
Improving Gate-Level Simulation of Quantum Circuits1

George F. Viamontes,2 Igor L. Markov,2 and John P. Hayes2

Received September 9, 2003; accepted December 1, 2003

Simulating quantum computation on a classical computer is a difficult problem. The
matrices representing quantum gates, and the vectors modeling qubit states grow
exponentially with an increase in the number of qubits. However, by using a novel
data structure called the Quantum Information Decision Diagram (QuIDD) that
exploits the structure of quantum operators, a useful subset of operator matrices and
state vectors can be represented in a form that grows polynomially with the number
of qubits. This subset contains, but is not limited to, any equal superposition of n
qubits, any computational basis state, n-qubit Pauli matrices, and n-qubit
Hadamard matrices. It does not, however, contain the discrete Fourier transform
(employed in Shor’s algorithm) and some oracles used in Grover’s algorithm. We
first introduce and motivate decision diagrams and QuIDDs. We then analyze the
runtime and memory complexity of QuIDD operations. Finally, we empirically
validate QuIDD-based simulation by means of a general-purpose quantum
computing simulator QuIDDPro implemented in Cþþ. We simulate various
instances of Grover’s algorithm with QuIDDPro, and the results demonstrate that
QuIDDs asymptotically outperform all other known simulation techniques. Our
simulations also show that well-known worst-case instances of classical searching
can be circumvented in many specific cases by data compression techniques.

KEY WORDS: quantum computation; quantum computer simulation;
algorithms; data compression; decision diagrams; graphs; quantum search.

PACS: 03.67.Lx, 03.65.Fd, 03.65.Vd, 07.05.Bx

1. INTRODUCTION

Richard Feynman observed in the 1980s that simulating quantum
mechanical processes on a standard classical computer seems to require
super-polynomial memory and time.(12) For instance, a complex vector of

1Earlier results of this work were reported at ASPDAC ’03.(18) New material includes

significantly better experimental results and a description of a class of matrices and vectors

which can be manipulated in polynomial time and memory using QuIDDPro.
2The University of Michigan, Advanced Computer Architecture Laboratory Ann Arbor,

Michigan 48109-2122, USA E-mail: {gviamont, imarkov, jhayes}@eecs.umich.edu

Quantum Information Processing, Vol. 2, No. 5, October 2003 (# 2004)

347

1570-0755/03/1000–0347/0 # 2004 Plenum Publishing Corporation

size 2n is needed to represent all the information in n quantum states, and
square matrices of size 22n are needed to model (simulate) the time evolution
of the states.(14) Consequently, Feynman proposed quantum computing
which uses the quantum mechanical states themselves to simulate quantum
processes. The key idea is to replace bits with quantum states called qubits as
the fundamental units of information. A quantum computer can operate
directly on exponentially more data than a classical computer with a similar
number of operations and information units. Thus in addressing the
problem of simulating quantum mechanical processes more efficiently,
Feynman discovered a new computing model that can outperform classical
computation in certain cases.

Software simulation has long been an invaluable tool for the design
and testing of digital circuits. This problem too was once thought to be
computationally intractable. Early simulation and synthesis techniques for
n-bit circuits often required Oð2nÞ runtime and memory, with the worst-case
complexity being fairly typical. Later algorithmic advancements brought
about the ability to perform circuit simulation much more efficiently in
practical cases. One such advance was the development of a data structure
called the Reduced Ordered Binary Decision Diagram (ROBDD),(5) which
can greatly compress the Boolean description of digital circuits and allow
direct manipulation of the compressed form. Software simulation may also
playa vital role in the development of quantum hardware by enabling the
modeling and analysis of large-scale designs that cannot be implemented
physically with current technology. Unfortunately, straightforward simula-
tion of quantum designs by classical computers executing standard linear-
algebraic routines requires Oð2nÞ time and memory.(12,14) However, just as
ROBDDs and other innovations have made the simulation of very large
classical computers tractable, new algorithmic techniques can allow the
efficient simulation of quantum computers.

The goal of the work reported here is to develop a practical software
means of simulating quantum computers efficiently on classical computers.
We propose a new data structure called the Quantum Information Decision
Diagram (QuIDD) which is based on decision diagram concepts that are
well-known in the context of simulating classical computer hardware.(2,5,6)

As we demonstrate, QuIDDs allow simulations of n-qubit systems to
achieve run-time and memory complexities that range from Oð1Þ to Oð2nÞ;
and the worst case is not typical. In the important case of Grover’s quantum
search algorithm,(11) we show that our QuIDD-based simulator outperforms
all other known simulation techniques.

The paper is organized as follows. Section 2 outlines previous work on
decision diagrams and the modeling of quantum computation on classical
computers. In Sec. 3 we present our QuIDD data structure. Sec. 4 analyzes

348 Viamontes, Markov and Hayes

the runtime and memory complexity of QuIDD operations, while Sec. 5
describes some experimental results using QuIDDs. Finally, in Sec. 6 we
present our conclusions and ideas for future work.

2. BACKGROUND

This section first presents the basic concepts of decision diagrams,
assuming only a rudimentary knowledge of computational complexity and
graph theory. It then reviews previous research on simulating quantum
mechanical matrix operations.

2.1. Binary Decision Diagrams

The binary decision diagram (BDD) was introduced by Lee in 1959(13)

in the context of classical logic circuit design. This data structure represents
a Boolean function fðx1; x2; . . . ; xnÞ by a directed acyclic graph (DAG); see
Fig. 1. By convention, the top node of a BDD is labeled with the name of the
function f represented by the BDD. Each variable xi of f is associated with
one or more nodes with two outgoing edges labeled then (solid line) and else
(dashed line). The then edge of node xi denotes an assignment of logic 1 to
the xi; while the else edge represents an assignment of logic 0. These nodes
are called internal nodes and are labeled by the corresponding variable xi:
The edges of the BDD point downward, implying a top-down assignment of
values to the Boolean variables depicted by the internal nodes.

At the bottom of the BDD are terminal nodes containing the logic
values 1 or 0. They denote the output value of the function f for a given
assignment of its variables. Each path through the BDD from top to bottom

Fig. 1. (a) A logic function, (b) its BDD representation, (c) its BDD representation

after applying the first reduction rule, and (d) its ROBDD representation.

Improving Gate-level Simulation of Quantum Circuits 349

represents a specific assignment of 0-1 values to the variables x1; x2; . . . ; xn
of f; and ends with the corresponding output value fðx1; x2; . . . ; xnÞ:

The original BDD data structure conceived by Lee has exponential
worst-case memory complexity �ð2nÞ; where n is the number of Boolean
variables in a given logic function. Moreover,exponential memory and
runtime are required in many practical cases, making this data structure
impractical for simulation of large logic circuits. To address this limitation,
Bryant developed the Reduced Ordered BDD (ROBDD),(5) where all
variables are ordered, and decisions are made in that order. A key advantage
of the ROBDD is that variable-ordering facilitates an efficient implementa-
tion of reduction rules that automatically eliminate redundancy from the
basic BDD representation and may be summarized as follows:

(1) There are no nodes v and v0 such that the subgraphs rooted at v and
v0 are isomorphic.

(2) There are no internal nodes with then and else edges that both point
to the same node.

An example of how the rules transform a BDD into an ROBDD is
shown in Fig. 1. The subgraphs rooted at the x1 nodes in Fig. 1(b) are
isomorphic. By applying the first reduction rule, the BDD in Fig. 1(b) is
converted into the BDD in Fig. 1(c). Notice that in this new BDD, the then
and else edges of the x0 node now point to the same node. Applying the
second reduction rule eliminates the x0 node, producing the ROBDD in Fig.
1(d). Intuitively it makes sense to eliminate the x0 node since the output of
the original function is determined solely by the value of x1: An important
aspect of redundancy elimination is the sensitivity of ROBDD size to the
variable ordering. Finding the optimal variable ordering is an NP-complete
problem, but efficient ordering heuristics have been developed for specific
applications. Moreover, it turns out that many practical logic functions have
ROBDD representations that are polynomial (or even linear) in the number
of input variables.(5) Consequently, ROBDDs have become indispensable
tools in the design and simulation of classical logic circuits.

2.2. BDD Operations

Even though the ROBDD is often quite compact, efficient algorithms
are necessary to make it practical for circuit simulation. Thus, in addition to
the foregoing reduction rules, Bryant introduced a variety of ROBDD
operations whose complexities are bounded by the size of the ROBDDs
being manipulated.(5) Of central importance is the Apply operation, which
performs a binary operation with two ROBDDs, producing a third
ROBDD as the result. It can be used, for example, to compute the logical

350 Viamontes, Markov and Hayes

AND of two functions. Apply is implemented by a recursive traversal of the
two ROBDD operands. For each pair of nodes visited during the traversal,
an internal node is added to the resultant ROBDD using the three rules
depicted in Fig. 2. To understand the rules, some notation must be
introduced. Let vf denote an arbitrary node in an ROBDD f: If vf is an
internal node, VarðvfÞ is the Boolean variable represented by vf;TðvfÞ is the
node reached when traversing the then edge of vf; and EðvfÞ is the node
reached when traversing the else edge of vf:

Clearly the rules depend on the variable ordering. To illustrate,
consider performing Apply using a binary operation op and two ROBDDs f
and g: Apply takes as arguments two nodes, one from f and one from g; and
the operation op: This is denoted as Applyðvf; vg; opÞ: Apply compares
VarðvfÞ and VarðvgÞ and adds a new internal node to the ROBDD result
using the three rules. The rules also guide Apply’s traversal of the then and
else edges (this is the recursive step). For example, suppose Applyðvf; vg; opÞ
is called and VarðvfÞ � VarðvgÞ: Rule 1 is invoked, causing an internal node
containing VarðvfÞ to be added to the resulting ROBDD. Rule 1 then directs
the Apply operation to call itself recursively with ApplyðTðvfÞ; vg; opÞ and
ApplyðEðvfÞ; vg; opÞ: Rules 2 and 3 dictate similar actions but handle the
cases when VarðvfÞ � VarðvgÞ and VarðvfÞ ¼ VarðvgÞ: To recurse over both
ROBDD operands correctly, the initial call to Apply must be
ApplyðRootðfÞ;RootðgÞ; opÞ where RootðfÞ and RootðgÞ are the root nodes
for the ROBDDs f and g:

The recursion stops when both vf and vg are terminal nodes. When this
occurs, op is performed with the values of the terminals as operands, and the
resulting value is added to the ROBDD result as a terminal node. For
example, if vf contains the value logical 1, vg contains the value logical 0, and
op is defined to be �ðXORÞ; then a new terminal with value 1� 0 ¼ 1 is
added to the ROBDD result. Terminal nodes are considered after all
variables are considered. Thus, when a terminal node is compared to an
internal node, either Rule 1 or Rule 2 will be invoked depending on which
ROBDD the internal node is from.

