
On Whitespace and Stability in Physical Synthesis

Saurabh N. Adya†, Igor L. Markov], Paul G. Villarrubia‡

† Synplicity Inc., 600 W. California Ave., Sunnyvale, CA 95054

] The University of Michigan, Department of EECS, Ann Arbor, MI 48109-2122

‡ IBM Corp., 11400 Burnet Road, Austin, TX 78758

Abstract

In the context of physical synthesis, large-scale standard-cell placement algorithms must facilitate incremental changes

to layout, both local and global. In particular, flexible gate sizing, net buffering and detail placement require a certain

amount of unused space in every region of the die. The need for “local” whitespace is further emphasized by temperature

and power-density limits as well as the increasing use of buffered interconnect. Another requirement, the stability of

placement results from run to run, is important to the convergence of physical synthesis loops. Indeed, logic re-synthesis

targeting local congestion in a given placement or particular critical paths may be irrelevant for another placement pro-

duced by the same or a different layout tool.

In this work we offer solutions to the above problems. We show how to tie the results of a placer to a previously exist-

ing placement, and yet leave room for optimization. In our experiments this technique produces placements with similar

congestion maps. We also show how to trade off wirelength for routability by manipulating whitespace. Empirically,

our techniques improve circuit delay of sparse layouts in conjunction with physical synthesis. Our proposed techniques

can be implemented using existing commercial placement tools without source code modifications and with modest over-

head. They can also be integrated directly into min-cut placers with negligible overhead. We consider in particular detail

the problem of scaling existing IP blocks to increase their porosity. Indeed, the need for additional repeater insertion

when migrating a block to a newer process node often implies re-optimizing the layout. Our techniques for achieving

placement stability allow one to rescale an existing layout with different minimum local whitespace requirements. In

contrast to current ECO techniques, our rescaling method is not restricted to small changes of the netlist and layout, but

will attempt to keep the relative placements similar if that is possible.

1 Introduction

With the rapid decrease of feature sizes, circuit layouts become more complex, both in terms of size and design con-

straints [3]. To achieve timing closure for high-performance circuits, it is now common to use physical synthesis — an

1

approach that combines logic and physical optimization, potentially performing placement-aware buffer insertion, gate

sizing, fanout optimization, etc. A recent work from Intel [23] suggests that buffering alone implies the need for “local”

whitespace throughout the core area. Such unused cell sites facilitate placement of signal-net and clock-tree buffers in

near-optimal locations rather than pre-determined “buffer islands”. However, research from IBM [4] shows that distribut-

ing whitespace uniformly [8] may significantly increase wirelength. It also suggests that pin-limited and floorplanned

designs, e.g., microprocessors with large on-chip caches, very frequently contain placement partitions with large amounts

of whitespace. To this end, we (i) develop techniques to achieve a compromise between cell density and design flexibility,

and (ii) study relevant trade-offs.

Timing optimization and congestion removal often use loops in which a netlist is re-placed based on information

gleaned from a trial placement. However, some popular algorithms such as min-cut placement and simulated annealing

tend to produce very different placement solutions from run to run. Therefore information about timing-critical nets and

nets that failed to route may be invalidated (similar reasons hamper interconnect prediction [25]). To facilitate incremental

improvement of layout, we propose to stabilize placements from run to run. We distinguish two kinds of stability. An

inherently stable algorithm, such as many analytical algorithms, would produce similar results from run to run. However,

even with a generally unstable algorithm one can tether all new placements to a given trial placement, with a tunable

amount of freedom for further optimizations. Thus, we distinguish inherent stability from relative stability. The latter

may be used, e.g., to tie placements produced by an annealer to a placement produced by a min-cut algorithm. We

demonstrate such relative stability by comparing congestion maps [19] of several min-cut placements, cell displacements

and top critical paths. Our empirical results show that small modifications of a placement instance can suppress the

instability inherent in common placement algorithms, without the loss of solution quality. Our techniques rely largely on

pre- and post-processing, and can be easily implemented with existing tools.

Another trend in VLSI design is the increasing dominance of interconnects [13]. This is primarily because the wires

do not scale as well as the devices. Assuming ideal scaling, all dimensions of a wire are shrunk by 0.7x per generation.1

It is known that the wire capacitance per unit length remains invariant from generation to generation [5]. However,

the resistance per unit length doubles every process generation, resulting in a wire delay which scales as 1.4x every

generation. RC delay of a wire grows quadratically with the length of the wire. Repeaters are often placed at optimal

distances (generally equal) on the wire to linearize the delay through the wire [5]. Since for an ideally shrunk interconnect,

the wire delay scales as 1.4x, it implies that more number of buffers are required for an interconnect to linearize the delay

through it in the new process generation. Additionally, the design frequencies are also increasing causing the number of

buffers to increase per process node. The requirement of additional number of buffers would often entail replacing the

entire block with a more relaxed minimum local whitespace requirement. In an application of our proposed techniques

on placement stability, we address the issue of rescaling a placement to satisfy different minimum local whitespace

requirements while maintaining the timing characteristics of the original placement. Our rescaling flow is not restricted

to small changes of the netlist and layout unlike current ECO techniques. By combining our techniques one can devise

1Currently the wire heights do not scale as well as the width, resulting in tall thin wires

2

placement flows to efficiently map an existing layout-optimized design to a new process generation, while allowing

sufficient room for further optimizations. Companies selling soft IP, like Tensilica and MIPS, and their customers could

benefit from rescaling. Microprocessors are also often downscaled. Perhaps our techniques can be used as a first step

followed by technology-specific and/or performance driven layout and circuit optimizations.

