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Abstract

We introduce a framework for studying and solving
a class of CSP formulations. The framework al-
lows constraints to be expressed as linear and non-
linear equations, then compiles them into SAT in-
stances via Boolean logic circuits. While in gen-
eral reduction to SAT may lead to the loss of struc-
ture, we specifically detect several types of struc-
ture in high-level input and use them in compila-
tion. Linearity is preserved by the use of pseudo-
Boolean (PB) constraints in conjunction with a 0-1
ILP solver that extends common SAT-solving tech-
niques. Symmetries are detected in high-level con-
straints by solving the graph automorphism prob-
lem on parse trees. Symmetry-breaking predicates
are added during compilation. Our system general-
izes earlier work[10; 2; 29] on symmetries in SAT
and 0-1 ILP problems. Empirical evaluation is per-
formed n instances of the social golfers and Ham-
ming code generation problems. We show substan-
tial speedups with symmetry-breaking, especially
on unsatisfiable instances. In general, our runtimes
with the specialized 0-1 ILP solver Pueblo[26] are
competitive with results reported for ILOG Solver
[28] in [15].

1 Introduction
Traditional constraint programming (CP) techniques such as
generalized arc consistency (GAC) are frequently the meth-
ods of choice for hard problems arising in real-world applica-
tions. Well-known packages such as ECLiPSe [23] and ILOG
Solver[28] offer powerful environments for constraint spec-
ification and solver deployment. These systems provide for
the development of problem-specific solvers using the best
available techniques for a given problem. Another option is
reduction- a problem for which no solver is available can be
reduced to another problem for which a solver does exist.

Boolean satisfiability (SAT) is commonly used in problem
reductions, since it is widely-known and many SAT solvers
are available in the public domain. Unfortunately, in most
cases reduction-based methods are not competitive with CP
approaches developed for a problem. While CP-based tech-
niques can take advantage of problem-specific bounds to re-

tain tighter control of the search, SAT solvers cannot. This
disadvantage is mitigated to some extent by recent break-
throughs in SAT-solving. With new exact SAT solvers such
as ZChaff[20], the size and scope of application-derived in-
stances that can be solved has widened[21]. Unfortunately,
many applications do not benefit from breakthroughs in SAT
solving due to inefficiencies introduced during encoding. The
CNF format used for SAT instances is very restrictive, and
even encoding constraints with simple linear operations can
result in a blowup in size. Another cause of inefficiency is
the loss of structure during problem reductions. Examples of
structure in constraints includelinearity andsymmetry.

The presence of symmetries slows down search due to the
existence of redundant search paths. The work in[10] de-
scribes how symmetries can be detected in a SAT instance
by reduction to graph automorphism and broken by adding
lexicographic ordering constraints, called MinLex symmetry-
breaking predicates (SBPs). The addition of MinLex SBPs
accelerates SAT solvers. Linear “counting” constraints pop-
ular in applications are studied in[2]. These constraints
can be efficiently expressed using ILP, where linear equa-
tions are allowed, but expressing them in CNF may be ex-
pensive. On the other hand, generic ILP solvers such as
CPLEX are sometimes not competitive with leading-edge
SAT solvers on Boolean constraints. Linearity can be pre-
served using 0-1 ILP, a problem closely related to SAT but
with an ILP-like input format. Specialized techniques devel-
oped for SAT can be adapted to 0-1 ILP without paying any
penalty for generality. Recently, several specialized 0-1 ILP
solvers such as PBS[2], Galena[8] and Pueblo[26] have
been introduced. Symmetry-breaking techniques from[10;
1] were extended to 0-1 ILP in[4]. In [15], the author pro-
poses symmetry-breaking ordering constraints for CSPs with
matrix models, but it is not clear how these constraints extend
to SAT/0-1 ILP reductions.

This work contributes a framework for structure-aware
compilation of a class of constraint programming problems
by reduction to SAT and 0-1 ILP. We generalize techniques
proposed in[10; 4] to detect symmetries in constraints via
reduction tograph automorphism. Unlike earlier work, we
detect symmetries inhigh-level inputand add symmetry-
breaking predicates to the original specification. Our sys-
tem facilitates comparison of different encoding strategies
and SAT reductions. This is useful since recent work[29;



5; 6] has shown that the encoding used can dramatically
affect search speed. Our goals here are (1) to generalize
earlier work on the detection of symmetries and linearity
in SAT instances so that it is applicable to a more general
class of high-level CSPs (2) to automate the tasks of re-
duction to SAT/0-1 ILP and structure detection (3) to use
this framework to study whether using structure can im-
prove the performance of reduction-based methods. Earlier
work [10] detects and breaks symmetries after problems have
been reduced to CNF. Our work generalizes these techniques
by detecting structurebefore reductionand using it to pro-
duce more effective encodings. Our empirical results for
the social golfer and Hamming code generation problems
show that breaking symmetries during reduction vastly im-
proves the performance of both SAT and 0-1 ILP solvers.
On many instances, our runtimes are competitive with re-
sults reported using ILOG Solver[28] in [15]. Symme-
tries detected by our method can be used byanyconstraints
solver, not just one that assumes reduction to SAT, since
we detect symmetries in high-level input. While we add
SBPs during preprocessing, there are several methods that
focus on breaking declared symmetries during search[25;
13] that can make use of the symmetries we detect.

The rest of the paper is organized as follows. Section 2
discusses background and previous work. Section 3 explains
how symmetries are detected and broken in high-level con-
straints. Section 4 discusses more comprehensive symmetry-
breaking, with empirical results in Section 5. Section 6 con-
cludes the paper. The details of compilation to SAT and 0-1
ILP and the encodings we use are discussed in the Appendix.

