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Abstract

We introduce a framework for studying and solving
a class of CSP formulations. The framework al-
lows constraints to be expressed as linear and non-
linear equations, then compiles them into SAT in-
stances via Boolean logic circuits. While in gen-
eral reduction to SAT may lead to the loss of struc-
ture, we specifically detect several types of struc-
ture in high-level input and use them in compila-
tion. Linearity is preserved by the use of pseudo-
Boolean (PB) constraints in conjunction with a 0-1
ILP solver that extends common SAT-solving tech-
niques. Symmetries are detected in high-level con-
straints by solving the graph automorphism prob-
lem on parse trees. Symmetry-breaking predicates
are added during compilation. Our system general-
izes earlier worf10; 2; 29 on symmetries in SAT
and 0-1 ILP problems. Empirical evaluation is per-
formed n instances of the social golfers and Ham-
ming code generation problems. We show substan-
tial speedups with symmetry-breaking, especially
on unsatisfiable instances. In general, our runtimes
with the specialized 0-1 ILP solver Pueljg] are
competitive with results reported for ILOG Solver
[28] in[15].

Introduction

tain tighter control of the search, SAT solvers cannot. This
disadvantage is mitigated to some extent by recent break-
throughs in SAT-solving. With new exact SAT solvers such
as ZChaff[20], the size and scope of application-derived in-
stances that can be solved has widef#&y. Unfortunately,
many applications do not benefit from breakthroughs in SAT
solving due to inefficiencies introduced during encoding. The
CNF format used for SAT instances is very restrictive, and
even encoding constraints with simple linear operations can
result in a blowup in size. Another cause of inefficiency is
theloss of structure during problem reductiorisxamples of
structure in constraints includieearity andsymmetry

The presence of symmetries slows down search due to the
existence of redundant search paths. The workil) de-
scribes how symmetries can be detected in a SAT instance
by reduction to graph automorphism and broken by adding
lexicographic ordering constraints, called MinLex symmetry-
breaking predicates (SBPs). The addition of MinLex SBPs
accelerates SAT solvers. Linear “counting” constraints pop-
ular in applications are studied if2]. These constraints
can be efficiently expressed using ILP, where linear equa-
tions are allowed, but expressing them in CNF may be ex-
pensive. On the other hand, generic ILP solvers such as
CPLEX are sometimes not competitive with leading-edge
SAT solvers on Boolean constraints. Linearity can be pre-
served using 0-1 ILP, a problem closely related to SAT but
with an ILP-like input format. Specialized techniques devel-
oped for SAT can be adapted to 0-1 ILP without paying any

Traditional constraint programming (CP) techniques such aBenalty for generality. Recently, several specialized 0-1 ILP
generalized arc consistency (GAC) are frequently the methsolvers such as PBE], Galena[8] and Puebld2€] have
ods of choice for hard problems arising in real-world applicadeen introduced. Symmetry-breaking techniques ffa0y
tions. Well-known packages such as ERS [23] and ILOG 1] were extended to 0-1 ILP if#]. In [15], the author pro-
Solver[28] offer powerful environments for constraint spec- Poses symmetry-breaking ordering constraints for CSPs with
ification and solver dep|oyment. These Systems provide fomatrlx mOdeleUt itis nOt clear how these constraints extend
the development of problem-specific solvers using the bed® SAT/O-1 ILP reductions.
available techniques for a given problem. Another option is This work contributes a framework for structure-aware
reduction- a problem for which no solver is available can be compilation of a class of constraint programming problems
reduced to another problem for which a solver does exist. by reduction to SAT and 0-1 ILP. We generalize techniques
Boolean satisfiability (SAT) is commonly used in problem proposed in[10; 4 to detect symmetries in constraints via
reductions, since it is widely-known and many SAT solversreduction tograph automorphismUnlike earlier work, we
are available in the public domain. Unfortunately, in mostdetect symmetries itigh-level inputand add symmetry-
cases reduction-based methods are not competitive with ClBreaking predicates to the original specification. Our sys-
approaches developed for a problem. While CP-based techem facilitates comparison of different encoding strategies
nigues can take advantage of problem-specific bounds to rend SAT reductions. This is useful since recent wig;



5; 6] has shown that the encoding used can dramaticalljng, with a solver modification that results in SAT instances
affect search speed. Our goals here are (1) to generalizbat are solved faster than their 0-1 ILP counterparts. Our
earlier work on the detection of symmetries and linearityapproach constructs a parse tree and instantiates Boolean cir-
in SAT instances so that it is applicable to a more generatuits for addition, multiplication and subtraction. Most previ-
class of high-level CSPs (2) to automate the tasks of reeus work performs reduction to SAT on a per-problem basis,
duction to SAT/0-1 ILP and structure detection (3) to usebut we provide a high-level specification language in which
this framework to study whether using structure can im-constraints can be easily expressed and conversion to SAT/O-
prove the performance of reduction-based methods. Earliet ILP is automated for all problems. Given the impact that
work [10] detects and breaks symmetries after problems havefficient encodings have on search speed, our framework is
been reduced to CNF. Our work generalizes these techniquekesigned so that different encodings can be easily plugged
by detecting structurbefore reductiorand using it to pro- in and used with our symmetry-breaking infrastructure. Our
duce more effective encodings. Our empirical results forwork is relevant to the receil P —SPEC project7], which

the social golfer and Hamming code generation problemsims to provide a formal specification language for all prob-
show that breaking symmetries during reduction vastly im4ems inN P, and translate them into SAT. HoweVEf] does
proves the performance of both SAT and 0-1 ILP solversnot address symmetry and linearity during compilation.