Fig. 2. The three recursive rules used by the Apply operation which determine how a new node

should be added to a resultant ROBDD. In the figure, xi ¼ VarðvfÞ and xj ¼ VarðvgÞ: The

notation xi � xj is defined to mean that xi precedes xj in the variable ordering.

Improving Gate-level Simulation of Quantum Circuits 351

ROBDD variants have been adopted in several contexts outside the
domain of logic design. Of particular relevance to this work are Multi-
Terminal Binary Decision Diagrams (MTBDDs) (6) and Algebraic Decision
Diagrams (ADDs).(2) These data structures are compressed representations
of matrices and vectors rather than logic functions, and the amount of
compression achieved is proportional to the frequency of repeated values in
a given matrix or vector. Additionally, some standard linear-algebraic
operations, such as matrix multiplication, are defined for MTBDDs and
ADDs. Since they are based on the Apply operation, the efficiency of these
operations is proportional to the size in nodes of the MTBDDs or ADDs
being manipulated. Further discussion of the MTBDD and ADD
representations is deferred to Subsec. 3.1 where the general structure of
the QuIDD is described.

2.3. Previous Linear-Algebraic Techniques

Quantum-circuit simulators must support linear-algebraic operations
such as matrix multiplication, the tensor product, and the projection
operators. They typically employ array-based methods to multiply matrices
and so require exponential computational resources in the number of qubits.
Such methods are often insensitive to the actual values stored, and even
sparse-matrix storage offers little improvement for quantum operators with
no zero matrix elements, such as Hadamard operators.

Several clever matrix methods have been developed for quantum
simulation. For example, one can simulate k-input quantum gates on an n-
qubit state vector ðk � nÞ without explicitly storing a 2n � 2n-matrix
representation. The basic idea is to simulate the full-fledged matrix-vector
multiplication by a series of simpler operations. To illustrate, consider
simulating a quantum circuit in which a 1-qubit Hadamard operator is
applied to the third qubit of the state-space j00100i: The state vector
representing this state-space has 25 elements. A naive way to apply the
1-qubit Hadamard is to construct a 25 � 25 matrix of the form
I� I�H� I� I and then multiply this matrix by the state vector.
However, rather than compute ðI� I�H� I� IÞj00100i; one can simply
compute j00i �Hj1i � j00i; which produces the same result using a 2� 2
matrix H: The same technique can be applied when the state-space is in a
superposition, such as �j00100i þ �j00000i: In this case, to simulate the
application of a 1-qubit Hadamard operator to the third qubit, one can
compute j00i �Hð�j1i þ �j0iÞ � j00i: As in the previous example, a 2� 2
matrix is sufficient.

While the above method allows one to compute a state space
symbolically, in a realistic simulation environment, state vectors may be

352 Viamontes, Markov and Hayes

much more complicated. Shortcuts that take advantage of the linearity of
matrix-vector multiplication are desirable. For example, a single qubit can
be manipulated in a state vector by extracting a certain set of two-
dimensional vectors. Each vector in such a set is composed of two
probability amplitudes. The corresponding qubit states for these amplitudes
differ in value at the position of the qubit being operated on but agree in
every other qubit position. The two-dimensional vectors are then multiplied
by matrices representing single qubit gates in the circuit being simulated. We
refer to this technique as qubit-wise multiplication because the state-space is
manipulated one qubit at a time. Obenland implemented a technique of this
kind as part of a simulator for quantum circuits.(15) His method applies one-
and two-qubit operator matrices to state vectors of size 2n: Unfortunately,
in the best case where k ¼ 1; this only reduces the runtime and memory
complexity from Oð22nÞ to Oð2nÞ; which is still exponential in the number of
qubits.

Gottesman developed a simulation method involving the Heisenberg
representation of quantum computation which tracks the commutators of
operators applied by a quantum circuit.(9) With this model, the state vector
need not be represented explicitly because the operators describe how an
arbitrary state vector would be altered by the circuit. Gottesman showed
that simulation based on this model requires only polynomial memory and
runtime on a classical computer in certain cases. However, it appears limited
to the Clifford and Pauli groups of quantum operators, which do not form a
universal gate library.

Other advanced simulation techniques including MATLAB’s
‘‘packed’’ representation, apply data compression to matrices and vectors,
but cannot perform matrix-vector multiplication on compressed matrices
and vectors. A notable exception is Greve’s simulation of Shor’s algorithm
which uses BDDs.(10) Probability amplitudes of individual qubits are
modeled by single decision nodes. This only captures superpositions where
every participating qubit is rotated by �45� from j0i toward j1i: Another
BDD-based technique was recently proposed by Al-Rabadi et al.(1) which
can perform multi-valued quantum logic. A drawback of this technique is
that it is limited to synthesis of quantum logic gates rather than simulation
of their behavior.

Though Greve’s and Al-Rabadi et al.’s BDD representations cannot
simulate arbitrary quantum circuits, the idea of modeling quantum states
with a BDD-based structure is appealing and motivates our approach.
Unlike previous techniques, this approach is capable of simulating arbitrary
quantum circuits while offering performance improvements as demon-
strated by the results presented in Secs. 4 and 5.

Improving Gate-level Simulation of Quantum Circuits 353

3. QuIDD THEORY

The Quantum Information Decision Diagram (QuIDD) was born out of
the observation that vectors and matrices which arise in quantum
computing exhibit repeated structure. Complex operators obtained from
the tensor product of simpler matrices continue to exhibit common
substructures which certain BDD variants can capture. MTBDDs and
ADDs,introduced in Subsec. 2.2, are particularly relevant to the task of
simulating quantum systems. The QuIDD can be viewed as an ADD or
MTBDD with the following properties:

(1) The values of terminal nodes are restricted to the set of complex
numbers.

(2) Rather than contain the values explicitly, QuIDD terminal nodes
contain integer indices which map into a separate array of complex
numbers. This allows the use of a simpler integer function for
Apply-based operations, along with existing ADD and MTBDD
libraries,(17) greatly reducing implementation overhead.

(3) The variable ordering of QuIDDs interleaves row and column
variables, which favors compression of block patterns (see Subsec.
3.2).

(4) Bahar et al. note that ADDs can be padded with 0’s to represent
arbitrarily sized matrices.(2) No such padding is necessary in the
quantum domain where all vectors and matrices have sizes that are
a power of 2 (see Subsec. 3.2).

As we demonstrate using our QuIDD-based simulator QuIDDPro
these properties greatly enhance performance of quantum computational
simulation.

3.1. Vectors and Matrices

Figure 3 shows the QuIDD structure for three 2-qubit states. We
consider the indices of the four vector elements to be binary numbers, and
define their bits as decision variables of QuIDDs. A similar definition is used
for ADDs.(2) For example, traversing the then edge (solid line) of node I0 in
Fig. 3(c) is equivalent to assigning the value 1 to the first bit of the 2-bit
vector index. Traversing the else edge (dotted line) of node I1 in the same
figure is equivalent to assigning the value 0 to the second bit of the index.
These traversals bring us to the terminal value 	 1

2 ; which is precisely the
value at index 10 in the vector representation.

QuIDD representations of matrices extend those of vectors by adding
a second type of variable node and enjoy the same reduction rules and

354 Viamontes, Markov and Hayes

compression benefits. Consider the 2-qubit Hadamard matrix annotated
with binary row and column indices shown in Fig. 4(a). In this case there are
two sets of indices: The first (vertical) set corresponds to the rows, while the
second (horizontal) set corresponds to the columns. We assign the variable
name Ri and Ci to the row and column index variables respectively. This
distinction between the two sets of variables was originally noted in several
works including that of Bahar et al.(2) Figure 4(b) shows the QuIDD form of
this sample matrix where it is used to modify the state vector
j00i ¼ ð1; 0; 0; 0Þ via matrix-vector multiplication, an operation discussed
in more detail in Subsec. 3.4.

3.2. Variable Ordering

As explained in Subsec. 2.1, variable ordering can drastically affect the
level of compression achieved in BDD-based structures such as QuIDDs.
The CUDD programming library,(17) which is incorporated into QuIDD-
Pro, offers sophisticated dynamic variable-reordering techniques that
achieve performance improvements in various BDD applications. However,
dynamic variable reordering has significant time overhead, whereas finding
a good static ordering in advance may be preferable in some cases. Good
variable orderings are highly dependent upon the structure of the problem at
hand, and therefore one way to seek out a good ordering is to study the
problem domain. In the case of quantum computing, we notice that all

Fig. 3. Sample QuIDDs for state vectors of (a) best, (b) worst and (c) mid-range size.

