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JNTRODUCTION 

Database management systems (DBMS) 
have become a standard tool for shielding 
the computer user from details of secondary 
storage management. They are designed to 
improve the productivity of application 
programmers and to facilitate data access 
by computer-naive end users. 

There have been two major areas of re- 
search in database systems. One is the anal- 
ysis of data models into which the real 
world can be mapped and on which inter- 
faces for different user types can be built. 

Such conceptual models include the hier- 
archical, the network, the relational, and a 
number of semantics-oriented models that 
have been reviewed in a large number of 
books and surveys [Brodie et al. 19841. 

A second area of interest is the safe and 
efficient implementation of the DBMS. 
Computerized data have become a central 
resource of most organizations. Each im- 
plementation meant for production use 
must take this into account by guarantee- 
ing the safety of the data in the cases of 
concurrent access [Bernstein and Good- 
man 19&c], recovery [Verhofstad 19781, 
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and reorganization [Sockut and Goldberg 
19791. One major criticism of many early 
DBMSs has been their lack of efficiency in 
handling the powerful operations they of- 
fer, particularly the content-based access 
to data by queries. Query optimization tries 
to solve this problem by integrating a large 
number of techniques and strategies, rang- 
ing from logical transformations of queries 
to the optimization of access paths and the 
storage of data on the file system level. 

Traditionally, each of these approaches 
has used a different language. This is prob- 
ably one of the reasons why no comprehen- 
sive survey of query optimization tech- 
niques has yet been presented. The goal of 
this paper is to review query optimization 
techniques in the common framework of 
relational calculus. This has been shown to 
be technically equivalent to a relational 
algebra representation [Codd 1972; Klug 

1982a] and extendable to the implementa- 
tion of network DBMSs [Dayal and Good- 
man 19821. Moreover, many popular query 
languages, such as SQL [Astrahan and 
Chamberlin 19751 or QUEL [Stonebraker 
et al. 19761, map easily into relational cal- 
culus. 

In the interest of space, the focus of the 
paper is primarily on the problem of opti- 
mizing queries in the centralized DBMS. 
Centralized query optimization is not only 
important in many mainframe databases- 
and more recently in microcomputer 
DBMSs-but also appears as a subproblem 
of query optimization in distributed sys- 
tems. Distributed query optimization itself 
[Bayer et al. 1984; Sacco and Yao 1982; 
Ullman 19821 is only addressed briefly, and 
the following two related areas are not 
treated at all: 

User Optimization. The overall cost of an 
information system is composed of the 
DBMS cost and the costs of user efforts to 
work with the system. The interface in the 
two areas consists of the functional capa- 
bilities and usability of the query language 
[Vassiliou and Jarke 19841, mainly in the 
response time of the system. If one assumes 
given functional capabilities of the query 
language and a response time minimization 
goal of the query evaluation system, query 
optimization can be handled as a separately 
tractable subproblem of user optimization. 

File Structures. A query optimization al- 
gorithm has to choose among a variety of 
existing access paths to resolve a query. 
The internal details of implementing such 
access paths and the derivation of the re- 
lated cost functions (see, e.g., Teorey and 
Fry [1982]) are beyond the scope of this 
paper. 

The paper is organized into six sections, 
following a top-down approach. In Section 
1 we present a global framework for query 
optimization. In Section 2 we compare four 
techniques for representing queries in 
terms of their suitability for optimization. 
In Section 3 we utilize one of these tech- 
niques, the relational calculus, for present- 
ing logic-based transformations, including 
the emerging methods of semantic query 
optimization. 
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After being transformed, a query must be 
mapped into a sequence of operations that 
return the requested data. In Section 4 we 
analyze the implementation of such opera- 
tions on a low-level system of stored data 
and access paths. In Section 5 we present 
optimization procedures for integrating 
these operations into a globally optimal 
access plan. 

A number of query optimization prob- 
lems require special treatment because of 
higher query complexity or certain charac- 
teristics of the underlying hardware. Three 
such problem areas-higher level queries, 
distributed queries, and queries using da- 
tabase machines-are summarized in Sec- 
tion 6. 

1. THE QUERY OPTIMIZATION PROBLEM 

Exact optimization of query evaluation pro- 
cedures is in general computationally in- 
tractable and is hampered further by the 
lack of precise statistical information about 
the database. Query evaluation algorithms 
must rely heavily on heuristics. Neverthe- 
less, the term “query optimization” will be 
used to refer to strategies intended to im- 
prove the efficiency of query evaluation 
procedures. In this section we state the 
objectives of query optimization and pre- 
sent a general procedure designed to struc- 
ture the solution process. 

1.1 Queries 

A query is a language expression that de- 
scribes data to be retrieved from a database. 
In the context of query optimization, it is 
often assumed that queries are expressed 
in a content-based (and mostly set-ori- 
ented) manner, giving the optimizer suffi- 
cient choices among alternative evaluation 
procedures. 

Queries are used in several settings. The 
most obvious application is that of direct 
requests by end users who need information 
about the structure or content of the data- 
base. If the requests are limited to a set of 
standard queries, they can be optimized 
manually by programming the associated 
search procedures and restricting the user’s 
input to a menu format. However, an 
automatic query optimization system be- 

comes necessary if ad hoc queries are to be 
asked by use of a general-purpose query 
language. 

A second application of queries occurs in 
transactions that change the stored data 
based on their current value (e.g., “give all 
assistant professors a 10 percent salary in- 
crease”). Finally, querylike expressions can 
be used internally in a DBMS, for example, 
to check access rights [Griffiths and Wade 
19761, maintain integrity constraints 
[ Stonebraker 19751, and synchronize con- 
current accesses correctly [Reimer 19831. 

1.2 Optimization Objectives 

The economic principle requires that opti- 
mization procedures either attempt to max- 
imize the output for a given number of 
resources or to minimize the resource usage 
for a given output. Query optimization tries 
to minimize the response time for a given 
query language and mix of query types in a 
given system environment. This general 
goal allows a number of different opera- 
tional objective functions. The response 
time goal is reasonable only under the as- 
sumption that user time is the most impor- 
tant bottleneck resource. Otherwise, direct 
cost minimization of technical resource 
usage can be attempted. Fortunately, both 
objectives are largely complementary; when 
goal conflicts arise, they are typically re- 
solved by assigning limits to the availability 
of technical resources (e.g., those of main 
memory buffer space). 

In order to allow a fair comparison of 
efficiency, the functional capabilities of the 
query evaluation systems to be compared 
must be similar. The requirement of “rela- 
tional completeness” coined by Codd [ 19721 
(compare Section 2.1) has become a quasi- 
standard. The techniques surveyed in this 
paper are presented as contributions to the 
implementation of queries in a relationally 
complete language with minimal evaluation 
cost or response time. Queries of higher 
complexity [Chandra and Hare1 1982a] are 
considered in Section 6.1. The total cost to 
be minimized is the sum of the following: 

Communication Cost: The cost of trans- 
mitting data from the site where they are 
stored to the sites where computations are 
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performed and results are presented. These 
costs are composed of costs for the com- 
munication line, which are usually related 
to the time the line is open, and costs for 
the delay in processing caused by transmis- 
sion. The latter, which is more important 
for query optimization, is often assumed to 
be a linear function of the number of data 
transmitted. 

Secondary Storage Access Cost: The cost 
of (or time for) loading data pages from 
secondary storage into main memory. This 
is influenced by the number of data to be 
retrieved (mainly by the size of intermedi- 
ate results), the clustering of data on phys- 
ical pages, the size of the available buffer 
space, and the speed of the devices used. 

Storage Cost: The cost of occupying sec- 
ondary storage and memory buffers over 
time. Storage costs are relevant only if stor- 
age becomes a system bottleneck and if it 
can be varied from query to query. 

Computation Cost: The cost for (or time 
of) using the central processing unit (CPU). 

The structure of query optimization al- 
gorithms is strongly influenced by the 
trade-off among these cost components. In 
long-range distributed DBMSs with rela- 
tively slow communication lines, commu- 
nication delay dominates the costs, whereas 
the other factors are relevant only for local 
suboptimization. In centralized systems, 
the costs are dominated by the time for 
secondary storage accesses although the 
CPU costs may be quite high for complex 
queries [Gotlieb 19751. In locally distrib- 
uted DBMSs, all factors have similar 
weights, which results in very complex cost 
functions and optimization procedures. 

Since the focus of this paper is on cen- 
tralized databases, comuunication costs are 
not considered because in such systems 
communication requirements are inde- 
pendent of the evaluation strategy. For the 
optimization of single queries, storage costs 
are usually also assumed to be of secondary 
importance. They are considered only for 
the simultaneous optimization of multiple 
queries. 

There remain the costs of secondary stor- 
age accesses (usually measured by the num- 
ber of page accesses) and CPU usage (often 

measured by the number of comparisons to 
be performed). A number of common ideas 
underly most techniques developed to re- 
duce these costs. They try to (1) avoid 
duplication of effort, (2) use standardized 
parts, (3) look ahead in order to avoid un- 
necessary operations, (4) choose the cheap- 
est way to execute elementary operations, 
and (5) sequence them in an optimal fash- 
ion. The following simple example demon- 
strates what can be expected from query 
optimization. 

Consider the relational schema of a da- 
tabase that describes employees offering 
computer lectures to departments of a geo- 
graphically distributed organization: 

employees (e, ename, status, city) 
papers (enr, title, year) 
departments (dname city, street address) 
courses (E, cz’abstract) 
lectures (cnr dname enr daytime) -5 -3 -2 

Key attributes are underlined; a given com- 
bination of key attribute values identifies a 
relation element uniquely. Assume that a 
user is interested in the 

“names of departments located in New 
York offering courses on database 
management.-” 

There are many possible strategies to solve 
this query, three of which are compared 
with respect to the following assumptions 
on actual data values. Note that the de- 
tailed data used for the computations below 
are not usually available to the query op- 
timizer, but have to be estimated. 

There are 100 “departments”, 5 of which 
are located in New York. A physical block 
can take 5 department records or 50 dname 
values. 

There are 500 “courses”, 20 of which are 
on database management. The physical 
block size is 10 records. 

There are 2000 “lectures”. Three hun- 
dred are on database management, 100 are 
held in New York departments, and 20 
(from 3 departments) satisfy both condi- 
tions. The physical block size is 10 records. 

Assume further that sorting time is N * 
log(B)N, where iV is the file size in blocks, 
and that there is a buffer of one block for 
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each relation. Finally, all relations are 
physically sorted by ascending key values. 

The first strategy presented here follows 
a straightforward approach of translating a 
relational calculus expression into a se- 
quence of algebra operations [Codd 19721. 
Together with each step of the strategy, the 
numbers of secondary storage accesses re- 
quired to read (r) or write (w) a physical 
block are given: 

Strategy I 
1. Form the Cartesian product of the “courses”, 

“lectures”, and “departments” relations, and 
(r: 200000) 

2. Retain the dname column of those “depart- 
ment” records, for which 

the cnr of “courses” and “lectures” match, 
and 
the dname of “lectures” and “departments” 
match, 
and cname = ‘database management’ 
and city = New York, (w: 1) 

total: approximately 200000 accesses. 

The extremely high cost of this strategy 
results from the fact that it generates an 
intermediate result, of which only a very 
small portion is actually relevant for fur- 
ther processing. Efficiency can be improved 
substantially by considering only those 
combinations of elements from different 
relations that have matching values in com- 
mon attributes. By making use of existing 
sort orders, such combinations can be 
formed by “merging” the participating re- 
lations. This operation is called a “join”: 

Strategy 2 
1. 

2. 

3. 

4. 

5. 

Merge %ourses” and “lectures”. 
(r: 50 + 200; w: 400) 

Sort the result by dnames. 
(r + w: 400 log(2)400) 

Merge the result with “departments”. 
(r: 400 + 20; w: 400 + 400) 

Select the combinations with city = ‘New 
York’ and cname = ‘database management’, 
and 

(r: 800) 
keep only the dname column. 

(w: 1) 

total: approximately 6000 accesses. 

The cost for answering the query can be 
reduced further by performing value-based 

selections as early as possible and thereby 
reducing the cost for sorting and merging 
intermediate results: 

Merge “courses” with “lectures”, and 
(r: 50 + 200) 

keep only the dnames of combinations 
with cname = ‘database management’ 

(w: 2) 

Strategy 3 
1. 

