That is, clicking the mouse button requires a 50 ms cognitive operator and two motor operators
at 100 ms each.

The SHIFT-CLICK operation is assumed to be the sequence of hitting the shift key (280 msec,
from CMN) and then the mouse button (200 msec) in the first three techniques.  However, in
CPM-GOMS, the shift key operator can overlap with earlier processing in the MOVE-TEXT task, so
that it is not on the critical path.  Thus, the entire SHIFT-CLICK operation adds only 250 msec to the
critical path (the same as CLICK-MOUSE-BUTTON).

                                                

4  Although eye-movements are observable with an eye-tracker, eye-tracking research in HCI is sparse and we will
treat them as unobservable in this task.
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    Cursor movement.     The 1.10 sec used in KLM, CMN-GOMS, and NGOMSL is the average
value suggested by CMN for large-screen text editing tasks.  But Gong (1993) found that many of
the mouse movements involved in using a Macintosh interface, such as making menu selections
and activating windows, were much faster than 1.10 sec, and that Fitts' Law estimates (see CMN,
p. 55) were more accurate.  Thus, Fitts' Law values based on the actual or typical locations and
sizes of screen objects should probably be used whenever possible in all of the techniques.  For
CPM-GOMS, moving the cursor to point to an object is a combination of cognitive operators,
motor operators and perceptual operators (see Figure 7) and only some of them occur on the critical
path in any particular task situation.  The duration of the mouse-movement motor operator itself
was calculated using Fitts' Law (480 msec for both movements).  In this example, moving to the
beginning of the phrase put 680 ms on the critical path (2 cognitive, 1 motor, and 1 perceptual in
Figure 7) and, coincidentally, moving to the end of the phrase also put 680 ms on the critical path
(also 2 cognitive, 1 motor, and 1 perceptual).

    Unobservable operations.           All of the GOMS variants make assumptions about unobservable
operations.  The KLM makes the simplest assumption, putting all such operations (perceiving
information, eye-movements, comparisons, decisions, mental calculations, etc.) into one operator,
M, 1.35 seconds in length.  This operator is always put at the beginning of a cognitive unit.
CMN-GOMS and NGOMSL break this catch-all M into more specific unobservable operators.
CMN-GOMS uses unobservable operators to verify the editing actions (VERIFY-HIGHLIGHT and
VERIFY-POSITION), also assigned the estimate of 1.35 seconds; NGOMSL uses DETERMINE-
POSITION and VERIFY, both 1.20 seconds.   For the KLM, CMN-GOMS, and NGOMSL models,
the estimates for the unobservable operators shown are those currently recommended for each
technique as average values to be used in the absence of more specific measurements.  They are all

Table 2.  Operator times (seconds) used in each technique for the MOVE-TEXT example.   See text for
explanation of the CPM-GOMS entries.

--------------------------------------------------------------------------------------------------------
KLM CMN-GOMS NGOMSL CPM-GOMS

critical path
--------------------------------------------------------------------------------------------------------
    Directly Observable Motor Operators:

Click-mouse-button 0.20 0.20 0.20 0.250

Shift-click- 0.48 0.48 0.48 0.250
mouse-button

Cursor movement 1.10 1.10 1.10 0.680
or Fitts' Law by Fitts' Law

     Unobservable Perceptual or Cognitive Operators

Mental Preparation 1.35 not used not used 0.100

Determine Position not used not used 1.20 0.100

Edit Verification not used 1.35 1.20 not used

--------------------------------------------------------------------------------------------------------



GOMS Family Comparison                                                                                                     p. 26

roughly the same at about a second duration, but are slightly different because they were
determined empirically with different data sets at different historical points in the development of
GOMS techniques.  None of the these techniques have a theoretical commitment to any particular
value.  Any available empirically-determined values for the operators involved in a particular
analysis should be used instead of these average estimates.

There are also differences in the distribution of mental time.  The KLM tends to place mental time
in the preparation for action, while CMN-GOMS mental time tends to come at the end of actions in
VERIFY operators, and NGOMSL has mental time in both places.  These stylistic differences could
probably be resolved with further research.