Improving Gate-level Simulation of Quantum Circuits 355

matrices and vectors contain 2n elements where n is the number of qubits
represented. Additionally, the matrices are square and non-singular.(14)

McGeer et al. demonstrated that ADDs representing certain rectan-
gular matrices can be operated on efficiently with interleaved row and column
variables.(7) Interleaving implies the following variable ordering:
R0 � C0 � R1 � C1 �

 � Rn � Cn: Intuitively, the interleaved ordering
causes compression to favor regularity in block sub-structures of thematrices.
We observe that such regularity is created by tensor products that are required
to allow multiple quantum gates to operate in parallel and also to extend
smaller quantum gates to operate on larger numbers of qubits. The tensor
product A� Bmultiplies each element of A by the whole matrix B to create a
larger matrix which has dimensions MAMB by NANB: By definition, the
tensor product will propagate block patterns in its operands. To illustrate the
notion of block patterns and how QuIDDs take advantage of them, consider
the tensor product of two one-qubit Hadamard operators:

ð1=
ffiffiffi
2

p
Þ ð1=

ffiffiffi
2

p
Þ

ð1=
ffiffiffi
2

p
Þ 	1=

ffiffiffi
2

p

" #
�

ð1=
ffiffiffi
2

p
Þ ð1=

ffiffiffi
2

p
Þ

ð1=
ffiffiffi
2

p
Þ 	1=

ffiffiffi
2

p

" #

¼

1=2 1=2

1=2 	1=2

� �
1=2 1=2

1=2 	1=2

� �

1=2 1=2

1=2 	1=2

� �
	1=2 	1=2

	1=2 1=2

2
6664

3
7775

Fig. 4. (a) 2-qubit Hadamard, and (b) its QuIDD representation multiplied by

j00i ¼ ð1; 0; 0; 0Þ: Note that the vector and matrix QuIDDs share the entries in a terminal

array that is global to the computation.

356 Viamontes, Markov and Hayes

The above matrices have been separated into quadrants, and each quadrant
represents a block. For the Hadamard matrices depicted,three of the four
blocks are equal in both of the one-qubit matrices and also in the larger two-
qubit matrix (the equivalent blocks are surrounded by parentheses). This
repetition of equivalent blocks demonstrates that the tensor product of two
equal matrices propagates block patterns. In the case of the above example,
the pattern is that all but the lower-right quadrant of an n-qubit Hadamard
operator are equal. Furthermore, the structure of the two-qubit matrix
implies a recursive block sub-structure, which can be seen by recursively
partitioning each of the quadrants in the two-qubit matrix:

ð1=
ffiffiffi
2

p
Þ ð1=

ffiffiffi
2

p
Þ

ð1=
ffiffiffi
2

p
Þ 	1=

ffiffiffi
2

p

" #
�

ð1=
ffiffiffi
2

p
Þ ð1=

ffiffiffi
2

p
Þ

ð1=
ffiffiffi
2

p
Þ 	1=

ffiffiffi
2

p

" #

¼

ð1=2Þ ð1=2Þ

ð1=2Þ 	1=2

� �
ð1=2Þ ð1=2Þ

ð1=2Þ 	1=2

� �

ð1=2Þ ð1=2Þ

ð1=2Þ 	1=2

� �
ð	1=2Þ ð	1=2Þ

ð	1=2Þ 1=2

2
6664

3
7775

The only difference between the values in the two-qubit matrix and the
values in the one-qubit matrices is a factor of 1=

ffiffiffi
2

p
: Thus, we can recursively

define the Hadamard operator as follows:

Hn	1 �Hn	1 ¼
C1H

n	1 C1H
n	1

C1H
n	1 C2H

n	1

� �

where C1 ¼ 1=
ffiffiffi
2

p
and C2 ¼ 	1=

ffiffiffi
2

p
: Other operators constructed via the

tensor product can also be defined recursively in a similar fashion.
Since three of the four blocks in an n-qubit Hadamard operator are

equal, significant redundancy is exhibited. The interleaved variable ordering
property allows a QuIDD to explicitly represent only two distinct blocks
rather than four as shown in Fig. 5. As we demonstrate in Secs 4 and 5,
compression of equivalent block sub-structures using QuIDDs offers major
performance improvements for many of the operators that are frequently
used in quantum computation. In the next Subsection, we describe an
algorithm which implements the tensor product for QuIDDs and leads to
the compression just described.

3.3. Tensor Product

With the structure and variable ordering in place, operations involving
QuIDDs can now be defined. Most operations defined for ADDs also work

Improving Gate-level Simulation of Quantum Circuits 357

on QuIDDs with some modification to accommodate the QuIDD proper-
ties. The tensor (Kronecker) product has been described by Clarke et al. for
MTBDDs representing various arithmetic transform matrices.(6) Here we
reproduce an algorithm for the tensor product of QuIDDs based on the
Apply operation that bears similarity to Clarke’s description. Recall that the
tensor product A� B produces a new matrix which multiplies each element
of A by the entire matrix B: Rows (columns) of the tensor product matrix
are component-wise products of rows (columns) of the argument matrices.
Therefore it is straightforward to implement the tensor product operation
on QuIDDs using the Apply function with an argument that directs Apply to
multiply when it reaches the terminals of both operands. However, the main
difficulty here lies in ensuring that the terminals of A are each multiplied by
all the terminals of B: From the definition of the standard recursive Apply
routine, we know that variables which precede other variables in the
ordering are expanded first.(5,6) Therefore, we must first shift all variables in
B in the current order after all of the variables in A prior to the call to Apply.
After this shift is performed, the Apply routine will then produce the desired
behavior. Apply starts out with A � B and expands A alone until Aterminal � B
is reached for each terminal in A: Once a terminal of A is reached, B is fully
expanded, implying that each terminal of A is multiplied by all of B: The size
of the resulting QuIDD and the runtime for generating it given two
operands of sizes a and b (in number of nodes) is OðabÞ because the tensor
product simply involves a variable shift of complexity OðbÞ; followed by a
call to Apply, which Bryant showed to have time and memory complexity
OðabÞ:(5)

Fig. 5. (a) n-qubit Hadamard QuIDD depicted next to (b) 1-qubit Hadamard

QuIDD. Notice that they are isomorphic except at the terminals.

358 Viamontes, Markov and Hayes

3.4. Matrix Multiplication

Matrix multiplication can be implemented very efficiently by using
Apply to implement the dot-product operation. This follows from the
observation that multiplication is a series of dot-products between the rows
of one operand and the columns of the other operand. In particular, given
matrices A and B with elements aij and bij; their product C ¼ AB can be
computed element-wise by cij ¼

Pn
j¼1 aijbji:

Matrix multiplication for QuIDDs is an extension of the Apply
function that implements the dot-product. One call to Apply will not suffice
because the dot-product requires two binary operations to be performed,
namely addition and multiplication. To implement this we simply use the
matrix multiplication algorithm defined by Bahar et al. for ADDs (2) but
modified to support the QuIDD properties. The algorithm essentially makes
two calls to Apply, one for multiplication and the other for addition.

Another important issue in efficient matrix multiplication is compres-
sion. To avoid the same problem that MATLAB encounters with its
‘‘packed’’ representation, ADDs do not require decompression during
matrix multiplication. In the work of Bahar et al., this is addressed by
tracking the number i of ‘‘skipped’’ variables between the parent node and
its child node in each recursive call. To illustrate, suppose that VarðvfÞ ¼ x2
and VarðTðvfÞÞ ¼ x5: In this situation, i ¼ 5	 2 ¼ 3: A factor of 2i is
multiplied by the terminal-terminal product that is reached at the end of a
recursive traversal.(2)

The pseudo-code presented for this algorithm in subsequent work of
Bahar et al. suggests time-complexity OððabÞ2Þ where a and b are the sizes,
i.e., the number of decision nodes, of two ADD operands.(2) As with all
BDD algorithms based on the Apply function, the size of the resulting ADD
is on the order of the time complexity, meaning that the size is also OððabÞ2Þ:
In the context of QuIDDs, we use a modified form of this algorithm to
multiply operators by the state vector, meaning that a and b will be the sizes
in nodes of a QuIDD matrix and QuIDD state vector, respectively. If either
a or b or both are exponential in the number of qubits in the circuit, the
QuIDD approach will have exponential time and memory complexity.
However, in Sec. 4 we formally argue that many of the operators which arise
in quantum computing have QuIDD representations that are polynomial in
the number of qubits.

Two important modifications must be made to the ADD matrix
multiply algorithm in order to adapt it for QuIDDs. To satisfy QuIDD
properties 1 and 2, the algorithm must treat the terminals as indices into an
array rather than the actual values to be multiplied and added. Also,a
variable ordering problem must be accounted for when multiplying a matrix
by a vector. A QuIDD matrix is composed of interleaved row and column

Improving Gate-level Simulation of Quantum Circuits 359

variables, whereas a QuIDD vector only depends on column variables. If the
ADD algorithm is run as described above without modification, the
resulting QuIDD vector will be composed of row instead of column
variables. The structure will be correct, but the dependence on row variables
prevents the QuIDD vector from being used in future multiplications. Thus,
we introduce a simple extension which transposes the row variables in the
new QuIDD vector to corresponding column variables. In other words, for
each Ri variable that exists in the QuIDD vector’s support, we map that
variable to Ci:

3.5. Other Linear-Algebraic Operations

Matrix addition is easily implemented by calling Apply with op defined
to be addition. Unlike the tensor product, no special variable order shifting
is required for matrix addition. Another interesting operation which is
nearly identical to matrix addition is element-wise multiplication cij ¼ aijbij:
Unlike the dot-product, this operation involves only products and no
summation. This algorithm is implemented just like matrix addition except
that op is defined to be multiplication rather than addition. In quantum
computer simulation, this operation is useful for matrix-vector multi-
plications with a diagonal matrix like the Conditional Phase Shift in
Grover’s algorithm.(11) Such a shortcut considerably improves upon full-
fledged matrix multiplication. Interestingly enough, element-wise multi-
plication, and matrix addition operations for QuIDDs can perform, without
the loss of efficiency, respective scalar operations. That is because a QuIDD
with a single terminal node can be viewed both as a scalar value and as a
matrix or vector with repeated values.

