
978-1-5386-0362-8/17/$31.00 2017 IEEE

Eliminating a Hidden Error Source in Stochastic Circuits
Paishun Ting and John P. Hayes

Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI 48109, USA

{paishun, jhayes}@umich.edu

Abstract—Stochastic computing (SC) computes with prob-
abilities using random bit-streams and standard logic circuits. Its
advantages are ultra-low area and power, coupled with high error
tolerance. However, due to its randomness features, SC’s accuracy
is often low and hard to control, thus severely limiting its practical
applications. Random fluctuation errors (RFEs) in SC data are a
major factor affecting accuracy, and are usually addressed by
increasing the bit-stream length N. However, increasing N can
result in excessive computation time and energy consumption,
counteracting the main advantages of SC. In this work, we first
observe that many SC designs heavily rely on constant inputs,
which contribute significantly to RFEs. We then investigate the
role of constant inputs in SC, and propose a systematic algorithm
CEASE to eliminate them by introducing memory into the target
circuits. We provide analytical and experimental results which
demonstrate that CEASE is optimal in terms of minimizing RFEs.

I. INTRODUCTION
Stochastic computing (SC) is an unconventional digital logic

technique that interprets signals as probability values embedded
in random 0-1 bit-streams called stochastic numbers (SNs). The
value of an SN is usually estimated by the fraction of 1s in the
bit-stream. For example, the bit-stream X = 010011 is a 6-bit SN
with (unipolar) value 0.5, since three of its six bits are 1, i.e., the
probability of a 1 appearing in X is 0.5, which we denote by
pX(1) = X = 0.5. SC performs arithmetic on probabilities by
transforming a set of SNs. The scaled adder in Fig. 1a illustrates
SC’s basic mechanism. The multiplexer (MUX) takes two vari-

0

1

X
Z

Y

(R = 0.5)

D
MAJY Z

X

D
Y Z
X

MUX
1

0
Random
source

(a)

(b)

(c)

r

x

y

R

Ca

Cb

Cc

MUX

Figure 1. Three stochastic implementations of scaled addition: (a)
conventional MUX-based design Ca with a constant input R = 0.5; (b)
ad hoc sequential design Cb with no constant input; (c) sequential design
Cc produced by CEASE; (d) error comparison of the three designs.

able SNs X and Y, and an independent constant SN R of value
R = 0.5 as inputs, and outputs the SN Z. The probability of a 1
occurring in Z is the probability of (X, R) = (1, 0) plus the
probability of (Y, R) = (1, 1). With R = 0.5, it is easily seen that
Z = 0.5(X + Y), a scaled sum of X and Y. The scaling ensures that
Z lies in the probability range [0, 1].

 SC’s advantages of error tolerance, low power, and low area
cost show great promise in applications like image processing
[1], ECC decoding [7], and machine learning [5] However, it
suffers from two major error sources: undesired correlations and
random fluctuations. Correlation is due to inadequate random-
ness among the SNs being processed. It may be tackled via
decorrelation circuitry that can add significantly to area cost
[14]. Random fluctuation errors (RFEs) occur when the SN
length N is too small, or the quality of the randomness sources
is poor [4]. Fig. 2 shows how three SNs generated by the circuits
in Fig. 1 can fluctuate around their exact value 0.5 as N changes.
As we will see, while these circuits implement the same scaled
addition function, they have very different RFE levels. RFEs can
be reduced by increasing N, but this can produce very long run
times and hence high energy consumption. To avoid such
problems, SC usually compromises accuracy, thereby narrowing
the range of applications to which it can be successfully applied.

Some prior work integrates deterministic or otherwise
artificially correlated bit-stream formats into SC design to
reduce RFEs [4][8][9][15]. However, this comes with major
drawbacks such as expensive hardware to (re)generate the
special number formats, excessively long bit-streams, lack of
general synthesis methods, etc., depending on the bit-stream
format employed. It is also far easier to maintain the bit-stream
randomness required by conventional SC. Furthermore, there
are many applications to which conventional SC is better suited.
For example, the retina-implant chip described in [1] avoids
costly SN generators by converting light signals directly into
conventional random bit-streams. In such cases, increasing SN
length appears to be the most practical way to decrease RFEs,
but it has the problems mentioned previously.