2. 

3. 

4. 

5. 

Sort the dname list generated. 
(r + w: 2) 

Merge the result with the “departments” re- 
lation, and 

(r: 2 + 20) 
keep only those dnames with city = ‘New 
York’. 

(w: 1) 

total: 277 accesses. 

Thus a reduction by a factor of approxi- 
mately 700 has been achieved. For larger 
databases and more complex queries, more 
sophisticated techniques may result in even 
higher reductions. 

1.3 Top-Down Approach 
to Query Optimization 

Query optimization research in the litera- 
ture can be divided in two classes, which 
can be described as bottom up and top 
down. Researchers found the overall query 
optimization problem to be very complex. 
Theoretical work began with a bottom-up 
approach, studying special cases, such as 
the optimal implementation of important 
operations and evaluation strategies for 
certain simple subclasses of queries. Sub- 
sequently researchers attempted to com- 
pose larger building blocks from these early 
results. 

A need for working systems triggered the 
development of full-scale query evaluation 
procedures, which stressed the generality 
of solutions and handled query optimiza- 
tion in a uniform and heuristic manner 
[Astrahan and Chamberlin 1975; Makinou- 
chi et al. 1981; Niebuhr et al. 1976; Palermo 
1972; Schenk and Pinkert 1977; Wong and 
Youssefi 19761. As this often did not 
achieve competitive system efficiency, the 
current trend seems to be a top-down ap- 
proach that incorporates more knowledge 
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about special case optimization opportuni- 
ties into the general procedures. At the 
same time, the general algorithms them- 
selves have been augmented by combina- 
torial cost-minimization procedures for 
choosing among strategies. 

This paper follows the top-down ap- 
proach, utilizing the general evaluation 
procedure that follows as a framework for 
the specific techniques developed in query 
optimization research: 

Step 1. Find an internal query represen- 
tation into which user queries can easily be 
mapped that leaves the system all neces- 
sary degrees of freedom to optimize the 
evaluation. 

Step 2. Apply logical transformations to 
the query representation that (1) standard- 
ize the query, (2) simplify the query to avoid 
duplication of effort, and (3) ameliorate the 
query to streamline the evaluation and to 
allow special case procedures to be applied. 

Step 3. Map the transformed query into 
alternative sequences of elementary opera- 
tions for which a good implementation and 
its associated cost are known. The result of 
this step is a set of candidate “access plans”. 

Step 4. Compute the overall cost for each 
access plan, choose the cheapest one, and 
execute it. 

The first two steps of this procedure are 
to a large degree data independent and thus 
often can be handled at compile time. The 
quality of Steps 3 and 4, that is, the richness 
of the access plans generated and the opti- 
mality of the choice algorithm, heavily de- 
pends upon knowledge about the values in 
the database. 

The consequences of data dependence 
are twofold. First, if the database is volatile, 
Steps 3 and 4 can be done only at run time. 
This means that the possible gain in effi- 
ciency must be traded off against the cost 
of the optimization itself. Second, a meta- 
database (e.g., an augmented data diction- 
ary) must maintain general information 
about the database structure as well as 
statistical information about the database 
contents. As in many similar operational 
research problems (e.g., inventory control), 
the costs of obtaining and maintaining this 

additional information must be compared 
to its value. 

2. QUERY REPRESENTATION 

Queries can be represented in a number of 
forms. In the context of query optimization, 
an appropriate query representation form 
must fulfill the following requirements: It 
should be powerful enough to express a 
large class of queries, and it should provide 
a well-defined basis for query transforma- 
tion. In this section we present four differ- 
ent query representation forms, each of 
which has been used in a number of ap- 
proaches to query optimization. 

2.1 The Relational Calculus 

The (tuple) relational calculus as intro- 
duced by Codd [1971, 19721 is a notation 
for defining the result of a query through 
the description of its properties. The rep- 
resentation of a query in relational calculus 
consists of two parts: the target list and the 
selection expression. 

The selection expression specifies the 
contents of the relation resulting from the 
query by means of a first-order predicate 
(i.e., a generalizedBoolean expression pos- 
sibly containing existential and/or univer- 
sal quantifiers). The target list defines the 
free variables occurring in the predicate 
and specifies the structure of the resulting 
relation. Example 2.1 demonstrates the re- 
lational calculus representation using the 
syntax of the database programming lan- 
guage Pascal/R [Schmidt 19771. 

Example 2.1. Names of processors who 
published some paper in 1981. 

[ (e.ename) OF 
EACH e IN employees: 

e. status = professor 
AND 

SOME p IN papers 
(e.enr = p.enr AND p.year = 1981)] 

In the target list, that is, the subexpres- 
sion preceding the colon, the range of the 
(free) variable e is restricted to elements of 
the relation “employees”. The relation “em- 
ployees” is therefore called the range relu- 
tion of e. The target attribute specification 

Computing Surveys, Vol. 16, No. 2, June 1984 



Query Optimization in Database Systems l 117 

“( e.ename)” indicates that only the names 
of employees are retained for the query 
result. 

The selection expression-the predicate 
following the colon-defines constraints on 
the free variable. The first constraint is a 
restrictive or monadic term, restricting the 
free variable to those “employees” records 
that have the status value “professor”. This 
constraint is AND-connected with a join or 
dyadic term, relating “employees” to “pa- 
pers”, and another monadic term, further 
restricting the result to those employees 
who published some paper in 1981. The 
comparison operators usually allowed in 
terms are =, #, <, >, 5, and ZZ. 

In contrast to the one-sorted predicate 
calculus, the relational calculus allows var- 
iables to be bound to different sorts (range 
relations); for instance, variable e is bound 
to “employees” and variable p is bound to 
“papers”. The consequences of the many 
sortedness of the relational calculus with 
respect to query transformation are dis- 
cussed in Section 3.1. - 

In addition to the logical operator AND, 
the operators OR and NOT can also be 
used in predicates. Relational calculus 
predicates are completely defined by the 
following recursive rules: 

1. Atomic predicates: 

(i) A (monadic or dyadic) term is an 
atomic predicate. 

(ii) TRUE is an atomic predicate. 
(iii) FALSE is an atomic predicate. 

2. An atomic predicate is a predicate. Let 
A be a predicate, r an element variable, 
and rel a relation. Then 

(i) SOME r IN rel(A), 
(ii) ALL r IN rel(A ) 

are also predicates. 
3. Let A and B be predicates. Then 

(i) NOT (A) (negation), 
(ii) A and B (conjunction), 

(iii) A OR B (disjunction) 

are predicates. 
4. No other formulas are predicates. 

In Codd [1972] the relation calculus has 
been introduced as a yardstick of expressive 

power. A representation form is said to be 
relationally complete if it allows the defini- 
tion of any query result definable by a 
relational calculus expression. Clearly, re- 
lational completeness has to be considered 
as a minimum requirement with respect to 
expressive power. An often cited example 
for a conceptually simple query that goes 
beyond relational completeness is “find the 
names of employees reporting to manager 
Smith at any level”, provided that a hier- 
archy of employees is modeled in a single 
relation (e.g., via a name and manager at- 
tribute) [Pirotte 19791. Furthermore, quer- 
ies in today’s applications often contain 
aggregations that cannot be expressed in 
pure relational calculus. However, the ex- 
tension of relational calculus by aggregate 
functions is rather straightforward [Klug 
1982b; Maier and Warren 19811. 

2.2 The Relational Algebra 

The relational algebra as defined by Codd 
[1972] is a collection of operators on rela- 
tions. These operators fall into two classes, 
that is, traditional set operators, such as 
Cartesian product, union, intersection, and 
difference, and special relational algebra 
operators, such as restriction, projection, 
join, and division. The special operators are 
defined below by relating them to equiva- 
lent relational calculus expressions. 

The restriction operator applied to a re- 
lation “rel” constructs a horizontal subset 
according to a quantifier-free predicate 
containing only monadic terms or intrare- 
lational dyadic terms (comparisons be- 
tween two attributes of the same relation 
element): 

Rest(re1, pred) = [EACH r IN rel: pred]. 

The projection operator serves to con- 
struct a vertical subset of a relation “rel” 
by selecting a set A of specified attributes 
and eliminating duplicate tuples within 
these attributes: 

Proj(re1, A) = [(r.A) OF EACH r IN rel: 
true]. 

The join operator permits two relations 
“reli” and “re12” to be combined into a 
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single relation whose attributes are the alent algebra expression. An analogous re- 
union of the attributes of “reh” and “relp”: sult for algebra and calculus expressions 

Join(re&, A op B, relz) 
extended by aggregate functions has been 

= [EACH rl IN reh, EACH r-2 IN re12: 
proven by Klug [1982a]. 

r1.A op r&l]. 2.3 Query Graphs 

The comparison operators “op” allowed in 
joins are the same as those in dyadic terms 
of the relational calculus. If “op” is the 
equality operator ‘=‘, the “natural” join 
omits either A or B in the result. 

The division operator provides an alge- 
braic counterpart to the universal quanti- 
fier. It is defined as follows: 

Divi(relr, A by B, re12) 
= [ ( r.compl(A ) ) OF EACH rl IN re&: 

ALL r2 IN re12 SOME r3 IN rell 
( rl.compl(A ) = r2.compl(A ) AND 
r2.B = r3A)]. 

Graphs have been used for the visual rep- 
resentation of structured objects in a num- 
ber of areas. Two well-known examples are 
the use of syntax trees in compiler con- 
struction and the use of AND/OR graphs 

artificial intelligence applications. 
graphs are used in query optimization for 
the representation of queries or query eval- 
uation strategies. Two classes of graphs can 
be distinguished: object graphs and opera- 
tor graphs. 

where compl(A ) is the complement of A in 
the attribute set of “reh”. As the definition 
indicates, division is a rather complex op- 
eration, which can make the understanding 
of a query a difficult job. 

Example 2.2 represents the query of Ex- 
ample 2.1 in relational algebra. 

Example 2.2. Names of professors who 
published some paper in 1981. 

Proj(Rest(Join(employees, 
enr = enr, 
Rest(papers, year = 1981)), 

status = professor), 
ename) 

As opposed to a relational calculus 

Nodes in object graphs represent objects 
such as (relation) variables and constants. 
Edges describe predicates that these objects 
are to fulfill [Bernstein and Chiu 1981; 
Palermo 1972; Youssefi and Wong 19791. 
Object graphs contain the properties of the 
query result and are therefore closely re- 
lated to the relational calculus. Operator 
graphs describe an operator-controlled data 
flow by representing operators as nodes 
that are connected by edges indicating the 
direction of data movement. In Smith and 
Chang [1975] and Yao [1979], operator 
graphs have been used for the representa- 
tion of algebra expressions. Figures 1 and 2 
give one example, respectively, for an object 
graph and an operator graph. 

expression, which describes the relation re- 
sulting from a query by means of its prop- 
erties, a relational algebra expression de- 
fines an algorithm for the construction of 
the resulting relation. A calculus expression 
appears to be a better starting point for 
query optimization since it provides an op- 
timizer only with the basic properties of the 
query; optimization opportunities may be- 
come hidden in a particular sequence of 
algebra operators. With respect to rela- 
tional completeness, however, the rela- 
tional algebra is at least as powerful as the 
relational calculus. In Codd [1972] it has 
been shown that any relational calculus 
expression can be translated into an equiv- 

Query graphs have many attractive prop- 
erties. The visual presentation of a query 
contributes to an easier understanding of 
its structural characteristics. In addition, 
graph theory offers a number of results 
useful for the automatic analysis of graphs, 
for example, discovery of cycles and tree 
property. Finally, an important advantage 
of query graphs is that they can be easily 
augmented with additional information. 
For example, the augmentation of graphs 
with details of the physical data organiza- 
tion of a database has been proposed by 
Rosenthal and Reiner [1982]. 

2.4 Tableaus 

Tableaus as defined by Aho et al. [1979a, 
1979b, 1979c] are tabular notations for a 
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e.ename 

Figure 1. An object graph representing the example query. 
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(restriction) 

(join) 

(restriction) 

papers 

Figure 2. An operator graph representing the example query. 

subset of relational calculus queries, char- 
acterized by containing only AND-con- 
nected terms and no universal quantifiers. 
Thus tableau queries are a particular kind 
of conjunctive queries [Char&a and Merlin 
1977; Rosenkrantz and Hunt 19801. 