In the remainder of the paper, Section 2 gives background on large-scale placement and describes previous work.

Whitespace distribution is discussed in Section 3, and stability in Section 4, accompanied by relevant empirical results.

Our proposed rescaling flow to allow for different minimum local whitespace requirements is explained in Section 5.

Finally, our contributions are summarized in Section 6.

2 Background and Previous Work

Modern ASIC designs are typically laid out in the fixed-die context, where the outline of the core area, all routing tracks

and power lines are fixed before placement starts [6]. One of the reasons for this is the use of previously designed and

rigorously simulated power grids. Also, standard-cell partitions of microprocessors are often laid out with fixed outlines

in hierarchical floorplan-driven design flows because reshaping the outline would affect neighboring partitions. Large

on-chip memories similarly constrain random-logic partitions. In the context of massive IP reuse, especially with hard

IP blocks (analog circuits such as DACs, ADCs, PLLs and embedded memories), the die area may be determined by

floorplanning, thus making area-minimization during placement irrelevant. Fixed-die layout is reasonable for processes

with over-the-cell routing on three or more metal layers. In this context, the total area is fixed and the number of unused

cell sites — whitespace — is known in advance. Variable-die placers typically pack all cells to the left in rows. However,

fixed-die placers often allocate whitespace uniformly [6, 8] or according to congestion maps [21, 27]. When significantly

more whitespace is available, the work in [4] proposes to allocate whitespace so as to improve half-perimeter wirelength.

They show that uniform whitespace distribution in such designs causes very significant increase in wirelength.

2.1 Fixed-die placement in physical synthesis

It is important to note that in the context of physical synthesis, the structure of the netlist may be changed and incremental

placement must be performed. Given that some gates may be up-sized and many nets are likely to be buffered, the

availability of “local” whitespace is a necessity. Indeed, the work in [23, 17] predicts that buffers will soon be the most

frequently used gates in large high-performance circuits. Local whitespace can also be useful to accommodate regular

structures such as (i) N-well contacts that have to be assigned to vertices of a grid, and (ii) area-array I/O pads that also

form a grid. Thus, desired whitespace distribution must guarantee a minimum percent of “local” whitespace throughout

the chip and beyond that optimize other design objectives. The requirement for minimum local whitespace may also

be used to generically improve routability and yield, even out the temperature gradient across the die and decrease the

likelihood of cross-talk noise.

3

Another effect of fixed-die layout is the occurrence of unroutable placements. Indeed, in variable-die layout one can

always add routing tracks to complete routing at the cost of increased area [20], but this is impossible with a fixed outline.

To improve congestion, it is common to use cell-bloating (i.e., treating cells as if they were larger in order to free routing

tracks around them) in congested regions [24]. Additionally, a number of logic transformations (fanout optimization,

input reordering, gate merging and cloning, etc) can be used to improve congestion. However, if the same placement tool

produces an entirely different placement at the next run, such optimizations would be wasted. This problem is especially

noticeable with placers based on min-cut and simulated annealing. The same problem is encountered when logic re-

synthesis targets timing optimization. Therefore, to reliably achieve timing closure one may want to stabilize placement

solutions.

2.2 Hierarchical Whitespace Allocation in Top-Down Placement

The academic placement tool Capo [6] applies a top-down, min-cut partitioning based approach to find a global place-

ment. Capo uniformly spreads [3] the available whitespace throughout the core region. We briefly explain the whitespace

allocation strategy implemented in Capo [8]. In the top-down, divide-and-conquer approach for global placement, a given

placement instance is decomposed into smaller instances by subdividing the placement region and assigning cells to sub-

regions such that good solutions to sub-instances combine into good solutions of the original instance. The concept of

a placement bin is pivotal. A bin represents: 1) a placement region with allowed locations; 2) a collection of cells to

be placed in this region; 3) all nets incident to the cells; and 4) locations of all cells beyond the given region that are

adjacent to the cells to be placed in the region; such external cells are considered to be terminals, and their locations are

fixed. In a min-cut placer like Capo, every placement bin yields a hypergraph partitioning instance which is split through

min-cut hypergraph bisection with FM-type move-based heuristics. The uniform whitespace distribution strategy in Capo

is explained as follows. Let a placement bin have site area S, cell area C, absolute whitespace W = max{S−C,0}, and

relative whitespace w = W/S. A hypergraph bi-partitioning solution implies cell areas C0 and C1 in child bins, such that