On many instances, our runtimes are competitive with re- Symmetry detection and breaking. A symmetnof a dis-
sults reported using ILOG Solvdeg] in [15]. Symme-  crete object is a reversible transformation of its components
tries detected by our method can be usedibyconstraints  that leaves the object unchanged, for example, permutations
solver, not just one that assumes reduction to SAT, sincef graph vertices that map edges into edges. Symmetries oc-
we detect symmetries in high-level input. While we addcyrring in a SAT instance indicate the presence of redundant
SBPs during preprocessing, there are several methods thaéarch paths, and breaking symmetries can prune the search
focus on breaking declared symmetries during seé2&h  tree and reduce search time. Detection of symmetries in CNF
13] that can make use of the symmetries we detect. formulas by reduction to graph automorphism is proposed in
The rest of the paper is organized as follows. Section 210]. A graph is built from a CNF formula such that there
discusses background and previous work. Section 3 explaing a one-one correspondence between symmetries of the for-
how symmetries are detected and broken in high-level conmula and the graph. The graph automorphism software Nauty
straints. Section 4 discusses more comprehensive symmetrjt7] is used to detect symmetries in the graph. The symme-
breaking, with empirical results in Section 5. Section 6 con+ry group induces an equivalence relation on the set of vari-
cludes the paper. The details of compilation to SAT and 0-Iable assignments for a CNF formulaex-leadersymmetry-
ILP and the encodings we use are discussed in the Appendikreaking predicates (MinLex SBPs) that allow only tee-
cographically smallestssignment in an equivalence class are
2 Background and Previous Work defined in[10] . A more efficient SBP construction is pro-
posed in[3]. Symmetry detection via graph automorphism
Boolean Satisfiability (SAT). A SAT instance consists of a s extended to 0-1 ILP if4]. Our work generalizes these
set of 0-1 variable¥, and a set of clauséS, where each methods to a broader class of problems that use integer coef-
clause is alisjunction of literals A literal is a variable or its  ficients, non-binary variables and non-linear operations. In-
complement. The SAT problem asks to find an assignment tetance symmetries are detected at a higher level, eliminating
the variables iV that satisfies all clauses @ or prove that  the risk that some symmetries may be obscured during re-
no such assignment exists. duction. In[15], the author defines high-level lexicographic
0-1 ILP. 0-1 ILP allows a CNF formula to be augmented (MinLex), anti-lexicographic (anti-Lex) and multiset order-
with Pseudo-Boolean (PB) constraints, or linear inequalitiesng constraints for CSPs with matrix models that exhibit sym-
with integer coefficients of the forn{ayxq + axx2 + ... + metry. However, row and column symmetries must first be
anXn < b) wherea;,b € Z, a,b# 0, andx; are literals of identified in matrix models for individual problems and con-
Boolean variables. straints designed accordingly. Our system allows symmetries
CNF vs. 0-1 ILP. Recent work has shown that formulat- to be automatically detected in any problem instance, not just
ing problem instances as 0-1 ILP instead of SAT can resul& matrix model, and used by any solver. This functionality
in accelerated search. Specialized 0-1 ILP solvers have beemay be useful to methods that focus on declared symmetries
developed if2; 8; 2d, and have been shown to perform bet- during search. A modified search procedure that performs
ter than both leading-edge SAT solvg¢2€] and generic ILP  partial symmetry-breaking for matrix models is proposed in
solvers such as CPLEX on some 0-1 ILP formulas. How-[25], where SBPs are specified for a stabilizer set that is a sub-
ever, this is not always the case. For an application, thergroup of the symmetry group. We find generators of the sym-
can be several reductions to SAT, and some encodings ametry group using the graph automorphism program Saucy
more difficult to solve than others. CNF encodings for circuit[11], and these generators can be used by the algorithms in
layout applications if2] contain large numbers of symme- [25] to compute SBPs. Another related work{iss], which
tries, increasing their difficulty. 1129], Warners proposes takes as input some generators of the symmetry group and
an efficient encoding where a PB constraint is replaced byses them to check for dominating elements in the search tree.
a linear number of CNF clauses. [B], a tree-based lin- Since our system automatically detects generators it may be
ear conversion is proposed to translate 0-1 ILP constraints tapplicable to such algorithms. At present, we use only Min-
CNF. More recently[6] discusses a GAC-preserving encod- Lex SBPs fron{10]. We have not yet studied other types of



SBPs such as those [5]. Symmetries in linear program- spectively. A unique color is associated with each constraint

ming problems have also been discusseld 8). type and RHS value. The vertic&sandR,; for a constrain€;
are connected by an edge. Additionally, for e@¢h
3 Symmetry Detection Step 2a.Variables/literals are grouped by the priority of oper-

