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Abstract—Stochastic computing (SC) computes with prob-
abilities using random bit-streams and standard logic circuits. Its 
advantages are ultra-low area and power, coupled with high error 
tolerance. However, due to its randomness features, SC’s accuracy 
is often low and hard to control, thus severely limiting its practical 
applications. Random fluctuation errors (RFEs) in SC data are a 
major factor affecting accuracy, and are usually addressed by 
increasing the bit-stream length N. However, increasing N can 
result in excessive computation time and energy consumption, 
counteracting the main advantages of SC. In this work, we first 
observe that many SC designs heavily rely on constant inputs, 
which contribute significantly to RFEs. We then investigate the 
role of constant inputs in SC, and propose a systematic algorithm 
CEASE to eliminate them by introducing memory into the target 
circuits. We provide analytical and experimental results which 
demonstrate that CEASE is optimal in terms of minimizing RFEs. 

I. INTRODUCTION 
Stochastic computing (SC) is an unconventional digital logic 

technique that interprets signals as probability values embedded 
in random 0-1 bit-streams called stochastic numbers (SNs). The 
value of an SN is usually estimated by the fraction of 1s in the 
bit-stream. For example, the bit-stream X = 010011 is a 6-bit SN 
with (unipolar) value 0.5, since three of its six bits are 1, i.e., the 
probability of a 1 appearing in X is 0.5, which we denote by 
pX(1) = X = 0.5. SC performs arithmetic on probabilities by 
transforming a set of SNs. The scaled adder in Fig. 1a illustrates 
SC’s basic mechanism. The multiplexer (MUX) takes two vari- 
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Figure 1. Three stochastic implementations of scaled addition: (a) 
conventional MUX-based design Ca with a constant input R = 0.5; (b) 
ad hoc sequential design Cb with no constant input; (c) sequential design 
Cc produced by CEASE; (d) error comparison of the three designs. 

able SNs X and Y, and an independent constant SN R of value 
R = 0.5 as inputs, and outputs the SN Z. The probability of a 1 
occurring in Z is the probability of (X, R) = (1, 0) plus the 
probability of (Y, R) = (1, 1). With R = 0.5, it is easily seen that 
Z = 0.5(X + Y), a scaled sum of X and Y. The scaling ensures that 
Z lies in the probability range [0, 1].  

 SC’s advantages of error tolerance, low power, and low area 
cost show great promise in applications like image processing 
[1], ECC decoding [7], and machine learning [5] However, it 
suffers from two major error sources: undesired correlations and 
random fluctuations. Correlation is due to inadequate random-
ness among the SNs being processed. It may be tackled via 
decorrelation circuitry that can add significantly to area cost 
[14]. Random fluctuation errors (RFEs) occur when the SN 
length N is too small, or the quality of the randomness sources 
is poor [4]. Fig. 2 shows how three SNs generated by the circuits 
in Fig. 1 can fluctuate around their exact value 0.5 as N changes. 
As we will see, while these circuits implement the same scaled 
addition function, they have very different RFE levels. RFEs can 
be reduced by increasing N, but this can produce very long run 
times and hence high energy consumption. To avoid such 
problems, SC usually compromises accuracy, thereby narrowing 
the range of applications to which it can be successfully applied. 

Some prior work integrates deterministic or otherwise 
artificially correlated bit-stream formats into SC design to 
reduce RFEs [4][8][9][15]. However, this comes with major 
drawbacks such as expensive hardware to (re)generate the 
special number formats, excessively long bit-streams, lack of 
general synthesis methods, etc., depending on the bit-stream 
format employed. It is also far easier to maintain the bit-stream 
randomness required by conventional SC. Furthermore, there 
are many applications to which conventional SC is better suited. 
For example, the retina-implant chip described in [1] avoids 
costly SN generators by converting light signals directly into 
conventional random bit-streams. In such cases, increasing SN 
length appears to be the most practical way to decrease RFEs, 
but it has the problems mentioned previously. 

In this paper, we introduce and investigate a new design 
methodology to reduce RFEs in conventional SC,  and improve 

Figure 2. Typical random fluctuations in three SNs with the same exact 
value 0.5 as bit-stream length N increases. 