C0 +C1 = C, 0 ≤ C0,0 ≤ C1. The input to the hypergraph bi-partitioner must specify both the netlist and the allowed

ranges for C0 and C1, i.e., bounds Cmin
0 ≤ C0 ≤ Cmax

0 ,Cmin
1 ≤ C1 ≤ Cmax

1 . These bounds establish absolute tolerance

Tj = Cmax
j −Cmin

j and relative tolerance τ j = Tj/C. Capo uses a mix of fixed tolerances and hierarchical whitespace

allocation during top-down placement [8]. The placer chooses vertical or horizontal bin splits depending on the bin’s

aspect ratio and typically cuts along the longest side of a bin. Vertical partitioning is performed with a fixed 20% tol-

erance. After partitioning, when the actual total cell area in each partition is available, the vertical cut-line determining

the bin boundaries is shifted to equalize relative whitespace in the bins. A different strategy is employed for allocating

whitespace for bins split by horizontal cut-line. During a horizontal split, the partitioning tolerances are calculated based

on the relative whitespace of the bin and the number of rows in the bin. A precise mathematical model of hierarchical

whitespace allocation in placement is proposed in [8]. It is based on the concept of whitespace deterioration which is

explained as follows. Assuming non-zero relative whitespace at top-level, one will require that for each bin split with

4

a relative whitespace of w, the relative whitespace in each child bin is at least αw, where 0 ≤ α ≤ 1 is the whitespace

deterioration. As α approaches 1, the whitespace distribution in the final placement approaches uniform distribution. An

α of 0 allows for fully utilized regions of the layout. One can adjust α on a per-bin basis to account for maximum allowed

layout densities in the leaf-level bins which can be guided by minimum local whitespace requirements. It is shown in

[8], that given the whitespace deterioration α for a bin, the partition capacities and tolerances for the partitioner can be

calculated as follows.

0 ≤C0 ≤ min{C,(1−α)S0 +α
C
S

S0} =: Cmax
0

0 ≤C1 ≤ min{C,(1−α)S1 +α
C
S

S1} =: Cmax
1

C0 ≥ max{0,C−Cmax
0 } =: Cmin

0

C1 ≥ max{0,C−Cmax
1 } =: Cmin

1

When the bin has large amount of whitespace (i.e. C is very small compared to S) and α sufficiently small, Cmax
j and

Cmin
j may degenerate into C and zero, respectively. In such a case, all cells are allowed to go into one partition. A closed

expression for whitespace deterioration α in terms of relative whitespace w in the bin and the number of rows R in the bin

is given as follows.

α =
n+1
√

1−w− (1−w)

w n+1
√

1−w
,n = dlog2 Re

Partitioning tolerances increase as the placer descends to lower levels, and relative whitespace in all bins is limited from

below, thus preventing overlaps. This facilitates good use of whitespace, when it is scarce and prevents dense regions

when large amounts of whitespace are available. Similar to vertical partitioning, after horizontal partitioning, the cut-line

determining the bin boundaries is shifted to equalize relative whitespace in the bins. Hierarchical whitespace allocation

during horizontal partitioning allows for higher tolerances during partitioning, thus allowing for lower cut [15] during

min-cut operation. This can also lead to certain regions of the layout being packed more densely than others. However,

a constant tolerance during the vertical partitioning step and shifting of cut-lines after each partitioning to equalize the

relative whitespace in the child bins ensure a uniform distribution of whitespace through-out the core region.

3 Whitespace Management Framework

As shown in [4], min-cut placers that uniformly distribute whitespace [8, 6] tend to produce excessive wirelength when

large amounts of whitespace are present. The authors of [4] propose a fairly sophisticated technique, Analytical Constraint

Generation (ACG), to place sparse designs. It has been argued in [4] that analytical placement algorithms have a global

view of the placement problem and can better manage large amounts of whitespace. ACG [4] combines a min-cut based

placer with quadratic placement engine. In ACG, during top-down recursive bisection based min-cut placement flow, the

partitioning capacities for each placement bin to be partitioned are generated based on quadratic wirelength minimum

placement at that level. While we address the same problem of placing sparse designs, our study is somewhat orthogonal

5

to theirs. The methods we propose are much simpler and can be implemented as pre-processing without having access to

placer source code. This allows us to explore the effect of whitespace on routed wirelength and congestion using different

academic placers. We also describe optimized implementations of our whitespace management techniques in a typical

top-down min-cut placer framework. Additionally, our placement framework is somewhat different from that used in [4]

and benefits from these simple techniques in new ways. Namely, Capo can shift the cut-line to better reflect the outcome

(balance) of every min-cut partitioning call, whereas the placer in [4] uses a grid of placement bins rather than a more

general slicing floorplan as in Capo.

3.1 Free Cells

The technique we propose assumes a placer that uniformly distributes whitespace across the core area. We assume that

the minimum “local” whitespace requirement leaves certain slack relative to the total whitespace available in the design.

By pre-processing, we can ensure (i) the minimum “local” whitespace through the core area, and (ii) better allocation of

the remaining whitespace. The technique consists of adding small disconnected “free cells” to the design in an amount

not exceeding whitespace that remains after the “local” requirement is satisfied. Since free cells are disconnected and

small, a placer is free to place those cells so as to improve relevant design objectives. After placement, we remove free

cells and treat the remaining cell sites as empty. This causes high cell density in certain areas, with free cells occupying

the vacant areas of the chip.