Unlik i k[10: 4. which d .. ations in which they occur. Multiplication between variables
SR‘IF/S leIaLrléelr wor fort (‘;" ¢ ete(i;cs symmetries in o py coefficients has the highest priority. ‘+, " and *’ op-
- Instanceafterreduction, we detect symmetries o o5 have distinct colors. Each distinct coefficient value in

in high-level input using the parse tree created from the CoNng, g tormya is also given a unique color. Variables connected
straint spemflcatlon. Sym_metnes in high-level input COIre-py, o operator are grouped under a singleefficient vertex
spond d|rer:]ctly to S)r/]mmetges Ofl t_hle mstlance aSnd can be ué’et at represents the product of their coefficients (if the prod-
to prune the search tree by multiple solvers. Symmetries dejey is ynity, this vertex is omitted). This coefficient vertex is

tected in a SAT instance can only be used by SAT solversy, iy attached to anultiplication vertex Variables/literals
or must be traced back to the original instance to understangd: involved in multiplication operations are grouped by co-

their significance. This reconstruction may be difficult. AlSo, eficient, with all variables having the same coefficient value
some symmetries may be obscured during reduction. For eX%onnected to a common coefficient vertex.

ample, com&ntingfconﬁtraints are syir;gr]netric, but the most comgiey o After grouping multiplicative terms, we have single
pact encodings for these constraift3] use comparator Cir- 4 japles/literals or multiplicative groups connected by *+' or
cuits which are not symmetric. The methods we describe here operations. Variables/groups associated with a “+' sign are

efficiently detect symmetries in high-level constraints and add. ; ,nected directly to the constraint type verfe+ is the

SBPsto Qliminate red_und_ant searchdpaths. . h default operation, so there are no special vertices for it). Vari-
Detecting symmetries in CNF and 0-1 ILP via graph au-,p1e5/9roups associated with a ‘-’ operation are connected to

tomorphism was first proposed ia0]. We follow a similar 5 heqationvertex to indicate subtraction. The negation vertex
approach for high-level symmetry detection. A parse graph iss sonnected to the type vertdx
built from the constraints such that there is a one-to-one Corrhagrem 3.1. Assume that a colored parse graph is con-

respondence between the symmetries of the constraints .a'%gructed from a given formula of constraints as outlined

. - e o . Hbove. Then, the symmetries of the constraints correspond
only for the arithmetic operators ‘+’, *-', and *’, but it can 44 t5-0ne to the symmetries of the graph.

be extended to include more arithmetic or logical operators Proof. We first prove thaa symmetry in the constraints is

by adding more colors. An example formula in our specifi- symmétry in the parse grapBonsider a formula with a set

cation language and the corresponding graph construction a(a? of formula variables and a s€t of constraints. Consider

shown in Figure 1. The formula declares two 3-bit integers two variablesvi.v, € V, and 1etCy.C, C C be the sets of
1 ) 1 )

andxy, and the constraint;? + x? == 25. The specification : . .
language we use is described in the Appendix. Vertex sh:':1pef(;sonsm’“ntS that, andv; occur in respectively. Let andv;

in the figure indicate different colors. The figure shows the-- symmetric. Then, for every constranin C, there is a
g . ' 9 corresponding constraint € that is its symmetric image.
symmetry between vertices far andxs.

We construct a colored parse gra@X,E) for the for-
mula whereX is the set of vertices in the graph akdthe
set of edges. Lex; andx, be the vertices created fog

i 1, x2; Formula . o

e 5o == 25: andv, respectively, and; andE, be the edges incident on
x; > 1; X1 andxz. Assume thak; andxp arenot symmetric in the
X2 >=1;

graph construction. For this to be true, it must be true that
the edge setk; andE; are not symmetric. Without loss of
generality, assume there exists some eelgeE; that does
not have an image i&,. From the graph construction rules,
an edge can connect a variable vertex to one of the following:
(i) a complementary literal (ii) a constraint type vertex (for
addition with unit coefficient) (iii) a negation vertex (for sub-
traction with unit coefficient) (iv) a multiplication vertex (for
multiplication with unit coefficients) and (v) a coefficient ver-
tex that is connected to a multiplication/negation/constraint
type vertex. In the first case, assume thabnnectsq to a
The graph construction is outlined as follows. complementary literal vertex, and does not possess such
Step 1.Each binary variablg in a formula is represented by an edge. Theny, is not a binary variable, and it cannot be
two positive and negative literal verticagandy;’, which are ~ symmetric tov;. In the second case,indicates the presence
given the same color. The verticgsandy;” are connected by of a constraintc € C; wherev; is added with a coefficient
an edge to ensure Boolean consistency. Each multi-bit varef 1. Sincev; andv, are symmetric in the formula, there
ablex; is represented by a single variable ventgxA unique  mustbe a constraint i€, that matches. However, if such a
color is associated with each bit size. constraint existed, there would be an edge representing it in
Step 2. For each constrair@;, two verticesT; andR; rep-  E», symmetric toe. The same argument applies to cases (iii)
resent the constraint typg(>,==,! =) and RHS value re- and (iv). The only special case occurs in (v), when variables

Figure 1: Constraints declaration in our specifica-

tion language and the corresponding parse graph con-
struction. Vertices are shaped differently to indicate

different colors.



are multiplied together with different coefficients. We use the4 Comprehensive Symmetry Breaking

product of all coefficient values as the resulting coefficient. _ _ _ ) ) _

This reflects the fact that multiplication is commutative, i.e.In this section, we discuss simple extensions to increase the
(av1)(bw) = (ab)(v1)(v2) and(cvs)(dvz) = (cd)(v1)(v2), so  System’s coverage of symmetries.

