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Abstract We present an algorithm, witch, that learns to detect spam hosts or pages

on the Web. Unlike most other approaches, it simultaneously exploits the structure of

the Web graph as well as page contents and features. The method is efficient, scalable,

and provides state-of-the-art accuracy on a standard Web spam benchmark.

1 Introduction

Adversarial Information Retrieval [15] studies how to perform information retrieval

tasks, such as searching or ranking, in collections in which some objects have been

maliciously manipulated. The most prevalent form of such manipulation is spam, a

problem that pervades most electronic communications.

Web spam manifests itself as web content generated deliberately for the purpose

of triggering unjustifiably favorable relevance or importance of some Web page or

pages [18]. It has been identified as one of the main challenges Web search engines

need to address [21], as it not only deteriorates the quality of search results, but also

weakens the trust between the user and the search engine provider, and wastes a

significant amount of computational resources in the search engine.

It has been observed that spam and non-spam pages exhibit different statistical

properties [16], and this difference can be exploited for building automatic classifiers.

In fact, a number of machine learning approaches to Web spam detection have been

shown effective [26,28,25,23].

From a machine learning perspective, the spam detection task differs from a typi-

cal classification task since not only do we have standard features available for every
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page/host, but we are also given a directed hyperlink structure on our data as well. A

hyperlink often reflects some degree of similarity [14,31] among pages. Complex pat-

terns can be observed in the hyperlinks; for instance, in the particular case of spam it

has been observed that non-spam hosts rarely link to spam hosts, even though spam

hosts will regularly link to non-spam hosts.

The techniques proposed to date for exploiting link-information in web spam clas-

sification fit within roughly three categories. One group of techniques analyzes the

topological relationship (e.g.: distance, co-citation, etc.) between the Web pages and a

set of pages for which labels are known [19,6,24,32,30,22]. Another option is to extract

link-based metrics for each node and use these as features in any standard classification

algorithm [3]. Finally, it has been shown that the link-based information can be used

to refine the results of a base classifier by re-labelling using propagation through the

hyperlink graph, or a stacked classifier [11,17].

In this paper we present a learning algorithm that we call witch, for Webspam

Identification Through Content and Hyperlinks, that directly uses the hyperlink struc-

ture during the learning process in addition to page features. Specifically, we learn a

linear classifier on a feature space using an SVM-like objective function. The hyperlink

data is exploited by way of graph regularization, which produces a predictor with the

goal that predicted values will vary smoothly between linked pages. Our results suggest

that this method of SVM with graph regularization is highly effective at detecting Web

spam, outperforming all other state-of-the-art methods that we have implemented.

The primary contributions of this work are as follows:

– We propose a novel approach for Web spam classification using a graph-regularized

classifier.

– We demonstrate the effectiveness of this approach in a standard reference collection

task.

– We show that our method performs well even with little training data.

Ours is, to the best of our knowledge, the first technique for spam detection that

simultaneously uses features and the hyperlink graph directly for training. Note that

these features can be a combination of any type of features such as content-based and

link-based features.

The rest of this paper is organized as follows. Section 2 describes the learning

schema we propose. Section 3 discusses various design choices such as the graph regu-

larization function. Finally, Section 4 compares the performances of our algorithm with

several state-of-the-art spam detection techniques.

2 Learning schema

For the remainder of this paper, we will discuss classification of hosts as spam or non-

spam. A host is a group of Web pages sharing the same “host” component in their

URLs. All techniques can be similarly applied to individual pages as well. Assume we

are given the following:

– a set of l labeled examples (x1, y1), . . . , (xl, yl) ∈ Rd ×{−1, +1}, where xi denotes

the d-dimensional feature vector associated with the i-th host and yi is its label:

+1 for spam and −1 for non-spam;

– a set of u unlabeled examples, xl+1, . . . ,xn ∈ Rd, with n = l + u; and
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– a weighted directed graph whose nodes are x1, . . . ,xn. Let E be the sets of pairs

(i, j) whenever node i is connected to node j, and let aij ≥ 0 be the weight of

the link from xi to xj . (The weights can be constructed in various ways, which we

discuss in Section 3.)

We define the hinge function, [x]+ , max(0, x), for any real value x ∈ R. For

convenience, we will often write X for our data matrix, where row i is xi. Similarly,

the vector Y is the corresponding column vector of labels, Yi , yi.