Our empirical evaluation uses the Capo placer [6] which uniformly distributes available whitespace [8] with routability

in mind (Feng Shui 2.0 and mPl 2.0 do not distribute whitespace, but Dragon 2.23 does in the fixed-die

mode). However, with designs having low placement densities this strategy results in excessive wirelength and potentially

poor signal delay. Figure 1 shows placements of an industrial design with 72940 cells, 73155 nets and 74% whitespace.

Figure 1 (A) shows the placement achieved by uniform distribution of whitespace and Figure (B) shows the placement

achieved by introducing free cells to reduce whitespace available to the placer to 15%. The wirelength of the design was

improved from 15.32e6 to 8.77e6. The global placement runtime increased from 444 seconds to 722 seconds. ACG was

also tested on this circuit [4], and wirelength improved from 11.43e6 (for uniform whitespace distribution) to 10.38e6

(with ACG). Figure 2 shows the effect of free cells on the local whitespace distribution for the same design. To calculate

the local whitespace distribution, we divide the layout region into a grid of bins (27x27 in this case) and calculate the

local whitespace in each bin. Free cells are removed from the design before calculating the local whitespace distribution.

We plot the % of bins vs. the % local whitespace in each bin. As seen from Figure 2, with no free cells introduced during

the placement, most of the bins have a local whitespace of around 70-80%. When free cells are added to the design

to reduce whitespace to 30%, a large number of bins have 100% whitespace. These bins represent the vacant areas of

the chip as seen in Figure 1 (B). However, most of the bins containing standard cells have a local whitespace around

30%. Similar effect is observed when free cells are added to reduce whitespace to 15%. While we have not performed

experiments with ACG, we suspect that ACG may further improve wirelength if used in conjunction with free cells. This

6

can be demonstrated using a sparse design with one dense cluster of logic connected to pins on the periphery so that the

cluster must be placed in the center to minimize wirelength. However, since such a placement implies a high top-level

cut, some top-down placers (especially those with fixed cutline) will avoid this optimal placement.

We show that better whitespace allocation reduces wirelength in mixed-size placement flow from [2]. The main

contribution of [2] is a methodology to place designs with numerous macros by combining floorplanning and standard-

cell techniques. The proposed design flow is as follows:

• A black-box standard-cell placer generates an initial placement. In a pre-processing step, all macros are shredded

into small pieces (fake cells) connected by fake wires, and pins from the macro are propagated to individual pieces.

Each macro is thus represented by a grid, and the resulting netlist consists of only small cells. If the fake nets

have sufficiently high weights, the fake cells belonging to the same macro should place next to each other. Fixed

orientations of macros can be accommodated.

• The initial locations of macros are produced by averaging the locations of respective fake cells. To remove overlaps

between macros, a physical clustering algorithm constructs a fixed-outline floorplanning instance. Thus, small

standard cells placed next to each other are clustered and form soft blocks.

• A fixed-outline floorplanner [1] generates valid locations of macros and soft blocks of movable cells.

• With macros considered fixed, the black-box standard-cell placer is called again to re-place small cells.

Step 4 of the mixed-size placement flow presented in [2] fixes the macro locations to the ones provided by the floorplanner

and replaces standard-cells around the macros. We improve whitespace allocation in this stage by introducing free cells.

We add free cells to reduce the available whitespace to the placer to 10% and replace the design with the macros being

fixed. The results are summarized in Table 1. We compare our results to mPG [11].

Physical synthesis flows interleave placement optimizations with logic optimizations to achieve desired timing. This

reduces the number of iterations required between the front-end design and back-end design for timing closure. Physical

synthesis tools typically start from a global placement and perform logic optimizations like buffer insertion, driver sizing,

(A) (B) (C) (D)

Figure 1: The ckt4 design from IBM has 72940 cells, 73155 nets, several pre-placed macros and 74% whites-
pace. Figure (A) shows a placement produced by Capo with uniform whitespace distribution. Figure (B) shows
another placement produced by Capo after free cells were added to reduce placer whitespace from 74% to 15%.
This reduces the half-perimeter wirelength from 15.32e6 to 8.77e6. Free cells are not shown in the placed design.
Figure (C) shows a placement obtained from a min-cut placer from IBM and (D) shows the placement obtained
by the ACG technique [4].