44



accuracy without compromising computation time and energy 
consumption while maintaining desirable SC features such as 
error tolerance. It is based on the observation that most SC 
designs, from the simple scaled adder in Fig. 1a, to complex 
stochastic circuits generated by major synthesis methods like 
STRAUSS [2] and ReSC [13], heavily rely on the use of 
constant SNs to achieve good function approximations. These 
SNs not only increase hardware overhead due to their need for 
random sources but, as we show in this paper, also turn out to be 
a major source of error-inducing RFEs. 

A common way to quantify SC errors is mean squared error 
(MSE), which is the accuracy metric used in this work. The MSE 
of an N-bit SN Z is defined as: 

MSE(Z, N) = (Ẑ(N) − Z)]2                (1) 

where (·) denotes the expectation function, and Ẑ(N) denotes the 
estimated value of the N-bit SN Z generated by a stochastic 
circuit. Eq. (1) computes the average squared deviation of an 
SN’s estimated value from its exact or desired value.  

 In this paper, we show that it is possible to remove all error-
inducing input constants by resorting to sequential SC designs. 
We also devise a systematic method which we call Constant 
Elimination Algorithm for Suppression of Errors (CEASE) for 
constant removal. While a function may have various circuit 
implementations without constant inputs, CEASE circuits 
provide a guarantee of optimality on RFE reduction. Figs. 1b-c 
depict two sequential scaled adder designs after eliminating 
constant SNs; the former was designed in ad hoc fashion, while 
the latter was generated by CEASE. (It happens to include a 
subcircuit that implements the majority function MAJ.) Fig. 1d 
plots the (sampled) MSEs of all three scaled adders against bit-
stream length N = 2k. It can be seen that the CEASE design is 
the most accurate. Furthermore, it meets the theoretical lower 
bound on MSE for RFEs indicated by the small circles. 

The main contributions of this paper are: 

 Clarifying the role of constants in SC design, and showing 
that they are a major contributor to RFEs. 

 The CEASE algorithm to systematically remove constant 
SNs by transferring their role to memory. 

 Proving that CEASE provides a guarantee of optimality on 
RFE reduction. 

The paper is organized as follows. Sec. II briefly introduces 
SC, and examines the role of constant SNs. Sec. III details 
CEASE and analyzes its performance. Sec. IV presents 
experimental results, while Sec. V draws some conclusions. 

II. STOCHASTIC COMPUTING

We first review relevant concepts of stochastic circuits and 
the functions they implement. We then investigate the role of 
constant input SNs in SC. A combinational stochastic circuit C 
implements a class of arithmetic functions that depend on the 
Boolean function f realized by C, as well as the SN values 
applied to C and their joint probability distribution.  

Example 1: Combinational SC Adder. The adder in Fig. 1a, 
has three SNs X, Y, R applied to its inputs x, y, r. It implements 
the Boolean function f(x, y, r), which outputs a 0 bit except when  

f(1, 0, 0) = f(0, 1, 1) = f(1, 1 ,0) = f(1, 1, 1) = 1. The probability 
that the circuit’s output is 1 is thus the probability that one of the 
input patterns 100, 011, 110 or 111 occurs. We can then write 

Z = pX(1,0,0) + pX(0,1,1) + pX(1,1,0) + pX(1,1,1)       (2) 
  = X  

where b denotes a 3-bit input binary vector. 

In general, suppose C implements the Boolean function z = 
f(x1, x2, …, xn). Let X = {X1, X2, …, Xn} with values {X1, X2,…, 
Xn} be the set of SNs applied to the inputs x1, x2, …, xn. The 
stochastic function realized by C has the following form [3]: 

Z = F(f, pX) = X            (3) 

where pX(b) is the joint probability distribution of the input SNs, 
and the summation is over all combinations of the n-bit input 
vector b. Eq. (3) indicates that a stochastic function is a linear 
combination of the probability terms pX(b) with binary 
coefficients f(b) taking 0-1 values. 

Eq. (3) has the most general form of a stochastic function. 
However, many stochastic circuits, including those synthesized 
by STRAUSS and ReSC heavily use constant input SNs to 
define the both target function’s value and its precision. For 
example, in Fig. 1a, the input SN R with a fixed value 0.5 is 
generated by a random source not controllable by the user of the 
circuit, hence it is a constant SN. The user can only control the 
values of the variable SNs X and Y. In such cases, we can 
separate the input SNs into two disjoint subsets X = {XV, XC}, 
where XV and XC denote variables and constants, respectively 
[6]. A stochastic function of XV can then be derived from Eq. 
(3) by replacing the XC with appropriate constant values.   