if ab= cd then the expressions are symmetric. Symmetries in Associative Expressions. Many of the
operators that we support, such as ‘+' and *' are associa-
etive, ie. X1 +X2+X3=X2+Xs+x1 and (X3 + X2) + X3 =

‘?}+ (x2 +x3). However, parse trees built from constraints

For the other direction, we note that symmetries in th
parse graph can only exist between vertices o§tmee color
Additional vertices are created to represent operations, b
they can never be mapped to variable vertices. Thus, the on
spurious symmetries we need to consider are betwaen
able vertices of the same bit sideis clear that the proof for
the forward direction can be reversed for this case, i.e. ed
sets incident on both vertices must be symmetric and repr
sent symmetric constraints in the formula.

ten do not reflect this symmetry. In parsing, language
Xiles are recursively matched. This imposes a non-symmetric
structure on the parse tree. We avoid this non-symmetric
structure by grouping all variables connected by an associa-
ive operation together. For example, given the expression
%('1 + X2 + X3 the parser first matches + x2 as a single group,
and then matches andx; individually, which is not sym-
metric. Our construction treats all ‘+’s as a single ‘+’ opera-
tion connecting a number of expressions, which may be either
identifiers or multiplicative terms. Symmetry in associative

perations can also be missed when nested parentheses are

penalty - in this case, dealing with a more expressive in. sed. Our system currently does not support the nesting of

. i . : xpressions through the ‘(" and ‘)’ operators, but can be eas-
put format that includes non-linear constraints can mtroduciy extended to do so. Here we discuss symmetry-detection

aqldltlonal vertices. This p(_analty can be avoided by moq"fcgr this case. Detecting symmetries in associative operations
fying the graph when special cases are detected. Cons'dﬁas been addressed in the CGRASS sydttzh However
the case where an instance containg/ 0-1 ILP constraints y '

with no non-linear operations and only 1-bit variables. IN CGRASS detects symmetries in an ad-hoc way, by keeping

this case, our construction is designed to mimic the COhEraCk of the number and type of constraints a variable occurs

struction in[4], and producexactlythe same graphs. For in and matching these for different variables. Detection via

pure CNF formulas, some modification is required to produc {:ﬁthsgﬁsegpg;%rgﬁrgs'ss?uoge ﬁ]ocrggﬁgins'\éﬁ’ %Tg%'ggg ecf)f'dr
graphs as compact as the specialized constructions[ftdm Y yany :

. - method, like CGRASS, is not complete - it uses only the gen-
1]. Since there are no coefficients or RHS values, construc- ’ !
tions in[10] and[1] use only two types (colors) of vertices: erators of the symmetry group found by Saucy. For complete

literal and clausal. A clause witl 2 literals is represented :{ﬂgg: érzfg}e&lgngéggfaiglrl Sgr%l:ig KV:SUIS ezm%&% dbforggc\)gr
by a clausal vertex, connected to its literal vertices. Bi- 9 § y

- time-consumingd10], whereas using only generators is more
nary clauses are represented by an edge between both IIteermicient and often just as effective. CGRASS also undertakes

als. Graphs created by our system require constraint type a e D :
RHS value vertices for each constraint. However, CNF forr—% mplification of constraints in other ways, which our system

mulas are easy to detect. A CNF formula involee$y binary does not cover.

variables. All coefficients are unity. Clauses can be expressed COnsider the expressions+ (X2 + xs) + x4 andxa + (x +
in two ways: as the logical-or ) of literals, or as the ad- X3+ X4)), which are the same, but are evaluated differently

ditive constraint that the sum of literals must bel. These due to parenthesization. The order of evaluation imposed by

characteristics can be tested for, and graph construction dparentheses hides the symmetry between variables, since ex-
tered accordingly. pressions enclosed within ‘()’ symbols are treated as separate

sub-expressions. Evaluating parenthesized expressions sepa-

Symmetry-Breaking Predicates (SBPs)The parse graph  rately does not account for symmetries due to associativity of
is analyzed for symmetries using the efficient automorphisnbperations. However, it is possible to simplify high-level in-
program Saucy11], which returns generators of the sym- put so that such symmetry is preserved. We list simplification
metry group. We generate high-level lex-leader SBPs frontyles for the operators ‘+, -’ and ‘*'.

the generators, and add them as co_nstr_aints to the origin:_:xl il_p;me 1. Nested() symbols must be simplified before the out-
stance. These SBPs are also compiled into SAT. For mu'“'b'érmost() operation can be simplified.

variables, SBPs may be large and complex if a generator hagyje 2. If an expression withir{) symbols is flanked by +’

several cycles (for a detailed description of cycles in a genanq « gperations on the left and right sides, parentheses are

erator, and the resulting predmate; Ex@l). We break only unnecessary, e.g., in. + (X, + X2) + ... the () operators can

the f|r_sy few (1 or 2) cyclt_as in muItlp_Ie-cycIe generators forpe ignored.

s_|mpI|C|_ty. For binary vanaples, we implement the efficient g 1e 3. If an expression withir{) symbols is multiplied by

linear-sized SBP construction [8] and add these SBPs t0_j gjngle term, the resulting expression can be evaluated, e.g.,

the CNF f_orml_JIa. The _problems we test here aI_I use matrix, . (X1 + Xa) iS Written asxp Xy + Xo * Xa. It is possible to

models_W|_th bmary ve_lrlablt_as. _The design of efficient SBPSsimpIify the parenthesized products, €xg-+ X2) * (X3 + Xa)

for multi-bit variables is a direction for future research. by implementing multiplication rules, but this may cause a
size blowup in graphs for large expressions.