7

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

 %
 #

B
in

s

 % Whitespace in Bins

 Placer Whitespace = 74%

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

 % Whitespace in Bins

 Placer Whitespace = 30%

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

 % Whitespace in Bins

 Placer Whitespace = 15%

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

 % Whitespace in Bins

 Placer Whitespace = 74%. FengShui

(A) (B) (C) (D)

Figure 2: A histogram for local whitespace in design ckt4 from IBM with 74% whitespace. We subdivide the
core area into a 27x27 grid and calculate local whitespace in each bin. We plot the % number of bins versus
the % whitespace in each bin. Figure (A) shows the local whitespace distribution in a Capo placement with no
free cells added. Figure (D) shows a similar distribution for Feng Shui 2.0 that has no whitespace management
and packs cells to the left. Figures (B) and (C) show the local whitespace distribution achieved by Capo with
free cells added to reduce the whitespace available to the placer. Free cells are removed after placement for local
whitespace computation.

logic replication etc. to improve timing of the design. These logic optimizations are based on the physical information

generated by the initial global placement. Such tools rely on ECO placement techniques to legalize incremental changes

in the netlist after global placement. This enforces a minimum local whitespace requirement after global placement to

facilitate ECO placement after changes due to logic optimizations. Compacting a placement without physical synthesis in

mind will severely limit the efficacy of the physical synthesis tools. We study the effect of free cells on physical synthesis

in Table 2. We conduct our experiments on proprietary industrial benchmarks with varying row-utilization. We report

the worst slack and the total negative slack (TNS) in the design after the physical synthesis. In the default run, the global

placer (Capo) uniformly spreads the cells around the core area. As an alternative flow, we add free cells during the global

placement stage to reduce the whitespace available to the placer to 40%. Thus, the global placer compacts the placement

but ensures minimum local whitespace of 40% around the core area. Free cells are removed after global placement. As

seen from the results in Table 2, the worst slack and total negative slack for all the designs improve considerably by adding

free cells during the global placement stage of physical synthesis. All the designs are routable even after compacting the

designs by using free cells.

We also conduct experiments to demonstrate the effect of free cells on the routability of a design. We use the ibm02

benchmark from [27]. The design initially has about 9% whitespace. The design is re-floorplanned to have 65% whites-

pace. The design is placed with Capo placer and routed with WarpRoute from Cadence. Free cells are gradually added

during placement, reducing whitespace that the placer can allocate uniformly. Each of these designs is placed; the free

cells are removed after placement and the design is routed with Cadence WarpRoute. Table 3 reports the results of these

experiments. Clearly, adding free cells consistently improves half perimeter wirelength. The routed wirelength and rout-

ing time also improve initially because of better placed wirelength. However, after a certain threshold, routed wirelength

increases and then the designs become consistently unroutable. Thus, free cells are useful in reducing the half-perimeter

wirelength, but, distributing a portion of whitespace uniformly helps Capo produce routable placements. In fact, report-

8

Circuit Flow = Capo+Parquet+Capo [2] Our Flow = Capo+Parquet+Capo mPG[11]
(High Temp Anneal) (Low Temp Anneal)

I II III IV
Uniform WS Uniform WS Uniform WS + Free Cells

HPWL(e6) Time #FP Tries HPWL(e6) Time #FP Tries HPWL(e6) Time #FP Tries HPWL(e6) Time

ibm01 3.96 18m 1 3.36 13m 1 3.05 20m 4 3.01 18m
ibm02 8.37 31m 1 8.23 4hr0m 15 6.83 11m 1 7.42 32m
ibm03 12.16 42m 1 11.53 22m 1 10.38 59m 6 11.2 32m
ibm04 13.48 47m 1 11.93 25m 1 10.11 15m 1 10.5 42m
ibm05 11.51 8m N/A 11.20 5m N/A 11.1 5m N/A 10.9 36m
ibm06 10.25 56m 3 9.63 19m 1 9.94 18m 1 9.2 45m
ibm07 15.75 58m 1 15.80 39m 1 15.25 25m 1 13.7 1hr8m
ibm08 21.18 1hr34m 1 18.85 1hr51m 3 17.91 29m 1 16.4 1hr22m
ibm09 19.59 1hr6m 1 17.52 2hr58m 6 19.88 29m 1 18.6 1hr24m
ibm10 60.72 3hr49m 1 53.58 8hr10m 3 45.46 1hr56m 1 43.6 2hr52m
ibm11 28.49 1hr46m 1 26.47 1hr9m 1 29.4 45m 1 26.5 1hr52m
ibm12 51.74 11hr15m 4 55.12 1hr59m 1 55.79 25m 1 44.3 1hr33m
ibm13 39.39 2hr31m 1 33.56 1hr28m 1 37.73 53m 1 37.7 1hr31m
ibm14 56.19 4hr46m 1 52.67 5hr33m 2 50.26 2hr35m 1 43.5 4hr36m
ibm15 70.48 3hr57m 1 64.69 4hr24m 2 65.0 3hr15m 1 65.5 6hr25m
ibm16 - - - 83.14 9hr40m 4 90.01 2hr42m 2 72.4 7hr16m
ibm17 92.38 7hr23m 1 91.50 4hr9m 1 89.17 3hr8m 1 78.5 10hr6m
ibm18 54.90 5hr78m 2 54.11 6hr37m 5 51.84 2hr7m 1 50.7 7hr17m

Table 1: Mixed-size placement (Capo+Parquet+Capo), with the floorplanner Parquet using low-temperature
annealing to preserve initial macro locations. We report results for uniform whitespace distribution without free
cells (II) and with free cells (III). Results are compared with the high-temperature annealing flow from [2] with
uniform whitespace distribution (I) and mPG (IV). Runtimes for Table I are observed on 1 GHz Linux/Pentium
3 machine and are reproduced from [2]. Runtimes for Table II and III are observed on a 2 GHz Linux/Pentium
4 machine. Runtimes for mPG (IV) are observed on a Sun Blade 1000 workstation running at 750 MHz and are
reproduced from [10].