Example 1 (cont.): Returning to the MUX-based adder, let X = 
{XV, XC}, where XV = {X, Y} and XC = {R} with R = 0.5, as in 
Fig. 1a. If R is independent of XV, then on substituting pR(1) = 
R = 0.5 into Eq. (2), we get 

Z = 0.5[ XV  + XV  + XV  + XV ]    (4) 
 = 0.5[pX(1) + pY(1)] = 0.5(X + Y) 

which is the expected addition function of X and Y.   

Looking closely at Eq. (4), we can see that it is a linear 
combination of probability terms with non-binary coefficients, 
in contrast to Eq. (3) which allows only the binary coefficients 
0 and 1. This suggests that constant inputs allow a stochastic 
function to have coefficients that are any rational numbers in the 
range [0, 1], which denotes the unit interval. The following 
theorem generalizes this observation. 

Theorem 1: The stochastic function implemented by a 
combinational circuit with input SNs X = {XV, XC} has the form 

Z = F( XV) = V XV VV               (5) 

where the g(bV)  are constants that depend on f and XC. 
(For brevity, this dependency is dropped from Eq. (5).) A proof 
of this theorem can be found in Appendix. 

Theorem 1 reveals some interesting facts about the impact of 
constant inputs on stochastic functions. It implies that, at the 
expense of extra constant inputs, the class of implementable 

45



functions can be greatly broadened. For example, a com-
binational circuit cannot implement the stochastic function Z = 
0.5(X + Y) with just two inputs X and Y, since this function also 
requires the non-binary coefficient 0.5. This scaled add function 
is combinationally implementable however, as demonstrated in 
Example 1, by supplying an extra constant input SN R with 
value 0.5. In general, when a target function is not already in the 
form of Eq. (5), it has to be converted to that form by introducing 
suitable constants. Moreover, the function’s approximation 
accuracy highly depends on the number of constants used, as can 
be seen in both the STRAUSS and ReSC synthesis algorithms. 
A circuit with good approximation accuracy therefore typically 
comes with many RFE-inducing constant inputs. For instance, 
the STRAUSS implementation of Z =  – X – X2 derived in 
[2] employs four constants, each of value 0.5. 

To eliminate constant-induced RFEs, we propose Constant 
Elimination Algorithm for Suppression of Errors (CEASE), a 
systematic algorithm for removing constants while keeping their 
functional benefits. Specifically, CEASE transforms a target 
combinational circuit into a functionally equivalent stochastic 
sequential circuit with no constant inputs and with reduced 
RFEs. CEASE also offers a guarantee of optimality on RFE 
reduction, thereby providing a big improvement in accuracy. 

III. CONSTANT ELIMINATION

This section details CEASE, the proposed constant SN 
elimination algorithm, along with an analysis of its accuracy. 

Example 1 (cont.): We re-examine the MUX-based adder of 
Fig. 1a, shown again in Fig. 3. To implement the scaled addition 

Z = 0.5(X + Y)          (6) 

accurately, the expected number of 1s in Z should be half the 
number of 1s in the input SNs X and Y. Let subscript i denote 
the bit of an SN appearing in clock cycle i. When both Xi and Yi 
are 1, the corresponding output bit Zi will be 1; this is exact since 
a single 1 should be produced in Z whenever the circuit receives 
two 1s. Similarly, when both Xi and Yi are 0, Zi will have the 
exact value 0. When only one of the two inputs is 1, i.e., XiYi = 
10 or 01, Eq. (6) implies that ideally Zi should be 0.5. However, 
Zi obviously cannot directly output “0.5” from a logic circuit 
that computes with 0-1 values. This representational dilemma is 
effectively solved by the extra constant SN R whose stochastic 
value 0.5 ensures that on average Zi = 1 whenever two copies of 
10 or 01 are received. In other words, a single 1 is expected to 
be produced in response to every two applications of 10 or 01. 
This single 1 spread over two cycles thus contributes 1/2 to Z. 