Since matrix addition, element-wise multiplication, and their scalar
counterparts are nothing more than calls to Apply, the runtime complexity
of each operation is OðabÞ where a and b are the sizes in nodes of the QuIDD
operands. Likewise, the resulting QuIDD has memory complexity OðabÞ:(5)

Another relevant operation which can be performed on QuIDDs is the
transpose. It is perhaps the simplest QuIDD operation because it is
accomplished by swapping the row and column variables of a QuIDD. The
transpose is easily extended to the complex conjugate transpose3 by first
performing the transpose of a QuIDD and then conjugating its terminal
values. The runtime and memory complexity of these operations is OðaÞ
where a is the size in nodes of the QuIDD undergoing a transpose.

To perform quantum measurement (see Subsec. 3.6) one can use the
inner product, which can be faster than multiplying by projection matrices

3The complex conjugate transpose is also known as the Hermitian conjugate or the adjoint.

360 Viamontes, Markov and Hayes

and computing norms. Using the transpose, the inner product can be
defined for QuIDDs. The inner product of two QuIDD vectors, e.g., hAjBi;
is computed by matrix multiplying the transpose of A with B: Since matrix
multiplication is involved, the runtime and memory complexity of the inner
product is OððabÞ2Þ; where a and b are the sizes in nodes of A and B
respectively. Our current QuIDD-based simulator QuIDDPro supports
matrix multiplication, the tensor product, measurement, matrix addition,
element-wise multiplication, scalar operations, the transpose, the complex
conjugate transpose, and the inner product.

3.6. Measurement

Measurement can be defined for QuIDDs using a combination of
operations. After measurement, the state vector is described by:

Mmj iffi
h jMy

mMmj i

q
Mm is a measurement operator and can be represented by a QuIDD matrix,
and the state vector j i can be represented by a QuIDD vector. The
expression in the numerator involves a QuIDD matrix multiplication. In the
denominator, My

m is the complex conjugate transpose of Mm; which is also
defined for QuIDDs. My

mMm and My
mMmj i are matrix multiplications.

h jMy
mMmj i is an inner product which produces a QuIDD with a single

terminal node. Taking the square root of the value in this terminal node is
straightforward. To complete the measurement, scalar division is performed
with the QuIDD in the numerator and the single terminal QuIDD in the
denominator as operands.

Let a and b be the sizes in nodes of the measurement operator QuIDD
and state vector QuIDD, respectively. Performing the matrix multiplication
in the numerator has runtime and memory complexity OððabÞ2Þ: The scalar
division between the numerator and denominator also has the same runtime
and memory complexity since the denominator is a QuIDD with a single
terminal node. However, computing the denominator will have runtime and
memory complexity Oða16b6Þ due to the matrix-vector multiplications and
inner product.

4. COMPLEXITY ANALYSES

In this section we prove that the QuIDD data structure can represent a
large class of state vectors and operators using an amount of memory that is
linear in the number of qubits rather than exponential. Further, we prove

Improving Gate-level Simulation of Quantum Circuits 361

that the QuIDD operations required in quantum circuit simulation, i.e.,
matrix multiplication, the tensor product, and measurement, have both
runtime and memory that is linear in the number of qubits for the same class
of state vectors and operators. In addition to these complexity issues, we
also analyze the runtime and memory complexity of simulating Grover’s
algorithm using QuIDDs.

4.1. Complexity of QuIDDs and QuIDD Operations

The key to analyzing the runtime and memory complexity of the
QuIDD-based simulations lies in describing the mechanics of the tensor
product. Indeed, the tensor product is the means by which quantum circuits
can be represented with matrices. In the following analysis,the size of a
QuIDD is represented by the number of nodes rather than actual memory
consumption. Since the amount of memory used by a single QuIDD node is
a constant, size in nodes is relevant for asymptotic complexity arguments.
Actual memory usage in megabytes of QuIDD simulations is reported in
Sec. 5.

Figure 6 illustrates the general form of a tensor product between two
QuIDDs A and B: InðAÞ represents the internal nodes of A; while a1 through
ax denote terminal nodes. The notation for B is similar.

InðAÞ is the root subgraph of the tensor product result because of the
interleaved variable ordering defined for QuIDDs and the variable shifting
operation of the tensor product (see Subsec. 3.3). Suppose that A depends
on the variables R0 � C0 �

 � Ri � Ci; and B depends on the variables
R0 � C0 �

 � Rj � Cj: In performing A� B; the variables on which B
depends will be shifted to Riþ1 � Ciþ1 �

 � Rkþiþ1 � Ckþiþ1: The tensor
product is then completed by calling ApplyðA;B; �Þ: Due to the variable shift
on B; Rule 1 of the Apply function will be used after each comparison of a
node from A with anode from B until the terminals of A are reached. Using
Rule 1 for each of these comparisons implies that only nodes from A will be
added to the result, explaining the presence of InðAÞ: Once the terminals of A
are reached, Rule 2 of Apply will then be invoked since terminals are defined
to appear last in the variable ordering. Using Rule 2 when the terminals of A
are reached implies that all the internal nodes from B will be added in place
of each terminal of A; causing x copies of InðBÞ to appear in the result (recall
that there are x terminals in A). When the terminals of B are reached, they
are multiplied by the appropriate terminals of A: Specifically, the terminals
of a copy of B will each be multiplied by the terminal of A that its InðBÞ
replaced. The same reasoning holds for QuIDD vectors as vectors differ in
that they depend only on Ri variables.

362 Viamontes, Markov and Hayes

Figure 6 suggests that the size of a QuIDD constructed via the tensor
product depends on the number of terminals in the operands. The more
terminals a left-hand tensor operand contains, the more copies of the right-
hand tensor operand’s internal nodes will be added to the result. More
formally, consider the tensor product of a series of QuIDDsNn

i¼1 Qi ¼ ð

 ððQ1 �Q2Þ �Q3Þ �

 �QnÞ: Note that the � operation is
associative (thus parenthesis do not affect the result), but it is not
commutative. The number of nodes in this tensor product is described by
the following lemma.

Lemma 4.1. Given QuIDDs fQig
n
i¼1; the tensor-product QuIDDNn

i¼1 Qi contains jInðQ1Þj þ
Pn

i¼2 jInðQiÞjjTermð
Ni	1

j¼1 QjÞjþjTermð
Nn

i¼1 QiÞj

nodes.4

Proof. This formula can be verified by induction. For the base case,
n ¼ 1; there is a single QuIDD Q1: Putting this information into the formula
eliminates the summation term, leaving jInðQ1Þj þ jTermðQ1Þj as the total
number of nodes in Q1: This is clearly correct since, by definition, a QuIDD
is composed of its internal and terminal nodes. To complete the proof, we
now show that if the formula is true for Qn then it’s true for Qnþ1: The

Fig. 6. General form of a tensor product between two QuIDDs A and B:

4
jInðAÞj denotes the number of internal nodes in A; while jTermðAÞj denotes the number of

terminal nodes in A:

Improving Gate-level Simulation of Quantum Circuits 363

inductive hypothesis for Qn is j
Nn

i¼1 Qij ¼ jInðQ1Þj þ
Pn

i¼2 jInðQiÞj

jTermð
Ni	1

j¼1 QjÞj þ jTermð
Nn

i¼1 QiÞj: For Qnþ1 the number of nodes is:

On
i¼1

Qi

 !
�Qnþ1

�����
����� ¼

On
i¼1

Qi

�����
�����	 Term

On
i¼1

Qi

 !�����
�����þ jIn Qnþ1ð Þj Term

On
i¼1

Qi

 !�����
�����þ Term

Onþ1

i¼1

Qi

 !�����
�����

Notice that the number of terminals in
Nn

i¼1 Qi are subtracted from the total
number of nodes in

Nn
i¼1 Qi and multiplied by the number of internal nodes

in Qnþ1: The presence of these terms is due to Rule 2 of Apply which dictates
that in the tensor-product ð

Nn
i¼1 QiÞ �Qnþ1; the terminals of

Nn
i¼1 Qi are

replaced by copies of Qnþ1 where each copy’s terminals are multiplied by a
terminal from

Nn
i¼1 Qi: The last term simply accounts for the total number

of terminals in the tensor-product. Substituting the inductive hypothesis
made earlier for the term j �n

i¼1 Qij produces:

jInðQ1Þj þ
Xn
i¼2

jInðQiÞj Term
Oi	1

j¼1

Qj

 !�����
�����þ Term

On
i¼1

Qi

 !�����
�����	 Term

On
i¼1

Qi

 !�����
�����

þ jInðQnþ1Þj Term
On
i¼1

Qi

 !�����
�����þ Term

Onþ1

i¼1

Qi

 !�����
�����

¼ jInðQ1Þj þ
Xnþ1

i¼2

jInðQiÞj Term
Oi	1

j¼1

Qj

 !�����
�����þ Term

Onþ1

i¼1

 !�����
�����

Thus the number of nodes in Qnþ1 is equal to the original formula we set out
to prove for nþ 1 and the induction is complete. &