2 Background and Previous Work
Boolean Satisfiability (SAT).A SAT instance consists of a
set of 0-1 variablesV, and a set of clausesC, where each
clause is adisjunction of literals. A literal is a variable or its
complement. The SAT problem asks to find an assignment to
the variables inV that satisfies all clauses inC, or prove that
no such assignment exists.

0-1 ILP. 0-1 ILP allows a CNF formula to be augmented
with Pseudo-Boolean (PB) constraints, or linear inequalities
with integer coefficients of the form:(a1x1 + a2x2 + : : : +
anxn � b) whereai ;b 2 Z, ai ;b 6= 0, andxi are literals of
Boolean variables.

CNF vs. 0-1 ILP. Recent work has shown that formulat-
ing problem instances as 0-1 ILP instead of SAT can result
in accelerated search. Specialized 0-1 ILP solvers have been
developed in[2; 8; 26], and have been shown to perform bet-
ter than both leading-edge SAT solvers[20] and generic ILP
solvers such as CPLEX on some 0-1 ILP formulas. How-
ever, this is not always the case. For an application, there
can be several reductions to SAT, and some encodings are
more difficult to solve than others. CNF encodings for circuit
layout applications in[2] contain large numbers of symme-
tries, increasing their difficulty. In[29], Warners proposes
an efficient encoding where a PB constraint is replaced by
a linear number of CNF clauses. In[5], a tree-based lin-
ear conversion is proposed to translate 0-1 ILP constraints to
CNF. More recently,[6] discusses a GAC-preserving encod-

ing, with a solver modification that results in SAT instances
that are solved faster than their 0-1 ILP counterparts. Our
approach constructs a parse tree and instantiates Boolean cir-
cuits for addition, multiplication and subtraction. Most previ-
ous work performs reduction to SAT on a per-problem basis,
but we provide a high-level specification language in which
constraints can be easily expressed and conversion to SAT/0-
1 ILP is automated for all problems. Given the impact that
efficient encodings have on search speed, our framework is
designed so that different encodings can be easily plugged
in and used with our symmetry-breaking infrastructure. Our
work is relevant to the recentN P�SPEC project[7], which
aims to provide a formal specification language for all prob-
lems inN P , and translate them into SAT. However,[7] does
not address symmetry and linearity during compilation.

Symmetry detection and breaking. A symmetryof a dis-
crete object is a reversible transformation of its components
that leaves the object unchanged, for example, permutations
of graph vertices that map edges into edges. Symmetries oc-
curring in a SAT instance indicate the presence of redundant
search paths, and breaking symmetries can prune the search
tree and reduce search time. Detection of symmetries in CNF
formulas by reduction to graph automorphism is proposed in
[10]. A graph is built from a CNF formula such that there
is a one-one correspondence between symmetries of the for-
mula and the graph. The graph automorphism software Nauty
[17] is used to detect symmetries in the graph. The symme-
try group induces an equivalence relation on the set of vari-
able assignments for a CNF formula.Lex-leadersymmetry-
breaking predicates (MinLex SBPs) that allow only thelexi-
cographically smallestassignment in an equivalence class are
defined in[10] . A more efficient SBP construction is pro-
posed in[3]. Symmetry detection via graph automorphism
is extended to 0-1 ILP in[4]. Our work generalizes these
methods to a broader class of problems that use integer coef-
ficients, non-binary variables and non-linear operations. In-
stance symmetries are detected at a higher level, eliminating
the risk that some symmetries may be obscured during re-
duction. In[15], the author defines high-level lexicographic
(MinLex), anti-lexicographic (anti-Lex) and multiset order-
ing constraints for CSPs with matrix models that exhibit sym-
metry. However, row and column symmetries must first be
identified in matrix models for individual problems and con-
straints designed accordingly. Our system allows symmetries
to be automatically detected in any problem instance, not just
a matrix model, and used by any solver. This functionality
may be useful to methods that focus on declared symmetries
during search. A modified search procedure that performs
partial symmetry-breaking for matrix models is proposed in
[25], where SBPs are specified for a stabilizer set that is a sub-
group of the symmetry group. We find generators of the sym-
metry group using the graph automorphism program Saucy
[11], and these generators can be used by the algorithms in
[25] to compute SBPs. Another related work is[13], which
takes as input some generators of the symmetry group and
uses them to check for dominating elements in the search tree.
Since our system automatically detects generators it may be
applicable to such algorithms. At present, we use only Min-
Lex SBPs from[10]. We have not yet studied other types of



SBPs such as those in[15]. Symmetries in linear program-
ming problems have also been discussed in[18].

3 Symmetry Detection
Unlike earlier work [10; 4], which detects symmetries in
SAT/0-1 ILP instancesafter reduction, we detect symmetries
in high-level input using the parse tree created from the con-
straint specification. Symmetries in high-level input corre-
spond directly to symmetries of the instance and can be used
to prune the search tree by multiple solvers. Symmetries de-
tected in a SAT instance can only be used by SAT solvers,
or must be traced back to the original instance to understand
their significance. This reconstruction may be difficult. Also,
some symmetries may be obscured during reduction. For ex-
ample, counting constraints are symmetric, but the most com-
pact encodings for these constraints[29] use comparator cir-
cuits which are not symmetric. The methods we describe here
efficiently detect symmetries in high-level constraints and add
SBPs to eliminate redundant search paths.

Detecting symmetries in CNF and 0-1 ILP via graph au-
tomorphism was first proposed in[10]. We follow a similar
approach for high-level symmetry detection. A parse graph is
built from the constraints such that there is a one-to-one cor-
respondence between the symmetries of the constraints and
the graph symmetries. We describe the graph construction
only for the arithmetic operators ‘+’, ‘-’, and ‘*’, but it can
be extended to include more arithmetic or logical operators
by adding more colors. An example formula in our specifi-
cation language and the corresponding graph construction are
shown in Figure 1. The formula declares two 3-bit integersx1
andx2, and the constraintx1

2+x2
2 == 25. The specification

language we use is described in the Appendix. Vertex shapes
in the figure indicate different colors. The figure shows the
symmetry between vertices forx1 andx2.