The fact that using additional constants produces extra RFEs 
can also be seen from  Fig. 3,  where the constant  Ri  is used to 
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Figure 3. The MUX-based stochastic scaled adder. On receiving 11 
(blue) or 00 (green), the output is 1 or 0, respectively. On receiving 01 
or 10 (red), the output is 1 with probability 0.5.  
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Figure 4. STGs for the sequential scaled adders corresponding to (a) ad 
hoc design Cb of Fig. 1b, and (b) CEASE design Cc of Fig. 1c. The 
differences between the two STGs are marked in red in the figure. 

select inputs whenever XiYi = 10 or 01 (marked in red). Notice 
here that in the red cycles, four 1s should appear in every eight 
output bits. However, since this is only true on average, there 
may be variations due to the probabilistic nature of R. In this 
example, there are only three 1s instead of four in the eight 
output bits selected by R, producing a 1/16 error in the output 
value. The key to eliminating R (and the RFEs it introduces) is 
to enable the circuit to remember every two applications of 10 
or 01, which implies changing it from combinational to 
sequential. This makes it possible for the circuit to output exactly 
one 1 for every two applications of input pattern 01 or 10. 

A. Functions Implemented by CEASE Circuits. 
The fact that it is impossible for combinational logic to 

output a non-binary value without the use of constant inputs is 
reflected in Eq. (3) where only binary coefficients are allowed. 
CEASE circumvents this issue and at the same time reduces 
RFEs by constructing an equivalent sequential circuit. The idea 
behind CEASE is to introduce memory elements to count and 
remember non-binary values. It constructs a sequential circuit 
that accumulates such values to be output later. When an 
accumulated value exceeds one, then a 1 is outputted.  

Example 2: Sequential SC Adder. The state-transition graph 
(STG) of the scaled adder Cc produced by CEASE (Fig. 1c) is 
shown in Fig. 4b. Like the combinational adder in Fig. 3, Cc  
outputs a 1 when 11 is received, and a 0 when 00 is received. 
The difference is that when a 10 or 01 is received, Cc remembers 
this information by going from state s0 to state s1, and outputting 
a 0. When another 10 or 01 is received, the circuit’s implicit 
counter will, in effect, overflow by returning to state s0, and 
outputting a 1. In this way, it is guaranteed that exactly one 1  is 

Input: Target stochastic function F* 
Output: An SC finite-state machine approximating F* 
Step 1. Approximate F* as F using Eq. (5) with rational 

coefficients g = {g(b1), g(b2), …, g(bm)} in [0, 1]. 
Step 2. Find the lowest common multiple q of the denominators 

of g. Let a = {a(b1), a(b2), …, a(bm)} = q · g. 
Step 3. Construct a modulo-q counter MC with states s0,s1,…,sq−1.  
Step 4. Modify MC so that on receiving the pattern bi, it jumps 

forward a(bi) states. At each clock cycle, it outputs 1 if 
MC overflows, otherwise it outputs 0. 

Step 5. Synthesize MC using any suitable conventional synthesis 
technique. 

Figure 5. Algorithm CEASE for constant elimination. 
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generated whenever exactly two copies of 10 or 01 are received. 
Hence, the RFEs introduced by constant SNs are completely 
removed by CEASE. 

In general, CEASE takes a target arithmetic function and 
approximates it as in Eq. (5) to generate a sequential circuit 
implementing the approximated function without constant SNs. 
The resulting circuit resembles a counter that keeps a running 
sum of each non-binary input value of interest. Whenever an 
accumulated sum exceeds 1, the circuit outputs 1 and resets the 
counter to the overflow amount. A pseudo-code algorithm 
summarizing CEASE is given in Fig. 5. 

Example 2 (cont.): Consider again the scaled addition Z = 0.5(X 
+ Y). Eq. (4) implies that Z = 0.5 XV  + 0.5 XV  + 

XV . Therefore, the coefficient set g is {g(0,0) = 0, g(0,1) 
= 1/2, g(1,0) = 1/2, g(1,1) = 2/2}. Since all the coefficients are 
rational, the first step of CEASE is skipped. The lowest common 
multiple q of the denominators in g is the number of count states 
needed. Since q = 2 here, we need a two-state counter. 
Furthermore, a = q ∙ g = {0, 1, 1, 2}. Therefore, the counter is 
designed such that every time the pattern XiYi = 10 or 01 is 
applied, the counter adds 1 to its state. The pattern XiYi = 11 
adds 2 to the counter’s state. When the counter overflows, a 1 is 
sent to the output; otherwise the output is set to 0. This confirms 
that Fig. 4b is indeed the STG of an exact scaled adder, with Cc 
in Fig. 1c being one of its possible circuit implementations. 