Avoiding abstraction overhead. Our graph construction
generalizes earlier work if10; 4] for CNF and 0-1 ILP for-
mulas. Often, generalization involves paying a performanc



Xt (x+ >§) <=32 nigues to detect such symmetries is more difficult, since it
may require the enumeration of variable and constraint values
in the graph, resulting in very large and complex graphs. An-
@ other focus of our current work is developing efficient graph
@ @ @ @ @ constructions for this case.

Explicit 5 Empirical Results

Hidden Symmetry We test our system on constraint programming problems with

matrix modelsvith row and/or column symmetries frofhs].
symmetry Each problem is modeled using the constraints described in
[15] and specified in our system’s input language, followed
by symmetry detection and compilation to SAT and 0-1 ILP.
SBPs are added to the CNF or ILP instances. We use Saucy
[11] to detect symmetries, ZChaff to solve SAT instances, and
the new 0-1 ILP solver Pueb|@6] to solve 0-1 ILP instances.
We show results for the balanced incomplete block design
. .. problem (BIBD), social golfer problem (SG) and Hamming
The above list of rules can be extended further, but it al'code generation (HC) problems. Results here are obtained

ready facilitates the detection of symmetries in simple assogi, ¢ "3 'ntel Pentium processor processor at 1GHz for the
ciative expressions. This is illustrated in Figure 2, whare

: . U SG and HC problems, and an Intel Xeon dual processor at
andxs are symmetric, but the symmetry is not visible in the2 GHz. Both systems have 1GB of RAM and run RedHat

parse graph. With the proposed modifications the associatiy@mux 9.0. ZChaff and Pueblo runtimes are the average of 3

symmetry is preserved. Our system already implements thl§tarts. Timeout is set at 600 seconds. For BIBD instances,

feature for '+ and ' operations without parentheses, where o ,sq the Xeon processor at 2GHz to compare our encod-
we ignore the order in which the operations occur.

Value Svmmetry. Our work so far detectiormul m ings with those if24]. For SG and HC instances, we use the
alu€ Symmetry. Dur Work so far detectiormula Sym- 4 s, pentium processor to allow runtime comparisons with

constraints. Howeveralue symmetriethat occur between t1s. Symmetry-breaking ordering constraints ¥ are im-

the actual domains of variables can also be significant. Orde lemented using ILOG Solver and tested on a 1 GHz Pen-
. . 19 y ium processor running Windows XP. We note thikd] also
ing constraints for declared value symmetries are discuss

, X ; ports a “number of failures” metric, which is the number of
in [18], and[16] describes an algorithm to detect and break e o+ gecisions made by Solver at nodes in the search tree.
value symmetries during search. We discuss how our syste

mav be extended to detect value svmmetr We do not have access to Solver and the SAT/0-1 ILP solvers
Y . Y Y. we use do not report such a statistic. The SBPs we use are
Value symmetry can arise frooperatorsthat control the

alue of a variable. e.q. theomplemenbperation on binar added as part of the instance and a SAT/O-1 ILP solver can-
valu v ', , €.9. piemenop ,'. nary ot distinguish between SBPs and regular constraints. There-
variables, i.e.d = 1—a. The mapping « & is known as

. X fore, we cannot report a similar metric for our techniques,
aphase shift symmetryrhe construction fronj10l does not and runtime is the only comparable statistidtlowever, we
always account for phase-shift symmetries, [Hitproposes ¢ exactly the same hardware[48] so that runtime com-
animprovement that detects phase-shift symmetries in almogt, i, are fair. Since it is not possible for us to use Solver
all casgls. For thﬁ non—kl)_inary case],c such symlmetriehs rdna}y ari%}e use results d.irectly frofis] '
in problems with acyclic nature, for example, scheduling y .
problems. Any scheduling solution fdMonday, Tuesday, Balanced Incomplete Block Design Problem (BIBD).

. This problem asks to find > 0 subsets of a s&t of v> 2
Wednesday can often be shifted t9Tuesday, Wednesday, elements such that each subset contains exéatgments

Thurgda;}. _Such shifts can also be.described by an opera(V > k> 0), each element appears in exaatly 0 subsets

tor - if a variable’s domain is a cyclic group modulo 4, we and each p;air of elements appears together in exacty '

can saya’ = (a+1)%4. Intuitively, the graph construction ¢ 1 oo An instance is expressed as the 5-tivplter, k, )

to represent a cyclic group Qf vaIue; IS a cycle_ of Vert.'cesand narﬁedbibd(v,b,r,k, A) inthe results table.’V\’/e L,lse

However, if the domain size is 2, this will result in spuri- yne awix model described ifLs] (originally from [19]).