Formula 
Symmetry:
x1   x2

* *

+

==

>= >=

1 1

x1 x2

25
int3 x1, x2;
x1*x1 + x2*x2 == 25;
x1 >= 1;
x2 >= 1;

Figure 1: Constraints declaration in our specifica-
tion language and the corresponding parse graph con-
struction. Vertices are shaped differently to indicate
different colors.

The graph construction is outlined as follows.
Step 1.Each binary variablexi in a formula is represented by
two positive and negative literal vertices,vi andvi

0, which are
given the same color. The verticesvi andvi

0 are connected by
an edge to ensure Boolean consistency. Each multi-bit vari-
ablexj is represented by a single variable vertexvj . A unique
color is associated with each bit size.
Step 2. For each constraintCi , two verticesTi andRi rep-
resent the constraint type (�;�;==; ! =) and RHS value re-

spectively. A unique color is associated with each constraint
type and RHS value. The verticesTi andRi for a constraintCi
are connected by an edge. Additionally, for eachCi :
Step 2a.Variables/literals are grouped by the priority of oper-
ations in which they occur. Multiplication between variables
or by coefficients has the highest priority. ‘+’, ‘-’ and ‘*’ op-
erators have distinct colors. Each distinct coefficient value in
the formula is also given a unique color. Variables connected
by a ‘*’ operator are grouped under a singlecoefficient vertex
that represents the product of their coefficients (if the prod-
uct is unity, this vertex is omitted). This coefficient vertex is
in turn attached to amultiplication vertex. Variables/literals
not involved in multiplication operations are grouped by co-
efficient, with all variables having the same coefficient value
connected to a common coefficient vertex.
Step 2b.After grouping multiplicative terms, we have single
variables/literals or multiplicative groups connected by ‘+’ or
‘-’ operations. Variables/groups associated with a ‘+’ sign are
connected directly to the constraint type vertexTi (‘+’ is the
default operation, so there are no special vertices for it). Vari-
ables/groups associated with a ‘-’ operation are connected to
anegationvertex to indicate subtraction. The negation vertex
is connected to the type vertexTi .
Theorem 3.1. Assume that a colored parse graph is con-
structed from a given formula of constraints as outlined
above. Then, the symmetries of the constraints correspond
one-to-one to the symmetries of the graph.

Proof. We first prove thata symmetry in the constraints is
a symmetry in the parse graph.Consider a formula with a set
V of formula variables and a setC of constraints. Consider
two variables,v1;v2 2 V, and letC1;C2 � C be the sets of
constraints thatv1 andv2 occur in respectively. Letv1 andv2
be symmetric. Then, for every constraintc in C1 there is a
corresponding constraint inC2 that is its symmetric image.

We construct a colored parse graphG(X;E) for the for-
mula whereX is the set of vertices in the graph andE the
set of edges. Letx1 and x2 be the vertices created forv1
andv2 respectively, andE1 andE2 be the edges incident on
x1 andx2. Assume thatx1 andx2 arenot symmetric in the
graph construction. For this to be true, it must be true that
the edge setsE1 andE2 are not symmetric. Without loss of
generality, assume there exists some edgee2 E1 that does
not have an image inE2. From the graph construction rules,
an edge can connect a variable vertex to one of the following:
(i) a complementary literal (ii) a constraint type vertex (for
addition with unit coefficient) (iii) a negation vertex (for sub-
traction with unit coefficient) (iv) a multiplication vertex (for
multiplication with unit coefficients) and (v) a coefficient ver-
tex that is connected to a multiplication/negation/constraint
type vertex. In the first case, assume thate connectsx1 to a
complementary literal vertex, andx2 does not possess such
an edge. Then,v2 is not a binary variable, and it cannot be
symmetric tov1. In the second case,e indicates the presence
of a constraintc 2 C1 wherev1 is added with a coefficient
of 1. Sincev1 and v2 are symmetric in the formula, there
mustbe a constraint inC2 that matchesc. However, if such a
constraint existed, there would be an edge representing it in
E2, symmetric toe. The same argument applies to cases (iii)
and (iv). The only special case occurs in (v), when variables



are multiplied together with different coefficients. We use the
product of all coefficient values as the resulting coefficient.
This reflects the fact that multiplication is commutative, i.e.
(av1)(bv2) = (ab)(v1)(v2) and(cv3)(dv2) = (cd)(v1)(v2), so
if ab= cd then the expressions are symmetric.

For the other direction, we note that symmetries in the
parse graph can only exist between vertices of thesame color.
Additional vertices are created to represent operations, but
they can never be mapped to variable vertices. Thus, the only
spurious symmetries we need to consider are betweenvari-
able vertices of the same bit size. It is clear that the proof for
the forward direction can be reversed for this case, i.e. edge
sets incident on both vertices must be symmetric and repre-
sent symmetric constraints in the formula.