In this paper, we introduce and investigate a new design
methodology to reduce RFEs in conventional SC, and improve

Figure 2. Typical random fluctuations in three SNs with the same exact
value 0.5 as bit-stream length N increases.

44

accuracy without compromising computation time and energy
consumption while maintaining desirable SC features such as
error tolerance. It is based on the observation that most SC
designs, from the simple scaled adder in Fig. 1a, to complex
stochastic circuits generated by major synthesis methods like
STRAUSS [2] and ReSC [13], heavily rely on the use of
constant SNs to achieve good function approximations. These
SNs not only increase hardware overhead due to their need for
random sources but, as we show in this paper, also turn out to be
a major source of error-inducing RFEs.

A common way to quantify SC errors is mean squared error
(MSE), which is the accuracy metric used in this work. The MSE
of an N-bit SN Z is defined as:

MSE(Z, N) = (Ẑ(N) − Z)]2 (1)

where (·) denotes the expectation function, and Ẑ(N) denotes the
estimated value of the N-bit SN Z generated by a stochastic
circuit. Eq. (1) computes the average squared deviation of an
SN’s estimated value from its exact or desired value.

 In this paper, we show that it is possible to remove all error-
inducing input constants by resorting to sequential SC designs.
We also devise a systematic method which we call Constant
Elimination Algorithm for Suppression of Errors (CEASE) for
constant removal. While a function may have various circuit
implementations without constant inputs, CEASE circuits
provide a guarantee of optimality on RFE reduction. Figs. 1b-c
depict two sequential scaled adder designs after eliminating
constant SNs; the former was designed in ad hoc fashion, while
the latter was generated by CEASE. (It happens to include a
subcircuit that implements the majority function MAJ.) Fig. 1d
plots the (sampled) MSEs of all three scaled adders against bit-
stream length N = 2k. It can be seen that the CEASE design is
the most accurate. Furthermore, it meets the theoretical lower
bound on MSE for RFEs indicated by the small circles.

The main contributions of this paper are:

 Clarifying the role of constants in SC design, and showing
that they are a major contributor to RFEs.

 The CEASE algorithm to systematically remove constant
SNs by transferring their role to memory.

 Proving that CEASE provides a guarantee of optimality on
RFE reduction.

The paper is organized as follows. Sec. II briefly introduces
SC, and examines the role of constant SNs. Sec. III details
CEASE and analyzes its performance. Sec. IV presents
experimental results, while Sec. V draws some conclusions.

II. STOCHASTIC COMPUTING

We first review relevant concepts of stochastic circuits and
the functions they implement. We then investigate the role of
constant input SNs in SC. A combinational stochastic circuit C
implements a class of arithmetic functions that depend on the
Boolean function f realized by C, as well as the SN values
applied to C and their joint probability distribution.

Example 1: Combinational SC Adder. The adder in Fig. 1a,
has three SNs X, Y, R applied to its inputs x, y, r. It implements
the Boolean function f(x, y, r), which outputs a 0 bit except when

f(1, 0, 0) = f(0, 1, 1) = f(1, 1 ,0) = f(1, 1, 1) = 1. The probability
that the circuit’s output is 1 is thus the probability that one of the
input patterns 100, 011, 110 or 111 occurs. We can then write

Z = pX(1,0,0) + pX(0,1,1) + pX(1,1,0) + pX(1,1,1) (2)
 = X

where b denotes a 3-bit input binary vector.

In general, suppose C implements the Boolean function z =
f(x1, x2, …, xn). Let X = {X1, X2, …, Xn} with values {X1, X2,…,
Xn} be the set of SNs applied to the inputs x1, x2, …, xn. The
stochastic function realized by C has the following form [3]:

Z = F(f, pX) = X (3)

where pX(b) is the joint probability distribution of the input SNs,
and the summation is over all combinations of the n-bit input
vector b. Eq. (3) indicates that a stochastic function is a linear
combination of the probability terms pX(b) with binary
coefficients f(b) taking 0-1 values.