Tableaus are specialized matrices, the 
columns of which correspond to the attri- 
butes of the underlying database schema. 
The first row of the matrix, the summary, 
serves the same purpose as the target list 
of a relational calculus expression. The 
other rows describe the predicate. The sym- 
bols appearing in a tableau are distin- 
guished variables (corresponding to free 
variables), nondistinguished variables (cor- 

responding to existentially quantified var- 
iables), constants, blanks, and tags (indi- 
cating the range relation). 

Figure 3 illustrates the construction of a 
tableau representing the query of Example 
2.1. It starts with tableaus for single rela- 
tions and proceeds by combining these ta- 
bleaus into new tableaus for larger and 
larger subexpressions. Distinguished vari- 
ables are denoted by a’s; nondistinguished 
ones are denoted by b’s. 

Expressions containing disjunction (set 
union) and negation (set difference) can be 
represented by sets of tableaus [Sagiv and 
Yannakakis 19801. Klug [1983] and John- 
son and Klug [1983] use sets of tableaus 
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status e*llM enr year 

T(employees) = 

T(papers) = a3 a4 

papers 

T( Rest(papers,year=l981) ) = 

$1 papers 

T( Join(employees. 
enr=enr , 
Rest(papers,year=1981) ) = 

T( Rest(Join(employees. 
enr=enr, 
Rest(papers,year=l981), 

status=professor) ) = 

T( Proj(Rest(Join(employees. 
enr=enr. 
Rest(papers,year=1961). 

status=professor). 
ename) ) = 

Figure 3. Stepwise construction of a tableau T representing the query of Example 2.1. 

for representing general conjunctive quer- 
ies. The specific value of tableaus with re- 
spect to query optimization is discussed in 
Section 3.2. 

3. QUERY TRANSFORMATION 

We have seen that queries can be expressed 
in a number of different representation 
forms. Additionally, a number of semanti- 
cally equivalent expressions may exist for 
each query, even within a given language. 

The transformation of a given expression 
into an equivalent one by means of well- 
defined rules is the subject of this section. 
The goals of query transformation are 
threefold: (1) the construction of a stand- 
ardized starting point for query optimiza- 
tion (stundardization), (2) the elimination 
of redundancy (simplification), and (3) the 
construction of expressions that are im- 
proved with respect to evaluation perform- 
ance (amelioration). 
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3.1 Standardization 

Several approaches to query optimization 
define a standardized starting point 
through a normalized version of the under- 
lying query representation form [Jarke and 
Schmidt 1981; Kim 1982; Palermo 1972; 
Wong and Youssefi 19761. In the following, 
we present two normal forms for the rela- 
tional calculus together with the rules to be 
obeyed by a normalization procedure. 

A relational calculus representation of a 
query is said to be in prenex normal form if 
its selection expression is of the form 

SOME/ALL rl IN rell - - - 
SOME/ALL r, IN rel,(M), 

where A4 is a quantifier-free predicate. M 
is called the matrix and can also be stand- 
ardized. A matrix consisting of a disjunc- 
tion of conjunctions (of terms Ai;), such as 

(A11 AND . . . AND Al,) OR . - - 
OR (AmI AND . . . AND A,,), 

is said to be in disjunctive normal form, and 
a matrix consisting of a conjunction of dis- 
junctions, such as 

(Al, OR . . . OR AI,) AND . . . 
AND (Am1 OR . . . OR A,,), 

is in conjunctive normal form. 
The prenex normal form combined with 

the normal forms for the matrix yields two 
normal forms for relational calculus expres- 
sions: disjunctive prenex normal form 
(DPNF) and conjunctive prenex normal 
form (CPNF). The use of DPNF is moti- 
vated by the goal to optimize and evaluate 
independent query components separately 
[Bernstein et al. 19811. The CPNF has 
proved useful for the decomposition of 
queries [Wong and Youssefi 19761 and for 
data-dependent amelioration (e.g., testing 
the most restrictive disjunction first). 

Queries in CPNF can be transformed 
further into a quantifier-free form popular 
in artificial intelligence theorem-proving 
applications, the so-called clausal form 
[Nilsson 19821. Logic-based database lan- 
guages such as Prolog [Kowalski 19811 are 
based on clausal form. Since clausal form 
has been rarely used in query optimization 

(see Grant and Minker [1981], Jarke et al. 
[1984], and Warren [1981] for exceptions), 
a detailed description is omitted at this 
point. 

The transformation of an arbitrary rela- 
tional calculus expression into prenex nor- 
mal form is a matter of moving quantifiers 
over terms (from right to left). Quantifier 
movement is governed by the transforma- 
tion rules of Table 1. Normalization of the 
matrix is rather straightforward and can be 
achieved by using DeMorgan’s rules, the 
distributive rules, and the rule of double 
negation (see Table 2). 

The distinction between empty and non- 
empty range relations in rules Q2 and Q3 
of Table 1 results from the variability of 
relations over time and the many sorted- 
ness of the relational calculus [Jarke and 
Schmidt 19821. A relational calculus 
expression can be transformed into an 
equivalent expression of a one-sorted cal- 
culus by introducing a range definition such 
as (r IN rel) as another type of atomic 
predicate: 

01: SOME r IN rel(pred) 
w  SOME r((r IN rel) AND pred), 

02: ALL r IN rel(pred) 
ti ALL r( (r IN rel) + pred). 

The application of rules Q2a and Q3a when 
moving a quantifier over a term would 
therefore yield a wrong result in the case of 
an empty range relation. It follows that 
normalization of an arbitrary relational cal- 
culus expression at compile time must pre- 
serve information about the original range 
definition of variables so that run-time 
modifications according to rules Q2b and 
Q3b can be performed when necessary. 

3.2 Simplification 

We have already seen that there might be 
several semantically equivalent expressions 
representing one and the same query. One 
source of differences between any two 
equivalent expressions is their degree of 
redundancy [Hall 1976; Stroet and Eng- 
mann 19791. A straightforward evaluation 
of a redundant expression would lead to 
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Table 1. Transformation Rules for Quantified Expressions 

Q1: A AND SOME r IN rel (B(r)) 
<==> 

SOME r IN rel (A AND B(r)) 

Q2: A OR SOYE r IN rel (B(r)) 
<==> 

;j ;OYE r IN rel (A OR B(r)) rel Z [] 
rel = [] 

43: A AND ALL r IN rsl (B(r)) 
<==> 

;i ;LL r in rel (A AND B(r)) rel # [] 
rel = [] 

Q4: A OR ALL r IN rel (B(r)) 
<==> 

ALL r IN rel (A OR B(r)) 

45: SOME rl IN rell SOME r2 IN rel2 (A(rl.r2)) 
<==> 

SOME r2 IN re12 SOYE rl IN rell (A(rl.r2)) 

QS: ALL rl IN rell ALL r2 IN re12 (A(rl.rZ)) 
<==> 

ALL r2 IN re12 ALL rl IN rell (A(rl.r2)) 

47: SOME r IN rel (A(r) OR B(rj) 
<==> 

SOME r IN rel (A(r)) OR SOME r IN rel (B(r)) 

QS: ALL r IN rel (A(r) AND B(r)) 
<==> 

ALL r IN rel (A(r)) AND ALL r in rel (B(r)) 

QB: NOT ALL r IN rel (A(r)) 
<==> 

SOME r IN rel (NOT(A(r))) 

QlO:NOT SOME r IN rel (A(r)) 
<==> 

ALL r IN rel (NOT(A(~))) 

the execution of a set of operations, some 
of which are superfluous. Therefore query 
optimization aims at the elimination of re- 
dundancy by means of transforming a re- 
dundant expression into an equivalent non- 
redundant one. 

A redundant expression can be simplified 
by applying the transformation rules M4a 
to M4j, which consider idempotency (see 
Table 2). The application of these rules is 
complicated by the fact that idempotency 
can occur at any level in the expression, 
owing to the presence of common sub- 
expressions, that is, subexpressions that 
occur more than once in the expression 
representing the query. Thus, in order to 
simplify an expression such as 

[EACH 

to 

e IN employees: 
e.ename = ‘Smith’ 

OR 
(e.status = assistant 

OR e.status = professor) 
AND 

NOT(e.status = professor 
OR e.status = assistant)] 

[EACH e IN employees: e.ename = ‘Smith’] 

by means of rules M4d and M4g, the sub- 
expressions 

(e.status = assistant OR e.status = professor) 

and 

(e.status = professor OR e.status = assistant) 

Computing Surveys, Vol. 16, No. 2, June 1964 



Query Optimization in Database Systems l 123 

Table 2. Transformation Rules for General Expressions 

kl : Comuutative rules 

a) A OR B <==> B OR A 

b) A AND B <==> B AND A 

Y2: Associative rules 

a) (A OR B) OR C <==> A OR (EJ OR C) 

b) (A AND B) AND C <==> A AND (B AND C) 

Y3: Distributive rules 

a) A OR (B AND C) <==> (A OR B) AND (A OR C) 

b) A AND (B OR C) <==> (A AND B) OR (A AND C) 

Y4: Idempotency rules 

a) A OR A <==> A 

b) A AND A <==> A 

c) A OR NOT(A) <==> TRUE 

d) A AND NOT(A) <==> FALSE 

e) A AND (A OR B) <==> A 

I) A OR (A AND B) <==> A 

2) A OR FALSE <==> A 

h) A AND TRUE <==> A 

i) A OR TRUE <==> TRUE 

j) A AND FALSE <==> FALSE 

Y5: De Morgan’s rules 

a) NOT (A AND B) <==> NOT (A) OR NOT (B) 

b) NOT (A OR B) <==> NOT (A) AND NOT (B) 

MB: Double negation rule 

NOT (NOT (A)) <==> A 

must first be recognized as being equiva- 
lent. Algorithms are given by Downey et al. 
[1980] and Hall [1974, 19761. The recogni- 
tion of common subexpressions and the 
application of idempotency rules have to be 
performed concurrently rather than se- 
quentially, since the simplification of an 
expression by means of idempotency rules 
may yield further common subexpressions, 
which, in turn, are subject to simplification. 
Expressions that are bound to empty rela- 
tions can also be simplified. Transforma- 
tion rules for their simplification are given 

in Table 3. (Note that these rules can be 
applied only at run time.) 

Terms as defined in Section 2.1 serve as 
atomic predicates in the relational calculus. 
However, these terms can be simplified or 
removed if the semantics of the comparison 
operators are explicitly taken into account. 
An important application is the so-called 
constant propagation, which uses transitiv- 
ity laws, such as 

r.A op s.B AND s.B = const 
=a r.A op const, 
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Table 3. Transformation Rules for Expressions with Empty Relations 

El: [EACH r in [I: pred] <==> [] 

~2: [<r.~i....r.~n> OF EACH r IN [I: pred] <==> [I 

E3: SOME r IN [] (pred) <==> FALSE 

E4: ALL r IN [I (pred) <==> TRUE 

to reduce the number of dyadic terms in a 
query. Algorithms that minimize the num- 
ber of rows in tableaus as introduced in 
Section 2.4 systematically exploit such sim- 
plification rules for conjunctive queries 
[Aho et al. 1979a; Sagiv 1981, 19831. Since 
the number of rows in a tableau is one more 
than the number of joins (dyadic join 
terms) in the expression, the minimization 
of the number of rows corresponds to the 
elimination of redundant joins. 

Sagiv and Yannakakis [1980] exiend the 
tableau techniques to cover the simplifica- 
tion of expressions containing disjunctions. 
The generalization to all expressions of a 
relationally complete language, however, is 
still an open problem. 