Avoiding abstraction overhead. Our graph construction
generalizes earlier work in[10; 4] for CNF and 0-1 ILP for-
mulas. Often, generalization involves paying a performance
penalty - in this case, dealing with a more expressive in-
put format that includes non-linear constraints can introduce
additional vertices. This penalty can be avoided by modi-
fying the graph when special cases are detected. Consider
the case where an instance containsonly 0-1 ILP constraints
with no non-linear operations and only 1-bit variables. IN
this case, our construction is designed to mimic the con-
struction in[4], and produceexactlythe same graphs. For
pure CNF formulas, some modification is required to produce
graphs as compact as the specialized constructions from[10;
1]. Since there are no coefficients or RHS values, construc-
tions in [10] and[1] use only two types (colors) of vertices:
literal and clausal. A clause with> 2 literals is represented
by a clausal vertex, connected to its literal vertices. Bi-
nary clauses are represented by an edge between both liter-
als. Graphs created by our system require constraint type and
RHS value vertices for each constraint. However, CNF for-
mulas are easy to detect. A CNF formula involvesonlybinary
variables. All coefficients are unity. Clauses can be expressed
in two ways: as the logical-or (“k”) of literals, or as the ad-
ditive constraint that the sum of literals must be� 1. These
characteristics can be tested for, and graph construction al-
tered accordingly.

Symmetry-Breaking Predicates (SBPs).The parse graph
is analyzed for symmetries using the efficient automorphism
program Saucy[11], which returns generators of the sym-
metry group. We generate high-level lex-leader SBPs from
the generators, and add them as constraints to the original in-
stance. These SBPs are also compiled into SAT. For multi-bit
variables, SBPs may be large and complex if a generator has
several cycles (for a detailed description of cycles in a gen-
erator, and the resulting predicates, see[10]). We break only
the first few (1 or 2) cycles in multiple-cycle generators for
simplicity. For binary variables, we implement the efficient
linear-sized SBP construction in[3] and add these SBPs to
the CNF formula. The problems we test here all use matrix
models with binary variables. The design of efficient SBPs
for multi-bit variables is a direction for future research.

4 Comprehensive Symmetry Breaking

In this section, we discuss simple extensions to increase the
system’s coverage of symmetries.

Symmetries in Associative Expressions. Many of the
operators that we support, such as ‘+’ and ‘*’ are associa-
tive, i.e. x1 + x2 + x3 = x2 + x3 + x1 and (x1 + x2) + x3 =
x1+ (x2+ x3). However, parse trees built from constraints
often do not reflect this symmetry. In parsing, language
rules are recursively matched. This imposes a non-symmetric
structure on the parse tree. We avoid this non-symmetric
structure by grouping all variables connected by an associa-
tive operation together. For example, given the expression
x1+x2+x3 the parser first matchesx1+x2 as a single group,
and then matchesx1 andx2 individually, which is not sym-
metric. Our construction treats all ‘+’s as a single ‘+’ opera-
tion connecting a number of expressions, which may be either
identifiers or multiplicative terms. Symmetry in associative
operations can also be missed when nested parentheses are
used. Our system currently does not support the nesting of
expressions through the ‘(’ and ‘)’ operators, but can be eas-
ily extended to do so. Here we discuss symmetry-detection
for this case. Detecting symmetries in associative operations
has been addressed in the CGRASS system[12]. However,
CGRASS detects symmetries in an ad-hoc way, by keeping
track of the number and type of constraints a variable occurs
in and matching these for different variables. Detection via
graph automorphism is more comprehensive, and given effi-
cient software such as Saucy, incurs hardly any overhead. Our
method, like CGRASS, is not complete - it uses only the gen-
erators of the symmetry group found by Saucy. For complete
symmetry-breaking, the full group would have to be recon-
structed from the generators. This has been found to be very
time-consuming[10], whereas using only generators is more
efficient and often just as effective. CGRASS also undertakes
simplification of constraints in other ways, which our system
does not cover.

Consider the expressionsx1+(x2+x3)+x4 andx1+(x2+
(x3+ x4)), which are the same, but are evaluated differently
due to parenthesization. The order of evaluation imposed by
parentheses hides the symmetry between variables, since ex-
pressions enclosed within ‘()’ symbols are treated as separate
sub-expressions. Evaluating parenthesized expressions sepa-
rately does not account for symmetries due to associativity of
operations. However, it is possible to simplify high-level in-
put so that such symmetry is preserved. We list simplification
rules for the operators ‘+’, ‘-’ and ‘*’.
Rule 1. Nested() symbols must be simplified before the out-
ermost() operation can be simplified.
Rule 2. If an expression within() symbols is flanked by ‘+’
and ‘-’ operations on the left and right sides, parentheses are
unnecessary, e.g., in: : :+(x1+x2)+ : : : the() operators can
be ignored.
Rule 3. If an expression within() symbols is multiplied by
a single term, the resulting expression can be evaluated, e.g.,
x2 � (x1+ x4) is written asx2 � x1+ x2 � x4. It is possible to
simplify the parenthesized products, e.g.(x1+ x2) � (x3+ x4)
by implementing multiplication rules, but this may cause a
size blowup in graphs for large expressions.
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Figure 2: Associative symmetry with parenthesized
sub-expressions:x1 and x3 are symmetric but the orig-
inal parse tree is asymmetric, since the sub-expression
is represented with a separate node.

The above list of rules can be extended further, but it al-
ready facilitates the detection of symmetries in simple asso-
ciative expressions. This is illustrated in Figure 2, wherex1
andx3 are symmetric, but the symmetry is not visible in the
parse graph. With the proposed modifications the associative
symmetry is preserved. Our system already implements this
feature for ‘+’ and ‘-’ operations without parentheses, where
we ignore the order in which the operations occur.

Value Symmetry. Our work so far detectsformula sym-
metries, that are determined by the occurrence of variables in
constraints. However,value symmetriesthat occur between
the actual domains of variables can also be significant. Order-
ing constraints for declared value symmetries are discussed
in [15], and[16] describes an algorithm to detect and break
value symmetries during search. We discuss how our system
may be extended to detect value symmetry.