Another viewpoint on the validity of the scaled adder in Fig. 
4b is its behavior under steady-state probability distribution. It 
is not hard to see that the long-term probabilities of staying in 
state s0 and s1 are equal, i.e., pS(s0) = pS(s1) = 1/2, since the state 
transition behavior of this circuit is symmetric. The probability 
of outputting a 1 when S = s0 is XV , and that probability 
is XV  + XV  + XV  when S = s1. Hence, the 
overall probability of outputting a 1 is 

Z = pS(s0) XV  + pS(s1) [ XV  + XV  + XV ] 
 = 0.5[pX(1) + pY(1)] = 0.5(X + Y) 

which is indeed the scaled addition function. Not surprisingly, a 
CEASE circuit implements a stochastic function in the form of 
Eq. (5), as stated in the following easily-proven theorem. 

Theorem 2: Any circuit generated by CEASE implements a 
stochastic function in the form of Eq. (5), the class of functions 
combinationally implementable with constant inputs. 

B. Accuracy of CEASE Circuits. 
We now consider the role of CEASE in RFE reduction. 

Theorem 3: Given a stochastic function Z = F( XV) in the form 
of Eq. (5) with rational coefficients, suppose the members of XV 
are Bernoulli bit-streams, but correlations among them are 
unknown. Then the following holds for all integers N > 0: 

MSE(ZC, N)  MSE(Z*, N)           (7) 

where ZC is the output SN generated by a CEASE circuit 
implementing F, while Z* is the output of any other circuit.  

The notation  in (7) indicates that inequality holds up to a 
rounding error. Depending on the rounding policy, rounding 
may produce up to 1-bit error when the length of SNs is unable 

to represent certain values exactly. For example, an SN of odd 
length N cannot represent 1/2 exactly, but one of length N  1 
can. Theorem 3 states that among all possible implementations 
of F, CEASE produces a result with the least MSE. A proof of 
Theorem 3, which requires some advanced concepts from 
statistics, is outlined in the Appendix. 

Theorem 3 can be understood intuitively from the fact that 
CEASE’s precise counting process guarantees exactness as 
discussed above, and hence minimizes MSEs. For comparison, 
consider the circuit Cb in Fig. 1b, whose STG is given in Fig. 4a. 
One can easily see that Cb, while constructed in ad hoc fashion, 
also computes scaled addition like the CEASE circuit Cc in Fig. 
1c whose STG is in Fig. 4b. Suppose the following artificially 
constructed SNs are applied to Cb and Cc: 

 Xart = 010101010101 (X = 6/12 = 0.5) 
 Yart = 101010101010 (Y = 6/12 = 0.5) 

The expected output value should be 0.5(Xart + Yart) = 0.5, which 
is exactly what Cc will give. However, feeding these two input 
SNs to Cb’s STG in Fig. 4a initialized to state s0 will produce the 
output Zb = 111111111111 (Zb = 12/12 = 1), a 100% error! The 
accuracy difference between the two designs is due to the fact 
that CEASE guarantees to output a 1 whenever two copies of 
10 or 01 are received, whereas the ad hoc design does not. 
CEASE-generated designs also retain the high tolerance of 
stochastic circuits to transient errors (bit-flips) affecting the 
variable inputs. An occasional transient or soft error can cause a 
relatively small miscount of the applied input patterns, which 
can then result in a similarly small output error. For instance, if 
Xart is changed to 010101010000 due to two 1-to-0 bit-flips, the 
output value produced by Cc will become 5/12, which is a good 
estimate of the exact output value 0.5 = 6/12. 

It’s also worth mentioning that as a side effect of removing 
constant inputs, CEASE reduces potential correlation errors 
induced by such inputs. However, undesired correlations among 
variable inputs must be tackled separately using decorrelation 
methods such as [14]. 

A scaled sequential adder constructed in ad hoc fashion 
around a T flip-flop is given in [11] and shown by simulation to 
be more accurate than the standard combinational design. The 
STG of that adder is exactly the same as that in Fig. 4b for the 
adder constructed by CEASE. This confirms the high accuracy 
claimed for the T-flip-flop-based adder, an important factor in 
the success of the neural network implementation in [11]. 