Lemma 4.1 suggests that if the number of terminals in
N

i¼1 Qi increases
by a certain factor with each Qi; then

Nn
i¼1 Qi must grow exponentially in n:

If, however, the number of terminals stops changing, then
Nn

i¼1 Qi must grow
linearly in n: Thus, the growth depends on matrix entries because terminals of
A� B are products of terminal values of A by terminal values of B and
repeated products aremerged. If all QuIDDsQi have terminal values from the
same set �; the product’s terminal values are products of elements from �:

Definition 4.2. Consider finite non-empty sets of complex numbers �1

and �2; and define their all-pairs product as fxy j x 2 �1; y 2 �2g: One can
verify that this operation is associative, and therefore the set �n of all n-
element products is well defined for n > 0:We then call a finite non-empty set
� � C persistent iff the size of �n is constant for all n > 0:

364 Viamontes, Markov and Hayes

For example, the set � ¼ fc;	cg is persistent for any c because
�n ¼ fcn;	cng: In general any set closed under multiplication is persistent,
but that is not a necessary condition. In particular, for c 6¼ 0; the persistence
of � is equivalent to the persistence of c�: Another observation is that � is
persistent if and only if � [f0g is persistent. An important example of a
persistent set is the set consisting of 0 and all nth degree roots of unity
Un ¼ fe2�ik=njk ¼ 0 . . . n	 1g; for some n: Since roots of unity form a group,
they are closed under multiplication and form a persistent set. In the
Appendix, we show that every persistent set is either cUn for some n and
c 6¼ 0; or f0g [cUn:

The importance of persistent sets is underlined by the following
theorem.

Theorem 4.3. Given a persistent set � and a constant C; consider n
QuIDDs with at most C nodes each and terminal values from a persistent
set �: The tensor product of those QuIDDs has OðnÞ nodes and can be
computed in OðnÞ time.

Proof. The first and the last terms of the formula in Lemma 4.1 are
bounded by C and j�j respectively. As the sizes of terminal sets in the middle
term are bounded by j�j; the middle term is bounded by
j�j
Pn

i¼2 jInðQiÞj < j�jc since each jInðQiÞj is a constant. The tensor product
operation A� B for QuIDDs involves a shift of variables on B followed by
ApplyðA;B; �Þ: If B is a QuIDD representing n qubits, then B depends on
OðnÞ variables.5 This implies that the runtime of the variable shift is OðnÞ:
Bryant proved that the asymptotic runtime and memory complexity of
ApplyðA;B; binary opÞ is OðjAjjBjÞ:(5) Lemma 4.1 and the fact that we are
considering QuIDDs with at most C nodes and terminals from a persistent
set � imply that jAj ¼ OðnÞ and jBj ¼ Oð1Þ: Thus, ApplyðA;B; �Þ has
asymptotic runtime and memory complexity OðnÞ; leading to an overall
asymptotic runtime and memory complexity of OðnÞ for computingNn

i¼1 Qi: &

Importantly, the terminal values do not need to form a persistent set
themselves for the theorem to hold. If they are contained in a persistent set,
then the sets of all possible m-element products (i.e., m � n for all n-element
products in a set �) eventually stabilize in the sense that their sizes do not
exceed that of �: However, this is only true for a fixed m rather than for the
sets of products of m elements and fewer.

5More accurately, B depends on exactly 2n variables if it is a matrix QuIDD and n variables if it

is a vector QuIDD.

Improving Gate-level Simulation of Quantum Circuits 365

For QuIDDs A and B; the matrix-matrix and matrix-vector product
computations are not as sensitive to terminal values, but depend on sizes of
the QuIDDs. Indeed, the memory and time complexity of this operation is
OðjAj2jBj2Þ:(2)

Theorem 4.4. Consider measuring an n-qubit QuIDD state vector j i
using a QuIDD measurement operator M; where both j i and M are
constructed via the tensor product of an arbitrary sequence of Oð1Þ-sized
QuIDD vectors and matrices, respectively. If the terminal node values of the
Oð1Þ-sized QuIDD vectors or operators are in a persistent set �; then the
runtime and memory complexity of measuring the QuIDD state vector is
Oðn22Þ:

Proof. In Subsec. 3.6, we showed that runtime and memory complex-
ity for measuring a state vector QuIDD is Oða16b6Þ; where a and b be the
sizes in nodes of the measurement operator QuIDD and state vector
QuIDD, respectively. From Theorem 4.3, the asymptotic memory complex-
ity of both a and b is OðnÞ; leading to an overall runtime and memory
complexity of Oðn22Þ: &

The class of QuIDDs described by Theorem 4.3 and its corollaries,
with terminals taken from the set f0g [cU; encompasses a large number of
practical quantum state vectors and operators. These include, but are not
limited to, any equal superposition of n qubits, any sequence of n qubits in
the computational basis states, n-qubit Pauli matrices, and n-qubit
Hadamard matrices. The above results suggest a polynomial-sized QuIDD
representation of any quantum circuit on n qubits in terms of such gates if
the number of gates is limited by a constant. In other words,the above
sufficient conditions apply if the depth (length) of the circuit is limited by a
constant. Our simulation technique may use polynomial memory and
runtime in other circumstances as well, as shown in the next Subsection.

4.2. Complexity of Grover’s Algorithm using QuIDDs

To investigate the power of the QuIDD representation, we used
QuIDDPro to simulate Grover’s algorithm,(11) one of the two major
quantum algorithms that have been developed to date. Grover’s algorithm
searches for a subset of items in an unordered database of N items. The only
selection criterion available is a black-box predicate that can be evaluated
on any item in the database. The complexity of this evaluation (query) is
unknown, and the overall complexity analysis is performed in terms of
queries. In the classical domain, any algorithm for such an unordered search
must query the predicate �ðNÞ times. However, Grover’s algorithm can
perform the search with quantum query complexity Oð

ffiffiffiffi
N

p
Þ; a quadratic

366 Viamontes, Markov and Hayes

improvement. This assumes that a quantum version of the search predicate
can be evaluated on a superposition of all database items.

A quantum circuit representation of the algorithm involves five major
components: an oracle circuit, a conditional phase shift operator, sets of
Hadamard gates, the data qubits, and an oracle qubit. The oracle circuit is a
Boolean predicate that acts as a filter, flipping the oracle qubit when it
receives as input an n bit sequence representing the items being searched for.
In quantum circuit form, the oracle circuit is represented as a series of
controlled NOT gates with subsets of the data qubits acting as the control
qubits and the oracle qubit receiving the action of the NOT gates. Following
the oracle circuit, Hadamard gates put the n data qubits into an equal
superposition of all 2n items in the database where 2n ¼ N: Then a sequence
of gates H�n	1CH�n	1; where C denotes the conditional phase shift
operator, are applied iteratively to the data qubits. Each iteration is termed
a Grover iteration.(14)

Grover’s algorithm must be stopped after a particular number of
iterations when the probability amplitudes of the states representing the
items sought are sufficiently boosted. There must be enough iterations to
ensure a successful measurement, but after a certain point the probability of
successful measurement starts fading, and later changes periodically. In our
experiments, we used the tight bound on the number of iterations
formulated by Boyer et al.(4) when the number of solutions M is known
in advance: b�=4�c where � ¼

ffiffiffiffiffiffiffiffiffiffiffi
M=N

p
: The power of Grover’s algorithm lies

in the fact that the data qubits store all N ¼ 2n items in the database as a
superposition, allowing the oracle circuit to ‘‘find’’ all items being searched
for simultaneously. A circuit implementing Grover’s algorithm is shown in
Fig. 7. The algorithm can be summarized as follows:

Let N denote the number of elements in the database.

(1) Initialize n ¼ dlog2 Ne qubits to j0i and the oracle qubit to j1i:
(2) Apply the Hadamard transform (H gate) to all qubits to put them

into a uniform superposition of basis states.
(3) Apply the oracle circuit. The oracle circuit can be implemented as a

series of one or more CNOT gates representing the search criteria.
The inputs to the oracle circuit feed into the control portions of the
CNOT gates, while the oracle qubit is the target qubit for all of the
CNOT gates. In this way, if the input to this circuit satisfies the
search criteria, the state of the oracle qubit is flipped. For a
superposition of inputs, those input basis states that satisfy the
search criteria flip the oracle qubit in the composite state-space. The
oracle circuit uses ancillary qubits as its workspace, reversibly
returning them to their original states (shown as j0i in Fig 7). These

Improving Gate-level Simulation of Quantum Circuits 367

ancillary qubits will not be operated on by any other step in the
algorithm.

(4) Apply the H gate to all qubits except the oracle qubit.
(5) Apply the Conditional Phase-Shift gate on all qubits except the

oracle qubit. This gate negates the probability amplitude of the
j0000i basis state, leaving that of the others unaffected. It can be
realized using a combination of X, H and Cn	1-NOT gates as
shown. A decomposition of the Cn	1-NOT into elementary gates is
given in Ref. 3.

(6) Apply the H gate to all gates except the oracle qubit.
(7) Repeat steps 3–6 (a single Grover iteration) R times, where

R ¼ b�4

ffiffiffiffiffiffiffiffiffiffiffi
N=M

p
c and M is the number of keys matching the search

criteria.(4)

(8) Apply the H gate to the oracle qubit in the last iteration. Measure
the first n qubits to obtain the index of the matching key with high
probability.

Using explicit vectors and matrices to simulate the above procedure
would incur memory and runtime complexities of �ð2nÞ: However, this is
not necessarily the case when using QuIDDs. To show this, we present a
step-by-step complexity analysis for a QuIDD-based simulation of the
procedure.