Value symmetry can arise fromoperatorsthat control the
value of a variable, e.g. thecomplementoperation on binary
variables, i.e.a0 = 1� a. The mappinga$ a0 is known as
a phase shift symmetry. The construction from[10] does not
always account for phase-shift symmetries, but[1] proposes
an improvement that detects phase-shift symmetries in almost
all cases. For the non-binary case, such symmetries may arise
in problems with acyclic nature, for example, scheduling
problems. Any scheduling solution forfMonday, Tuesday,
Wednesdayg can often be shifted tofTuesday, Wednesday,
Thursdayg. Such shifts can also be described by an opera-
tor - if a variable’s domain is a cyclic group modulo 4, we
can saya00 = (a+ 1)%4. Intuitively, the graph construction
to represent a cyclic group of values is a cycle of vertices.
However, if the domain size is> 2, this will result in spuri-
ous symmetries if all vertices are given the same color, since
a00 can map to(b00)00, and so on. Each vertex in the cycle must
be given a different color for this construction to work. This
allows cyclic symmetries to be detected. The SBPs we use
may need to be modified for this case, and our ongoing work
is focused on proving correctness in SBP construction.

Giving each value in a variable’s domain a different color
prevents the detection of value symmetries between values in
the domain of the same variable. A set of constraints satisfied
whena= 0 may also be satisfied whena= 2. This type of
symmetry-detection is addressed in[16]. Adapting our tech-

niques to detect such symmetries is more difficult, since it
may require the enumeration of variable and constraint values
in the graph, resulting in very large and complex graphs. An-
other focus of our current work is developing efficient graph
constructions for this case.

5 Empirical Results
We test our system on constraint programming problems with
matrix modelswith row and/or column symmetries from[15].
Each problem is modeled using the constraints described in
[15] and specified in our system’s input language, followed
by symmetry detection and compilation to SAT and 0-1 ILP.
SBPs are added to the CNF or ILP instances. We use Saucy
[11] to detect symmetries, ZChaff to solve SAT instances, and
the new 0-1 ILP solver Pueblo[26] to solve 0-1 ILP instances.
We show results for the balanced incomplete block design
problem (BIBD), social golfer problem (SG) and Hamming
code generation (HC) problems. Results here are obtained
using a Intel Pentium processor processor at 1GHz for the
SG and HC problems, and an Intel Xeon dual processor at
2 GHz. Both systems have 1GB of RAM and run RedHat
Linux 9.0. ZChaff and Pueblo runtimes are the average of 3
starts. Timeout is set at 600 seconds. For BIBD instances,
we use the Xeon processor at 2GHz to compare our encod-
ings with those in[24]. For SG and HC instances, we use the
1GHz Pentium processor to allow runtime comparisons with
[15]. Symmetry-breaking ordering constraints in[15] are im-
plemented using ILOG Solver and tested on a 1 GHz Pen-
tium processor running Windows XP. We note that[15] also
reports a “number of failures” metric, which is the number of
incorrect decisions made by Solver at nodes in the search tree.
We do not have access to Solver and the SAT/0-1 ILP solvers
we use do not report such a statistic. The SBPs we use are
added as part of the instance and a SAT/0-1 ILP solver can-
not distinguish between SBPs and regular constraints. There-
fore, we cannot report a similar metric for our techniques,
and runtime is the only comparable statistic1. However, we
use exactly the same hardware as[15] so that runtime com-
parisons are fair. Since it is not possible for us to use Solver,
we use results directly from[15].

Balanced Incomplete Block Design Problem (BIBD).
This problem asks to findb > 0 subsets of a setV of v� 2
elements such that each subset contains exactlyk elements
(v > k > 0), each element appears in exactlyr > 0 subsets,
and each pair of elements appears together in exactlyλ > 0
subsets. An instance is expressed as the 5-tuple(v;b; r;k;λ),
and namedbibd(v,b,r,k, λ) in the results table. We use
the matrix model described in[15] (originally from [19]).
We initially tested encodings with and without SBPs using
ZChaff and Pueblo on the large instances used in[15] (origi-
nally from[9]). However, our observation on these instances
was that adding MinLex SBPs actually affects performance
negatively for the Pueblo solver (ZChaff is unable to solve
most instances within the time limit, with or without SBPs).
For satisfiable instances, this is not unusual and has been
noted earlier in[10]. When there are several solutions, adding

1Due to lack of space, we cannot report both number of failures
and runtime from[15]



SBPs may prevent some solutions from being found earlier in
the search. This is borne out by our results on other prob-
lems. However, this does not explain the poor performance
on unsatisfiable instances of this problem, which may be be-
cause MinLex SBPs are not useful in this case. In[15], sev-
eral types of SBPs are tested, and the most effective SBPs
for the BIBD problem anti-Lex ordering constraints. Since
anti-Lex orderings are the reverse of MinLex orderings, they
permit different assignments than MinLex, and may be more
helpful in finding solutions for BIBD. However, we use this
problem to illustrate the importance of efficient encodings.
SAT encodings for the BIBD problem have been developed
in [24], where the instances used are difficult for many SAT
solvers, but are solved by CP solvers in a few minutes. These
encodings are available at[14], with and without symmetry-
breaking clauses from[24]. Table 1 shows a comparison of
both encodings. The first column gives the instance param-
eters, followed by Saucy statistics for high-level symmetry-
detection. This is followed by ZChaff and Pueblo runtimes
for our encoding, and ZChaff runtimes for encodings from
[24] with and without SBPs. Pueblo does not accept instances
without 0-1 ILP constraints. Both Pueblo and ZChaff solve
all instances with our encoding in a few seconds, but ZChaff
times out on several instances from[24]. All instances pos-
sess symmetries, but Saucy runtimes are negligible.