IV. EXPERIMENTAL RESULTS

This section examines the performance of CEASE on some 
representative published circuits. It also assesses the accuracy of 
CEASE using randomly generated stochastic circuits. 

A. Multi-linear Polynomial 
CEASE can be applied to SN formats other than unipolar as 

well, since it deals directly with probabilities rather than their 
interpretation. Suppose, for example, that CEASE is applied to 
the circuit CST synthesized by STRAUSS [2] and outlined in Fig. 
6a. CST uses the inverted bipolar (IBP) SN format to handle 
negative values, and realizes the following stochastic function: 

            (8) 
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Figure 6. Three implementations of Eq. (8): (a) STRAUSS design CST, 
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Figure 7. MSE comparison for the circuits in Fig. 6. 

where X̃1 and X̃2 are independent IBP SNs with the same value. 
This STRAUSS design heavily relies on constant SNs, as it 
employs four constants R1, R 2, R 3, R 4, each of value 0.5. 
Another implementation CRE of the same function Z̃ synthesized 
by ReSC [13] is given in Fig. 6b; it relies on the constants C1, 
C2 and C3 to provide the same level of accuracy. To implement 
Eq. (8) using CEASE, we first derive the corresponding unipolar 
stochastic function from the relation X ̃ = 1 – 2X, where X =  is 
the unipolar SN value corresponding to the IBP value X̃. On 
replacing Z̃, X̃1 and X̃2 by their unipolar counterparts in Eq. (8) 
and re-arranging, we obtain 

   (9) 

Since X1 and X2 are independent, the term X1X2 can be written as 
X (1) X (1) = XV(1,1), where XV = {X1, X2}. Furthermore, 

we can “demarginalize” the marginal probabilities by using X1 
= XV(1,0) + XV(1,1) and X2 = XV(0,1) + XV(1,1). Replacing 
X1, X2 and X1X2 in Eq. (9) with these probabilities yields a 
unipolar stochastic function to which we can apply CEASE. 

Z = F(f, XV) = ‧ XV(0,0) + ‧ XV(1,1)  (10) 

Eq. (10) is the unipolar or probability interpretation of Eq. (8) 
with coefficients in [0, 1]. This fact can also be directly seen 
from the ReSC design CRE in Fig. 6b, which outputs 11/16 and 
7/16 when the input pattern is 00 and 11, respectively. 

 A CEASE design CC implementing Eq. (8) in the IBP 
domain and Eq. (10) in the unipolar domain is given in Fig. 6c. 
This is a constant-free sequential circuit built around a modulo-
16 counter, which adds 11 or 7 to its count state on receiving a 
00 or 11, respectively, and it remains in the same state on 
receiving a 01 or 10. Whenever the counter overflows, a 1 is 
produced at the output, and the counter is reset to the amount of 
the overflow. CC requires four flip-flops for its 16-state counter. 
CST shown in Fig. 6a, requires four constant SNs that are 

generated by a 4-tap LFSR, which also needs four flip-flops. 
However, CST has the limitation that each tap of the LFSR does 
not produce a constant with value exactly 0.5, because it does 
not loop through the all-0 state, resulting in the constant 8/15 
instead of 0.5. To eliminate this small error, CST would require 
random sources that are more accurate and probably costlier 
than a 4-bit LFSR. CRE, besides its expensive SN generators, also 
needs two high-quality 4-bit random sources (omitted in Fig. 6b) 
for BR1 and BR3. 

An MSE comparison of the above three circuits is given in 
Fig. 7. Here we use MATLAB’s rand function to generate high-
quality random numbers for the ReSC design CRE. The 
STRAUSS design CST does not converge to the correct value due 
to the error introduced by the LFSR’s missing all-0’s state; this 
error may be removed by replacing the LFSR with higher-
quality random number sources. The CEASE circuit CC, on the 
other hand, consistently provides the best accuracy among all 
the designs, and its MSEs match the theoretical lower bound 
predicted by Theorem 3. This implies that CC can compute in far 
less time, and hence with better energy efficiency, than the other 
designs. For example, CC achieves an MSE of 0.002 with N = 
32 bits, while the ReSC design CRE needs approximately 128 bits 
for the same accuracy. 