ous symmetries if all vertices are given the same color, SINCGa initially tested encodings with and without SBPs using

a’ can map tqb”)", and so on. Each vertex in the cycle must 7chaff and Pueblo on the large instances usdd (origi-

be given a gﬂfferent co'lor for this construction to work. This nally from[9]). However, our observation on these instances

allows cyclic symmetries to be detected. The SBPS we USg g’ that adding MinLex SBPs actually affects performance

may need to be modified for this case, and our ongoing workyeqatively for the Pueblo solver (ZChaff is unable to solve

is focused on proving correctness in SBP construction. st instances within the time limit, with or without SBPs).
Giving each value in a variable’s domain a different color g satisfiable instances, this is not unusual and has been

prevents the detection of value symmetries between values ﬁbted earlierif10]. When there are several solutions, adding
the domain of the same variable. A set of constraints satisfie

whena = 0 may also be satisfied when= 2. This type of 1Due to lack of space, we cannot report both number of failures
symmetry-detection is addressed i6]. Adapting our tech- and runtime fron{15]

Figure 2: Associative symmetry with parenthesized
sub-expressionsx; and x3 are symmetric but the orig-
inal parse tree is asymmetric, since the sub-expression
is represented with a separate node.



SBPs may prevent some solutions from being found earlier irls of SBPs. Two of these are basic SBPs that assign values
the search. This is borne out by our results on other probto a subset of the variables in an instance, thus forcing as-
lems. However, this does not explain the poor performancsignments that satisfy constraints on the remaining variables.
on unsatisfiable instances of this problem, which may be beFhe other two models use MinLex and anti-Lex constraints.
cause MinLex SBPs are not useful in this casel 15, sev-  Here, we report the best results among all models. Given an
eral types of SBPs are tested, and the most effective SBRsstance it may not be clear which model to use for best re-
for the BIBD problem anti-Lex ordering constraints. Since sults until several have been tried. There is no modgl&h
anti-Lex orderings are the reverse of MinLex orderings, theywhich consistently performs well for this problem. Our sys-
permit different assignments than MinLex, and may be moréem uses only MinLex SBPs.
helpful in finding solutions for BIBD. However, we use this Hamming Code Generation (HC). This problem seeks
problem to illustrate the importance of efficient encodings:o find b—bit code words to code symbols, where the Ham-
SAT encodings for the BIBD problem have been developedning distance between two symbols is at ledst An in-
in [24], where the instances used are difficult for many SATstance is specified by the parametémgb,d). We use the
solvers, but are solved by CP solvers in a few minutes. Thesatrix model from[15], and report results with and without
encodings are available k4], with and without symmetry- symmetry-breaking in the last four rows of Table 2. The in-
breaking clauses froif24]. Table 1 shows a comparison of stancesic(10,15,9) andhc(12, 20, 12) are unsat-
both encodings. The first column gives the instance paramisfiable, and the other two are satisfiadl®5] Results for the
eters, followed by Saucy statistics for high-level symmetry-first two instances are available[ih9], the last two are listed
detection. This is followed by ZChaff and Pueblo runtimesas N/A. We observe that symmetry-breaking is useful for both
for our encoding, and ZChaff runtimes for encodings fromSAT and UNSAT instances, with greater benefit for UNSAT
[24] with and without SBPs. Pueblo does not accept instanceifistances. Adding SBPs speeds up ZChalff in all cases, but it
without 0-1 ILP constraints. Both Pueblo and ZChaff solveis not competitive with Pueblo and Solver. Results reported
all instances with our encoding in a few seconds, but ZChaffrom [15] are the best out of several combinations of lexi-
times out on several instances frd@#]. All instances pos- cographic and multiset-ordering SBPs. However, several of
sess symmetries, but Saucy runtimes are negligible. these combinations are not competitive with our results using
Social Golfers (SG).This problem seeks to dividgx s  Pueblo with SBPs.
golfers intog groups of sizes for each ofw weeks. Each Overall, the detection of structure - both linearity through
golfer must play once a week. Any two golfers play in the0-1 ILP and symmetries by the addition of SBPs - improves
same group at most once. A problem instance is describgeerformance considerably for both Pueblo and ZChaff. For
by its parametergg,s,w) and is namedg(g,s,w) inthe most unsatisfiable instances, the best results are obtained us-
results table. We use the modified 3-D matrix model froming Pueblo with SBPs added. For satisfiable instances, Pueblo
[15], and the same instances usedllif]. Instances are tested is notimproved by SBPs, and in some cases is actually slower.
on ZChaff and Pueblo with and without SBPs. However, ZChaff benefits from SBPs for both SAT and UN-
Results are shown in Table 2. The first column givesSAT instances. This may be because SBPs have greater im-
instance parametersd for SG instances).followed by the pacton variable orderings for Pueblo. In most cases Pueblo’s
number of symmetry generators and runtime for Saucy. Nextesults are competitive with results reported for Solve i
we show approximate instance sizes and runtimes with andver a variety of symmetry-breaking ordering constraints.
without SBPs. For SAT conversions, we show the number ofor the cases where Pueblo is faster with SBPs, the aver-
variables and clauses. For 0-1 ILP instances we also show tlege speedup over its performance without SBPs is 83.2, not
number of PB constraints, which is the same as the number dficluding timeouts for the no-SBP version. On satisfiable
high-level constraints in the instance specification. The besdtistances, the average slowdown with SBPs is 5.6, but it is
runtimes for a given instance are boldfaced. For this probmuch less than that in most cases and there are no timeouts
lem, adding SBPs speeds up Pueblo considerablynsatis-  with SBPs. Our system uses academic solvers whose source
fiablebenchmarks. Faall cases where Pueblo is slower with code and/or binaries are publicly available, but runtimes are
SBPs, the instance is satisfiable. ZChaff is faster with SBPsomparable with those of Solver, a highly optimized commer-
for both SAT and UNSAT cases, but is not competitive with cial tool.
Pueblo. All instances possess large numbers of symmetries. All results here use problems with matrix models, which
The last column shows results reported 1%]2. Pueblo is  frequently possess large numbers of symmetries by construc-
usually competitive with Solver results frofh5] on SAT in-  tion. While row and column symmetries can be detected man-
stances without the addition of SBPs. However, on UNSATually in a matrix model, our system provides a way to detect
instances, SBPs are needed to make it competitive, and are efnd break these symmetries automatically without having to
fective in doing so. For the larger instances, Saucy runtimegive it any knowledge of the problem semantics. Moreover,
are significant. This increases the overall time for our flow.it is not restricted to matrix models, and may be used for
However[15] requires SBPs to be designed and implementegroblems that are likely to have symmetry, but for which ma-
separately for individual problems. Our system is automatedrix models do not exist. It is also applicable in cases where
and generalized. Moreové(,5] reports results for four mod- added constraints may disrupt the symmetry in matrix mod-
els, e.g. for instances with “customized” requirements. For
2Results in[15] are on a logarithmic scale, so our numbers areexample, in the social golfer problem, we can add the con-
not exact, but all runtimes are roundédwnfor fairness. straint that certain pairs of golfers mustverbe in the same