2.1 Learning with Graph Regularization

Suppose we want to learn a linear classifier f(x) = w ·x. A familiar approach is to train

a linear Support Vector Machine (SVM) [29]. In this case, w is found as the minimizer

of the following objective function:

Ω(w) =
1

l

lX
i=1

[1− yi(w · xi)]
p
+ + λw ·w, (1)

where λ is a regularization parameter and p is either 1 (hinge loss) or 2 (quadratic

loss). The above objective function captures the necessary trade-off between fitness

and complexity, for we would to choose w to correctly classify our training data while

maintaining a large margin. Here we use the hinge function to represent the loss on

the training data, but any convex loss function R(·, ·) may be used. Throughout the

remainder of the paper, we employ the squared hinge loss,

R(t, y) , [1− ty]2+,

which is convenient as it provides a differentiable objective which can easily be opti-

mized by any primal optimization algorithm. The second term of (1), w ·w, represents

the inverse size of the margin and is often referred to as the regularization term.

For the special case of classification tasks on the Web, one has the additional

advantage of the hyperlinks between nodes. Hyperlinks can be represented as a directed

graph with edge set E. Of course, hyperlinks are not placed at random, and it has been

shown empirically that they imply some degree of similarity between the source and

the target node of the hyperlink [20,14]. Based on this observation, it is natural to add

an additional regularizer to the objective function:

Ω(w) =
1

l

lX
i=1

R(w · xi, yi) + λw ·w + γ
X

(i,j)∈E

aijΦ(w · xi,w · xj), (2)

where aij is a weight associated with the link from node i to node j. The first two terms

correspond to a standard linear SVM described above. The third term enforces the

desired graph regularization described above. The function Φ represents any distortion

measure, and is chosen according to the problem at hand.

The objective function (2) was first introduced in [5] but in that paper the graph

is not given at hand and is constructed from the examples. It was also used for web

page classification in [31]. In both cases, Φ was chosen to be Φ(u, v) , (u − v)2. This

particular metric, “squared distance”, encodes a prior knowledge that two neighbors
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should have similar predicted values. This case has been well studied [4] and the asso-

ciated regularizer can be rewritten in terms of the n × n Graph Laplacian matrix L,

defined by

Lij ,

(
−aij i 6= jPn

k=1 aik i = j.
(3)

We may now write X
(i,j)∈E

aijΦ(w · xi,w · xj) = w>X>LXw. (4)

It is important to note that squared distance is symmetric on the input. One novelty

of our proposed method is that we utilize asymmetric graph metrics that are tuned

to the particular task of Web spam classification. With spam, hyperlink direction is of

great importance since we do not expect genuine hosts to link to spam hosts even when

links in the opposite direction are quite common. This has been empirically confirmed in

[11,17]. Thus, we will also consider “positive distance squared” as a distortion measure,

that is where

Φ(u, v) = max(0, v − u)2.

This choice of Φ penalizes any solution for which a node i points to a node j with

higher spaminess. By construction, spam nodes are labeled 1 and non-spam nodes -1.

Thus, a higher value of w · xi indicates a higher predicted spaminess. This choice of

Φ does not give a simple representation of the regularization in terms of the Graph

Laplacian, yet we can still efficiently optimize (2) as explained in section 2.3.

In Section 3.2 we provide a much more detailed discussion of the choice of graph

regularizer and its effect on the performance.

2.2 Additional Slack Variables

When a variety of useful features are available for each node in our graph, the above

optimization may be sufficient to predict whether a host is genuine or not. However,

in many cases such features are not available, or are simply not useful for the task at

hand. In this case, a simple linear classifier w ·x on the provided feature space may be

inadequate.

This problem can be overcome by introducing a parameter zi for every node i,

and learning a classifier of the form f(xi) = w · xi + zi. This extra term can be

seen as an additional slack variable that gives more freedom to the learned classifier.

The introduction of an addition slack variable per node was also proposed in [31]. As

also suggested in [31], however, it is necessary to regularize the vector z = [zi]
n
i=1

appropriately.

Our new objective becomes:

Ω(w, z) =
1

l

lX
i=1

R(w·xi+zi, yi)+λ1w·w+λ2z·z+γ
X

(i,j)∈E

aijΦ(w·xi+zi,w·xj+zj).

(5)

Here we introduce two regularization parameters λ1 and λ2 for controlling the values

of both w and z.

The latter objective function is the basis for witch, which we now summarize in

Algorithm 1.
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Algorithm 1 witch

Params: λ1, λ2, γ, convex function Φ(·, ·)
Input: labeled training set (x1, y1), . . . , (xl, yl)
Input: unlabeled set xl+1, . . . ,xn

Input: hyperlink graph E with edge weights {aij}(i,j)∈E

Compute:
w, z← arg min

w,z
Ω(w, z),

with Ω defined in (5).
Predict: label node i as sign(w · xi + zi).

2.3 Optimization

The unconstrained objective function (5) can be efficiently minimized in the primal

using the simple techniques described for instance in [12]. This is one of the main

differences with [31] which proposes a dual algorithm for solving a similar problem.

But as pointed out in [12], primal training is much faster than its dual version in the

case of linear classifiers. Below, we present two different primal methods for training.