Circuit #Cells no Free Cells w Free Cells
(During After Placement After Phy-Synthesis After Placement After Phy-Synthesis

Placement Place Place Worst Worst Place Place Worst Worst
Stage) %WS RunTime WL Slack Slack TNS %WS RunTime WL Slack Slack TNS

(sec) (ns) (ns) (ns) (sec) (ns) (ns) (ns)

Ind1 10957 89 38 4.29e6 -3.75 -0.116 -2.150 40 75 3.37e6 -2.62 0.046 0.00
Ind2 39600 60 185 4.67e6 -7.70 -2.14 -6975 40 223 4.08e6 -6.57 -0.951 -2854
Ind3 109558 81 818 2.71e7 -14.77 -8.67 -133467 40 1562 1.51e7 -9.89 -2.19 -47578

Table 2: The impact of free cells on physical synthesis for industrial designs with low utilization. We report
the worst slack and total negative slack (TNS) after physical synthesis. During the placement stage of physical
synthesis, we add free cells so that the whitespace available to the placer was reduced to 40%. Free cells are
removed after global placement. All designs are routable after physical synthesis.

ing only half-perimeter wirelength may be misleading. Routability of Capo and Dragon placements on ibm-Dragon

benchmarks is discussed in [3], where, the differences are traced to greater horizontal wirelength and smaller vertical

wirelength in Capo placements.

3.2 Low-Overhead Implementation of Free Cells in a Min-cut Placer

As explained in Section 3, a generic whitespace management framework can be obtained by using a placer that distributes

whitespace uniformly through the core region and by representing the excessive whitespace as small disconnected free

cells. This implementation of free cells does not require any changes to the placer source code and only pre-processes

the input netlist by introducing fake free cells, which makes sense with existing commercial placers. However, explicit

modeling of free cells and letting the placer process the modified netlist impacts the run-time and the memory footprint

of the placer. The placer run-time degradation is evident from results presented in Tables 2 and 3. In this section, we

9

Capo 8.6 Dragon 2.23 (fixed-die mode: -fd)
%Free Place Place Routed Route #Vio Route Place Place Routed Route #Vio Route
Cells WL(e8) Time(s) WL(e8) Time(s) lations Success WL(e8) Time(s) WL(e8) Time(s) lations Success

0 1.80 129 2.29 2160 1 Yes 1.97 1618 2.42 1020 0 Yes
5 1.68 130 2.14 1080 0 Yes 1.89 1611 2.37 780 0 Yes

10 1.68 152 2.22 1800 0 Yes 1.83 1348 2.31 1560 1 Yes
15 1.64 162 2.77 1680 20741 No 1.67 1921 2.07 600 0 Yes
20 1.57 168 2.90 2040 27883 No 1.66 2342 2.17 720 0 Yes
25 1.55 186 2.95 2640 63864 No 1.57 2030 2.09 780 0 Yes
30 1.52 181 3.00 1560 66096 No 1.52 1988 2.12 1380 0 Yes

Table 3: Place and Route results for ibm02 benchmark from IBM-Dragon suite with whitespace increased to
65%. Free cells (as a fraction of total area) are added to handle whitespace. Capo allocates the remaining whites-
pace uniformly. Dragon performs congestion-driven allocation of the remaining whitespace. All experiments are
conducted on a 2GHz Pentium/Linux platform.

50% 80%

50%
(25%)

50%
(25%)

(20%) (20%)

20%
(40%)

80%

(35%)

(10%)

(5%)

50%

A B C D

20%

Figure 3: A bin with 50% whitespace being partitioned. Figures A and B have only real std-cells. Figures C and
D have free cells introduced to occupy 40% of site area leaving 10% whitespace to be allocated by the partitioner.
Real std-cells are shown in shaded circles and free cells are shown in plain circles. Numbers in circles without
parentheses are area of cells as % of total real std-cell area in the bin. Numbers in parentheses are area of cells
as % of total site area in the bin.

explain implicit handling of large amounts of whitespace in a top-down, recursive bisection based min-cut placer [6] with

minimal runtime and memory overhead. We achieve this without representing excessive whitespace as free cells and

hence without pre-processing the input netlist.