Symmetry Stats Our Encoding Encoding in[24]
Instance Symm. | Gen.| Saucy W. SBPs W/o. SBPs W. SBPs| W/o. SBPs
Name Time | ZChalff | Pueblo| ZChaff | Pueblo| ZChaff ZChaiff
bibd(7,7,3,3,1) || 2.54e7 | 12 0 0.08 0 0.01 0 0.29 T/O
bibd(6,10,5,3,2)|| 2.61e9 | 14 0 0.54 0 0.03 0 54.24 T/O
bibd(7,14,6,3,2)|| 4.39e14| 19 0.01 0.38 0.01 1.25 0.01 T/O T/O
bibd(9,12,4,3,1)|| 1.73e14| 19 0.02 0.64 0.01 1.89 0.013 T/O T/O
bibd(8,14,7,4,3)|| 3.51e15| 20 0.02 0.72 0.01 1.57 0 T/O T/O

Table 1:ZChaff results and Saucy statistics for BIBD instances using our encodings and those i24],
with and without SBPs. T/O indicates timeout at 600s. Pueblo is not tested on encodings[ 4], since
they are not available as 0-1 ILP.

Saucy Stats Size with SBPs Size w/o SBPs

Instance G. ™. CNF - ZChaff 0-1ILP - Pueblo CNF - ZChaff 0-1ILP - Pueblo Sol
Params Var. CIL m. Var. CIL PB ™. Var. CIL Tm. Var. CI. PB ™. ver
sg(2,5,4) 16 | 0.02 | 6311 33K 0.06 | 1694 | 1361 | 141 .003 | 6139 32K 0.12 | 1522 | 721 141 | 0.01 | .01
sg(2,6,4) 18 | 0.02 | 9076 48K 0.14 | 2418 | 1835 | 178 .006 | 8868 46K 0.15 | 2210 | 1057 | 178 | 0.01 | 0.1
sg(2,7,4) 20 | 0.03 12K 65K 0.31 | 3270 | 2373 | 219 | 0.01 | 12041 | 63894 | 0.14 | 3026 | 1457 | 219 | 0.02 5

sg(2,8,5) 24 | 0.07 22K 125K 1.25 | 5320 | 3761 | 300 | 0.02 22K 123K 0.89 | 4962 | 2401 | 300 | 0.02 30
s9(3,5,4) 25 | 0.09 26K 155K | 2.27 | 5645 | 4138 | 249 | 0.05 26K 152K T/O 5222 | 2521 | 249 754 | 05
s9(3,6,4) 28 | 0.14 37K 221K 1.63 | 8072 | 5629 | 321 | 0.09 37K 219K T/O 7562 | 3673 | 321 257 | 04
s9(3,7,4) 31| 0.21 51K 299K 7.7 10K | 7336 | 402 | 0.17 50K 296K 120 10K | 5041 | 402 248 | 0.5
sg(4,5,4) 34 | 0.30 70K 430K 115 | 13K | 9115 | 382 | 0.25 69K 426K T/O 12K | 6081 | 382 T/O 0.2
sg(4,6,5) 42 | 0.75 | 134K | 837K T/O 23K 15K 556 0.5 132K 831K T/O 22K 11K 556 T/O 2