Conjugate Gradient. Since the objective function is convex and differentiable,

one can simply use nonlinear conjugate gradient [27] to optimize it. This is a standard

and very efficient method for nonlinear optimization and it only requires the computa-

tion of the gradient. For R(t, y) = (1− ty)2+ and Φ(u, v) = max(0, v−u)2, the gradient

with respect to w is given by:

1

2

∂Ω

∂w
=

1

`

X
{i: yisi<1}

yixi(yisi − 1) + λ1w + γ
X

(i,j)∈E

si<sj

aij(sj − si)(xj − xi), (6)

where we define the score si , w · xi + zi. The gradient with respect to z is similar.

Note that evaluating (6) requires O(nd) operations to compute the predictions si and

O(`d+|E|d) operations to compute both sums. Assuming that the number of conjugate

gradient iterations is independent of the size of the training set, which is generally true

in practice, the total complexity is O(nd) assuming that |E| = O(n). In terms of

memory requirement, it depends on whether or not the graph can fit into memory. In

both cases, we have to store zi and w ·xi which are 2n numbers. If possible, it is better

to load the graph in memory, but if it is too large, it can be read from disk. The number

of times it has to be read is equal to the number of conjugate gradient iterations which,

in our experiments, was typically on the order of 100. Hence, this algorithm can scale

up to very large graphs including, potentially, the entire web graph.

Alternating Optimization. Let us rewrite the objective function (5) as a function

of the the spam scores si = w · xi + zi:

Ω(w, s) =
1

l

lX
i=1

R(si, yi)+λ1w ·w+λ2

nX
i=1

(si−w ·xi)
2 +γ

X
(i,j)∈E

aijΦ(si, sj). (7)

We propose to minimize (7) by alternating optimization on w and s, the advantage

being that each of the steps can be performed using standard algorithms:
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1. Optimize w (fixed s):

Ignoring the term independent of w, one has to minimize

λ1w ·w + λ2

nX
i=1

(si −w · xi)
2.

This is standard regularized linear regression on the entire dataset where the targets

are the si. Note that it would be straightforward to extend this step to nonlinear

architectures: any regression algorithm can be used here.

2. Optimize s (fixed w):

For the sake of simplicity, let us consider the case where the loss functions are

quadratic: R(t, y) = (t − y)2 and Φ(u, v) = (u − v)2. The derivative of (7) with

respect to si is

1

2

∂Ω(w, s)

∂si
=

1

l
bi(si − yi) + λ2(si −w · xi) + γ

X
j

(aij + aji)(si − sj),

where bi = 1 for labeled nodes (i.e. i ≤ l) and 0 otherwise. Note that in the last

term the sum is over all j, but aij is defined to be 0 if there is no link from i to j.

At the optimum, the derivative is 0 and

si =

1
l biyi + λ2w · xi + γ

P
j(aij + aji)sj

1
l bi + λ2 + γ

P
j(aij + aji)

.

In other words, the optimal si is a weighted average of yi, w ·xi and all spam scores

sj for all neighbors j of i. Note that when λ2 and γ go to 0, we recover that for a

labeled node, si ≈ yi. So the fix-point solution is of the following form:

s = v + Ms, (8)

with

vi =
1
l biyi + λ2w · xi

1
l bi + λ2 + γ

P
j(aij + aji)

and Mij =
γ(aij + aji)

1
l bi + λ2 + γ

P
j(aij + aji)

. (9)

As for PageRank and other standard propagation algorithms, equation (8) can be

solved by iterating from an arbitrary starting point s0:

st+1 = v + Mst. (10)

The fact that maxi
P

j Mij < 1 ensures via the Perron-Frobenius theorem that

the largest eigenvalue of M is less than 1 and that this iterative procedure will

converge.

The overall algorithm uses only standard techniques (regression and graph propaga-

tion) and is summarized in Algorithm 2. It is also related to the method of “co-training”

[7]. We have indeed two complementary “views”, one corresponding to the features as

well as another to the graph, and at each iteration the training within one view is

leveraged for the other. More precisely, the feature-based classifier training can benefit

from an enriched training set containing all the unlabeled pages along with “pseudo-

labels” predicted from the graph regularization. Conversely, the graph regularization

(a.k.a. the label propagation mechanism) does not only rely on the labeled dataset
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Algorithm 2 Minimization of (7) based on alternate optimization.

Input and parameters are as in Algorithm 1
Compute: initial classifier f based on labeled data (x1, y1), . . . , (xl, yl).
Set: si ← 0.
repeat

Compute: output of the classifier f(xi) for all the pages (labeled and unlabeled).
Compute: vi as in (9) (simply replace w · xi by f(xi)).
repeat

s← v + Ms.
until Convergence
Compute: regression solution f on (x1, s1), . . . , (xn, sn)

until Convergence

as in standard propagation algorithm such as [32,22], but also takes into account the

labels predicted by the feature-based classifier.