In addition to the M-like operators, NGOMSL also takes time for the unobservable activity
associated with the production-rule cycling assumed in the underlying architecture and represented
with the 0.1 sec/statement "cognitive overhead."  In considerably more detail, CPM-GOMS also
represents the underlying unobserved operations in terms of the cycle times of the MHP
processors, such as the cognitive cycle time (estimated at 70 ms by CMN, but refined by
subsequent work to be 50 ms, John & Newell 1989; Nelson, Lehman & John, 1994; Wiesmeyer,
1992), perceptual cycle time (which depends on the complexity of the signal being perceived, see
Figures 5 and 6), and eye-movement time (estimated to be 30 msec, CMN, p. 25).  Both the
duration and dependencies of these unobservable operators are specified in the templates used to
construct the model.  However, the other operators needed to accomplish a task and their
dependencies make every critical path different, and no one estimate of "mental time" is meaningful
in CPM-GOMS.  For example, in the MOVE-TEXT task in Figure 7, the entry in Table 2 for Mental
Preparation is the sum of the durations of the two cognitive operators on the critical path that set up
the move-text task and highlight-phrase subtask.  The entry for Determine Position is the sum of
the durations of those operators that locate the beginning of the phrase on the screen that occur on
the critical  (3 cognitive operators, 1 eye-movement motor operator, and 1 perceptual operator).
All of these operators depend on each other and have to occur in order, thus, if this were the only
activity taking place in a task, they would all be on the critical path and take 420 ms.  However,
since looking for the beginning of the phrase is just one part of the MOVE-TEXT task, other
activities can occur in parallel (e.g., moving the mouse, discussed in the last section) and their
operators are interleaved with these, making the critical path more complicated, so that only the
first two cognitive operators appear on the critical path for this task.

3.3.  Summary comparison of architectural assumptions.

The assumed cognitive architectures range from the trivial, in the case of the KLM, to slightly
more complicated for CMN-GOMS, to an elaborated sequential architecture with a working
memory and specified procedure knowledge representation in NGOMSL, to a powerful but
relatively unspecified multiple parallel processor architecture in CPM-GOMS.  The strengths and
weaknesses of the techniques corresponds quite directly to these architectural differences.  The
KLM is easy to apply, but  predicts only execution time, and only from analyst-supplied methods.
At the other extreme, CPM-GOMS predicts execution time for subtle, overlapping patterns of
activities, but also requires analyst-supplied methods.  CMN-GOMS, once its program methods
have been worked out, can predict execution time for all subsumed task instances, and NGOMSL,
with the additional investment in its explicit representation of procedural knowledge, can then also
predict some aspects of learning time.  Thus, rather than being radically different, the GOMS
techniques occupy various points in a space of possible techniques defined by different
architectural assumptions and the form of the methods supplied by the analyst (see John & Kieras,
1994, for more discussion).  Some important possibilities for research lie in the gaps in this space;
for example, the extant set of ready-to-use GOMS techniques lack a program-form approach to
analyzing overlapping cognitive, perceptual and motor activities.
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4.  CONCLUSIONS

The four specific GOMS modeling techniques discussed here are all related to a general task-
analysis approach.  This general approach emphasizes the importance of the procedures for
accomplishing goals that a user must learn and follow in order to perform well with the system.
By using descriptions of user procedures, the techniques can provide quantitative predictions of
procedure learning and execution time and qualitative insights into the implications of design
features.  While other aspects of system design are undoubtedly important, the ability of GOMS
models to address this critical aspect makes them not only a key part of the scientific theory of
human-computer interaction, but also useful tools for practical design (John & Kieras, in press).

The current GOMS models are quite effective because they capture procedural speed and
complexity.  But other aspects of human performance with an interface are not addressed by the
simple cognitive architectures underlying the current GOMS variants.  Current research in
cognitive architectures assumes both more detail and more variety of human mechanisms, and so
can potentially account for a wider and deeper range of design issues.  Representative examples of
such work use architectures that represent perceptual-cognitive-motor interactions (Nelson,
Lehman, & John, 1994; Kieras & Meyer, in press; Kieras, Wood, & Meyer, 1995),
comprehension processes (Kitajima & Polson, 1992; Doane, Mannes, Kintsch, & Polson, 1992),
and problem-solving and learning mechanisms (Altmann, Larkin, & John, 1995; Anderson, 1993;
Bauer & John, 1995; Howes, 1994; Polson & Lewis, 1990; Rieman, Lewis, Young and Polson,
1994).5  Because these research efforts are rigorous and make use of computational models, they
should eventually lead to engineering-style design tools for additional aspects of interface design
and usability.  Thus while the current generation of GOMS models are ready for application, we
can expect to see future models of human-computer interaction that are even more comprehensive,
accurate, and useful.
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