Information about semantic integrity 
constraints can be exploited for “semantic” 
query simplification [Aho et al. 1979a, 
1979b, 1979c; Jarke et al. 1984; Johnson 
and Klug 1982; Ott and Horlaender 1982; 
Rosenthal and Reiner 19841. As a simple 
example, consider the case of key con- 
straints. If r and r’ are (free or existentially 
quantified) variables ranging over the same 
relation “rel”, equijoin terms of the form 
“r.key = r ‘.key” are superfluous in the 
sense that the term and one of the varia- 
bles, say r’, can be deleted, followed by the 
substitution of r’ by r in any term referring 
to r’. This type of simplification is most 
relevant in the context of view processing, 
in which the reduction of user queries ad- 
dressing views to system queries addressing 
stored relations may introduce substantial 
redundancy. Its application range can be 
extended by considering additional con- 
straints implied by the query structure 
[Klug 1980; Koch et al. 19813. 

A final opportunity for simplification oc- 

curs when one or more matrix conjunctions 
of the standardized query can be shown to 
be unsatisfiable [Eswaran et al. 1976; Klug 
1983; Munz et al. 1979; Ozsoyoglu and Yu 
19801. For example, consider the expression 

r.A I s.B AND s.B > t.C AND t.C 2 r.A, 

which implies the contradiction, r.a > r.a, 
and can therefore be replaced by the 
Boolean value, false. Satisfiability can be 
efficiently decided at compile time for a 
conjunction of terms with comparison op- 
erators (=, <, I, >, 2) [Rosenkrantz and 
Hunt 19801, but is computationally intract- 
able when the nonequality comparison 
operator is allowed. 

3.3 Amelioration 

Query simplification does not necessarily 
produce a unique expression. Other nonre- 
dundant expressions may exist that are se- 
mantically equivalent to the one generated 
by some simplification technique. The eval- 
uation of expressions corresponding to one 
and the same query may differ substantially 
with respect to performance parameters, 
for example, the size of intermediate results 
and the number of relation elements ac- 
cessed. Below, a number of query transfor- 
mation heuristics are presented that, when 
applied to expressions, yield ameliorated 
expressions with respect to evaluation per- 
formance. 

The simplest transformations considered 
in this section are the combination of a 
sequence of projections into a single projec- 
tion, and the combination of a sequence of 
restrictions into a single restriction [Hall 
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sponding transformation rules are 
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A2: 
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able is detached and forms an inner nesting. 
Detachment is performed recursively at 
any nesting level until the expression can- 
not be reduced further. Experiments re- 
ported by Youssefi and Wong [1979] have 
shown this heuristic to be very strong. Ex- 
ample 3.2 demonstrates the detachment of 
a subexpression in a complex expression. 

PrT(re1, A,), 
Rest(. . . (Rest(Rest(re1, predi), 

predd, . . . , pred,) 

Rez(re1, predi AND predz AND . . . 
AND pred,) . 

The combination of intrarelational op- 
erations results in two advantages: First, 
repetitive reading of the same relation is 
avoided, and second, existing access paths 
may be used for the combined operation, 
and not only for the first operation in the 
sequence. 

Minimization of the size of intermediate 
results to be constructed, stored, and re- 
trieved is the goal of a number of amelio- 
rating transformations. An important heu- 
ristic moves selective operations, such as 
restriction and projection, over construc- 
tive operations, such as join and Cartesian 
product, in order to perform the selective 
operations as early as possible [Smith and 
Chang 19751. In the context of relational 
calculus, the consideration of a certain 
evaluation sequence can be represented by 
a nested expression. The evaluation of a 
nested expression starts with the evalua- 
tion of the innermost nesting, followed by 
its surrounding nesting, and so on until the 
outermost nesting is reached. A nested 
expression implying the early evaluation of 
monadic terms (restrictions) is given in 
Example 3.1. 

Example 3.1. A nested expression 
equivalent to the expression in Example 
2.1. 
[ (e.ename) OF 
EACH e IN [EACH e IN employees: 

estatus = professor]: 
SOME p IN [EACH p IN papers: 

p.year = 19811 
(e.enr = p.enr)] 

The early evaluation of selective opera- 
tions forms a special case of query detach- 
ment as introduced by Wong and Youssefi 
[ 19761. A subexpression that overlaps with 
the rest of the expression on a single vari- 

Example 3.2. Departments offering lec- 
tures that are held by professors who live 
in the same city where the department is 
located and who have published some paper 
in 1981. 

The corresponding expression is 

[EACH d IN departments: 
SOME 1 IN lectures 

SOME e IN employees 
(estatus = professor 

AND 
ddname = ldname 

AND l.enr = e.enr 
AND e.city = dxity 

AND 
SOME p IN papers 

(p.year = 1981 
AND p.enr = e.enr))] 

An equivalent expression produced by 
query detachment is 

[EACH d IN departments: 
SOME 1 IN lectures 

SOME e IN [EACH e IN 
[EACH e IN employees: 

e.status = professor]: 
SOME p IN [EACH p IN 

papers: p.year = 19811 
(e.enr = p.enr)] 

(d.dname = l.dname AND l.enr = e.enr 
AND exity = d.city)] 

An object graph representing the query is 
shown in Figure 4. 

Note that the resulting nested expres- 
sion is irreducible [Goodman and Shmueli 
19801; that is, it cannot be separated into 
two subexpressions overlapping on a single 
variable. In other words, the nested expres- 
sion contains a cycle (see Figure 4). 

The importance of the distinction be- 
tween cyclic and acyclic (treelike) expres- 
sions for query processing is discussed 
further in Section 4.3. At this point, we 
mention only that there are cycles that can 
be transformed into equivalent acyclic 
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EACH d IN 
departments 

l e.status=prof 

I 
l 

p.year=l991 

Figure 4. Object graph for Example 3.2. 

query graphs. Such cycles include those 
that (1) are introduced by transitivity 
[Bernstein and Chiu 1981; Yu and Ozsoy- 
oglu 19791, (2) contain certain combina- 
tions of inequality join term edges [Bern- 
stein and Goodman 1981b; Ozsoyoglu and 
Yu 19801, (3) are “closed” by universally 
quantified variables [Jarke and Koch 
19831, and (4) contain variables that can be 
decomposed by use of functional depend- 
encies [Kambayashi and Yoshikawa 19831. 

The concepts of extended range expres- 
sions {Jarke and Schmidt 19821 and range 
nesting [Jarke and Koch 19831 provide a 
generalization of query detachment in that 
they also consider expressions containing 
universal quantification. Database rela- 
tions defining the range of a relation vari- 
able are replaced by calculus expressions 
according to the following transformation 
rules: 

A3: [EACH r IN rel: predl AND predz] 

[ETCH r IN [EACH r IN rel: predi]: 
w&l, 

A4: SOME r IN rel(predi AND pred2) 

S&E r IN [EACH r IN rel: predi] 
(w&h 

A5: ALL r IN rel: (NOT(predi) 
OR br& 

AZ r IN [EACH r IN rel: predl] 
(pred2) . 

Note that transformation rule A5 for uni- 
versally quantified variables is especially 
profitable since, through the reduction of 
the number of conjunctions in the outer 
nesting, the intermediate results can be 
expected to be considerably smaller in size. 

The ameliorating transformations pre- 
sented thus far use information from three 
sources: general transformation rules and 
heuristics guiding their usage, knowledge 
about the relational data structures, and 
the query itself. Two other knowledge bases 
that have not yet been considered are the 
integrity constraints that complement the 
structural schema definition in many da- 
tabase systems and the actual data stored 
in the database. 

Integrity constraints are predicates that 
must be true for each element of a certain 
relation, or for each combination of ele- 
ments of a certain group of relations. They 
therefore can be added to the selection 
expression of any query without changing 
its truth value. There are a few approaches 
exploiting this observation for amelioration 
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rather than simplification (which was men- 
tioned in the previous subsection). They 
have been called knowledge-based [Ham- 
mer and Zdonik 19801 or semantic query 
processing [King 1979, 19811. 

Assume, for example, that an integrity 
constraint says: “We only hire professors 
who have published at least one paper per 
year.” In this case, the evaluation of Ex- 
ample 2.1 (asking for professors with pa- 
pers published in 1981) becomes trivial, and 
the evaluation of Example 3.2 is substan- 
tially simplified. 

Adding an integrity constraint to a selec- 
tion expression can also change the struc- 
ture of the query in order to make it more 
tractable. Consider the constraint: “We 
only hire local professors.” In this case, the 
term “d.city = e.city” in Example 3.2 can 
be omitted. The remaining query no longer 
contains a cycle in its object graph. 

The success of semantic query processing 
depends largely on the development of ef- 
ficient heuristics for choosing among the 
many transformations made possible by the 
addition of any combination of integrity 
constraints to the query. In King [1981] 
and Xu [ 19831, artificial intelligence type 
rules are used to make this decision for a 
special class of relational databases. 

Yao [1979] points out that cases exist in 
which the optimal transformation is data 
dependent. The heuristics presented above 
may not always be optimal, especially when 
certain access paths are supported by phys- 
ical data structures. One consequence of 
such data dependence is that, in addition 
to the query compiler, the run-time support 
must also be equipped with query transfor- 
mation facilities. Furthermore, if heuristics 
do not yield satisfactory results, simulta- 
neous optimization is required on the phys- 
ical and the logical level. Before turning to 
such integrated approaches, however, the 
physical evaluation of query components 
must be described. 

4. QUERY EVALUATION 

In this section we present methods for the 
evaluation of query components of varying 
complexity, such as one-variable expres- 

sions, two-variable expressions, and multi- 
variable expressions. The individual ap- 
proaches can be viewed as the building 
blocks of a general query evaluation system. 
Their associated costs and ranges of appli- 
cability constitute the input to the last 
stage of the query optimization process, 
which generates the optimal access plan. 

4.1 One-Variable Expressions 

One-variable expressions describe condi- 
tions for the selection of elements from a 
single relation. A naive approach to their 
evaluation would be to read every element 
of the relation, and to test whether it sat- 
isfies each term of the expression. Since 
this approach is very costly in the presence 
of large relations and complex expressions, 
various techniques have been used to re- 
duce the number of element accesses and 
the number of tests applied to an accessed 
element. 

The number of element accesses can be 
reduced by employing data structures that 
provide access paths other than those of 
exhaustive sequential search. One possibil- 
ity is to keep the relation sorted with re- 
spect to one or more attributes so that it 
can be accessed in ascending or descending 
order, or binary search can be performed. 
This has proved useful for the evaluation 
of range queries (i.e., expressions that de- 
fine an interval of attribute values [Bolour 
1981; Davis and Winslow 19821). Another 
alternative, hashing, provides fast direct 
access without necessarily preserving order. 

Direct and ordered access can be pro- 
vided by indexes, possibly combined with 
multilist structures [Welch and Graham 
1976; Yang 19771. Conceptually speaking, 
an index is a binary relation that associates 
attribute values with references to relation 
elements, usually called tuple identifiers 
(TIDs). We distinguish one-dimensional in- 
dexes, which support access via a single 
relation attribute, from multidimensional 
indexes, which support access via a combi- 
nation of attributes. One-dimensional in- 
dexes are usually implemented by ISAM 
[IBM 19661 or B-tree [Bayer and Mc- 
Creight 19721 structures. An overview of 
multidimensional index structures is given 
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by Bentley and Friedman [ 19791. Some ex- 
amples include the work by Shneiderman 
[1977] on combined indexes, Nievergelt et 
al. [1984] on grid files, and Gardarin et al. 
[1984] on predicate trees. Although access 
paths are usually invisible to the user, ef- 
forts have been reported to develop high- 
level language representations directly 
available to those database programmers 
who insist on extreme efficiency. Such lan- 
guage constructs range from TIDs [Jarke 
and Schmidt 1981; van de Riet et al. 19811 
to abstract representations of complete ac- 
cess paths [Mall et al. 1984; Schmidt 1984; 
Tsichritzis 19761. 

The number of tests applied to an ac- 
cessed relation element during expression 
evaluation can be reduced by means of run- 
time transformations of the expression. 
The optimization of a special class of 
expressions, Boolean expressions, has been 
a research topic in compiler construction 
for a long time [Gries 19711. Boolean 
expressions (i.e., quantifier-free AND/OR 
connected terms) are an integral part of a 
number of control structures in high-level 
programming languages. The purpose of 
code optimization for Boolean expressions 
is to generate code that skips over the eval- 
uation of expression components no longer 
relevant to the value of the expression as a 
whole. For example, in the statement 

IF A AND B THEN 
statement-l 

ELSE 
statement-2 

END 

the evaluation of term B is superfluous, and 
the ELSE-branch can be executed right 
away in case term A has already been eval- 
uated as “false”. If the same idea is applied 
to the evaluation of one-variable expres- 
sions in query languages [ Gudes and Reiter 
1973; Liu 19761, queries can be simplified 
at run time. 