Finally note that, for computational reasons, training the feature based classifier

on the entire set (x1, s1), . . . , (xn, sn) might not be feasible. In the same spirit as in

co-training, one might restrict the training set to the set of examples for which the

pseudo-labels si are estimated with enough confidence.

The alternate optimization method may be probably slower to converge than the

direct conjugate gradient descent described above. On the other hand, it easier to

implement and more scalable as operations on the features and the graph are performed

separately. For the particular dataset employed in the present paper, the corpus was

quite small we have therefore only implemented the conjugate gradient method.

Note on Retraining. Before proceeding to the next Section, we emphasize one

algorithmic difficulty of using graph regularization for the task of web spam prediction.

Clearly, the Web graph is not static; pages appear and disappear constantly. One sees

that, for any of the proposed optimization methods, we must retrain entirely for each

modification in the graph, since node labels are heavily dependent on their neighbors.

Strictly speaking, this is true, yet the story is not quite as bad as it seems. Minor

additions to the graph are unlikely to make significant changes to the solution of w,

a fixed-dimensional vector that was already trained on a large amount of data. The

addition of a new node i, however, will require learning a new slack variable zi. But

this value can be chosen to optimize (5) with all other neighboring node scores fixed,

a very fast computation. The resulting joint solution will be nearly optimal, and full

updates can be performed occasionally from here with a “warm start”.

3 Design Choices

We note that the choice of edge weights and the choice of graph regularizer contribute

substantially to algorithmic performance. In this section we present several choices

and test the behavior of our method with respect to each. The specific details of the

experimental setting are deferred to Section 4.

3.1 Graph Weights

For each pair of nodes i, j, we are provided with the number of links ni,j from i to j

(indicating how many links exist from a page in host i to a page in host j). Since our
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algorithm requires a weighted graph on the set of nodes, we must decide how to choose

the weights {ai,j}. There are several natural choices at hand:

1. Absolute weights: ai,j , ni,j

2. Binary weights: ai,j , 1[ni,j > 0]

3. Square-root weights: ai,j ,
√

ni,j

4. Logarithmic weights: ai,j , log(1 + ni,j)

We tested these choices in the benchmark collection for Web spam described in

detail in Section 4. Among these, logarithmic weights tended to give the best perfor-

mance in terms of AUC (Area Under the ROC Curve). In a different setting, logarith-

mic weights were also shown to be effective for propagating trust in [30]. Square-root

weights had similar performance. Absolute weights were generally a poor choice, as

hosts with a vast number of outgoing or incoming links were over-penalized by the

regularization. The performance results1 with different weighting schemes are shown

in Table 1.

Table 1 Performance For Different Graph Weights

Weighting method ai,j AUC

Absolute ni,j 0.9524
Binary 1[ni,j > 0] 0.9587
Square root

√
ni,j 0.9632

Logarithmic log(1 + ni,j) 0.9646

3.2 The Graph Regularizer Φ

Since we expect a host’s “spaminess” (or similarly, “authenticity”) to be preserved

locally within the web, the graph regularization function Φ(·, ·) ought to encode how

we enforce this locality in our predictions. If node i links to node j, then Φ(fi, fj)

should measure how “unnatural” the (fi, fj) link pair is.

We have already defined two possible regularization functions:

Φsqr(fi, fj) , (fi − fj)
2

Φ+
sqr(fi, fj) , max(0, fj − fi)

2 = [fj − fi]
2
+

The first of these penalizes the square of any deviation between the predicted values

of i and j. Note that this penalization is independent of the direction of the link, so

a nonspam node will be penalized if it receives a link from a spam node. Naturally

we assume that nodes have control only over their out-links and typically not their

in-links.

The second function only penalizes the predicted spam scores when the node creat-

ing the link has a lower predicted spam value than the link’s destination. By employing

1 These values do not represent the final algorithmic performance since we did not use any
model selection to select hyperparameters. As here our goal is only to compare different graph
weights, we simply checked performance across a range of parameter choices and, for each
weighting scheme, we recorded the best test-set performance. Algorithmic results with model
selection can be found in Table 3.
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Fig. 1 Performance as a function of the regularization parameter α. When α = 0, only the
nonspam→spam links are penalized. When α = 1 any deviation in the predicted spam value
between linked hosts incurs a cost.

Φ+
sqr, we are inherently assuming that, while it is perfectly consistent for node spami-

ness to decrease from the originator of a link to its destination, it is less likely that

spaminess would increase.