Figure 3 shows the min-cut partitioning procedure for a bin with 50% whitespace in absence and presence of free

cells. Figures 3A and B show 2 ways to partition a bin with no free cells added. The parameters affecting the balance

in the two partitions are (i) Partition capacities (C j), and (ii) Partition tolerances (Cmax
j ,Cmin

j). In the example, Figure 3A

shows the std-cells being partitioned in the ratio 50%:50% with a net-cut of 3. However, if higher tolerance is allowed

the partitioner may decide to partition the cells in the ratio 80%:20% with a smaller net-cut of 2. As shown in Figure

3B, Capo is allowed to shift cut-lines after partitioning to equalize the relative whitespace in the two partitions. Figures

3C and D show how the partitioning procedure works in presence of free cells. Out of the 50% whitespace, 40% is

represented as free cells and the remaining 10% whitespace can be distributed between the two bins. To achieve a lower

cut, a good min-cut partitioner will favor to partition the instance as shown in Figure 3D over Figure 3C. Thus, the effect

of higher tolerances is imitated using free cells and a constant tolerance.

As explained in Section 2.2, Capo uniformly spreads the available whitespace throughout the core region. Capo uses

10

−4 −3 −2 −1 0 1 2 3 4
x 104

−4

−3

−2

−1

0

1

2

3

4
x 104 CAPO 1

−4 −3 −2 −1 0 1 2 3 4
x 104

−4

−3

−2

−1

0

1

2

3

4
x 104 CAPO 2

−4 −3 −2 −1 0 1 2 3 4
x 104

−4

−3

−2

−1

0

1

2

3

4
x 104 CAPO 1 + 5% Tethering + CAPO

−4 −3 −2 −1 0 1 2 3 4
x 104

−4

−3

−2

−1

0

1

2

3

4
x 104 Dragon + 5% Tethering + CAPO

(A) (B) (C) (D)

Figure 4: Placements of the ibm02 design with 19321 cells and 18429 nets, 9% whitespace and no terminal
connections. Figures (A) and (B) show congestion maps of ibm02 placed by two different runs of Capo. As seen,
the congestion maps are different indicating the lack of stability in the placement algorithm. Figure (C) shows
the congestion map of a placement produced by tethering 5% of movable cells to the seed placement in Figure
(A) and running Capo again. Figure (D) shows the congestion map of a placement produced by tethering cells to
a placement produced by Dragon and then running Capo on the tethered netlist.

hierarchical whitespace tolerance calculation [8] only while splitting a bin horizontally. The tolerance during the vertical

split is constant and the vertical cut-line is allowed to move after partitioning to balance the relative whitespace in the two

child bins. This strategy works well for low whitespace designs. However, for high whitespace designs, it results in lower

tolerances during vertical partitioning and uniformly distributes the whitespace in the core region resulting in excessive

wirelength. After studying the behavior of Capo8.7 on low utilization designs, we added the option -nonUniformWS to

Capo8.8. This causes Capo to use the same hierarchical tolerance computation for both horizontal and vertical splits when

the bin whitespace is greater than the minimum local whitespace requirement. Since, during the top-down placement

process, the aspect ratio of most of the bins is close to 1.0, we can approximate the number of recursively applied parallel

vertical bin splits to n = log2R, where R is the number of rows in the bin. With this assumption, the partition tolerances

are calculated in the same manner for horizontal and vertical splits. This change allows Capo to transparently handle

designs with a large amount of whitespace. To account for local minimum whitespace requirement, we make sure that

Cmax
j for any partition does not violate the local minimum whitespace requirement for that child bin. Also, if the bin

whitespace is greater than the minimum local whitespace requirement, we do not shift the cut-lines after partitioning.

This ensures that some regions of the layout are more tightly packed than other regions resulting in lower wirelength.

However, the minimum local whitespace requirement are still respected. We test the effect of this change on the “qor” test

case from IBM which has 73095 cells ,73155 nets and 74 % whitespace in the design. Capo8.7 distributes the whitespace

uniformly around the chip and produces a placement with Half Perimeter Wirelength (HPWL) of 15.85e6. With our

changes, Capo8.8 allows higher tolerance during the initial cuts, having the effect of compacting the placement. The

final HPWL of the placement produced by Capo8.8 with a 15% minimum local whitespace requirement is 8.9e6. The

performance of Capo8.8 on the IBMv1 and IBMv2 benchmarks remains unchanged with respect to Capo8.7. This is to

be expected as these benchmarks have artificially-created layout regions with a relatively small amount of whitespace.

11

(A) (B) (C) (D)

Figure 5: A single cell/macro is tied to a rectangular region in 4 different ways. Solid dots show artificially added
(fake) pins, skew lines show fake two-pin nets, and a fake 5-pin net is shown by a spline. In all three cases moving
the cell within the region does not affect the total length of fake nets. However, any placement beyond the region
will incur a wirelength penalty that is independent of other movable objects.

4 Stability of Placement Results

Physical synthesis flows often require the stability of placement results from run to run for future optimizations which

target timing and/or congestion. However, Figures 4 (A) and (B) show that congestion maps [19] produced for unrelated

runs of a randomized min-cut placer may be very different. In order to improve congestion, one may distribute whitespace

to congested areas or restructure the logic, but such fixes may be irrelevant to the result of the next placement run, or if

another placer is used. To achieve relative stability, we propose the following approach. Given a placement, we modify

the original netlist by adding fake pins and fake nets. After the modified netlist is placed, the locations of real cells

are likely to be close to their original locations, and the amount of change allowed can be easily controlled during pre-

processing. It is important to note that we are not adding hard constraints — in principle, any cell can be placed anywhere.