Eq. (3) has the most general form of a stochastic function.
However, many stochastic circuits, including those synthesized
by STRAUSS and ReSC heavily use constant input SNs to
define the both target function’s value and its precision. For
example, in Fig. 1a, the input SN R with a fixed value 0.5 is
generated by a random source not controllable by the user of the
circuit, hence it is a constant SN. The user can only control the
values of the variable SNs X and Y. In such cases, we can
separate the input SNs into two disjoint subsets X = {XV, XC},
where XV and XC denote variables and constants, respectively
[6]. A stochastic function of XV can then be derived from Eq.
(3) by replacing the XC with appropriate constant values.

Example 1 (cont.): Returning to the MUX-based adder, let X =
{XV, XC}, where XV = {X, Y} and XC = {R} with R = 0.5, as in
Fig. 1a. If R is independent of XV, then on substituting pR(1) =
R = 0.5 into Eq. (2), we get

Z = 0.5[XV + XV + XV + XV] (4)
 = 0.5[pX(1) + pY(1)] = 0.5(X + Y)

which is the expected addition function of X and Y.

Looking closely at Eq. (4), we can see that it is a linear
combination of probability terms with non-binary coefficients,
in contrast to Eq. (3) which allows only the binary coefficients
0 and 1. This suggests that constant inputs allow a stochastic
function to have coefficients that are any rational numbers in the
range [0, 1], which denotes the unit interval. The following
theorem generalizes this observation.

Theorem 1: The stochastic function implemented by a
combinational circuit with input SNs X = {XV, XC} has the form

Z = F(XV) = V XV VV (5)

where the g(bV) are constants that depend on f and XC.
(For brevity, this dependency is dropped from Eq. (5).) A proof
of this theorem can be found in Appendix.

Theorem 1 reveals some interesting facts about the impact of
constant inputs on stochastic functions. It implies that, at the
expense of extra constant inputs, the class of implementable

45

functions can be greatly broadened. For example, a com-
binational circuit cannot implement the stochastic function Z =
0.5(X + Y) with just two inputs X and Y, since this function also
requires the non-binary coefficient 0.5. This scaled add function
is combinationally implementable however, as demonstrated in
Example 1, by supplying an extra constant input SN R with
value 0.5. In general, when a target function is not already in the
form of Eq. (5), it has to be converted to that form by introducing
suitable constants. Moreover, the function’s approximation
accuracy highly depends on the number of constants used, as can
be seen in both the STRAUSS and ReSC synthesis algorithms.
A circuit with good approximation accuracy therefore typically
comes with many RFE-inducing constant inputs. For instance,
the STRAUSS implementation of Z = – X – X2 derived in
[2] employs four constants, each of value 0.5.

To eliminate constant-induced RFEs, we propose Constant
Elimination Algorithm for Suppression of Errors (CEASE), a
systematic algorithm for removing constants while keeping their
functional benefits. Specifically, CEASE transforms a target
combinational circuit into a functionally equivalent stochastic
sequential circuit with no constant inputs and with reduced
RFEs. CEASE also offers a guarantee of optimality on RFE
reduction, thereby providing a big improvement in accuracy.

III. CONSTANT ELIMINATION

This section details CEASE, the proposed constant SN
elimination algorithm, along with an analysis of its accuracy.

Example 1 (cont.): We re-examine the MUX-based adder of
Fig. 1a, shown again in Fig. 3. To implement the scaled addition

Z = 0.5(X + Y) (6)

accurately, the expected number of 1s in Z should be half the
number of 1s in the input SNs X and Y. Let subscript i denote
the bit of an SN appearing in clock cycle i. When both Xi and Yi
are 1, the corresponding output bit Zi will be 1; this is exact since
a single 1 should be produced in Z whenever the circuit receives
two 1s. Similarly, when both Xi and Yi are 0, Zi will have the
exact value 0. When only one of the two inputs is 1, i.e., XiYi =
10 or 01, Eq. (6) implies that ideally Zi should be 0.5. However,
Zi obviously cannot directly output “0.5” from a logic circuit
that computes with 0-1 values. This representational dilemma is
effectively solved by the extra constant SN R whose stochastic
value 0.5 ensures that on average Zi = 1 whenever two copies of
10 or 01 are received. In other words, a single 1 is expected to
be produced in response to every two applications of 10 or 01.
This single 1 spread over two cycles thus contributes 1/2 to Z.

