
1

Lab 3: Queued A-D Conversion
(eQADC)

2

Queued Analog-to-Digital Conversion

•  Acquire analog input from the
potentiometer and observe the
result using the debugger

•  Using an oscilloscope, measure
the time required to complete
one conversion by toggling GPIO

•  Acquire a sine wave signal from
the function generator and
investigate aliasing
–  Generate a square wave signal from

the input sine function and observe
output signal frequency on the
digital oscilloscope

–  Use the “software oscilloscope” to
output the acquired signal to the
serial port for display on the monitor

Software Oscilloscope
Display

3

Queued Analog-to-Digital Conversion
•  Chapter 19 MPC5553-RM

–  Two12-bit ADC (ADC0/1)
–  Single ended, 0-5v
–  Double ended –2.5 – 2.5v
–  40 MUXed input channels

•  Command FIFO (CFIFO)
triggers ADC

•  Results FIFO (RFIFO)
receives conversions

•  DMA (Direct Memory
Access) transfers
–  Commands from user-

defined command queue
to CFIFO

–  Results from RFIFO to
used-defined results
queue

4

Queued Analog-to-Digital Conversion

•  6 CFIFOs (EQADC_CFIFO[0-5])
•  6 RFIFOs (EQADC_RFIFO[0-5])
•  Any CFIFO can command either ADC, and results can be sent

to any RFIFO
–  We will configure EQADC_CFIFO0 and EQACD_CFIFO1 to use

ADC0 and put the results in RFIFO0 and RFIFO1 respectively
–  Write commands to CFIFO “push registers” and read results from

RFIFO “pop registers”

5

Queued Analog-to-Digital Conversion
•  Operating Modes

–  Single-scan mode
•  Command Queue is scanned one time
•  Software involvement is needed to re-arm queue after

queue is scanned
–  Continuous-scan mode

•  Command Queue is scanned multiple times
•  Software involvement is not needed to re-arm queue

•  All modes may be software-triggered, edge-
triggered or level-triggered
–  We will set up 2 queues:

•  EQADC_CFIFO0 for software-triggered single scan
•  EQADC_CFIFO1 for software-triggered continuous scan

6

Programming the eQADC

•  Like other peripherals, the eQADC must be
configured by writing commands to special
purpose registers
–  eQADC Module Configuration Register (EQADC

MCR)
–  CFIFO Control Registers (EQADC CFCRn)

•  Structure to access these registers is
included in MPC5553.h
–  EQADC_MCR described in Section 19.3.2.1 of the

Reference Manual
–  EQADC_CFCRn described in Section 19.3.2.6

and Tables 19-9 and 19-10

7

EQADC_MCR

•  ESSIE: Synchronous Serial Interface enable
(disable = 00)

•  DBG: Debug mode enable (disable = 00)

8

EQADC_CFCRn

•  SSE: Single scan enable
•  CFINV: CFCR invalidate (CFINV = 0)
•  MODE: Operating mode (Table 9-10)

–  0000: disabled
–  0001: software triggered single scan
–  1001: software triggered continuous scan

9

Programming the eQADC

•  Unlike other peripherals, some eQADC
registers are not accessible to the
programmer

•  Registers that control on-chip ADCs are
programmed by sending 32-bit configuration
and command messages to the CFIFO
–  Write Configuration Command Message

•  Sets the control registers of the on-chip ADCs.
–  Read Configuration Command Message

•  Reads the contents of the on-chip ADC registers which
are only accessible via command messages

–  Conversion Command Message
•  Conversion result is returned with optional time stamp

10 Non-memory Mapped ADC
Registers

•  5 configuration registers for each ADC
•  Control register (ADCn_CR)

–  Enables ADC
–  Enables external multiplexing
–  Sets the ADC clock speed

•  Other configuration registers enable time stamp and set
calibration parameters

11

ADCn_CR

•  ADCn_EN: Enable ADC
•  ADCn_EMUX: Enable MUX
•  ADCn_CLK_PS: ADC clock prescaler (see

Table 19-28)

12 R/W Configuration Command
Message Format

•  EOQ: end-of-queue
•  PAUSE: wait for trigger
•  EB: external buffer (0 for on-chip ADC)
•  BN: buffer number (0 or 1)
•  R/W: 0 = write; 1 = read command message
•  ADC_REGISTER HIGH BYTE: value to be written into the most

significant 8 bits of control/configuration register when the R/W bit is
negated

•  ADC_REGISTER LOW BYTE: value to be written into the least
significant 8 bits of control/configuration register when the R/W bit is
negated

•  ADC_REG_ADDRESS: ADC register address (see Tables 19-25 and 26)

See Tables 19.35 and 36

13 Configuration Command Message
Format

•  As usual, we can use
a structure or union to
construct a
configuration
command message

•  Access as a register
or individual bit fields

union adc_config_msg
{
 vuint32_t R;
 struct
 {
 vuint32_t header:6;
 vuint32_t command:26;
 } BB;
 struct
 {
 vuint32_t EOQ:1;
 vuint32_t PAUSE:1;
 vuint32_t :3;
 vuint32_t EB:1;
 vuint32_t BN:1;
 vuint32_t RW:1;
 vuint32_t HIGH_BYTE:8;
 vuint32_t LOW_BYTE:8;
 vuint32_t ADC_REG_ADDRESS:8;
 } B;
};

14 Configuration Command Message
Format

union adc_config_msg config;