Another approach designed to improve 
evaluation efficiency is that of changing the 
order in which individual expression com- 
ponents are evaluated. Several algorithms 
are known to lead to optimal evaluation 
sequences in certain situations; some as- 
sume a priori probabilities for attribute val- 

ues [Hanani 19771, whereas others work 
without such assumptions [Breitbart and 
Reiter 19751. Warren [1981] applies a sim- 
ilar technique for optimizing database pro- 
grams expressed in logic. 

4.2 Two-Variable Expressions 

Two-variable expressions describe condi- 
tions for the combination of elements from 
two relations. In general, two-variable 
expressions are composed of monadic 
terms, which restrict single variables inde- 
pendently of each other, and dyadic terms, 
which establish the link between both var- 
iables. In this section we first describe the 
basic methods for the evaluation of a single 
dyadic term, corresponding to the join op- 
erator in Section 2.2, and then strategies 
for the evaluation of arbitrary two-variable 
expressions. 

Approaches to the implementation of the 
join operation can be classified into order- 
dependent and order-independent strate- 
gies [Todd 19741. A simple method that is 
independent of the order of element access 
is the so-called nested iteration method 
[Pecherer 1975, 1976; Selinger et al. 19791 
in which every pair of relation elements is 
accessed, and concatenated if the join con- 
dition is satisfied. A sketch of the algorithm 
follows: 

FORi:=lTONlDO 
read zth element of r&; 
FORj:= lTON*DO 

read jth element of relZ; 
form the join according to the join concli- 
tion; 

END; 
END; 

Let N1(N2) be the number of elements of 
the relation read in the outer (inner) loop. 
Ni + Ni * N2 secondary storage accesses 
are required to evaluate the dyadic term, 
assuming that each element access needs 
one secondary storage access. 

The nested iteration method can be aug- 
mented by the use of an index on the join 
attribute(s) of “re12.” Instead of scanning 
“re12” sequentially for each element of 
“re&,” the matching “re&” elements are 
retrieved directly [Griffeth 1978; Klug 
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1982b]. Thus only Ni + Ni * Nz * j,, 
accesses are required, where j,, is a join 
selectivity factor describing the reduction 
of the Cartesian product of “reh” and “relz” 
by the join condition. 

The nested block method [Kim 19801 
adapts the nested iteration method to a 
paged-memory environment. It assumes 
that a main memory buffer will hold one or 
more pages of both relations, where each 
page contains a set of records. 

The algorithm itself is basically identical 
to the one of the nested iteration method, 
except that memory pages are read instead 
of single relation elements. The number of 
secondary storage accesses needed to form 
the join is reduced bo P, + (Pi/&) * Pz, 
where P1(P2) is the number of pages occu- 
pied by the outer (inner) relation and B1 is 
the number of pages of the outer relation 
held in the main memory buffer. The for- 
mula demonstrates that it is always pref- 
erable to read the smaller relation in the 
outer loop (i.e., make Pi < I’*). Note that 
only PI -I- Pz accesses are necessary if one 
of the relations can be kept entirely in the 
main memory buffer. 

The merge method [Blasgen and Eswaran 
1977; Selinger et al. 19791 is based on the 
order in which relation elements are ac- 
cessed. Both relations are scanned in as- 
cending or descending order of join attri- 
bute values and merged according to the 
join condition. Approximately N1 + Nz + 
S1 + Sp secondary storage accesses are re- 
quired, where S1 and Sa denote the number 
of secondary storage accesses necessary to 
sort the relations. If the two relations are 
already sorted by the same criterion, the 
merge method appears to be the most effi- 
cient one for evaluating a dyadic term 
[Merrett 1981; Merrett et al. 19811. Excep- 
tions occur when one of the two relations 
is small enough to fit in main memory (the 
nested block method is preferable) or one 
relation is much larger than the other and 
indexes are available (nested iteration with 
indexes is better). 

Methods for the evaluation of arbitrary 
two-variable expressions are created on the 
basis of strategies for one-variable expres- 
sions and algorithms for the computation 

of dyadic terms. They differ in the way they 
make use of or even create access paths, 
such as indexes and sorting, and the order 
in which the terms are processed. One such 
method is illustrated in Figure 5. It makes 
extensive use of indexes. Tuple identifiers 
resulting from the processing of monadic 
terms and those that satisfy the join con- 
dition are intersected and then used to ac- 
cess the relation elements. These elements 
are projected onto attributes appearing in 
the dyadic term and in the target list. The 
projected elements are concatenated and 
finally projected on the target attribute. 

Blasgen and Eswaran [1976], Niebuhr 
and Smith [1976], Yao and DeJong [1978], 
and Yao [1979] present various other al- 
gorithms and compare them systematically 
with respect to their efficiency. Their re- 
sults demonstrate that often no a priori 
best algorithm exists. The optimizer must 
either rely on heuristics or perform an ex- 
pensive cost comparison of many alterna- 
tives for each query. 

An important case of two-variable ex- 
pressions is a join in which one of the 
participating variables (the “inner” one) is 
existentially or universally quantified. The 
result of such an expression contains only 
elements of one relation. Furthermore, ac- 
cess to the other relation needs to establish 
only whether, for a given value of the 
“outer” variable, the join condition is sat- 
isfied with any (respectively all) elements 
of the range relation of the “inner” variable. 
These elements themselves are of no inter- 
est. This means that for the evaluation of 
quantified queries intermediate results can 
be represented in a compressed fashion 
[Dayal 1983a; Jarke and Schmidt 19811. If 
the two-variable expression contains just 
one join term with a comparison operator 
of <, 5, >, or 2, only one attribute value 
(the minimum or maximum attribute value 
appearing in the inner relation) is required. 
That is, the quantified two-variable expres- 
sion can be converted into a monadic term 
[ Jarke and Koch 19831. Incidentally, a sim- 
ilar use of aggregate functions (maximum 
or minimum) has also been proposed in the 
context of integrity maintenance [Bern- 
stein et al. 19801. 
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Figure 5. Operator graph illustrating the evaluation of the query of Example 
2.1. The existence of various indexes is assumed. 

4.3 Multivariable Expressions 

Stategies for the evaluation of multivaria- 
ble expressions are the largest building 
blocks for a general query-processing sys- 
tem. Two basic approaches exist, which are 
referred to as parallel processing and step- 
wise reduction. 

The parallel processing of query compo- 
nents serves to avoid repeated access to the 
same data. Repeated access to the same 

data can be avoided by simultaneous eval- 
uation of multiple-query components. In 
Palermo [19’72], all monadic terms associ- 
ated with a variable are completely evalu- 
ated and all dyadic terms in which the same 
variable appears are partially processed 
concurrently with scanning of the range 
relation of the variable. Even AND-connec- 
tions existing among the terms can be eval- 
uated in parallel, which further reduces the 
size of intermediate results [Jarke and 
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Schmidt 19821. A similar approach on a 
higher level has been described by Klug 
[1982b] in which aggregate functions and 
complex subqueries are computed in par- 
allel. Scheduling strategies for the parallel 
processing of query components are dis- 
cussed by Schmidt [ 19791. 

Pipelining operations that can work on 
the partial output of preceding operations 
is another technique that exploits paral- 
lel processing opportunities [Smith and 
Chang 1975; Yao 19791. For example, re- 
striction and projection can be pipelined so 
that only a relatively small buffer for data 
exchange is required rather than the crea- 
tion and subsequent reading of a possibly 
large temporary relation. 

Aspects of simultaneous evaluation and 
pipelining are combined in the so-called 
“feedback” method [Clausen 1980; Rothnie 
1974, 19751, which uses partial results of a 
join operation in order to restrict its input. 
The degree to which this can be done de- 
pends on the quantification of variables 
occurring in the join term. For example, 
consider the expression 

[EACH rl IN reli: 
ALL r2 IN re12 (rI.A op r2.B)]. 

Assume that the join term is evaluated by 
nested iteration. While testing some ele- 
ment, rl, it is found that the term “q.A op 
r2.B” evaluates to false for a certain r2 with 
r2.B = cl. Because of the universal quanti- 
fication of r2, rl is rejected, and an elimi- 
nation filter can be added to the selection 
expression 

[EACH rl IN reli: 
NOT (rI.A op ci) 
AND ALL r2 IN re12 (rI.A op r2.B )] 

because the same rz would cause the rejec- 
tion of all elements rl of “reli” that do not 
satisfy the first term. On the other hand, if 
rl with rI.A = c2 passes the test, a true filter 
can be added to the selection predicate: 

[EACH rl IN reli: 
rI.A op c2 OR 

NOT (rl.A op cl) AND . . -1. 

Both filters can be updated subsequently 
to sharpen the constraints. 

d.dname 
0 

EACH d IN 
departments 

. 
e.statu8=prof 

. 
I . dayt ime>8pm 

Figure 6. Object graph for Example 4.1. 

The second basic approach to the evalu- 
ation of multivariable expressions will be 
motivated by means of the following ex- 
ample. 

Example 4.1. Figure 6 shows an object - 
graph representing the expression 

[ (ddname) OF 
EACH d IN departments: 

SOME e IN employees(e.status = professor 
AND 
e.city = d.city) 

AND 
SOME 1 IN lectures (ldaytime > 8 pm 

AND 
l.dname = d.dname)] 

Expressions like the one in Example 4.1 
are called tree expressions [Goodman and 
Shmueli 1982; Shmueli 19811, since their 
associated query graph is a tree. The stand- 
ard approach for evaluating such an expres- 
sion would be to form the join of the three 
relations, restrict the intermediate result 
according to monadic terms, and finally 
project it onto the attributes appearing in 
the target list. As has been shown in the 
introductory example (Section 1.2, Strat- 
egy 2), this method performs rather poorly. 
It is even more problematic in a distributed 
environment where each relation resides on 
a different site, as entire relations must be 
transmitted from site to site. Moreover, the 
relation at the target site is temporarily 
expanded through the formation of the join, 
although the final result is only a horizontal 
and vertical subset of it. 
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Figure 7. Object graph for Example 4.2. 
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In Bernstein and Chiu [1981], Bernstein 
et al. [1981], and Bernstein and Goodman 
[1981a, 1981b, 1981c], the stepwise reduc- 
tion of tree expressions (with free and ex- 
istentially quantified variables) has been 
introduced. This method often outperforms 
the simple approach above in a decentral- 
ized as well as in a centralized setting. It is 
based on a modified join operation, and 
uses the so-called semijoin operator. 

The semijoin of a relation “reh” by a 
relation “relp” equals the join of these re- 
lations projected back onto the attributes 
of relation “reli”: 

semijoin(reh, A op B, relz) 
= proj( join(re&, A op B, relz), 

attributes(reh)). 

The operation thus forms “half of a join.” 
The main advantages of semijoin over join 
are as follows: (1) its evaluation only re- 
quires the transmission of value lists of the 
joining attributes instead of that of an en- 
tire relation, and (2) it has a “reductive” 
effect since the result of semijoin (reh, A 
op B, relz) is always a subset of re12, whereas 
a join may produce a Cartesian product in 
the worst case. In terms of relational cal- 
culus, a semijoin corresponds to a two- 
variable expression, where one variable is 
existentially quantified, as discussed in 
Section 4.2. 

The simplest evaluation of a tree expres- 
sion by means of stepwise reduction can be 
described as follows. Starting from the 
leaves of the query tree representing the 
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expression, one semijoin per edge is exe- 
cuted in breadth-first leaf-to-root order. 
Thus a tree expression containing one free 
and n - 1 existentially quantified variables 
can be completely processed by n - 1 semi- 
joins. 

If all variables are free, an additional 
semijoin sequence in reverse order must be 
performed. In a centralized setting, this 
kind of semijoin strategy is inferior to a 
merge join operation combined with paral- 
lel quantifier evaluation. Even in a distrib- 
uted system, the simple bottom-up/top- 
down sequence is often less efficient than 
a middle-out sequence that begins with 
semijoins that achieve very strong reduc- 
tion [Chiu and Ho 1980; Chiu et al. 19811. 