sg(4,7,4) 42 | 0.79 | 135K | 829K T/O 25K 16K 634 | 0.62 | 134K 824K T/O 24K 12K 634 T/O 5

sg(4,9.,4) 50 | 1.75 | 221K | 1.35M | T/O 42K 25K 950 | 1.41 | 220K | 1.34M T/O 40K 20K 950 T/O 25
sg(5,4,3) 33 | 0.26 64K 394K 17.1 | 12K | 8502 | 340 | 0.37 64K 391K 315 11K | 5701 | 340 | 0.07 | 0.1
sg(5,5,4) 43 | 0.89 | 145K | 911K 300 25K 16K 540 1.3 144K 906K T/O 24K 12K 540 1.17 | 0.9
sg(5,7,4) 53 | 2.79 | 281K | 1.76M | T/O 50K 30K 915 1.8 279K | 1.75M T/O 48K 23K 915 T/O 7

s9(5,8,3) 53 2.3 250K | 1.51M | 107 | 48K 29K | 1050 | 1.76 | 248K | 1.51M T/O 47K 23K | 1050 | T/O 0.6
s9(6,4,3) 40 | 0.61 | 118K | 733K 496 21K 14K 456 | 0.86 | 117K 729K T/O 20K | 9937 | 456 | 047 | 0.5
sg(6,5,3) 46 | 1.25 | 182K | 1.13M | T/O 33K 20K 651 19 181K | 1.12M T/O 31K 15K 651 1.02 | 0.6
s9(6,6,3) 52 | 2,51 | 260K | 1.61M | T/O 47K 28K 882 | 2.57 | 259K | 1.60M T/O 46K 22K 882 0.1 50
sg(7,5,3) 54 | 3.06 | 301K | 1.89M | T/O 52K 32K 847 | 3.85 | 299K | 1.88M T/O 50K 24K 847 1.9 1K
sg(7,5,5) 68 | 11.4 | 551K | 3.55M | T/O 87K 54K | 1015 | 59.2 | 547K | 3.53M T/O 84K 41K | 1015 37 20
hc(10,15,9) 38 | 0.07 32K 206K | 93.4 | 5842 | 3762 45 0.59 32K 205K T/O 5552 | 2701 45 T/O 7.2
hc(10,10,5) 28 | 0.04 19K 122K T/O | 3892 | 2487 45 22.2 19K 121K T/O 3702 | 1801 45 T/O 0.4
hc(10,15,8) 38 | 0.07 32K 206K T/O | 5842 | 3762 45 275 32K 205K T/O 5552 | 2701 45 286 | N/A
hc(12,20,12) || 50 | 0.19 66K 426K T/O 11K | 7023 66 2.77 65K 10K 424K | 5281 | 10K 66 T/O | N/A

Table 2: Results for social golfers and Hamming code generation problems. Best results for a given instance are
boldfaced. T/O indicates timeout at 600s. The last column shows results frofd5]. ‘K’ and ‘M’ in instance
sizes indicate multiples of one thousand and one million.For UNSAT instances, using Pueblo with SBPs generally
performs best. For SAT instances Pueblo is slowed down by SBPs, however ZChaff benefits from SBPs even on
SAT instances. All runtimes are in seconds. N/A in the last two rows indicates that results for these instances are
not shown in[15].

group. The present matrix model has symmetry along al6 Conclusion

three dimensions - groups, weeks and golfers. Adding pair- . . )
wise constraints for specific golfers would leave only partialVVe present an integrated framework for studying and solving
symmetry between golfers, which poses more effort for man@ class of CSPs by reduction to SAT and 0-1 ILP. The frame-
ual identification of symmetries. However, with our method WOrk provides for the specification of constraints in a high-
added constraints can be analyzed and surviving symmetrié@vel language and automatic compilation into SAT. Special-
detected without any modification. Even if row/column sym-iz€d methods for SAT have improved considerably over the
metry between certain rows and columns is destroyed, we cdast 10 years, but these improvements do not necessarily ap-
still detect symmetries that exist between specific variables iRy to more sophisticated domains because SAT encodings
these rows and/or columns automatically. We also hope t@"e not always possible and may introduce inefficiencies due

identify problems that can be analyzed using our system, bi@ the loss obtructurein problem reductions. Our system au-
for which matrix models are not applicable. tomatically detects certain types of structure, such as linearity

and symmetries during compilation and uses them to produce
more efficient encodings. Linearity is preserved through the
use of 0-1 ILP, a comparatively more sophisticated problem
with specialized solvers that can use leading-edge techniques
for SAT solving.

We extend earlier work on symmetry-detectionin SAT and
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Appendix: Compilation into SAT/0-1 ILP

Below, we describe how constraints are translated into CNF
and 0-1 ILP. We use a C-like language for high-level con-

straint specification, and a customized parser that builds a
parse tree for the system of constraints. Compilers for SAT
and 0-1 ILP then walk the parse tree and translate the con-
straints into CNF/0-1 ILP formulas. The formulas are handed
to SAT/0-1 ILP solvers and solutions are translated back into
a form that is meaningful to the original problem. The input

language uses C-like syntax to declare variables and specify
constraints. Variables are specified as unsigned integers of
varying bit sizes, e.gintl represents a 1-bit (binary) vari-
able, etc. The mathematical operators allowed are addition
(+), subtraction (-) and multiplication (*). Relational oper-
ators may be<=, >=, ==, and != (not-equal constraint).
Complememotation is allowed to express the negative literal
for a binary variablexXl’ for x1). Numeric constants are al-
lowed as coefficients or as the right-hand-side (RHS) value of
equations. Division is not presently supported. The compiler
also does not support the use of nested parentheses or unary
negation but can be easily extended to do so. Support for