Steps 1 and 2. Theorem 4.3 implies that the memory and runtime
complexity of step 1 is OðnÞ because the initial state vector only contains
elements in cUk [f0g and is constructed via the tensor product. Step 2 is
simply a matrix multiplication of an n-qubit Hadamard matrix with the state
vector constructed in step 1. The Hadamard matrix has memory complexity

Fig. 7. Circuit-level implementation of Grover’s algorithm.

368 Viamontes, Markov and Hayes

OðnÞ by Theorem 4.3. Since the state vector also has memory complexity
OðnÞ; further matrix-vector multiplication in step 2 has Oðn4Þ memory and
runtime complexity because computing the product of two QuIDDs A and
B takes OððjAjjBjÞ2Þ time and memory.(2) This upper-bound can be trivially
tightened, however. The function of these steps is to put the qubits into an
equal superposition. For the n data qubits, this produces a QuIDD with
Oð1Þ nodes because an n-qubit state vector representing an equal super-
position has only one distinct element, namely 1=2n=2: Also,applying a
Hadamard matrix to the single oracle qubit results in a QuIDD with Oð1Þ
nodes because in the worst-case, the size of a 1-qubit QuIDD is clearly a
contant. Since the tensor product is based on the Apply algorithm (see
Subsec. 3.3), the result of tensoring the QuIDD representing the data qubits
in an equal superposition with the QuIDD for the oracle qubit is a QuIDD
containing Oð1Þ nodes.

Steps 3–6. In Step 3, the state vector is matrix-multiplied by the oracle
matrix. Again, the complexity of multiplying two arbitrary QuIDDs A and
B is OððjAjjBjÞ2Þ:(2) The size of the state vector in Step 3 is Oð1Þ: If the size of
the oracle is represented by jAj; then the memory and runtime complexity of
Step 3 is OðjAj2Þ: Similarly, steps 4, 5, and 6 will have polynomial memory
and runtime complexity in terms of jAj and n:6 Thus we arrive at the
OðjAj16n14Þ worst-case upper-bound for the memory and runtime complex-
ity of the simulation at Step 6. Judging from our empirical data, this bound
is typically very loose and pessimistic.

Lemma 4.5. The memory and runtime complexity of a single Grover
iteration in a QuIDD-based simulation is OðjAj16n14Þ:

Proof. Steps 3–6 make up a single Grover iteration. Since the memory
and runtime complexity of a QuIDD-based simulation after completing Step
6 is OðjAj16n14Þ; the memory and runtime complexity of a single Grover
iteration is OðjAj16n14Þ: &

Step 7. Step 7 does not involve a quantum operator, but rather it
repeats a Grover iteration R ¼ bð�=4Þ

ffiffiffiffiffiffiffiffiffiffiffi
N=M

p
c times. As a result, Step 7

induces an exponential runtime for the simulation, since the number of
Grover iterations is a function of N ¼ 2n: This is acceptable though because
an actual quantum computer would also require exponentially many Grover
iterations in order to measure one of the matching keys with a high
probability.(4) Ultimately this is the reason why Grover’s algorithm only
offers a quadratic and not an exponential speedup over classical search.

6As noted in Step 5, the Conditional Phase-Shift operator can be decomposed into the tensor

product of single qubit matrices, giving it memory complexity OðnÞ:

Improving Gate-level Simulation of Quantum Circuits 369

Since Lemma 4.5 shows that the memory and runtime complexity of a single
Grover iteration is polynomial in the size of the oracle QuIDD, one might
guess that the memory complexity of Step 7 is exponential like the runtime.
However, it turns out that the size of the state vector does not change from
iteration to iteration, as shown below.

Lemma 4.6. The internal nodes of the state vector QuIDD at the end
of any Grover iteration i are equal to the internal nodes of the state vector
QuIDD at the end of Grover iteration iþ 1:

Proof. Each Grover iteration increases the probability of the states
representing matching keys while simultaneously decreasing the probability
of the states representing non-matching keys. Therefore, at the end of the
first iteration, the state vector QuIDD will have a single terminal node for all
the states representing matching keys and one other terminal node, with a
lower value, for the states representing non-matching keys (there may be
two such terminal nodes for non-matching keys, depending on machine
precision). The internal nodes of the state vector QuIDD cannot be different
at the end of subsequent Grover iterations because a Grover iteration does
not change the pattern of probability amplitudes, but only their values. In
other words, the same matching states always point to a terminal node
whose value becomes closer to 1 after each iteration,while the same non-
matching states always point to a terminal node (or nodes) whose value (or
values) becomes closer to 0. &

Lemma 4.7. The total number of nodes in the state vector QuIDD at
the end of any Grover iteration i is equal to the total number of nodes in the
state vector QuIDD at the end of Grover iteration iþ 1:

Proof. In proving Lemma 4.6, we showed that the only change in the
state vector QuIDD from iteration to iteration is the values in the terminal
nodes (not the number of terminal nodes). Therefore, the number of nodes
in the state vector QuIDD is always the same at the end of every Grover
iteration. &

Corollary 4.8. In a QuIDD-based simulation, the runtime and
memory complexity of any Grover iteration i is equal to the runtime and
memory complexity of Grover iteration iþ 1:

Proof. Each Grover iteration is a series of matrix multiplications
between the state vector QuIDD and several operator QuIDDs (Steps 3–6).
The work of Bahar et al. shows that matrix multiplication with ADDs has
runtime and memory complexity that is determined solely by the number of
nodes in the operands (see Sec. 3.4).(2) Since the total number of nodes in
the state vector QuIDD is always the same at the end of every Grover

370 Viamontes, Markov and Hayes

iteration, the runtime and memory complexity of every Grover iteration is
the same. &

Lemmas 4.6 and 4.7 imply that Step 7 does not necessarily induce
memory complexity that is exponential in the number of qubits. This
important fact is captured in the following theorem.

Theorem 4.9. The memory complexity of simulating Grover’s algo-
rithm using QuIDDs is polynomial in the size of the oracle QuIDD and the
number of qubits.7

Proof. The runtime and memory complexity of a single Grover
iteration is OðjAj16n14Þ (Lemma 4.5), which includes the initialization costs
of Steps 1 and 2. Also, the structure of the state vector QuIDD does not
change from one Grover iteration to the next (Lemmas 4.6 and 4.7). Thus,
the overall memory complexity of simulating Grover’s algorithm with
QuIDDs is OðjAj16n14Þ; where jAj is the number of nodes in the oracle
QuIDD and n is the number of qubits. &

While any polynomial-time quantum computation can be simulated in
polynomial space, the commonly-used linear-algebraic simulation requires
�ð2nÞ space. Also note that the case of an oracle searching for a unique
solution (originally considered by Grover) implies that jAj ¼ n: Here, most
of the searching will be done while constructing the QuIDD of the oracle,
which is an entirely classical operation.

As we demonstrate experimentally in Sec. 5, for some oracles,
simulating Grover’s algorithm with QuIDDs has memory complexity
�ðnÞ: Furthermore, simulation using QuIDDs has worst-case runtime
complexity OðRjAj16n14Þ; where R is the number of Grover iterations as
defined earlier. If jAj grows polynomially with n; this runtime complexity is
the same as that of an ideal quantum computer, up to a polynomial factor.

5. EMPIRICAL VALIDATION

This section discusses problems that arise when implementing a
QuIDD-based simulator. It also presents experimental results obtained from
actual simulation.

7We do not account for the resources required to construct the QuIDD of the oracle.

Improving Gate-level Simulation of Quantum Circuits 371

5.1. Implementation Issues

Full support of QuIDDs requires the use of complex arithmetic, which
can lead to serious problems if numerical precision is not adequately
addressed.

Complex Number Arithmetic. At an abstract level, ADDs can support
terminals of any numerical type, but CUDD’s implementation of ADDs
does not. For efficiency reasons, CUDD stores node information in C unions
which are interpreted numerically for terminals and as child pointers for
internal nodes. However, it is well-known that unions are incompatible with
the use of Cþþ classes because their multiple interpretations hinder the
binding of correct destructors. In particular, complex numbers in Cþþ are
implemented as a templated class and are incompatible with CUDD. This
was one of the motivations for storing terminal values in an external array
(QuIDD property 2).

Numerical Precision. Another important issue is the precision of
complex numeric types. Over the course of repeated multiplications, the
values of some terminals may become very small and induce round-off
errors if the standard IEEE double precision floating-point types are used.
This effect worsens for larger circuits. Unfortunately, such round-off errors
can significantly affect the structure of a QuIDD by merging terminals that
are only slightly different or not merging terminals whose values should be
equal, but differ by a small computational error. The use of approximate
comparisons with an epsilon works in certain cases but does not scale well,
particularly for creating an equal superposition of states (a standard
operation in quantum circuits). In an equal superposition, a circuit with n
qubits will contain the terminal value 1=2n=2 in the state vector. With the
IEEE double precision floating-point type, this value will be rounded to 0 at
n ¼ 2048; preventing the use of epsilons for approximate comparison past
n ¼ 2048: Furthermore, a static value for epsilon will not work well for
different sized circuits. For example, " ¼ 10	6 may work well for n ¼ 35; but
not for n ¼ 40 because at n ¼ 40; all values may be smaller than 10	6:
Therefore, to address the problem of precision, QuIDDPro uses an arbitrary
precision floating-point type from the GMP library(8) with the Cþþ

complex template. Precision is then limited to the available amount of
memory in the system.

5.2. Results for Simulating Grover’s Algorithm

Before starting simulation of an instance of Grover’s algorithm, we
construct the QuIDD representations of Hadamard operators by incremen-
tally tensoring together one-qubit versions of their matrices n	 1 times to
get n-qubit versions. All other QuIDD operators are constructed similarly.