The fact that using additional constants produces extra RFEs
can also be seen from Fig. 3, where the constant Ri is used to

0

1

r

x

y

z 0001110000110101
0011010001100001

0011101001011101

1001110110110101

X
Z

Y

R

Figure 3. The MUX-based stochastic scaled adder. On receiving 11
(blue) or 00 (green), the output is 1 or 0, respectively. On receiving 01
or 10 (red), the output is 1 with probability 0.5.

S0 S1
11/1

00/0

11/1

00/0

10/1

10/0

01/0

01/1
(a)

S0 S1
11/1

00/0

11/1

00/0

10/1

10/0

01/1

01/0
(b)

Figure 4. STGs for the sequential scaled adders corresponding to (a) ad
hoc design Cb of Fig. 1b, and (b) CEASE design Cc of Fig. 1c. The
differences between the two STGs are marked in red in the figure.

select inputs whenever XiYi = 10 or 01 (marked in red). Notice
here that in the red cycles, four 1s should appear in every eight
output bits. However, since this is only true on average, there
may be variations due to the probabilistic nature of R. In this
example, there are only three 1s instead of four in the eight
output bits selected by R, producing a 1/16 error in the output
value. The key to eliminating R (and the RFEs it introduces) is
to enable the circuit to remember every two applications of 10
or 01, which implies changing it from combinational to
sequential. This makes it possible for the circuit to output exactly
one 1 for every two applications of input pattern 01 or 10.

A. Functions Implemented by CEASE Circuits.
The fact that it is impossible for combinational logic to

output a non-binary value without the use of constant inputs is
reflected in Eq. (3) where only binary coefficients are allowed.
CEASE circumvents this issue and at the same time reduces
RFEs by constructing an equivalent sequential circuit. The idea
behind CEASE is to introduce memory elements to count and
remember non-binary values. It constructs a sequential circuit
that accumulates such values to be output later. When an
accumulated value exceeds one, then a 1 is outputted.

Example 2: Sequential SC Adder. The state-transition graph
(STG) of the scaled adder Cc produced by CEASE (Fig. 1c) is
shown in Fig. 4b. Like the combinational adder in Fig. 3, Cc
outputs a 1 when 11 is received, and a 0 when 00 is received.
The difference is that when a 10 or 01 is received, Cc remembers
this information by going from state s0 to state s1, and outputting
a 0. When another 10 or 01 is received, the circuit’s implicit
counter will, in effect, overflow by returning to state s0, and
outputting a 1. In this way, it is guaranteed that exactly one 1 is

Input: Target stochastic function F*
Output: An SC finite-state machine approximating F*
Step 1. Approximate F* as F using Eq. (5) with rational

coefficients g = {g(b1), g(b2), …, g(bm)} in [0, 1].
Step 2. Find the lowest common multiple q of the denominators

of g. Let a = {a(b1), a(b2), …, a(bm)} = q · g.
Step 3. Construct a modulo-q counter MC with states s0,s1,…,sq−1.
Step 4. Modify MC so that on receiving the pattern bi, it jumps

forward a(bi) states. At each clock cycle, it outputs 1 if
MC overflows, otherwise it outputs 0.

Step 5. Synthesize MC using any suitable conventional synthesis
technique.

Figure 5. Algorithm CEASE for constant elimination.

46

generated whenever exactly two copies of 10 or 01 are received.
Hence, the RFEs introduced by constant SNs are completely
removed by CEASE.

In general, CEASE takes a target arithmetic function and
approximates it as in Eq. (5) to generate a sequential circuit
implementing the approximated function without constant SNs.
The resulting circuit resembles a counter that keeps a running
sum of each non-binary input value of interest. Whenever an
accumulated sum exceeds 1, the circuit outputs 1 and resets the
counter to the overflow amount. A pseudo-code algorithm
summarizing CEASE is given in Fig. 5.