Strategies for the evaluation of tree 
expressions containing both existential and 
universal quantifiers must take into ac- 
count the order in which these quantifiers 
appear in the expression. Stepwise reduc- 
tion is possible only when the processing of 
the edges of the query tree (breadth-first 
leaf-to-root) corresponds to the order of the 
quantifiers in the expression (right to left). 

Example 4.2. Consider the query tree of 
Figure ‘7 representing the expression 

[ (ddname) OF 
EACH d IN departments: 

ALL p IN papers 
SOME e IN employees 

(p.enr = e.enr AND e.city = d.city) 
AND 

SOME 1 IN lectures (ldname = ddname)] 
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d.dname 
0 

EACH d IN 
departments 

Figure 8. A cyclic calculus expres- 
sion and its corresponding object 
graph. 

SOME e IN e.enr=l .enr SOME 1 IN 

. 
e.status=prof 

Figure 9. Some possible database 
State. 

l 

1. dayt ime>Spm 

departments dname city street address 

employees 1 ei / en’i s~:~s ~=~~~, 

lecturea 1 CII / eII / dam / da;;;me 1 

Processing’the tree in breadth-first leaf-to- 
root order would yield the value of the 
expression 

[ (ddname) OF 
EACH d IN departments: 

SOME e IN employees 
ALL p IN papers 

(p.enr = e.enr AND e.city = deity) 
AND 

SOME 1 IN lectures (ldname = ddnarne)] 

which is not equivalent to the original 
expression. 

The position of an existential and a uni- 
versal quantifier cannot be interchanged 
without changing the meaning of the 
expression, except in cases where rules Ql 
through Q4 of Table 1 apply. Expressions 
containing only one type of quantifier allow 
the sequence of variables to be inter- 
changed arbitrarily, according to transfor- 
mation rules Q5 and Q6. Jarke and Koch 
[1983] describe a directed, so-called “quant 
graph” that supports the application of 
these rules. 

Cyclic expressions are the complement of 
tree expressions with respect to the entire 
set of expressions. Although we quoted 
some benign exceptions in Section 3.3, 
cyclic expressions in general cannot be fully 
reduced by means of semijoins [Bernstein 
and Goodman 1981a, 1981b; Goodman and 
Shmueli 19821. 

Example 4.3. Consider the query: 
“names of departments that offer lectures 
after 8 pm given by professors who live in 
the city where the department is located”. 
The corresponding relational calculus ex- 
pression and a query graph are shown in 
Figure 8. 

If the database is in the state shown in 
Figure 9, no sequence of semijoins (corre- 
sponding to edges of the query graph of 
Figure 8) will produce the correct result 
(the empty relation). The reason is that the 
semijoin technique only considers one edge 
at a time, and thus loses restrictive condi- 
tions introduced through the feedback ef- 
fect of the cycle: 
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d.dname 
0 

Figure 10. Augmented object 
graph for Example 4.3. 

EACH d IN 
departments 

d.dname=l .dname 
d.city=l.city 

SOME e IN SOME 1 IN 

e.city=l .city 

l 

e.status=prot 

l 

1. dayt ime>Epm 

[ (ddname) OF 
EACH d IN departments: 

SOME e IN employees 
(e.status = professor 

AND 
SOME 1 IN lectures 

(l&time > 8 pm 
AND 

ddname = l.dname AND l.enr = e.enr 
AND e.city = d.city))] 

In Kambayashi et al. [1982] a proposal 
is made that is intended to generalize the 
applicability of the semijoin technique to 
cyclic expressions. The overall idea is to 
transform the cyclic query graph into a tree 
by adding appropriate terms to edges of the 
graph. Figure 10 demonstrates the tech- 
nique applied to the cyclic expression of 
Example 4.3. 

The additional terms “d.city = Lcity” and 
“l.city = e.city” imply the condition “d.city 
= e.city” by transitivity. Thus the resulting 
graph is equivalent to a chain query, a 
special form of tree query. Note that addi- 
tion of the new terms corresponds basically 
to addition of the city attribute to the 
schema of the lectures relation (initialized 
with null values). 

The query tree then is processed by step- 
wise reduction, executing a generalized 
semijoin for each edge while taking into 
account the newly introduced attributes. 
The number of data transfers are reduced 
by means of specialized compression tech- 
niques. 

Methods for the efficient implementa- 
tion of operations, such as the ones pre- 
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sented in this section, are candidates for 
hardware components in specialized data- 
base machines. However, such components 
often allow parallelism and therefore re- 
quire somewhat different join and semijoin 
algorithms [Bitton et al. 1983; Maekawa 
1982; Missikoff and Scholl 1983; Valduriez 
1982; Valduriez and Gardarin 19841. A brief 
survey of hardware approaches to query 
optimization is presented in Section 6.3. 

5. ACCESS PLANS 

In the previous section we dealt with tech- 
niques for the efficient evaluation of query 
components that can be used as building 
blocks of a general query evaluation algo- 
rithm. The final step of our query evalua- 
tion framework requires the combination 
of these blocks into an efficient evaluation 
procedure for an arbitrary standardized, 
simplified, and ameliorated expression. Un- 
fortunately, work in this area is still incom- 
plete. 

The inputs of such a procedure are a 
logically preprocessed query (as described 
in Section 3), the existing storage struc- 
tures and access paths, and a cost model. 
The output is an optimal (or at least heur- 
istically “good”) access plan. The procedure 
consists of the following steps. 

(1) Generate all reasonable logical access 
plans for evaluating the query. A logical 
access plan describes a sequence of opera- 
tions or of intermediate results leading 
from existing relations to the final result of 
a query. 
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(2) Augment the logical access plans by 
details of the physical representation of 
data (sort orders, existence of physical ac- 
cess paths, statistical information). 
(3) Choose the cheapest access plan by ap- 
plying a model of access and processing 
costs. 

In this section we review the generation 
of access plans, cost models for their eval- 
uation, and the problem of selecting the 
cheapest plan. The quality of the final so- 
lution plan is strongly influenced by the 
existing storage structures and access 
paths, which usually cannot be optimized 
for a single ad hoc query. In Section 5.4 we 
therefore briefly consider the simultaneous 
optimization of multiple queries. 

5.1 Generation of Access Plans 

Access plans describe sequences of opera- 
tions (represented by operator graphs) or 
intermediate results (object graphs) leading 
from the existing data structures to a query 
result. The query optimizer should generate 
a set of plans rich enough to contain the 
optimal plan but small enough to keep the 
optimization effort acceptable. 

Two extreme approaches are exemplified 
by Smith and Chang [1975] and Yao 
[1929]. Smith and Chang use a rigid set of 
“automatic programming” query transfor- 
mation rules similar to the ones discussed 
in Section 3. Their procedure generates 
exactly one access plan, which need not be 
optimal. Yao’s method generates all non- 
dominated access plans possible in a given 
physical environment. While this may be 
feasible in the context of two-variable quer- 
ies, it becomes prohibitively costly for very 
complex queries. 

Other approaches seek a compromise be- 
tween heuristic selection and detailed gen- 
eration of alternative access plans. For ex- 
ample, System R [Chamberlin et al. 1981; 
Selinger et al. 19791 applies a hierarchical 
procedure based on the nested block con- 
cept of SQL. On the lower level, evaluation 
plans for each query block are generated 
and compared. On the upper level, the se- 
quence in which the query blocks are eval- 
uated is determined. Kim [ 19821 notes that 

this concept places too much emphasis on 
the user-specified block structure of the 
query and therefore introduces query 
standardization steps into SQL query pro- 
cessing. 

A similar compromise was chosen in 
INGRES [Youssefi and Wong 19791. The 
heuristic decomposition approach reduces 
a query to a set of subqueries containing at 
most two variables. For each of these 
subqueries a more detailed analysis of its 
optimal implementation is performed. 

A comprehensive procedure for generat- 
ing access plans to solve conjunctive quer- 
ies without universal quantifiers and aggre- 
gates has been proposed by Rosenthal and 
Reiner [1982]. An expanded object graph 
representation is used for modeling evalu- 
ation strategies that exploit auxiliary direct 
access structures. To avoid the generation 
of an excessive number of strategies to be 
generated, the generation of access plans is 
interleaved with the selection step: Strate- 
gies known to be infeasible or dominated 
by other procedures are not created. 

5.2 Cost Analysis of Access Plans 

The selection of physical access plans is 
determined by heuristic rules or is based on 
a cost model of storage structures and ac- 
cess operations [Merrett 19771. In this sec- 
tion, cost models and their integration into 
optimization procedures are reviewed. 

Whereas a few researchers consider 
working storage requirements [Kim 1982; 
Lang et al. 1977; Sacco and Schkolnick 
19821 or CPU costs [Gotlieb 1975; Selinger 
et al. 19791, most cost models are based on 
the number of secondary storage accesses. 
For a given operation, this figure is influ- 
enced by the size of its operands, the access 
structures used, and the size of main mem- 
ory buffers. 

At the beginning of the evaluation, the 
operands are existing data structures of 
known size, such as relations or indexes. In 
later stages, however, most operands are 
results of preceding operations, and the 
cost model must estimate their size by using 
information about the original data struc- 
tures and the selectivity of the operations 
already performed on them. Although there 
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is much ongoing work, no generally ac- 
cepted formulas for estimating the size of 
intermediate results have evolved thus far. 
This results in part from the fact that the 
trade-off between the amount of informa- 
tion used and the accuracy of the result is 
not very well understood. 

In general, the more restrictive the as- 
sumptions about the data, the fewer are the 
parameters needed to compute the size of 
the results of operations. For example, in 
Demolombe [ 19801 a recursive procedure 
for estimating the size of a quantifier-free 
calculus expression is described, for which 
five types of parameters must be known if 
fairly detailed database statistics are avail- 
able. Under more restrictive assumptions, 
however, only three of them are needed. 
The size estimates given by Selinger et al. 
[1979] use only information already exist- 
ing in the database but make many as- 
sumptions about data and queries [Astra- 
han et al. 19801. At the other extreme, Yao 
[ 19791 assumes (implicitly) that detailed 
selectivity data are known; no statement is 
made as to how these data are obtained. 
(See, however, Yao [1977b] for an access 
cost model.) 

More recently researchers recognized the 
need to carefully state and critically review 
all underlying assumptions about database 
characteristics to generate formally valid 
parameter systems that allow one to 

(1) compute a size estimate for any feasible 
operation, and 

(2) compute parameter values for inter- 
mediate results required for further op- 
erations. 

Such techniques view the database state at 
run time as the result of a random process 
that generates relation elements from the 
Cartesian product of the attribute domains, 
governed by some probability distribution 
(usually assumed to be uniform) and by 
general laws (e.g., functional dependencies) 
of the database schema [Gelenbe and Gardy 
1982; Richard 19811. From these assump- 
tions, parameters are derived whose values 
must be known in order to compute the size 
of any intermediate result of complex op- 
erations. For example, Richard [ 19811 dem- 
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onstrates that it is sufficient to know the 
size of all projections in the database if the 
attribute value distributions are uniform 
and independent both within an attribute 
and between attributes of the same domain. 

Christodoulakis [ 1981, 19831 and Mont- 
gomery et al. 119831 have critically reviewed 
such assumptions and have proved that 
they lead to a bias against direct-access 
structures in selection plans. However, no 
practical formulas with more general as- 
sumptions, but without excessive data re- 
quirements, have yet been published. 

The final cost measure is the number of 
secondary storage accesses, not the sizes of 
intermediate results. A large number of re- 
searchers estimate the relationship be- 
tween the two figures [Cardenas 1975; 
Chan and Niamir 1982; Cheung 198213; Luk 
1983; Whang et al. 1983; Yao 1977a; Yu et 
al. 19781. In essence, it depends on the 
physical storage structures involved and 
the proportion of elements to be accessed. 

Assume first that all elements of an op- 
erand of size N have to be accessed. The 
optimal number of secondary storage ac- 
cesses would then be N/B, where B is the 
blocking factor of the operand. This can be 
achieved only if the elements are stored 
densely and it is clear from the beginning 
on which physical records the elements re- 
side. As a counterexample, the so-called 
“segment scan” of System R requires access 
to a superset of the necessary pages to find 
all elements of a relation [Selinger et al. 
1979 1. If it is necessary to read the elements 
in some predetermined sequence, they must 
not only be stored densely but also sorted 
by the given reading order. 