/* ADC configurations- command internal ADC register parameters

 config.R = 0;

 config.B.BN = 0; /* Command ADC 0

 config.B.HIGH_BYTE = 0x80; /* Enable ADC module

 config.B.LOW_BYTE = 0x05; /* Use clock prescaler of 10

 config.B.ADC_REG_ADDRESS = 0x01; /* ADC0_CR address

Example: Select ACD0 and configure the
ADC0_CR

15 Conversion Command Message
Format

16 Conversion Command Message
Format

•  Our conversion
command structure

union cfifo_msg{
 vuint32_t R;
 struct{
 vuint32_t header:6;
 vuint32_t command:26;
 } BB;
 struct{
 vuint32_t EOQ:1;
 vuint32_t PAUSE:1;
 vuint32_t :3;
 vuint32_t EB:1;
 vuint32_t BN:1;
 vuint32_t CAL:1;
 vuint32_t MESSAGE_TAG:4;
 vuint32_t LST:2;
 vuint32_t TSR:1;
 vuint32_t FMT:1;
 vuint32_t CHANNEL_NUMBER:8;
 vuint32_t :8;
 } B;
};

17 Conversion Command Message
Format

union cfifo_msg cmd;
 cmd.R = 0;
 cmd.B.EOQ = 1; /* end-of-queue */
 cmd.B.PAUSE = 0;
 cmd.B.EB = 0;
 cmd.B.BN = 0; /* use first QADC unit */
 cmd.B.CAL = 0; /* no calibration */
 cmd.B.MESSAGE_TAG = 0b0000; /* result queue 0 */
 cmd.B.LST = 0b10; /* sample time = 2 clks */
 cmd.B.TSR = 0;
 cmd.B.FMT = 0;
 cmd.B.CHANNEL_NUMBER = single_channel;

Conversion command message example:

18

Conversion Result Format

•  12-bit conversion is stored in a 16-bit RFIFO
as a signed or unsigned integer

•  In either case, the result is stored in bits
[2:13], i.e., bit shifted 2 left

19

Direct Memory Access (DMA)

•  Recall
– We need to transfer ADC configuration and

conversion commands from memory to
CFIFO

– We need to transfer results from the RFIFO
to memory

•  This could take lots of time if CPU
intervention is required

20

Direct Memory Access (DMA)

21

Direct Memory Access (DMA)

•  DMA services:
–  peripheral requests (eQADC, for example)
–  software initiated requests

•  Transfer Control Descriptor (TCD) used to
define each channel (source and destination
address, address increments, size etc..)

•  See Chapter 9 in the Reference Manual, and
Lab 3 document for description of DMA
programming

•  We have written the DMA code for Lab 3!

22

eQADC CMD queue start:
&CONT_SCAN_QUEUE[0]

eQADC-A CMD queue end

System RAM

eQADC Result queue start:
&CONT_SCAN_RESULTS[0]

eQADC Result queue end

DMA

Ch0 Destination
Ch0 Source

Ch1 Destination
Ch1 Source

CMD Word

eQADC

CMD FIFO
CMD Word
RSLT FIFO

Function setupDMARequests continuously fills the CFIFO with commands
from CONT_SCAN_QUEUE to read each ADC channel sequentially, and stores
the results in CONT_SCAN_RESULTS

Direct Memory Access (DMA)

23

Lab 3 Software

•  As usual, you are given qadc.h with function
prototypes; you will write the functions in
qadc.c, plus application code in lab3.c

•  Four functions (plus DMA) are required:
–  qadcInit: Initialize the eQADC:

•  Configure the conversion command queues
•  Configure the ADC

–  fillCCMTable: Build command conversion lists
•  Single and continuous scan lists required

–  qadcRead1 and qadcRead2: Read the results

24

Lab 3 Software

• qadcInit: configuring the conversion
command queues
– Use the structure found in MPC553.h to

access the MCR, CFIFO control registers
and CFIFO push registers
•  Clear the MCR and set up one queue for

software-triggered single scan and one queue
for software-triggered continuous scan

•  Use the configuration command message
structure to enable ADC0 and set the clock
prescaler

25

Lab 3 Software

•  fillCCMTable: Build conversion command
lists
–  Use the conversion command message structure

to build a single scan conversion command on
single_channel

–  Use the conversion command message structure
to build a queue of continuous scan command
messages, CONT_SCAN_QUEUE[x], where x =
channel_number

•  Continuously scan ADC channels and put the results in
the results queue

26

Lab 3 Software

•  qadcRead1: Single scan
–  Use the structure in MPC5553.h to

•  Write the command to the push register
•  Start scan (SSE = 1)
•  Wait until the scan is complete (wait until the results

FIFO counter increments; see MPC5553-RM 19.3.2.8
“eQADC FIFO and Interrupt Status Registers,” RFCTR
bits)

•  Read the results from the RFIFO pop register

•  qadcRead2: Continuous scan
–  DMA is doing all the work: simply read the results

from CONT_SCAN_RSULTS array

27

Lab 3 Assignment

•  Basic Conversion Testing
– Write a C program (lab3.c) that uses
qadcReadQ2 to retrieve the values of the
eight analog inputs on the board and place
them into an array named iAnalogQ2.

– Use the debugger and slide potentiometer
to verify that data are being acquired on
each of the 8 input channels

– Verify the qadcReadQ1 function in a
similar manner

28

Lab 3 Assignment

•  Timing
–  Modify lab3.c so that, before the call to qadcReadQ1

function, one of the LEDs is set to high and is set back to low
after the function returns

–  Connect an oscilloscope to the GPO output pin and
measure:

•  How long it takes for a scan to be completed
•  The periodic rate at which scans occur

•  Speed Testing
–  Generate a square wave by toggling the GPIO with respect

to an input signal threshold (a sine wave input will result in a
square wave output of the same frequency).

–  Increase the input frequency and observe what happens

29

Lab 3 Assignment

•  Oscilloscope Application
– Build the software oscilloscope using the

software provided
– What is the highest-frequency signal you

are able to capture and display without
aliasing?