Example 2 (cont.): Consider again the scaled addition Z = 0.5(X
+ Y). Eq. (4) implies that Z = 0.5 XV + 0.5 XV +

XV . Therefore, the coefficient set g is {g(0,0) = 0, g(0,1)
= 1/2, g(1,0) = 1/2, g(1,1) = 2/2}. Since all the coefficients are
rational, the first step of CEASE is skipped. The lowest common
multiple q of the denominators in g is the number of count states
needed. Since q = 2 here, we need a two-state counter.
Furthermore, a = q ∙ g = {0, 1, 1, 2}. Therefore, the counter is
designed such that every time the pattern XiYi = 10 or 01 is
applied, the counter adds 1 to its state. The pattern XiYi = 11
adds 2 to the counter’s state. When the counter overflows, a 1 is
sent to the output; otherwise the output is set to 0. This confirms
that Fig. 4b is indeed the STG of an exact scaled adder, with Cc
in Fig. 1c being one of its possible circuit implementations.

Another viewpoint on the validity of the scaled adder in Fig.
4b is its behavior under steady-state probability distribution. It
is not hard to see that the long-term probabilities of staying in
state s0 and s1 are equal, i.e., pS(s0) = pS(s1) = 1/2, since the state
transition behavior of this circuit is symmetric. The probability
of outputting a 1 when S = s0 is XV , and that probability
is XV + XV + XV when S = s1. Hence, the
overall probability of outputting a 1 is

Z = pS(s0) XV + pS(s1) [XV + XV + XV]
 = 0.5[pX(1) + pY(1)] = 0.5(X + Y)

which is indeed the scaled addition function. Not surprisingly, a
CEASE circuit implements a stochastic function in the form of
Eq. (5), as stated in the following easily-proven theorem.

Theorem 2: Any circuit generated by CEASE implements a
stochastic function in the form of Eq. (5), the class of functions
combinationally implementable with constant inputs.

B. Accuracy of CEASE Circuits.
We now consider the role of CEASE in RFE reduction.

Theorem 3: Given a stochastic function Z = F(XV) in the form
of Eq. (5) with rational coefficients, suppose the members of XV
are Bernoulli bit-streams, but correlations among them are
unknown. Then the following holds for all integers N > 0:

MSE(ZC, N) MSE(Z*, N) (7)

where ZC is the output SN generated by a CEASE circuit
implementing F, while Z* is the output of any other circuit.

The notation in (7) indicates that inequality holds up to a
rounding error. Depending on the rounding policy, rounding
may produce up to 1-bit error when the length of SNs is unable

to represent certain values exactly. For example, an SN of odd
length N cannot represent 1/2 exactly, but one of length N 1
can. Theorem 3 states that among all possible implementations
of F, CEASE produces a result with the least MSE. A proof of
Theorem 3, which requires some advanced concepts from
statistics, is outlined in the Appendix.

Theorem 3 can be understood intuitively from the fact that
CEASE’s precise counting process guarantees exactness as
discussed above, and hence minimizes MSEs. For comparison,
consider the circuit Cb in Fig. 1b, whose STG is given in Fig. 4a.
One can easily see that Cb, while constructed in ad hoc fashion,
also computes scaled addition like the CEASE circuit Cc in Fig.
1c whose STG is in Fig. 4b. Suppose the following artificially
constructed SNs are applied to Cb and Cc:

 Xart = 010101010101 (X = 6/12 = 0.5)
 Yart = 101010101010 (Y = 6/12 = 0.5)

The expected output value should be 0.5(Xart + Yart) = 0.5, which
is exactly what Cc will give. However, feeding these two input
SNs to Cb’s STG in Fig. 4a initialized to state s0 will produce the
output Zb = 111111111111 (Zb = 12/12 = 1), a 100% error! The
accuracy difference between the two designs is due to the fact
that CEASE guarantees to output a 1 whenever two copies of
10 or 01 are received, whereas the ad hoc design does not.
CEASE-generated designs also retain the high tolerance of
stochastic circuits to transient errors (bit-flips) affecting the
variable inputs. An occasional transient or soft error can cause a
relatively small miscount of the applied input patterns, which
can then result in a similarly small output error. For instance, if
Xart is changed to 010101010000 due to two 1-to-0 bit-flips, the
output value produced by Cc will become 5/12, which is a good
estimate of the exact output value 0.5 = 6/12.