For the task at hand, the latter choice would appear to be most appropriate. In

such a directed network, we certainly expect good nodes to point to good nodes and

likewise bad to point to bad. Furthermore, since bad nodes do not want to appear

bad and thus can freely insert links to fool a search engine, it is perfectly natural to

observe bad nodes pointing to good. On the other hand, we tend to expect that good

nodes have no obvious incentive to link to bad nodes, and thus we expect to only rarely

observe good-to-bad pairs.

We have also observed this empirically: among the labeled nodes within the web

collection described in Section 4, only 1.8% of the out-links from non-spam hosts point

to spam hosts, while 14.7% of out-links from spam hosts point non-spam hosts.

Interestingly, we have found that the best choice of regularization is neither of the

above but rather a mixture of the two. For any α ∈ [0, 1], define:

Φα(a, b) , αΦsqr(a, b) + (1− α)Φsqr+(a, b)

=

(
(a− b)2 when a ≥ b

α(a− b)2 when a < b.

We found this mixed regularization to be extremely effective, and surprisingly a

great improvement over either using only Φsqr or only Φ+
sqr. In Figure 1, we plot

performance as measured by AUC, as a function of the choice of α. The left side is

performance using Φ+
sqr, while the right side is using Φsqr.

The improvement from the mixed regularization appears to be due to the following

observation. Relying solely on Φ+
sqr to regularize correctly fails on nodes that have

only a handful of incoming links from spam and/or outgoing links to nonspam hosts,

such as the one described in Figure 2. For these nodes, any spaminess score will be

unregularized.

For such nodes, whose incoming links are all bad and outgoing links are all nonspam,

to obtain a more useful spaminess score, we must rely more on incoming and outgoing
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Fig. 2 According to the directed graph regularization Φ+
sqr, the node in the middle can have

any value. But empirical observations suggest that the node in the middle is more likely to be
non-spam than spam. A small amount of undirected regularization can fix this problem.

links regardless of their relative spam values. Thus a small amount of Φsqr aids in

dealing with such special cases. As we see from the plot, α = 0.1 is roughly the optimal

value, thus 10% of “undirected regularization” is all that we need, and performs much

better than purely directed graph regularization Φ+
sqr.

For the remainder of the results in the paper, we report performance results using

Φ0.1, i.e. where α = 0.1, as the regularization function. The value of α can be tuned

more carefully, but performance is relatively stable around this value.

4 Experimental Evaluation

We now proceed to compare experimentally the performance of witch with several

state-of-the-art methods.

4.1 Dataset

We experimented with the WEBSPAM-UK2006 spam collection [10] for all the results

reported in this section. This public collection is the same used in the Web Spam Chal-

lenge Tracks I and II [2], which were recent competitions to test Web Spam Detection

methods.

The challenge dataset is a graph of 11,402 hosts in the .uk domain. Out of these,

7,473 were labeled. The hyperlink graph is represented as a list of 730,774 triples

(nodei, nodej , #links) which specify the number of links from host i to host j.

We used a set of 236 features proposed for the challenge including: content-based

features such as average word length, number of words in the title, link-based features

such as PageRank, number of neighbors, and others proposed in [3] and [26]. Given

the variance in scale of these different data types, we chose to normalize the features

by replacing each feature value xij with the fraction of instances having a value of less

than xij for feature j. Due to missing page contents, a subset of available features was

missing from 2,458 of the hosts. None of these hosts were part of the test set, but some

of them were part of the labeled training set. We have discarded the labels of these

hosts and ended up using a training set of 4,363 hosts, which is slightly smaller than

the original one containing 5,622 labels. We still kept the hosts with missing features

(as unlabeled) and set these feature values to 0.

The training/testing split was fixed and is the same that was used in the Web

Spam Challenge Track I (aside from subtracting roughly 1,300 labels from the training
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set). For all the results we report, the algorithm worked in a transductive2 setting: the

complete graph was given as input, including features for all nodes, with a subset of

labelled nodes were given for training. We also cite performance for smaller training

sets, which were obtained by sub-sampling the training set. Performance was always

measured on the same test set of 1,851 hosts.

witch requires the choice of three hyperparameters, λ1, λ2, γ. We maintained a

hold-out set consisting of a random 20% sample of the training data. On a 7×7×7 grid

of parameters, we trained witch for each combination and chose the triple (λ1, λ2, γ)

that returned the best test performance on these data. The final results we report in

Table 3 were obtained after validation.

4.2 Optimization Methods

We note that for all experimental results reported herein, for our proposed class of al-

gorithms, the optimization technique we employed was the conjugate gradient method,

described in Section 2.3. The optimization procedure also implemented a backtracking

step, as described in Algorithm 9.2 in [9], with parameters α = 0.2, β = 0.5. The final

optimization was terminated once the decrement in the objective function dropped

below a threshold of 10−6.