372 Viamontes, Markov and Hayes

Table 1 shows sizes (in nodes) of respective QuIDDs at n-qubits, where
n ¼ 20::100: We observe that memory usage grows linearly in n; and as a
result QuIDD-based simulations of Grover’s algorithm are not memory-
limited even at 100 qubits. Note that this is consistent with Theorem 4.3.

With the operators constructed, simulation can proceed. Tables 2(a)
and 2(b) show performance measurements for simulating Grover’s
algorithm with an oracle circuit that searches for one item out of 2n:
QuIDDPro achieves asymptotic memory savings compared to qubit-wise
implementations (see Subsec. 2.3) of Grover’s algorithm using Blitzþþ; a
high-performance numerical linear algebra library for Cþþ;(19) MATLAB,
and Octave, a mathematical package similar to MATLAB. The overall
runtimes are still exponential in n because Grover’s algorithm entails an
exponential number of iterations, even on an actual quantum computer.(4)

We also studied a ‘‘mod-1024’’ oracle circuit that searches for elements
whose ten least significant bits are 1 (see Tables 3(a) and 3(b)). Results were
produced on a 1.2GHz AMD Athlon with 1GB RAM running Linux.
Memory usage for MATLAB and Octave is lower-bounded by the size of
the state vector and conditional phase shift operator; Blitzþþ and
QuIDDPro memory usage is measured as the size of the entire program.
Simulations using MATLAB and Octave past 15 qubits timed out at 24
hours.

5.3. Impact of Grover Iterations

To verify that the QuIDDPro simulation resulted in the exact number
of Grover iterations required to generate the highest probability of
measuring the items being sought as per the Boyer et al. formulation,(4)

Table 1. Size of QuIDDs (# of nodes) for Grover’s algorithm.

Hadamards Conditional Oracles

Circuit size n Initial Repeated phase shift 1 2

20 80 83 21 99 108

30 120 123 31 149 168

40 160 163 41 199 228

50 200 203 51 249 288

60 240 243 61 299 348

70 280 283 71 349 408

80 320 323 81 399 468

90 360 363 91 449 528

100 400 403 101 499 588

Improving Gate-level Simulation of Quantum Circuits 373

we tracked the probabilities of these items as a function of the number of
iterations. For this experiment, we used four different oracle circuits, each
with 11,12, and 13 qubit circuits. The first oracle is called ‘‘Oracle N’’ and
represents an oracle in which all the data qubits act as controls to flip the
oracle qubit (this oracle is equivalent to Oracle 1 in the last subsection). The

Table 2. Simulating Grover’s algorithm with n qubits using Octave (Oct), MATLAB (MAT),

Blitzþþ (Bþþ) and our simulator QuIDDPro (QP). > 24 hrs indicates that the runtime

exceeded our cutoff of 24 hours. > 1.5GB indicates that the memory usage exceeded our cutoff

of 1.5GB. Simulation runs that exceed the memory cutoff can also exceed the time cutoff,

though we give memory cutoff precedence. NA indicates that after a cutoff of one week, the

memory usage was still steadily growing, preventing a peak memory usage measurement.

(a) Oracle 1: Runtime (s) (b) Oracle 1: Peak Memory Usage (MB)

n Oct MAT Bþþ QP n Oct MAT Bþþ QP

10 80.6 6.64 0.15 0.33 10 2.64e-2 1.05e-2 3.52e-2 9.38e-2

11 2.65e2 22.5 0.48 0.54 11 5.47e-2 2.07e-2 8.20e-2 0.121

12 8.36e2 74.2 1.49 0.83 12 0.105 4.12e-2 0.176 0.137

13 2.75e3 2.55e2 4.70 1.30 13 0.213 8.22e-2 0.309 0.137

14 1.03e4 1.06e3 14.6 2.01 14 0.426 0.164 0.559 0.137

15 4.82e4 6.76e3 44.7 3.09 15 0.837 0.328 1.06 0.137

16 > 24 hrs > 24 hrs 1.35e2 4.79 16 1.74 0.656 2.06 0.145

17 > 24 hrs > 24 hrs 4.09e2 7.36 17 3.34 1.31 4.06 0.172

18 > 24 hrs > 24 hrs 1.23e3 11.3 18 4.59 2.62 8.06 0.172

19 > 24 hrs > 24 hrs 3.67e3 17.1 19 13.4 5.24 16.1 0.172

20 > 24 hrs > 24 hrs 1.09e4 26.2 20 27.8 10.5 32.1 0.172

21 > 24 hrs > 24 hrs 3.26e4 39.7 21 55.6 NA 64.1 0.195

22 > 24 hrs > 24 hrs > 24 hrs 60.5 22 NA NA 1.28e2 0.207

23 > 24 hrs > 24 hrs > 24 hrs 92.7 23 NA NA 2.56e2 0.207

24 > 24 hrs > 24 hrs > 24 hrs 1.40e2 24 NA NA 5.12e2 0.223

25 > 24 hrs > 24 hrs > 24 hrs 2.08e2 25 NA NA 1.02e3 0.230

26 > 24 hrs > 24 hrs > 24 hrs 3.12e2 26 NA NA > 1.5GB 0.238

27 > 24 hrs > 24 hrs > 24 hrs 4.72e2 27 NA NA > 1.5GB 0.254

28 > 24 hrs > 24 hrs > 24 hrs 7.07e2 28 NA NA > 1.5GB 0.262

29 > 24 hrs > 24 hrs > 24 hrs 1.08e3 29 NA NA > 1.5GB 0.277

30 > 24 hrs > 24 hrs > 24 hrs 1.57e3 30 NA NA > 1.5GB 0.297

31 > 24 hrs > 24 hrs > 24 hrs 2.35e3 31 NA NA > 1.5GB 0.301

32 > 24 hrs > 24 hrs > 24 hrs 3.53e3 32 NA NA > 1.5GB 0.305

33 > 24 hrs > 24 hrs > 24 hrs 5.23e3 33 NA NA > 1.5GB 0.320

34 > 24 hrs > 24 hrs > 24 hrs 7.90e3 34 NA NA > 1.5GB 0.324

35 > 24 hrs > 24 hrs > 24 hrs 1.15e4 35 NA NA > 1.5GB 0.348

36 > 24 hrs > 24 hrs > 24 hrs 1.71e4 36 NA NA > 1.5GB 0.352

37 > 24 hrs > 24 hrs > 24 hrs 2.57e4 37 NA NA > 1.5GB 0.371

38 > 24 hrs > 24 hrs > 24 hrs 3.82e4 38 NA NA > 1.5GB 0.375

39 > 24 hrs > 24 hrs > 24 hrs 5.64e4 39 NA NA > 1.5GB 0.395

40 > 24 hrs > 24 hrs > 24 hrs 8.23e4 40 NA NA > 1.5GB 0.398

374 Viamontes, Markov and Hayes

other oracle circuits are ‘‘Oracle N-1’’, ‘‘Oracle N-2’’, and ‘‘Oracle N-3’’,
which all have the same structure as Oracle N minus 1,2, and 3 controls,
respectively. As described earlier, each removal of a control doubles the
number of items being searched for in the database. For example, Oracle
N-2 searches for 4 items in the data set because it recognizes the bit pattern
111 . . . 1dd:

Table 4 shows the optimal number of iterations produced with the
Boyer et al. formulation for all the instances tested. Figure 8 plots the

Table 3. Simulating Grover’s algorithm with n qubits using Octave (Oct), MATLAB (MAT),

Blitzþþ (Bþþ) and our simulator QuIDDPro (QP). > 24 hrs indicates that the runtime

exceeded our cutoff of 24 hours. > 1.5GB indicates that the memory usage exceeded our cutoff

of 1.5GB. Simulation runs that exceed the memory cutoff can also exceed the time cutoff,

though we give memory cutoff precedence. NA indicates that after a cutoff of one week, the

memory usage was still steadily growing, preventing a peak memory usage measurement.

(a) Oracle 2: Runtime (s) (b) Oracle 2: Peak Memory Usage (MB)