It’s also worth mentioning that as a side effect of removing
constant inputs, CEASE reduces potential correlation errors
induced by such inputs. However, undesired correlations among
variable inputs must be tackled separately using decorrelation
methods such as [14].

A scaled sequential adder constructed in ad hoc fashion
around a T flip-flop is given in [11] and shown by simulation to
be more accurate than the standard combinational design. The
STG of that adder is exactly the same as that in Fig. 4b for the
adder constructed by CEASE. This confirms the high accuracy
claimed for the T-flip-flop-based adder, an important factor in
the success of the neural network implementation in [11].

IV. EXPERIMENTAL RESULTS

This section examines the performance of CEASE on some
representative published circuits. It also assesses the accuracy of
CEASE using randomly generated stochastic circuits.

A. Multi-linear Polynomial
CEASE can be applied to SN formats other than unipolar as

well, since it deals directly with probabilities rather than their
interpretation. Suppose, for example, that CEASE is applied to
the circuit CST synthesized by STRAUSS [2] and outlined in Fig.
6a. CST uses the inverted bipolar (IBP) SN format to handle
negative values, and realizes the following stochastic function:

 (8)

47

(a)

D D D D
R4R3R2R1

Z

Modulo-16
(11, 0, 7) counter Z

overflow signal

X1
X2

Adder 2

(c)

z = x1'x2'(r1+r2(r3+r4))+x1x2r1(r2+r3+r4)

X1
X2

Combinational logic
z = fst(x1, x2, r1, r2, r3, r4)

CST

CC

(b)

SN
generator

SN
generator

0

1

2

X1
X2 Adder

Z

C1

C2

C3

B1(11/16)
BR1

4

4

B3(7/16)
BR3

4

4

0

2

CRE

Figure 6. Three implementations of Eq. (8): (a) STRAUSS design CST,
(b) ReSC design CRE, and (c) CEASE design CC.

Figure 7. MSE comparison for the circuits in Fig. 6.

where X̃1 and X̃2 are independent IBP SNs with the same value.
This STRAUSS design heavily relies on constant SNs, as it
employs four constants R1, R 2, R 3, R 4, each of value 0.5.
Another implementation CRE of the same function Z̃ synthesized
by ReSC [13] is given in Fig. 6b; it relies on the constants C1,
C2 and C3 to provide the same level of accuracy. To implement
Eq. (8) using CEASE, we first derive the corresponding unipolar
stochastic function from the relation X ̃ = 1 – 2X, where X = is
the unipolar SN value corresponding to the IBP value X̃. On
replacing Z̃, X̃1 and X̃2 by their unipolar counterparts in Eq. (8)
and re-arranging, we obtain

 (9)

Since X1 and X2 are independent, the term X1X2 can be written as
X (1) X (1) = XV(1,1), where XV = {X1, X2}. Furthermore,

we can “demarginalize” the marginal probabilities by using X1
= XV(1,0) + XV(1,1) and X2 = XV(0,1) + XV(1,1). Replacing
X1, X2 and X1X2 in Eq. (9) with these probabilities yields a
unipolar stochastic function to which we can apply CEASE.

Z = F(f, XV) = ‧ XV(0,0) + ‧ XV(1,1) (10)

Eq. (10) is the unipolar or probability interpretation of Eq. (8)
with coefficients in [0, 1]. This fact can also be directly seen
from the ReSC design CRE in Fig. 6b, which outputs 11/16 and
7/16 when the input pattern is 00 and 11, respectively.

 A CEASE design CC implementing Eq. (8) in the IBP
domain and Eq. (10) in the unipolar domain is given in Fig. 6c.
This is a constant-free sequential circuit built around a modulo-
16 counter, which adds 11 or 7 to its count state on receiving a
00 or 11, respectively, and it remains in the same state on
receiving a 01 or 10. Whenever the counter overflows, a 1 is
produced at the output, and the counter is reset to the amount of
the overflow. CC requires four flip-flops for its 16-state counter.
CST shown in Fig. 6a, requires four constant SNs that are

generated by a 4-tap LFSR, which also needs four flip-flops.
However, CST has the limitation that each tap of the LFSR does
not produce a constant with value exactly 0.5, because it does
not loop through the all-0 state, resulting in the constant 8/15
instead of 0.5. To eliminate this small error, CST would require
random sources that are more accurate and probably costlier
than a 4-bit LFSR. CRE, besides its expensive SN generators, also
needs two high-quality 4-bit random sources (omitted in Fig. 6b)
for BR1 and BR3.