B. Complex Matrix Multiplication 
Fig. 8a shows a stochastic circuit with 12 constants 

implementing complex matrix multiplication [12]. It has four 
outputs, each of which depends on three constant inputs, all of 
which can be eliminated by CEASE. Here we show the accuracy 
improvement after applying CEASE to the sub-circuit spanned 
by Zi

1, one of the circuit’s four primary outputs. The resulting 
STG has four states, which require two flip-flops to implement. 
The CEASE circuit is similar in structure to that in Fig. 6c. 

An MSE comparison of the circuit in Fig. 8a and the CEASE 
circuit is shown in Fig. 8b, which again shows that CEASE 
improves accuracy effectively and at the same time matches the 
theoretical MSE lower bound. 
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Figure 8. (a) Stochastic circuit implementing complex matrix 
multiplication [12]. (b) MSE comparison between the circuit in (a) and 
the circuit generated by CEASE. 
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Figure 9. MSE comparison for random circuits with four constant and 
two variable input SNs. The lower bounds are computed by treating the 
unremoved constants as variables.  

C. Random Circuits 
In the absence of benchmark stochastic circuits, we use 

randomly generated circuits to further estimate the performance 
of CEASE. Specifically, we first generate 100,000 random 
functions in the form of Eq. (5) that are implementable using 
four-constant, two-variable stochastic circuits, where the 
constants all have value 0.5 and the variable inputs are fed with 
random values. We then apply CEASE to the circuits 
implementing these random functions. Fig. 9 plots the average 
MSEs of these circuits against bit-stream length. We also allow 
CEASE to remove some or all the constants. As can be seen in 
Fig. 9, the MSEs depend on the number of constants removed, 
with the lowest MSEs achieved by removing all the constants. 
The results match the theoretical lower bounds, with slight 
deviations caused by rounding very short SNs. 

V. CONCLUSIONS 

We have clarified the role of constant SNs in stochastic 
circuits, and shown that, while such constants are essential in 
practical SC design, they are an unexpected source of significant 
amounts of random fluctuation errors. We further demonstrated 
that constant inputs can be completely eliminated by employing 
sequential stochastic circuits. A systematic algorithm CEASE 
was devised for efficiently removing constants in this way. We 
proved analytically the optimality of CEASE in terms of RFE 
reduction. Experimental results were presented which confirm 
that with fixed computation time (and hence fixed energy 
consumption), constant-free sequential designs of the kind 
generated by CEASE can greatly improve the accuracy of SC. 
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VI. APPENDIX

A. Proof of Theorem 1. 
By classifying SN inputs into variable and constant parts as 

in X = {XV, XC}, Eq. (3) can be re-written as: 

Z = F(f, XV, XC) = V, C XV, XC V, CV, C    (11) 

Using the properties of conditional probability, we can re-write 
XV, XC , XC XV XV , where the term 
XC XV  is a function of bC and bV. Eq. (11) then becomes 

 Z = , XC XV XVV, C  

        = XV V V, C XC XV C VCV    (12) 

The summation V, C XC XV C VC  is over all 
combinations of bC, and hence V  = V, CC

XC XV C V does not depend on bC, so we can re-write Eq. 
(12) as Z = F( XV) = V XV VV  which is linear in 

XV V  with all coefficients g(bV) in the range [0,1]. The 
dependency of F( XV) on f and XC is implicit via V  only. 

B. Proof Outline of Theorem 3. 
Let N be the SN length, and let Ni be the number of bit-

pattern bi received by a CEASE circuit C. Suppose C has q 
states, and [a1, a2, …, am] = q[g1, g2, …, gm] are the numbers of 
states that C jumps forward on receiving bit pattern b1, b2, …, 
bm, respectively. Hence, the total number of states that C will 
jump forward after receiving the N-bit SNs will be  = 

. The number of 1s in the output Z is  
=  =  − ϵ, where ϵ  [0, 1) is an offset term 
that takes into account the floor operation. The estimated value 
of Z is Ẑ = [  − ϵ] =  −  = Ẑu − , where 

 [0,  ) is the rounding error which, in the worst case, can only

cause less than a 1-bit difference in Z. Ẑu = , on the 
other hand, is an unbiased estimate of Z which achieves the 
Cramér–Rao bound, a lower bound on MSE for an unbiased 
estimator [10]. (The proof that Ẑu achieves this bound is omitted 
due to space limitations.) Summarizing, we conclude that C has 
the minimum MSE among all designs up to a rounding error. 
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