4.3 Performance Metric

To measure the performance of each method, we chose the metric Area Under the ROC

curve (AUC). AUC provides a natural measure of accuracy of a predicted ranking, and

requires only that the algorithm outputs an ordering of the test set.

Others have utilized the F-Measure, which combines precision and recall, to de-

termine performance. The drawback of F-Measure is that it requires a fixed choice of

classification threshold, and the result can be very sensitive to the choice of threshold.

Also, because the training and test sets have not been labeled by the same people,

the fraction of spam hosts in them is different. This means that the threshold learned

by various classifiers can be very different from the one which would yield the best

F-Measure on the test set.

Finally, for practical applications on Web search, a real-valued “spaminess” predic-

tion is more useful than a binary prediction, given that the spaminess will be combined

with other features to give the final ranking of the search results. Also, its particular

weight may be different on different search contexts.

4.4 Comparison with Variant Algorithms

Recall that witch takes advantage of three primary tools in training: host features,

slack variables, and regularization along the hyperlink graph. Each of these elements

plays a different role in the algorithm and contributes to performance at varying levels.

To see the relative importance of each, we now consider alternative approaches that

involve various subsets of the proposed techniques.

2 Transduction is a learning paradigm where the test set is known at training time [29].
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1. Only Features. We train a linear classifier on the given feature space with no

graph regularization. The algorithm is effectively a Support Vector Machine except

that we use squared hinge-loss. The final label on node i is given by w · xi, where

w is the minimum of the objective

Ω(w) =
1

l

lX
i=1

[1− yiw · xi]
2
+ + λw ·w.

2. Features + Graph Regularization (GR). We train a linear classifier on the

provided feature space but we additionally regularize according to the hyperlink

graph structure. As above, we label node i with w · xi, where w minimizes the

objective

Ω(w) =
1

l

lX
i=1

[1− yiw · xi]
2
+ + λw ·w + γ

X
(i,j)∈E

aijΦ0.1(w · xi,w · xj).

3. Slack Variables + GR. We ignore features and directly learn the label using

graph regularization. Here, we learn node i’s label directly as zi, where the vector

z is found by minimizing

Ω(z) =
1

l

lX
i=1

[1− yizi]
2
+ + λz · z + γ

X
(i,j)∈E

aijΦ0.1(zi, zj).

Note that this method belongs to the same family as TrustRank [19] and Anti-

Trust Rank [24] algorithms. Indeed, these algorithms do not use feature vectors

and are only based on the hyperlink graph. Both algorithms also exploit the fact

that normal hosts rarely link to spam hosts.

4. Features + Slack + GR (witch). We now utilize all tools available. We simulta-

neously train a linear classifier and slack variables, and we regularize the predicted

values along the graph. The predicted label of node i is w ·xi+zi, where the vectors

w and z are found by minimizing

Ω(w, z) =
1

l

lX
i=1

[1− yi(w · xi + zi)]
2
+ + λ1w ·w + λ2z · z

+ γ
X

(i,j)∈E

aijΦ0.1(w · xi + zi,w · xj + zj). (11)

We observe that, technically, this list is not exhaustive. However, we see that upon

closer inspection the remaining combinations do not produce any new methods. In

particular, the following Lemma shows that using slack variables without graph reg-

ularization is equivalent to method 1 above but with a larger value of λ. Given that

we have optimized λ by cross-validation in setting 1, this implies that we cannot get a

better result in setting 4 when γ = 0 than in setting 1. In short, “Features + Slack” is

not in fact an alternative when the squared hinge loss is used. This is stated explicitly

in the following lemma, whose proof we postpone to the appendix.

Lemma 1 The solution of (11) when we set γ = 0 is the same as that obtained in

objective 1 when we set λ = λ1

“
1

lλ2
+ 1

”
.
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In Table 3 we report performance for each of the above four methods. The most

stunning result appears to be the effect of the slack variables, which provided a sig-

nificant boost in performance. Training only the slack variables and ignoring features

entirely significantly outperforms solely feature-based methods. In addition, utilizing

the features in combination with slack provided another reasonable benefit.

To see how performance depends on subset size, in Figure 3 we also compare each

of the above algorithms for seven different training-set sizes. To obtain these AUC

values, we trained a classifier on a large parameter grid for each of the 7 × 4 = 28

subset-size×method pairs. After finding the best parameter settings for each subset-

size×method, we retrained 10 classifiers with different training sub-samples of the same

size and took the median AUC performance of these. This was to reduce variance which

was particularly high for the smaller subsets.

 1%  2%  5% 10% 20% 50% 100%
0.75

0.8

0.85

0.9

0.95

1

Labeled set size

A
U

C

 

 

Features
Features + GR
Slacks + GR
Features + Slacks + GR

Fig. 3 Performance of witch, and variants, as described in Section 4.4. Experiments have
been repeated 10 times with random choices of the subsets. The median result is plotted.