An MSE comparison of the above three circuits is given in
Fig. 7. Here we use MATLAB’s rand function to generate high-
quality random numbers for the ReSC design CRE. The
STRAUSS design CST does not converge to the correct value due
to the error introduced by the LFSR’s missing all-0’s state; this
error may be removed by replacing the LFSR with higher-
quality random number sources. The CEASE circuit CC, on the
other hand, consistently provides the best accuracy among all
the designs, and its MSEs match the theoretical lower bound
predicted by Theorem 3. This implies that CC can compute in far
less time, and hence with better energy efficiency, than the other
designs. For example, CC achieves an MSE of 0.002 with N =
32 bits, while the ReSC design CRE needs approximately 128 bits
for the same accuracy.

B. Complex Matrix Multiplication
Fig. 8a shows a stochastic circuit with 12 constants

implementing complex matrix multiplication [12]. It has four
outputs, each of which depends on three constant inputs, all of
which can be eliminated by CEASE. Here we show the accuracy
improvement after applying CEASE to the sub-circuit spanned
by Zi

1, one of the circuit’s four primary outputs. The resulting
STG has four states, which require two flip-flops to implement.
The CEASE circuit is similar in structure to that in Fig. 6c.

An MSE comparison of the circuit in Fig. 8a and the CEASE
circuit is shown in Fig. 8b, which again shows that CEASE
improves accuracy effectively and at the same time matches the
theoretical MSE lower bound.

Xr
1

Xi
1

Ar Ai

Xi
2

Xr
2

Br Bi

R11

1

0

1

0

0

1

0

1

0

1

Zi
1

Zr
1

CrCi
DrDi

1

0

1

0

0

1

0

1

0

1

1

0
Zi

2

Zr
2

1

0
R3
R9

R1

R5

R7

R0

R2
R8

R10

R6

R4

(a)

Figure 8. (a) Stochastic circuit implementing complex matrix
multiplication [12]. (b) MSE comparison between the circuit in (a) and
the circuit generated by CEASE.

48

Figure 9. MSE comparison for random circuits with four constant and
two variable input SNs. The lower bounds are computed by treating the
unremoved constants as variables.

C. Random Circuits
In the absence of benchmark stochastic circuits, we use

randomly generated circuits to further estimate the performance
of CEASE. Specifically, we first generate 100,000 random
functions in the form of Eq. (5) that are implementable using
four-constant, two-variable stochastic circuits, where the
constants all have value 0.5 and the variable inputs are fed with
random values. We then apply CEASE to the circuits
implementing these random functions. Fig. 9 plots the average
MSEs of these circuits against bit-stream length. We also allow
CEASE to remove some or all the constants. As can be seen in
Fig. 9, the MSEs depend on the number of constants removed,
with the lowest MSEs achieved by removing all the constants.
The results match the theoretical lower bounds, with slight
deviations caused by rounding very short SNs.

V. CONCLUSIONS

We have clarified the role of constant SNs in stochastic
circuits, and shown that, while such constants are essential in
practical SC design, they are an unexpected source of significant
amounts of random fluctuation errors. We further demonstrated
that constant inputs can be completely eliminated by employing
sequential stochastic circuits. A systematic algorithm CEASE
was devised for efficiently removing constants in this way. We
proved analytically the optimality of CEASE in terms of RFE
reduction. Experimental results were presented which confirm
that with fixed computation time (and hence fixed energy
consumption), constant-free sequential designs of the kind
generated by CEASE can greatly improve the accuracy of SC.

Acknowledgment: This work was supported by Grant CCF-
1318091 from the U.S. National Science Foundation.