Social Golfers (SG).This problem seeks to divideg� s
golfers intog groups of sizes for each ofw weeks. Each
golfer must play once a week. Any two golfers play in the
same group at most once. A problem instance is described
by its parameters(g;s;w) and is namedsg(g,s,w) in the
results table. We use the modified 3-D matrix model from
[15], and the same instances used in[15]. Instances are tested
on ZChaff and Pueblo with and without SBPs.

Results are shown in Table 2. The first column gives
instance parameters (sg for SG instances).followed by the
number of symmetry generators and runtime for Saucy. Next,
we show approximate instance sizes and runtimes with and
without SBPs. For SAT conversions, we show the number of
variables and clauses. For 0-1 ILP instances we also show the
number of PB constraints, which is the same as the number of
high-level constraints in the instance specification. The best
runtimes for a given instance are boldfaced. For this prob-
lem, adding SBPs speeds up Pueblo considerably onunsatis-
fiablebenchmarks. Forall cases where Pueblo is slower with
SBPs, the instance is satisfiable. ZChaff is faster with SBPs
for both SAT and UNSAT cases, but is not competitive with
Pueblo. All instances possess large numbers of symmetries.
The last column shows results reported in[15]2. Pueblo is
usually competitive with Solver results from[15] on SAT in-
stances without the addition of SBPs. However, on UNSAT
instances, SBPs are needed to make it competitive, and are ef-
fective in doing so. For the larger instances, Saucy runtimes
are significant. This increases the overall time for our flow.
However,[15] requires SBPs to be designed and implemented
separately for individual problems. Our system is automated
and generalized. Moreover,[15] reports results for four mod-

2Results in[15] are on a logarithmic scale, so our numbers are
not exact, but all runtimes are roundeddownfor fairness.

els of SBPs. Two of these are basic SBPs that assign values
to a subset of the variables in an instance, thus forcing as-
signments that satisfy constraints on the remaining variables.
The other two models use MinLex and anti-Lex constraints.
Here, we report the best results among all models. Given an
instance it may not be clear which model to use for best re-
sults until several have been tried. There is no model in[15]
which consistently performs well for this problem. Our sys-
tem uses only MinLex SBPs.

Hamming Code Generation (HC). This problem seeks
to findb�bit code words to coden symbols, where the Ham-
ming distance between two symbols is at leastd. An in-
stance is specified by the parameters(n;b;d). We use the
matrix model from[15], and report results with and without
symmetry-breaking in the last four rows of Table 2. The in-
stanceshc(10,15,9) andhc(12, 20, 12) are unsat-
isfiable, and the other two are satisfiable.[15] Results for the
first two instances are available in[15], the last two are listed
as N/A. We observe that symmetry-breaking is useful for both
SAT and UNSAT instances, with greater benefit for UNSAT
instances. Adding SBPs speeds up ZChaff in all cases, but it
is not competitive with Pueblo and Solver. Results reported
from [15] are the best out of several combinations of lexi-
cographic and multiset-ordering SBPs. However, several of
these combinations are not competitive with our results using
Pueblo with SBPs.

Overall, the detection of structure - both linearity through
0-1 ILP and symmetries by the addition of SBPs - improves
performance considerably for both Pueblo and ZChaff. For
most unsatisfiable instances, the best results are obtained us-
ing Pueblo with SBPs added. For satisfiable instances, Pueblo
is not improved by SBPs, and in some cases is actually slower.
However, ZChaff benefits from SBPs for both SAT and UN-
SAT instances. This may be because SBPs have greater im-
pact on variable orderings for Pueblo. In most cases Pueblo’s
results are competitive with results reported for Solver in[15]
over a variety of symmetry-breaking ordering constraints.
For the cases where Pueblo is faster with SBPs, the aver-
age speedup over its performance without SBPs is 83.2, not
including timeouts for the no-SBP version. On satisfiable
instances, the average slowdown with SBPs is 5.6, but it is
much less than that in most cases and there are no timeouts
with SBPs. Our system uses academic solvers whose source
code and/or binaries are publicly available, but runtimes are
comparable with those of Solver, a highly optimized commer-
cial tool.

All results here use problems with matrix models, which
frequently possess large numbers of symmetries by construc-
tion. While row and column symmetries can be detected man-
ually in a matrix model, our system provides a way to detect
and break these symmetries automatically without having to
give it any knowledge of the problem semantics. Moreover,
it is not restricted to matrix models, and may be used for
problems that are likely to have symmetry, but for which ma-
trix models do not exist. It is also applicable in cases where
added constraints may disrupt the symmetry in matrix mod-
els, e.g. for instances with “customized” requirements. For
example, in the social golfer problem, we can add the con-
straint that certain pairs of golfers mustneverbe in the same



Symmetry Stats Our Encoding Encoding in[24]
Instance Symm. Gen. Saucy W. SBPs W/o. SBPs W. SBPs W/o. SBPs
Name Time ZChaff Pueblo ZChaff Pueblo ZChaff ZChaff
bibd(7,7,3,3,1) 2.54e7 12 0 0.08 0 0.01 0 0.29 T/O
bibd(6,10,5,3,2) 2.61e9 14 0 0.54 0 0.03 0 54.24 T/O
bibd(7,14,6,3,2) 4.39e14 19 0.01 0.38 0.01 1.25 0.01 T/O T/O
bibd(9,12,4,3,1) 1.73e14 19 0.02 0.64 0.01 1.89 0.013 T/O T/O
bibd(8,14,7,4,3) 3.51e15 20 0.02 0.72 0.01 1.57 0 T/O T/O

Table 1:ZChaff results and Saucy statistics for BIBD instances using our encodings and those in[24],
with and without SBPs. T/O indicates timeout at 600s. Pueblo is not tested on encodings in[24], since
they are not available as 0-1 ILP.