The improvement coming from the slack variables can be interpreted as an under-

fitting problem: there apparently exists no w which results in a good spam detector. We

can think of three main reasons for this. First, probably the class of linear functions

is too restrictive for this classification problem, particularly when the features may

have been adversarially generated with the purpose of appearing authentic. Second,

the labeling task is quite subjective and there is often disagreement among human

editors [10], and thus the labels are quite noisy. Third, the feature set may not be

rich enough. The additional slack variables introduce enough degrees of freedom to

accurately model a spam classifier under these circumstances.

4.5 Comparison with Web Spam Challenge Results

The Track I of the Web Spam Challenge, in which we did not take part, ended in April

of 2007. The best performance in terms of AUC3 for this track was obtained by Gordon

3 This track in fact had several winners, as the competition consider F-Measure as well as
AUC for a performance metric.
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Cormack with 0.956. The method he implemented used a stack of ten classifiers [2];

we note, however, that this participant used some specially designed classifiers that

utilized features not provided by the competition.

On the same dataset, witch outperforms all submissions to the first track of the

challenge, obtaining an AUC performance of 0.9634. Surprisingly, we achieved this

result despite using a smaller training set in our experiments (see section 4.1).

The challenge included a Track II that ended in July 2007, and for this track we

submitted predictions using the methods discussed herein. witch obtained the highest

AUC against the 10 other submissions [1]. The data in Track II was generated from

the data in the first track, but a different numeric feature set was provided, a new

training/test set split was made, and no external information (such as the web page

contents or the address of the web host) was available.

4.6 Comparison with Stacked Graphical Learning

Stacked graphical learning is a meta-learning scheme described recently by Cohen and

Kou [13]. It uses a base learning scheme C to derive initial predictions for all the objects

in the dataset. Then it generates a set of extra features for each object, by combining

the predictions for the related objects in the graph by an aggregate function (in our

case, we averaged the prediction for all the linked hosts disregarding direction). Finally,

it adds this extra feature to the input of C, and runs the algorithm again to get new

predictions for the data.

This learning scheme was shown to be effective when applied to the Web Spam

Detection task [11]. Results reported there were obtained by cross-validation on the

training set, and here we repeat the same experiments using the training/testing split

proposed in the Web Spam Challenge.

The algorithm begins by training a base classifier, bagging of ten C4.5 decision

trees. We then apply two iterations of stacked graphical learning (more iterations do

not improve the performance). The final results are shown in Table 2 and correspond to

the classifier in [11]. We also provide results setting the base classifier to be a standard

SVM, and this achieved somewhat better performance than a decision tree classifier.

Table 2 Results with Stacked Graphical Learning

Classifier AUC

Decision trees 0.900
1-step s.g.l. 0.934
2-step s.g.l. 0.935

SVM 0.923
1-step s.g.l. 0.946
5-step s.g.l. 0.953

As reported previously, stacked graphical learning significantly improves the per-

formance of both the bagged decision tree algorithm and the standard SVM, yet still

underperforms the techniques we propose. We believe the gap is likely due to the “local”

nature of SGL, whereas witch utilizes the entire graph in training.

4 The hyperparameters λ1, λ2, γ were chosen on a validation set as we describe in Section 4.1.
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Fig. 4 Results of stacked SVM for different sizes of the training set. Experiments have been
repeated 10 times with randomly chosen subsets of the training set. The median of these 10
results is plotted.

Finally, Figure 4 shows the AUC obtained by an SVM with stacked graphical

learning for different training set sizes.

4.7 Comparison with Link-Based Methods

We compared our algorithm to Transductive Link Spam Detection, proposed in [32],

which uses only hyperlinks and not content-based features. This methods outper-

forms other well-known graph-based methods based on label propagation such as

TrustRank [19] and Anti-Trust Rank [24].

A technical requirement of this algorithm is that the hyperlink graph must be

strongly connected, which is generally not the case in the real world. To handle this

problem we create a dummy node with bidirectional links to every node in the original

graph. In order that this additional node does not contribute substantially to the final

solution, we set the weight associated of each new edge to a small value, 10−6. The

algorithm also requires the choice of a parameter α, which we selected on a validation

set. Results are presented in Figure 5.

4.8 Summary of Experimental Results

Table 3 summarizes the performances of each method discussed in this paper. The

particular design choices used to obtain these results are as follows:

1. The function Φ was the mixed regularizer described at the end of Section 2. As

mentioned, the best parameter choice here was α = 0.1, used througout.

2. The various hyperparameters were chosen by doing a grid search tested on a hold-

out set. This is described in greater detail at the end of Section 4.1.

3. All optimizations were done using the conjugate gradient method, described in

Section 4.2.
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Fig. 5 AUC obtained by the method described in [32] for various sizes of the training set,
taking the median of the same samples as in Figure 4.