VI. APPENDIX

A. Proof of Theorem 1.
By classifying SN inputs into variable and constant parts as

in X = {XV, XC}, Eq. (3) can be re-written as:

Z = F(f, XV, XC) = V, C XV, XC V, CV, C (11)

Using the properties of conditional probability, we can re-write
XV, XC , XC XV XV , where the term
XC XV is a function of bC and bV. Eq. (11) then becomes

 Z = , XC XV XVV, C

 = XV V V, C XC XV C VCV (12)

The summation V, C XC XV C VC is over all
combinations of bC, and hence V = V, CC

XC XV C V does not depend on bC, so we can re-write Eq.
(12) as Z = F(XV) = V XV VV which is linear in

XV V with all coefficients g(bV) in the range [0,1]. The
dependency of F(XV) on f and XC is implicit via V only.

B. Proof Outline of Theorem 3.
Let N be the SN length, and let Ni be the number of bit-

pattern bi received by a CEASE circuit C. Suppose C has q
states, and [a1, a2, …, am] = q[g1, g2, …, gm] are the numbers of
states that C jumps forward on receiving bit pattern b1, b2, …,
bm, respectively. Hence, the total number of states that C will
jump forward after receiving the N-bit SNs will be =

. The number of 1s in the output Z is
= = − ϵ, where ϵ [0, 1) is an offset term
that takes into account the floor operation. The estimated value
of Z is Ẑ = [− ϵ] = − = Ẑu − , where

 [0,) is the rounding error which, in the worst case, can only

cause less than a 1-bit difference in Z. Ẑu = , on the
other hand, is an unbiased estimate of Z which achieves the
Cramér–Rao bound, a lower bound on MSE for an unbiased
estimator [10]. (The proof that Ẑu achieves this bound is omitted
due to space limitations.) Summarizing, we conclude that C has
the minimum MSE among all designs up to a rounding error.

REFERENCES
[1] Alaghi, A. et al. “Stochastic circuits for real-time image-processing

applications.” Proc. DAC, Art.136, 2013.
[2] Alaghi, A. and Hayes, J.P. “STRAUSS: spectral transform use in

stochastic circuit synthesis.” IEEE Trans. CAD, 34, pp.1770-1783,
2015.

[3] Alaghi, A. and Hayes, J.P. “On the functions realized by stochastic
computing circuits.” Proc. GLSVLSI, pp.331-336, 2015.

[4] Braendler, D. et al. “Deterministic bit-stream digital neurons.” IEEE
Trans. Neural Nets., 13, pp. 1514-1525, 2002.

[5] Brown, B. D. and Card, H. “Stochastic neural computation I.” IEEE
Trans. Computers, 50, pp.891-905, 2001.

[6] Chen, T.-H. and Hayes, J.P. “Equivalence among stochastic logic
circuits and its application to synthesis.” IEEE Trans. Emerging
Topics in Computing, 2016. IEEE Xplore early access article.

[7] Gaudet, V.C. and Rapley, A.C. “Iterative decoding using stochastic
computation.” Electron. Letters, 39, pp.299-301, 2003.

[8] Gupta, P.K. and Kumaresan, R. “Binary multiplication with PN
sequences.” IEEE Trans. ASSP, 36, pp. 603-606, 1988.

[9] Jenson, D. and Riedel, M. “A deterministic approach to stochastic
computation.” Proc. ICCAD, pp. 1-8, 2016.

[10] Keener, R. W. Theoretical Statistics: Topics for a Core Course.
Springer, 2010.

[11] Lee, V. T. et al. “Energy-efficient hybrid stochastic-binary neural
networks for near-sensor computing.” Proc. DATE, 2017.

[12] Paler, A. et al. “Approximate simulation of circuits with probabilistic
behavior.” Proc. DFTS, pp.95-100, 2013.

[13] Qian, W. et al. “An architecture for fault-tolerant computation with
stochastic logic.” IEEE Trans. Comp., 60, pp.93-105, 2011.

[14] Ting, P.-S. and Hayes, J.P. “Isolation-based decorrelation of
stochastic circuits.” Proc. ICCD, pp.88-95, 2016.

[15] Vahapoglu, E. and Altun, M. “Accurate synthesis of arithmetic
operations with stochastic logic.”Proc. ISVLSI, pp.415-420, 2016.

49