Saucy Stats Size with SBPs Size w/o SBPs
Instance G. Tm. CNF - ZChaff 0-1 ILP - Pueblo CNF - ZChaff 0-1 ILP - Pueblo Sol
Params Var. Cl. Tm. Var. Cl. PB Tm. Var. Cl. Tm. Var. Cl. PB Tm. ver
sg(2,5,4) 16 0.02 6311 33K 0.06 1694 1361 141 .003 6139 32K 0.12 1522 721 141 0.01 .01
sg(2,6,4) 18 0.02 9076 48K 0.14 2418 1835 178 .006 8868 46K 0.15 2210 1057 178 0.01 0.1
sg(2,7,4) 20 0.03 12K 65K 0.31 3270 2373 219 0.01 12041 63894 0.14 3026 1457 219 0.02 5
sg(2,8,5) 24 0.07 22K 125K 1.25 5320 3761 300 0.02 22K 123K 0.89 4962 2401 300 0.02 30
sg(3,5,4) 25 0.09 26K 155K 2.27 5645 4138 249 0.05 26K 152K T/O 5222 2521 249 7.54 0.5
sg(3,6,4) 28 0.14 37K 221K 1.63 8072 5629 321 0.09 37K 219K T/O 7562 3673 321 25.7 0.4
sg(3,7,4) 31 0.21 51K 299K 7.7 10K 7336 402 0.17 50K 296K 120 10K 5041 402 24.8 0.5
sg(4,5,4) 34 0.30 70K 430K 11.5 13K 9115 382 0.25 69K 426K T/O 12K 6081 382 T/O 0.2
sg(4,6,5) 42 0.75 134K 837K T/O 23K 15K 556 0.5 132K 831K T/O 22K 11K 556 T/O 2
sg(4,7,4) 42 0.79 135K 829K T/O 25K 16K 634 0.62 134K 824K T/O 24K 12K 634 T/O 5
sg(4,9,4) 50 1.75 221K 1.35M T/O 42K 25K 950 1.41 220K 1.34M T/O 40K 20K 950 T/O 2.5
sg(5,4,3) 33 0.26 64K 394K 17.1 12K 8502 340 0.37 64K 391K 315 11K 5701 340 0.07 0.1
sg(5,5,4) 43 0.89 145K 911K 300 25K 16K 540 1.3 144K 906K T/O 24K 12K 540 1.17 0.9
sg(5,7,4) 53 2.79 281K 1.76M T/O 50K 30K 915 1.8 279K 1.75M T/O 48K 23K 915 T/O 7
sg(5,8,3) 53 2.3 250K 1.51M 107 48K 29K 1050 1.76 248K 1.51M T/O 47K 23K 1050 T/O 0.6
sg(6,4,3) 40 0.61 118K 733K 496 21K 14K 456 0.86 117K 729K T/O 20K 9937 456 0.47 0.5
sg(6,5,3) 46 1.25 182K 1.13M T/O 33K 20K 651 1.9 181K 1.12M T/O 31K 15K 651 1.02 0.6
sg(6,6,3) 52 2.51 260K 1.61M T/O 47K 28K 882 2.57 259K 1.60M T/O 46K 22K 882 0.1 50
sg(7,5,3) 54 3.06 301K 1.89M T/O 52K 32K 847 3.85 299K 1.88M T/O 50K 24K 847 1.9 1K
sg(7,5,5) 68 11.4 551K 3.55M T/O 87K 54K 1015 59.2 547K 3.53M T/O 84K 41K 1015 37 20
hc(10,15,9) 38 0.07 32K 206K 93.4 5842 3762 45 0.59 32K 205K T/O 5552 2701 45 T/O 7.2
hc(10,10,5) 28 0.04 19K 122K T/O 3892 2487 45 22.2 19K 121K T/O 3702 1801 45 T/O 0.4
hc(10,15,8) 38 0.07 32K 206K T/O 5842 3762 45 275 32K 205K T/O 5552 2701 45 286 N/A
hc(12,20,12) 50 0.19 66K 426K T/O 11K 7023 66 2.77 65K 10K 424K 5281 10K 66 T/O N/A

Table 2: Results for social golfers and Hamming code generation problems. Best results for a given instance are
boldfaced. T/O indicates timeout at 600s. The last column shows results from[15]. ‘K’ and ‘M’ in instance
sizes indicate multiples of one thousand and one million.For UNSAT instances, using Pueblo with SBPs generally
performs best. For SAT instances Pueblo is slowed down by SBPs, however ZChaff benefits from SBPs even on
SAT instances. All runtimes are in seconds. N/A in the last two rows indicates that results for these instances are
not shown in [15].

group. The present matrix model has symmetry along all
three dimensions - groups, weeks and golfers. Adding pair-
wise constraints for specific golfers would leave only partial
symmetry between golfers, which poses more effort for man-
ual identification of symmetries. However, with our method
added constraints can be analyzed and surviving symmetries
detected without any modification. Even if row/column sym-
metry between certain rows and columns is destroyed, we can
still detect symmetries that exist between specific variables in
these rows and/or columns automatically. We also hope to
identify problems that can be analyzed using our system, but
for which matrix models are not applicable.

6 Conclusion

We present an integrated framework for studying and solving
a class of CSPs by reduction to SAT and 0-1 ILP. The frame-
work provides for the specification of constraints in a high-
level language and automatic compilation into SAT. Special-
ized methods for SAT have improved considerably over the
last 10 years, but these improvements do not necessarily ap-
ply to more sophisticated domains because SAT encodings
are not always possible and may introduce inefficiencies due
to the loss ofstructurein problem reductions. Our system au-
tomatically detects certain types of structure, such as linearity
and symmetries during compilation and uses them to produce
more efficient encodings. Linearity is preserved through the
use of 0-1 ILP, a comparatively more sophisticated problem
with specialized solvers that can use leading-edge techniques
for SAT solving.