We emphasize that, in terms of a AUC, an improvement from 0.95 to 0.96 is quite

significant and can be interpreted roughly as a 20% reduction in ranking error. The

results in Table 3 suggest that this boost is indeed due to the incorporation of both

the hyperlink structure as well as the page contents. This observation agrees with a

natural intuition, namely that it is better to leverage both types of data to accurately

judge spaminess.

Table 3 Results for all methods with two different sizes of the training set. The first group
of methods was discussed in Section 4 and the second group of methods, which we propose,
are described in Section 3.

Training Algorithm AUC 10% AUC 100%

SVM + stacked g.l. 0.919 0.953
Link based (no features) 0.906 0.948
Challenge winner – 0.956
Only Features 0.859 0.917
Features + GR 0.874 0.917
Slack + GR 0.919 0.954
witch (Feat. + Slack + GR) 0.928 0.963

5 Conclusions

In this paper we have presented a novel algorithm, witch, for the task of detecting

Web spam. We have compared witch to several proposed algorithms and we have

found that it outperforms all such techniques. Finally, witch obtained the highest

AUC performance score on an independent Web spam detection challenge.

We attribute these positive results to a few key observations. First, best results

are achieved when both content features and the hyperlink structure are used. Sec-

ond, simply training a graph-regularized linear predictor is insufficient, as the addi-

tion of slack variables provides a very significant improvement. Third, one needs to
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choose the right graph regularization function, as we have observed that penalizing

both spam→nonspam links and nonspam→spam links is important, yet the tradeoff

should be much heavier on the latter. Lastly, we have observed that the form of the

graph weights contributes significantly to performance, where using the logarithm of

the number of links worked best.

For any machine learning technique to have practical impact in a Web search set-

ting, it must also be effective when the training set is small, since labeling is expensive

compared to the number of hosts on the web. To the best of our knowledge, this is the

first time this issue has been addressed in a Web spam detection system. Our result

show that our technique works better than a classifier trained using stacked graphical

learning, and in particular when there is little training data available.

Scalability is another issue we have addressed and we argue in Section 2.3 that this

method can scale up to very large graphs. To further improve speed, a training based

on stochastic gradient descent [8] would be yet another alternative.

For future work, the method we have presented could be applied to other tasks on

the Web, such as topical classification [31].

References

1. Graph Labeling Workshop. http://graphlab.lip6.fr/, 2007.
2. Web Spam Challenge. http://webspam.lip6.fr/, 2007.
3. L. Becchetti, C. Castillo, D. Donato, S. Leonardi, and R. Baeza-Yates. Link-based charac-

terization and detection of Web Spam. In Second International Workshop on Adversarial
Information Retrieval on the Web (AIRWeb), Seattle, USA, August 2006.

4. M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-supervised learning on
large graphs. Lecture Notes in Computer Science, 3120:624–638, 2004.

5. M. Belkin, P. Niyogi, and V. Sindhwani. On manifold regularization. In Proceedings of the
Tenth International Workshop on Artificial Intelligence and Statistics (AISTATS), 2005.
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18. Z. Gyöngyi and H. Garcia-Molina. Web spam taxonomy. In First International Workshop
on Adversarial Information Retrieval on the Web, pages 39–47, Chiba, Japan, 2005.
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A Proof of Lemma 1

Let us first compute:

min
zi

1

l
[1− yi(w · xi + zi)]

2
+ + λ2z2

i . (12)

Setting the derivative with respect to zi at 0, one finds that the minimum is reached for

zi =
yi[1− yi(w · xi)]+

1 + lλ2
.

Plugging this value in (12), we have:

min
zi

1

l
[1− yi(w · xi + zi)]

2
+ + λ2z2

i =
λ2

1 + lλ2
[1− yi(w · xi)]

2
+.
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From here it is easy to see the equivalence between setting 1 and 4 when γ = 0:

min
z

1

l

lX
i=1

[1−yi(w ·xi +zi)]
2
+ +λ1w ·w+λ2z ·z =

lλ2

1 + lλ2

 
1

l

lX
i=1

[1− yiw · xi]
2
+ + λw ·w

!
,

where λ is defined such as

λ1 =
lλ2

1 + lλ2
λ,

that is,

λ , λ1

„
1

lλ2
+ 1

«
.

More generally, instead of the squared hinge loss, let us consider a general loss function `.
Then it is not difficult to see that the solution of setting 4 with γ = 0 is the same as the one
of setting 1 where the loss is replaced by its infimal convolution with the squared function
s(t) = λ2t2:

˜̀(x) = (` ? s)(x) = inf
t

f(x + t) + s(t).

The squared hinge loss is particular case because its infimal convolution with the squared
function yields another squared hinge loss.
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