n Oct MAT Bþþ QP n Oct MAT Bþþ QP

13 1.39e3 1.31e2 2.47 0.617 13 0.218 8.22e-2 0.252 0.137

14 3.75e3 7.26e2 5.42 0.662 14 0.436 0.164 0.563 0.141

15 1.11e4 4.27e3 11.7 0.705 15 0.873 0.328 1.06 0.145

16 3.70e4 2.23e4 24.9 0.756 16 1.74 0.656 2.06 0.172

17 > 24 hrs > 24 hrs 53.4 0.805 17 3.34 1.31 4.06 0.176

18 > 24 hrs > 24 hrs 1.13e2 0.863 18 4.59 2.62 8.06 0.180

19 > 24 hrs > 24 hrs 2.39e2 0.910 19 13.4 5.24 16.1 0.180

20 > 24 hrs > 24 hrs 5.15e2 0.965 20 27.8 10.5 32.1 0.195

21 > 24 hrs > 24 hrs 1.14e3 1.03 21 55.6 NA 64.1 0.199

22 > 24 hrs > 24 hrs 2.25e3 1.09 22 NA NA 1.28e2 0.207

23 > 24 hrs > 24 hrs 5.21e3 1.15 23 NA NA 2.56e2 0.215

24 > 24 hrs > 24 hrs 1.02e4 1.21 24 NA NA 5.12e2 0.227

25 > 24 hrs > 24 hrs 2.19e4 1.28 25 NA NA 1.02e3 0.238

26 > 24 hrs > 24 hrs > 1.5GB 1.35 26 NA NA > 1.5GB 0.246

27 > 24 hrs > 24 hrs > 1.5GB 1.41 27 NA NA > 1.5GB 0.256

28 > 24 hrs > 24 hrs > 1.5GB 1.49 28 NA NA > 1.5GB 0.266

29 > 24 hrs > 24 hrs > 1.5GB 1.55 29 NA NA > 1.5GB 0.297

30 > 24 hrs > 24 hrs > 1.5GB 1.63 30 NA NA > 1.5GB 0.301

31 > 24 hrs > 24 hrs > 1.5GB 1.71 31 NA NA > 1.5GB 0.305

32 > 24 hrs > 24 hrs > 1.5GB 1.78 32 NA NA > 1.5GB 0.324

33 > 24 hrs > 24 hrs > 1.5GB 1.86 33 NA NA > 1.5GB 0.328

34 > 24 hrs > 24 hrs > 1.5GB 1.94 34 NA NA > 1.5GB 0.348

35 > 24 hrs > 24 hrs > 1.5GB 2.03 35 NA NA > 1.5GB 0.352

36 > 24 hrs > 24 hrs > 1.5GB 2.12 36 NA NA > 1.5GB 0.375

37 > 24 hrs > 24 hrs > 1.5GB 2.21 37 NA NA > 1.5GB 0.375

38 > 24 hrs > 24 hrs > 1.5GB 2.29 38 NA NA > 1.5GB 0.395

39 > 24 hrs > 24 hrs > 1.5GB 2.37 39 NA NA > 1.5GB 0.398

40 > 24 hrs > 24 hrs > 1.5GB 2.47 40 NA NA > 1.5GB 0.408

Improving Gate-level Simulation of Quantum Circuits 375

probability of successfully finding any of the items sought against the
number of Grover iterations. In the case of Oracle N, we plot the probability
of measuring the single item being searched for. Similarly, for Oracles N-1,
N-2, and N-3, we plot the probability of measuring any one of the 2, 4, and
8 items being searched for, respectively. By comparing the results in Table 4
with those in Fig. 8, it can be easily verified that QuIDDPro uses the correct
number of iterations at which measurement is most likely to produce items
sought. Also notice that the probabilities, as a function of the number of
iterations, follow a sinusoidal curve. It is therefore important to terminate at
the exact optimal number of iterations not only from an efficiency

Table 4. Number of Grover iterations at which Boyer et al. (4) predict the highest probability of

measuring one of the items sought.

Oracle 11 Qubits 12 Qubits 13 Qubits

N 25 35 50

N-1 17 25 35

N-2 12 17 25

N-3 8 12 17

Fig. 8. Probability of successful search for one, two, four and eight items as a function of the

number of iterations after which the measurement is performed (11, 12 and 13 qubits). Note

that the minima and maxima of the empirical sine curves match the predictions in Table 4.

376 Viamontes, Markov and Hayes

standpoint but also to prevent the probability amplitudes of the items being
sought from lowering back down toward 0.

6. CONCLUSIONS AND FUTURE WORK

We proposed and tested a new technique for simulating quantum
circuits using a data structure called a QuIDD. We have shown that
QuIDDs enable practical, generic and reasonably efficient simulation of
quantum computation. Their key advantages are faster execution and lower
memory usage. In our experiments, QuIDDPro achieves exponential
memory savings compared to other known techniques.

This result is a first step in part of our ongoing research which explores
the limitations of quantum computing. Classical computers have the
advantage that they are not subject to quantum measurement and errors.
Thus, when competing with quantum computers, classical computers can
simply run ideal error-free quantum algorithms (as we did in Sec. 5),
allowing techniques such as QuIDDs to exploit the symmetries found in
ideal quantum computation. On the other hand, quantum computation still
has certain operators which cannot be represented using only polynomial
resources on a classical computer, even with QuIDDs. Examples of such
operators include the quantum Fourier Transform and its inverse which are
used in Shor’s number factoring algorithm.(16) Figure 9 shows the growth in
number of nodes of the N by N inverse Fourier Transform as a QuIDD.
Since N ¼ 2n where n is the number of qubits, this QuIDD exhibits
exponential growth with a linear increase in qubits. Therefore, the Fourier
Transform will cause QuIDDPro to have exponential runtime and memory
requirements when simulating Shor’s algorithm.

Another challenging aspect of quantum simulation that we are
currently studying is the impact of errors due to defects in circuit
components, and environmental effects such as decoherence. Error
simulation appears to be essential for modelling actual quantum computa-
tional devices. It may, however, prove to be difficult since errors can alter
the symmetries exploited by QuIDDs.

APPENDIX: A CHARACTERIZATION OF PERSISTENT SETS

The following sequence of lemmas leads to a complete characteriza-
tion of persistent sets from Definition 4.2. We start by observing that adding
0 to or removing 0 from a set does not affect its persistence.

Improving Gate-level Simulation of Quantum Circuits 377

Lemma A.1. All elements of a persistent set � that does not contain 0
must have the same magnitude.

Proof. In order for � to be persistent, the set of magnitudes of
elements from � must also be persistent. Therefore, it suffices to show that
each persistent set of positive real numbers contains no more than one
element. Assume, by contradiction, such a persistent set with at least two
elements r and s: Then among n-element products from �; we find all
numbers of the form rn	ksk for k ¼ 0::n: If we order r and s so that r < s;
then it becomes clear that they are all different because
rn	kþ1sk	1 < rn	ksk: &

Lemma A.2. All persistent sets without 0 are of the form c�0; where
c 6¼ 0 and �0 is a finite persistent subset of the unit circle in the complex
plane C; containing 1 and closed under multiplication. Vice versa, for all
such sets �0 and c 6¼ 0; c�0 is persistent.

Proof. Take a persistent set � that does not contain 0, pick an element
z 2 � and define �0 ¼ �=z; which is persistent by construction. �0 is a subset
of the unit circle because all numbers in � have the same magnitude. Due to
the fact that z=z ¼ 1 2 �0; the set of n-element products contains every

Fig. 9. Growth of inverse Fourier Transform matrix in QuIDD form. N ¼ 2n for n

qubits.

378 Viamontes, Markov and Hayes

element of �0: Should the product of two elements of �0 fall beyond the set,
�0 cannot be persistent. &

Lemma A.3. A finite persistent subset �0 31 of the unit circle that is
closed under multiplication must be of the form Un (roots of unity of
degree n).

Proof. If �0 ¼ f1g; then n ¼ 1; and we are done. Otherwise consider an
arbitrary element z 6¼ 1 of �0 and observe that all powers of zmust also be in
�0: Since �0 is finite, zm ¼ zk for some m 6¼ k; hence zm	k ¼ 1; and z is a root
of unity. Therefore �0 is closed under taking the inverse, and forms a group.
It follows from group theory, that a finite subgroup of C is necessarily of the
form Un for some n: &

Theorem A.4. Persistent sets are either of the form cUn for some c 6¼ 0
and n; or f0g [cUn:

REFERENCES

1. A. N. Al-Rabadi et al., in 11th International Workshop on Post Binary ULSI (Boston, MA.,

May 2002).

2. R. I. Bahar et al., J. Formal Methods in System Design, 10(2/3) April/May (1997).

3. A. Barenco et al., Los Alamos Quantum Physics Archive, http://xxx.lanl.gov/abs/quant-ph/

9503016, Mar. 1995.

4. M. Boyer, G. Brassard, P. Hoyer, and A. Tapp, in 4th Workshop on Physics and

Computation, Nov. 1996.

5. R. Bryant, IEEE Trans. on Computers, C35, Aug 677–691 (1986).

6. E. Clarke et al., in T. Sasao and M. Fujita, eds, Representations of Discrete Functions, pp.

93–108, (Kluwer, 1996).

7. E. Clarke, M. Fujita, P. C. McGeer, K. McMillan, and J. Yang, ‘‘Multi-Terminal Binary

Decision Diagrams: An Efficient Data Structure for Matrix Representation,’’ IWLS ’93,

pp. 6a:1–15, May 1993.

8. ‘‘GNU MP (GMP): Arithmetic Without Limitations,’’ http://www.swox.com/gmp/

9. D. Gottesman, in Plenary speech at the 1998 International Conference on Group Theoretic

Methods in Physics, http://xxx.lanl.gov/abs/quant-ph/9807006.

10. D. Greve, ‘‘QDD: a quantum computer emulation library,’’ (1999) http://thegreves.com/

david/QDD/qdd.html

11. L. Grover, Phys. Rev. Lett. 79, 325–8, (1997)

12. A. J. G. Hey, ed., Feynman and Computation: Exploring the Limits of Computers (Perseus

Books, 1999).

13. C. Y. Lee, ‘‘Representation of switching circuits by binary decision diagrams,’’ Bell System

Tech. J., 38, 985–999 (1959).

14. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information

(Cambridge Univ. Press, 2000).

15. K. M. Obenland and A. M. Despain, ‘‘A Parallel Quantum Computer Simulator,’’ High

Performance Computing, 1998.

16. P. W. Shor, SIAM J. of Computing, 26, 1484 (1997).

Improving Gate-level Simulation of Quantum Circuits 379

17. F. Somenzi, ‘‘CUDD: CU Decision Diagram Package,’’ ver. 2.3.0, Univ. of Colorado at

Boulder (1998).

18. G. F. Viamontes, M. Rajagopolan, I. L. Markov, and J. P. Hayes, in In Proc. of ACM/

IEEE Asia and South-Pacific Design Automation Conf. (ASPDAC), pp. 295–301,

Kitakyushu, Japan, January 2003.

19. T. Veldhuizen, in Proc. 2nd Intl. Symp. on Computing in OO Parallel Environments, 1998.

http://www.oonumerics.org/blitz/

380 Viamontes, Markov and Hayes