If direct access to a subset of the elements 
is used, the number of secondary storage 
accesses required to retrieve n of the N 
elements will depend on the clustering of 
elements in physical blocks. Most of the 
models cited above assume random place- 
ment of records on pages, which in some 
sense describes a worst case [Christodou- 
lakis 19811. Optimal clustering can reduce 
the number of pages to be accessed to n/B. 

In conclusion, the traditional assump- 
tions about value distributions and element 
placements tend to overestimate costs and 
thus to bias cost estimates against the use 

, 
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of direct-access structures. On the other 
hand, more sophisticated techniques re- 
quire more statistical information about 
the database. The question of how to keep 
such information up-to-date is not yet fully 
resolved. 

5.3 Selection of Access Plans 

How are the cost estimates used in query 
optimization? As mentioned in Section 5.2, 
there are heuristic procedures that do not 
use them at all. Other approaches combine 
heuristic reduction of choices with enumer- 
ative cost minimization in the “end game” 
[Youssefi and Wong 19791. Experiments 
indicate that combinatorial analysis can 
improve database performance consider- 
ably [Epstein and Stonebraker 19801. 

There are two ways to utilize cost esti- 
mates in the selection process. First, the 
costs of each alternative access plan can be 
determined completely [Blasgen and Es- 
waran 1976; Yao 19791. This approach has 
the advantage of covering techniques like 
parallelism or feedback in a realistic way. 
On the other hand, the optimization effort 
is high. 

Second, the cost of strategies can be com- 
puted incrementally in parallel to their gen- 
eration. This approach allows whole fami- 
lies of strategies with common parts to be 
evaluated in parallel, which considerably 
reduces the optimization costs. For exam- 
ple, the method proposed by Rosenthal and 
Reiner [ 19821 retains only the cost minimal 
way to obtain each intermediate result, and 
discards any other method as soon as its 
nonoptimality is detected. 

An extension of this second approach is 
a dynamic query optimization procedure, 
which derives from the observation that, at 
each moment, only the next operation to 
be performed has to be decided. To guar- 
antee overall optimality, only the conse- 
quences of this decision for the remainder 
of the evaluation must be evaluated. A dy- 
namic procedure has actual information 
about all its operands, including interme- 
diate results. This information can also be 
used to update the estimates of the remain- 
ing steps. The dynamic method has two 
drawbacks: its cost and the danger of get- 

ting stuck in local optima if no look ahead 
is applied. However, if used carefully, the 
method can reduce the evaluation costs for 
queries, in which the sizes of actual inter- 
mediate results differ from the expected 
sizes. 

5.4 Support for Multiple Queries 

All of the query evaluation procedures con- 
sidered thus far concentrate on optimizing 
the evaluation of a single query. Chesnais 
et al. [ 19831 have also investigated the per- 
formance effect of multiple users accessing 
a database in parallel. However, query op- 
timization strategies can even go beyond 
simple parallelism by sharing the execution 
costs of common operations among queries. 
Additionally, a strategy that optimizes the 
evaluation of multiple queries simultane- 
ously can consider investments in addi- 
tional access paths, the creation of which 
would not be cost effective for a single 
query. The few existing approaches to mul- 
tiple-query optimization can be classified 
in three groups, according to the time scope 
for which decisions are made: (1) simulta- 
neous optimization of batched queries, (2) 
index selection, and (3) physical database 
design. 

A set of queries submitted by one or more 
users at approximately the same time can 
be batched for more efficient evaluation 
[Shneiderman and Goodman 19761. The 
techniques for batched evaluation are sim- 
ilar to those described in Section 4.3 for 
multivariable expressions. First, results of 
common subexpressions can be shared 
among queries [Grant and Minker 1981; 
Jarke 19841, and subexpressions accessing 
the same physical data page can do so with 
one secondary storage access. Second, tem- 
porary physical access ,paths such as sort- 
ing, hashing, or indexes can be provided 
whose costs pay off for the batch as a whole. 
Finally, results of some queries can be re- 
tained for processing subsequent queries 
[Finkelstein 1982; Hevner and Yao 19811. 
There seems to be no coherent theory in 
this area yet. Kim [1981, 19841 and Jarke 
[ 19841 present language constructs andpre- 
liminary architectures, and a number of 
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ongoing research projects are described in 
IEEE [ 19821. 

Many of the examples in this paper have 
demonstrated the importance of using in- 
dexes for the performance of query evalua- 
tion algorithms. From this viewpoint, in- 
dexes can hardly hurt anywhere but are 
most profitable if they are very selective 
and support access to attributes frequently 
referred to in queries [Gilles and Schuster 
19751. However, index selection must also 
take into account altering transactions be- 
cause they must change the index in addi- 
tion to the base data. The index selection 
problem has been described in several sur- 
veys [Batory 19821 and tutorial papers 
[March 1983; Putkonen 1979; Schkolnick 
1975; Severance and Carlis 19771. Selection 
and maintenance of more general indexes 
that support user views have been investi- 
gated by Roussopoulos [1982a, 1982b]. The 
use of high-level language constructs for 
extended view concepts has been discussed 
by Jarke [1984] and Schmidt [1984]. 

Finally, query optimization influences 
the physical database design. However, 
long-term query optimization is only one of 
many aspects of physical database design 
(see, e.g., Carlis et al. [1981], Carlson and 
Kaplan [1976], Schkolnick [1982], and 
Teorey and Fry [1982]). Important design 
strategies with an impact on query process- 
ing efficiency include the horizontal clus- 
tering of relation elements by attribute 
values [Salton 19781 and the vertical par- 
titioning of attributes by frequency of com- 
bined access [Hammer and Niamir 19791. 

6. NONSTANDARD QUERY OPTIMIZATION 

We have described query optimization in 
the framework of relational calculus queries 
in centralized database systems. While this 
approach covers much of the work done in 
the area, some query-processing problems 
exceed the framework either because of a 
query complexity that goes beyond rela- 
tional completeness or as a result of the 
structure of the underlying physical data- 
base. Without claiming completeness, in 
the following sections we briefly survey 
some important developments. The reader 

is referred to the cited literature for further _ 
details. 

6.1 Higher Level Queries 

Queries expressed in a relationally com- 
plete language retrieve such relation ele- 
ments (or sets of elements) from a database 
that can be described by a predicate of the 
relational calculus. Whereas this method is 
sufficient for most transaction-oriented 
business applications, certain other appli- 
cations may require more complex data ob- 
jects or more powerful query predicates. 
These requirements can be characterized 
as language extensions that yield query lan- 
guages more powerful than the relationally 
complete ones. Optimization techniques for 
such extensions are addressed in this sec- 
tion. 

Hierarchical and network database sys- 
tems support data objects that are more 
complex than flat records and thus contain 
information-bearing access paths [Astra- 
han and Ghosh 19741. Relational interfaces 
to such systems therefore require efficient 
translation of relational queries to naviga- 
tional access programs. (The reverse prob- 
lem-program conversion from network 
code to relational queries-has also been 
studied [Katz and Wong 19821.) Several 
approaches have been described: interpre- 
tative, translational, and view processing. 

Interpretative models (e.g., Zaniolo 
[1979]) directly interpret relational queries 
as sequences of tuple-at-a-time operations 
on a network database. Similarly, direct 
translation methods (e.g., Vassiliou and Lo- 
chovsky [1980]) frequently do not address 
optimization; such methods may yield quite 
inefficient code. Dayal and his co-workers 
[Dayal et al. 1981; Dayal and Goodman 
19821 and Gray [1981, 19841 have devel- 
oped query optimization strategies for net- 
work databases. Alternatively, one can rep- 
resent network structures as relational 
views with particular integrity constraints 
[Rosenthal and Reiner 19841. In this way, 
existing relational view optimization facil- 
ities can be used for compiling an efficient 
navigational program working on the net- 
work database. 
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Applications in computer-aided design 
and manufacture and text processing usu- 
ally work on even more complex objects 
composed of related elements from differ- 
ent relations. On top of a traditional rela- 
tional (or network) database, one can de- 
fine structures that allow access to either 
the whole object or to part of it, using 
multiple views of the data [Johnston et al. 
19831. Another approach is an extension of 
the relational model by nonfirst normal 
form relations [Lamersdorf 1984; Schek 
and Pistor 19821. Such extensions support 
access to substructures by specialized in- 
dexing schemes or use pattern-searching 
mechanisms similar to those used in infor- 
mation retrieval [Davis and Kunii 19821. 
Dayal [ 1983b] investigates the related 
problem of answering queries in generali- 
zation hierarchies, which has to take into 
account the fact that data objects inherit 
properties of more general objects. 

A relational calculus query retrieves a set 
of data as they come from the database, but 
does not support grouping and abstracting 
from the stored data to more complex data 
objects within the query language. The 
grouping of and summarizing over elements 
of the same relation by certain so-called 
category attributes lies in the domain of 
statistical query processing. Some query 
languages offer a limited set of built-in 
aggregate functions to support such appli- 
cations. Aggregate functions can be defined 
as extensions to either the relational cal- 
culus [Klug 1982a] or the relational algebra 
[Ozsoyoglu and Ozsoyoglu 19831, and can 
be evaluated by using nested iteration with 
indexes as described in Section 4 [Klug 
1982131. However, many statistical data- 
bases are characterized by high redundancy 
and a large percentage of null values. 
Therefore the data must be compressed and 
stored in ways that differ from standard 
relational databases. An overview of these 
issues can be found in Shoshani [1982]. 
Special software [Eggers and Shoshani 
19801 and hardware [Bancilhon et al. 1982; 
Hawthorn 19821 have been devised for 
processing queries on such databases. 
Walker [1980] discusses the use of small 
abstracted databases in decision support 
systems. 

Database applications in artificial intel- 
ligence, especially expert systems [Nau 
19831 and natural language user interfaces 
[Marburger and Nebel 1983; Sagalowicz 
19771, require inferences to be performed 
over the raw data coming from the database 
[Buneman 1979; Chang 1979; Minker 1975, 
19781. Whereas parts of such an inference 
mechanism can be provided by traditional 
view mechanisms with some additional op- 
timization [Jarke et al. 1984; Ott 1977; Ott 
and Horlaender 1982; Paige 19821, more 
complex requests-use of recursion, for 
example-must be treated in a different 
way. 

A number of alternative architectures for 
coupling expert systems with DBMSs are 
presented by Jarke and Vassiliou [ 19841. A 
request to the expert system usually trans- 
lates to a sequence of related database calls. 
Optimization techniques include the com- 
bination of multiple tuple-oriented data- 
base calls into set-oriented operations [Ku- 
nifuji and Yokota 1982; Vassiliou et al. 
19841, the simplification of such retrieval 
requests [Grishman 1978; Jarke et al. 1984; 
Reiter 19781, the reordering of conditions 
to be tested [Warren 1981], and the sharing 
of intermediate results [Grant and Minker 
19811, which is particularly useful in exe- 
cuting recursive database calls [Chang 
1978; Henschen and Naqvi 1984; Kellogg 
1982; Minker and Nicolas 19831. A tool 
often proposed in this context is the logic 
programming language Prolog [ Kowalski 
1981 J. Parsaye [ 19831 proposes extensions 
to Prolog specifically designed for database 
and knowledge-base management. 

The language extensions presented in 
this section can be characterized theoreti- 
cally by their expressive power and by 
the difficulty of their evaluation. Chandra 
and Hare1 [1982a, 1982b] analyze several 
classes of higher level query languages, such 
as (in order of increasing language power 
and computational complexity) first-order 
relational calculus queries, Horn clause 
queries, fix-point queries, second-order 
queries, and general computable queries. 
The user of a traditional query language 
has to achieve the power of such high-level 
languages through the use of general pro- 
gramming language constructs in a data- 
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base programming language [Schmidt 
19841. The disadvantage of this solution, 
besides the increased programming effort, 
is that the responsibility for efficient im- 
plementation shifts from the database 
management system to the user. 