We extend earlier work on symmetry-detection in SAT and



0-1 ILP [10; 4] to a more general class of CSPs that may use
non-binary variables and non-linear operations. Symmetries
are detected in high-level input by solving the graph automor-
phism problem on parse trees. MinLex symmetry-breaking
predicates (SBPs) from[10] are added to the resulting SAT/0-
1 ILP encodings. Other work[15] has focused on symmetry-
breaking ordering constraints for known or declared symme-
tries in generalized CSPs, but we detect and break symme-
tries automatically. Empirically, we evaluate our system on
the balanced incomplete block design (BIBD), social golfers
(SG) and Hamming code generation (HC) problems. We de-
tect large numbers of symmetries in all instances, and show
that breaking symmetries produces substantial speedups for
the 0-1 ILP solver Pueblo[26] on unsatisfiable instances of
the SG and HC problems. When symmetry-breaking is useful
on unsatisfiable instances, the average speedup is 83.2 over
the no-SBPs case (not including several timeouts). For satis-
fiable instances, there is a small slowdown with SBPs, but
no timeouts. For CNF reductions, the SAT solver ZChaff
[20] exhibits speedups for both satisfiable and unsatisfiable
instances when symmetries are broken. Overall, CNF reduc-
tions are not competitive with 0-1 ILP reductions. A some-
what surprising observation is that on many satisfiable in-
stances, Pueblo is slowed down by the addition of symmetry-
breaking predicates (SBPs). This may be because adding
SBPs to satisfiable instances prevents some solutions from
being found by Pueblo. More effective SBPs need to be de-
veloped for this case. Overall, our runtimes for Pueblo with
SBPs added are competitive with Solver runtimes reported in
[15] on unsatisfiable instances of the SG and HC problems.
We also show that our circuit-based CNF encodings for the
BIBD problem are more efficient than those proposed in[24].
In general, our system facilitates the comparison of differ-
ent SAT encodings, since any encoding can be plugged into
our framework and automatically tested on several instances.
This is useful since encodings often have a huge impact on
search speed[29; 2; 5; 6]. Symmetries detected in high-level
input can be used byanyconstraints solver and by other meth-
ods that add SBPs for declared symmetries during search[25;
13]. Moreover, SBPs can be added to a SAT/0-1 ILP re-
duction even if the actual encoding used obscures symme-
tries, since they are detected before reduction. We provide
an extensible framework that can be easily modified to in-
clude other types of constraints and operations, and discuss
two such extensions for symmetries due toassociative op-
erationsandvalue symmetries. We plan to release code in
the public domain to facilitate experimentation with different
problems and encodings. At present, more information on
this project, and contact addresses for source code, binaries
and sample input files are available at[27].

Our current and future work is focused on extending our
system to allow more comprehensive coverage of symme-
tries, e.g. symmetries in associative expressions and value
symmetries briefly discussed in Section 4. We plan to extend
our compiler to allow more operations and different types of
constraints, and to support more OPL-like[22] syntax. An-
other direction is the development of efficient SBPs for non-
binary variables and of symmetry-breaking constraints that
are more effective on satisfiable instances.
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Appendix: Compilation into SAT/0-1 ILP
Below, we describe how constraints are translated into CNF
and 0-1 ILP. We use a C-like language for high-level con-
straint specification, and a customized parser that builds a
parse tree for the system of constraints. Compilers for SAT
and 0-1 ILP then walk the parse tree and translate the con-
straints into CNF/0-1 ILP formulas. The formulas are handed
to SAT/0-1 ILP solvers and solutions are translated back into
a form that is meaningful to the original problem. The input
language uses C-like syntax to declare variables and specify
constraints. Variables are specified as unsigned integers of
varying bit sizes, e.g.int1 represents a 1-bit (binary) vari-
able, etc. The mathematical operators allowed are addition
(+), subtraction (-) and multiplication (*). Relational oper-
ators may be<=, >=, ==, and != (not-equal constraint).
Complementnotation is allowed to express the negative literal
for a binary variable (x10 for x1). Numeric constants are al-
lowed as coefficients or as the right-hand-side (RHS) value of
equations. Division is not presently supported. The compiler
also does not support the use of nested parentheses or unary
negation but can be easily extended to do so. Support for

more sophisticated language constructs, e.g., those used by
OPL [22], may be added in the future. An example of con-
straint declaration in the input language is shown in Figure 1
in Section 3.

To compile into SAT, Boolean “circuits” are instantiated
to carry out mathematical operations. Ann�bit variable is
represented byn binary variables in the CNF instance plus a
sign bit, which is necessary to perform subtraction with 2’s
complement notation. The size of the CNF circuits depends
on the operation to be performed. Ripple-carry adders are
instantiated for addition operations, and subtraction is per-
formed using 2’s complement representation. Both adder and
subtractor circuits are linear in the input size. Multiplication
is implemented using circuits for Booth’s algorithm which are
quadratic in the input size. Comparison against RHS values
uses a linear comparator circuit. There are some built-in opti-
mizations, e.g. smaller circuits for 1-bit addition and subtrac-
tion. 1-bit multiplication uses an AND gate. Circuits with
a constant as input are partially evaluated. For compilation
into 0-1 ILP, linearity is preserved by stating ‘+’ and ‘-’ op-
erations directly as 0-1 ILP constraints. Inequalities (�, �,
==) are also directly expressed in 0-1 ILP, with no need for
comparator circuits. Coefficients can be directly written and
not multiplied. Multiplication between variables uses CNF
clauses, but multiplier outputs can be added/subtracted as part
of a linear constraint.