0.2 Distributed Databases 

In a distributed database fragments of one 
logical database (the database as seen by 
the user) reside on several physical data- 
bases, each accessed by a separate com- 
puter. Databases can be distributed for 
higher availability of data (through data 
replication [Andler et al. 1982]), improved 
accessibility by the most frequent users 
(through local storage of data [Wong 
1983]), and increased execution speed of 
queries (through parallel processing of 
fragments [Su and Mikkilineni 1982; 
Wong and Katz 19831). Examples of dis- 
tributed database systems include Distribu- 
ted INGRES [Stonebraker and Neuhold 
19771, POREL [Neuhold and Biller 19771, 
SIRIUS [Esculier and Clorieux 19791, 
VDN [Munz 19791, SDD-1 [Bernstein et al. 
19811, and R* [Williams et al. 19821. 

The fact that data are physically dis- 
persed and may be replicated strongly in- 
fluences database design [Chen and Akoka 
19801, concurrency control [Bernstein and 
Goodman 1981c], and query processing. 
Rothnie and Goodman [ 19771 give an over- 
view of the major research issues. 

If data are distributed, the cost of data 
transfer becomes a decision variable rather 
than a constant in the query optimization 
problem. Since communication costs tend 
to dominate local processing costs, query 
optimization requires a completely differ- 
ent objective function: the minimization of 
communication delay, often represented by 
the amount of data transmitted from one 
site to another. 

The primary decision influencing data 
transfer is the selection of the site(s) where 
comput.ations are performed. The general 
strategy is to distribute the evaluation of 
the query rather than collect all the data 
and execute the query at one site (e.g., 
where the query was issued). The benefits 
of this approach have been impressively 

demonstrated by Tanenbaum [1981] and 
Gavish and Segev [1982]. Within this gen- 
eral strategy, the most important tactical 
objectives are the maximal reduction of 
data to be transmitted by local preprocess- 
ing [Forker 19821, and the selection of the 
site(s) where the global operations are per- 
formed (e.g., Bernstein et al. [1981] and 
Ceri and Pelagatti [1982]). If data are rep- 
licated, there is a choice of which copy to 
use in order to minimize data transfer [Ull- 
man 1982; Williams et al. 19821. 

A large number of distributed query pro- 
cessing strategies have been devised. The 
choice among such strategies is influenced 
by several factors. 

6.2.1 Trade-Off between Communication 
and Local Processing Costs 

If the communication lines are relatively 
slow, communication costs usually domi- 
nate the costs of distributed evaluation to 
the extent that all other costs become 
negligible. Some of the more theoretical 
models (e.g., Apers et al. [1983], Hevner 
[1979], and Muthuswamy and Kerschberg 
[1983]) ignore local processing costs alto- 
gether. In practice [Bernstein et al. 1981; 
Smith et al. 19811 there will be a two-level 
optimization procedure that first plans the 
global strategy and then develops an opti- 
mal subquery evaluation plan for each local 
site. 

As the communication speed increases, 
local processing costs have to be taken into 
account [Chu and Hurley 1982; Gouda and 
Dayal 19811: No longer can an arbitrary 
amount of local preprocessing be justified 
to reduce data transfer between sites. 
Kerschberg et al. [1982] report experience 
with a two-computer network that demon- 
strates the relative importance of local 
processing. Of course, simultaneous min- 
imization of data transfer and local pro- 
cessing increases the number of alterna- 
tives to be compared considerably since the 
problem no longer can be decomposed into 
a hierarchy of independent subproblems. 

6.2.2 Network Structure 

The topology of the computer network on 
which the distributed database is imple- 
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mented has an impact on the complexity of 
query optimization. In networks with arbi- 
trary message routing, queuing delays at 
intermediate nodes play an important role 
[Muthuswamy and Kerschberg 1983; Tan- 
enbaum 19811. However, they can be con- 
sidered only within a global optimization of 
all network traffic. To avoid this compli- 
cation, many optimization algorithms (e.g., 
Hevner and Yao [19’79]) assume a fully 
connected network with node-independent 
communication delays. Another simple 
structure is a star computer network 
[Kerschberg et al. 19821, in which a major 
central processor is connected to several 
(usually smaller) local processors. 

The network structure can be homoge- 
neous (i.e., it can consist of processors of 
the same type) or heterogeneous. For a 
homogeneous network (equal processor 
speed, processor-independent linear com- 
munication costs), Chu and Hurley [1982] 
have proved a number of theorems, the 
application of which restricts the search 
space for optimal solutions. For instance, 
the local preprocessing of monadic opera- 
tions (restriction, projection) is shown to 
be globally optimal under these assump- 
tions. Even within a homogeneous com- 
puter network, a heterogeneous distributed 
database may exist if the local databases 
work on different data models or DBMS 
[Chan et al. 1983; Smith et al. 19811. 

6.2.3 Data Distribution Strategy 

A relation can be physically partitioned 
horizontally (the set of tuples is divided 
into subsets according to the pattern of 
local reference), vertically (the set of attri- 
butes is partitioned according to different 
applications at different locations), or into 
arbitrary fragments, with or without over- 
lap among them [Mahmoud et al. 19791. 

Gavish and Segev [1983] describe an al- 
gorithm for optimizing set operations in 
horizontally partitioned relational data- 
bases. The problem is proven to be com- 
putationally untractable, and heuristics for 
its solution are developed. Ullman [1982] 
describes the use of “guard conditions” for 
simplifying queries on horizontally distrib- 
uted databases by identifying the relevant 

fragments. Work on general nondisjoint 
fragments has just begun [Maier and Ull- 
man 19831. 

The main focus of the existing literature 
is on vertically distributed databases. In 
this case, restriction and projection can be 
performed locally; research has therefore 
concentrated on the optimal implementa- 
tion and scheduling of joins and other mul- 
tirelation operations. The main tool used 
in this context is the semijohn operation 
described in Section 4.3. As discussed, tree 
queries can be completely solved by using 
semijoins. For the special case of chain 
queries, an efficient algorithm exists that 
computes the optimal semijoin schedule 
when the reduction factors of each semijoin 
are known [Chiu et al. 19811. Similar algo- 
rithms for general tree queries are given by 
Chiu and Ho [1980] and Gouda and Dayal 
[ 19811. However, owing to the computa- 
tional complexity of exact methods, heuris- 
tic procedures are normally preferred 
[Bernstein et al. 1981; Chang 1982; Cheung 
1982a; Yu and Chang 19831. 

Some early algorithms do not use semi- 
joins. Wong [1977] employs a hill-climbing 
procedure to improve incrementally on an 
initial solution that processes the complete 
query ‘at one site. Epstein et al. [1978] 
present a model for minimizing processing 
time or network traffic separately for each 
operation in a query. No global optimality 
is guaranteed. The optimization algorithm 
for R* (a distributed extension of System 
R [Williams et al. 19821) performs an ex- 
haustive search over combinations of sev- 
eral alternative join strategies in multijoin 
queries. Within its search space and the 
limits of data estimation, an optimal solu- 
tion is found [Daniels 1982; Daniels et al. 
1982; Ng 1982; Selinger and Adiba 19701. 

As in the centralized case, many distrib- 
uted query evaluation algorithms have been 
criticized for either assuming too much sta- 
tistical information to be practical or for 
making unrealistic simplifications. Mu- 
thuswamy and Kerschberg [1983] describe 
a procedure for obtaining detailed database 
statistics by observing database usage. 

The computational complexity of the dis- 
tributed query optimization problem has 
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lead to the same phenomenon that we ob- 
served for centralized queries: One group of 
researchers is looking for optimal solutions 
in special cases, while another employs gen- 
eral heuristics in order to be able to answer 
all queries. If one plans to implement a 
distributed DBMS, the challenge is to com- 
bine both approaches in a homogeneous 
way. A good example of such a comprehen- 
sive strategy, which includes the efficient 
handling of fragments, data replication, 
and dynamic access plans (avoiding some 
of the aforementioned pitfalls of compli- 
cated statistical estimates), is given by Yu 
and Chang [ 19831. 

0.3 Database Machines 

The use of database machines is motivated 
primarily by the goal of relieving a general- 
purpose host computer from the burden of 
database processing so that overall system 
performance may be improved. Off-load- 
ing DBMS functionality from the host 
to a back-end database machine can be 
achieved with a software-oriented or hard- 
ware-oriented approach. 

In the software backend approach (sur- 
veyed, e.g., by Maryanski [1980]), the da- 
tabase-together with DBMS software-is 
transferred to a standby general-purpose 
computer. The software back end com- 
pletely processes each database request, 
thus enabling the host to execute nonda- 
tabase tasks in parallel. Another attractive 
property of the approach is the reasonable 
cost of conventional computers. For very 
database-intensive applications, however, 
the software back-end approach does not 
seem to be appropriate. In these situations, 
the back-end computer itself becomes the 
system bottleneck since it has the same 
limitations as a general-purpose host. Over- 
all performance may be even worse than in 
a host-only configuration because of the 
additional interprocessor communication 
requirements. 

In such a case, a hardware backend ap- 
proach (surveyed, e.g., by Hsiao [1979] and 
Langdon [ 19791) could be chosen. From the 
viewpoint of query optimization, hardware 
back ends can be used to support important 
optimization strategies, such as early eval- 

uation of restrictive operations and parallel 
processing, by placing on-board logic as 
close as possible to the base data and divid- 
ing labor among existing hardware compo- 
nents. 

In general, a hardware back end consists 
of a set of cooperating special-purpose proc- 
essors. A wide bandwidth of architectural 
alternatives exists, ranging from the asso- 
ciation of identical processors with disjoint 
fragments of the database to the assign- 
ment of specific processors to different 
DBMS functions; these assignments can be 
made either statically or dynamically. 

The so-called “cellular logic” [Su 19791 
is characterized by the fragmentation of the 
database (e.g., residing on a disk) into 
equal-sized cells (e.g., disk tracks), each of 
which is associated with a special-purpose 
processor. Usually, these processors have 
an identical repertoire and are connected 
with a master processor controlling the 
concurrent operations of its slaves. Various 
cellular logic prototypes, such as CASSM 
[ Su and Lipkovsky 19751, RAP [ Ozkarahan 
19821, and RARES [Lin et al. 19761, have 
received wide attention. 

Some designs of database machines have 
also experimented with associative arrays 
[Berra and Oliver 19791. However, owing 
to their relatively high cost and limited 
capacity, they do not constitute a realistic 
solution for the permanent storage of entire 
databases. Associative arrays therefore are 
usually proposed to be used as staging de- 
vices for relatively inexpensive mass stor- 
age devices. 

The specialization of processors to spe- 
cific DBMS functions has been realized in 
a number of database machine architec- 
tures. Specific cost models [Bernadat 19831 
and optimization algorithms [Valduriez 
and Gardarin 19841 have been developed. 
In the DBC [Banerjee and Hsiao 19791, 
access control, directory maintenance, and 
query processing are performed by different 
computers. The dynamic assignment of sin- 
gle processors to query-processing tasks, 
such as the evaluation of distinct subquer- 
ies, has been pursued in DIRECT [Dewitt 
19791, as well as the search processor of the 
Technical University of Braunschweig 
[Leilich et al. 19781. More recently, LSI 
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and VLSI technology have been explored 
for the purposes of close integration of data 
storage and query-processing capabilities, 
as well as hardware implementations of 
language constructs usually available in 
high-level query languages [Kim et al. 1981; 
Menon and Hsiao 19811. 

7. SUMMARY 

An overview of logical transformation tech- 
niques and physical evaluation methods for 
database queries was given, using the 
framework of the relational calculus. It was 
shown that a large body of knowledge has 
been developed to solve the problem of 
processing queries efficiently in conven- 
tional centralized and distributed database 
systems. 

Query optimization research is still an 
active field. Promising directions include 
the development of simple yet realistic cost 
estimates, the optimization of queries on 
databases with deductive or computational 
capabilities, and the simultaneous optimi- 
zation of multiple queries and update trans- 
actions. Other interesting areas only briefly 
addressed in this survey are query optimi- 
zation in database systems that utilize more 
advanced access paths, such as multiple- 
attribute indexes or database machines, 
and query optimization in systems that 
work on the complex data structures re- 
quired for artificial intelligence, office, sta- 
tistical, decision support, or computer- 
aided design and manufacture applications. 
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