However, locations that are far from the original location carry a wirelength penalty in terms of fake wires — further the

location, greater the penalty. A key property of our construction is that all locations within a prescribed rectangle centered

around the original location carry the same minimal wirelength penalty, and this are equally attractive during wirelength

optimization.

Figure 5 demonstrates several ways to tie a cell or a macro to a region without inducing a hard constraint. Four outer

fake pins are fixed in the corners of the given region. In Figure 5 (A), four fake pins are added in the corners of the cell

to preserve cell orientation. In Figure 5 (B), one fake pin is added at the center of the cell so that changes in orientation

do not affect wirelength. In Figure 5 (C), the same effect is achieved by using one fake 5-pin net rather than four fake

two-pin nets. In Figures 5 (B) and 5 (C), only the center of the cell is constrained to be in the region. In Figure 5 (D), one

fake 8-pin net is used with the fake pins in the corners to ensure that the entire cell is placed within the region. Note that

a technique similar to that in Figure 5 (A) is used in [2] to restrict orientations of macros, but in that work the four outer

fake pins are fixed at the corners of the core region. The three new constructions ignore cell orientations. The first one

uses four two-pin nets, the second uses one five-pin net and the third uses one eight pin net. The third new construction

was suggested to us by Amir Farrahi from Sun Microsystems. It can be used to mitigate the number of added nets and to

ensure that the entire cell is placed within the constraining region. Otherwise, these constructions are equivalent if used

with min-cut placers or placers based on simulated annealing that minimize HPWL.

12

% Rgn Size % Avg %Max
(of layout) Diff Diff

0.2 3.3 47
0.5 2.6 58
1.0 3.9 50

10.0 3.7 43
50.0 5.1 48

Table 4: The impact of constraining region size during tethering on the stability of global placements produced
by Capo on the ibm06 benchmark. The constraining region size is measured as a percent of the total layout
region size. 5% of cells are tethered to the base placement for all the runs. We report the average and maximum
Manhattan displacement per cell between tethered placements and the base placement.

In our experiments, we randomly select 2%-5% cells in a given placement and tie them to regions centered at the

cells’ locations. The size of the regions is selected as a small fraction (several percent) of the core region size. These

sizes and the weights of fake wires allow one to control changes from the original placement. As shown in Figure 4

(C), additional runs of the min-cut placer Capo produce essentially the same congestion map. The placement in Figure

4 (D) is tied to the output of Dragon. Table 5 reports the effect of tethering cells to a base placement on the IBM-v1

benchmarks [26]. Base placements are generated using the randomized min-cut placer Capo. We then tether a small

number of randomly selected cells of the netlist to the base placement. The IBM-v1 benchmarks have disconnected

groups of cells, caused by the removal of macros (and incident nets) during the conversion from the original ISPD 98

partitioning suite to placement benchmarks [26].2 To stabilize such designs we randomly select at least one cell from

each disconnected component in the netlist for tethering. Table 5 reports the average and maximum Manhattan difference

between locations of cells in the new tethered placements to those in the base placement. The difference is reported as a

percentage of the core region bounding box and can be compared to the tethering region whose half-perimeter is 1% of

that bounding box. As seen from the results, tethering several % of the cells to a base placement dramatically improves

the stability of the randomized min-cut placer — the average cell displacement from the initial locations is very small.

However, the maximum displacement remains comparatively high. We trace this to cells in high fanout nets which, if not

tethered, have a large freedom to be placed around the core region without affecting the half-perimeter wirelength of the

design.3 In practice, when it is desirable to stabilize placement with respect to a particular design objective, e.g., circuit

delay, one should tether cells that are relevant to that objective, e.g., those on critical paths (see Section 5.2).

Table 4 shows that the constraining-region size does not have a significant effect on the stability of global placement

as measured by average and maximum displacement — a surprising result. Finally, in all of our experiments, except for

those with very small constraining regions, the wirelength of tethered placements is similar to the original wirelength.

2Similar disconnected cells and groups of cells also occur in some real-world design methodologies, e.g., “bonus cells” that are sprinkled through
designs in anticipation of future incremental changes.

3We attempted adding cells with largest displacements to the list of tethered cells and re-running the placer. On our benchmarks this approach has
only moderate effect because it takes a number of iterations to identify all “loose” cells.

13

Circuit #Cells #Nets No Tethering 2% Cells Tethered 5% Cells Tethered 10% Cells Tethered 50% Cells Tethered
%Avg %Max %Avg %Max %Avg %Max %Avg %Max %Avg %Max
Diff Diff Diff Diff Diff Diff Diff Diff Diff Diff

ibm01 12282 11507 46 98 6 38 2.6 32 3.1 38 1.1 39
ibm02 19321 18429 24 58 4.8 47 4 45 2.9 54 1.1 37
ibm03 22207 21621 19 92 6.1 61 3.1 44 2.6 59 1.6 41
ibm04 26633 26163 41 95 9.4 58 3.3 45 2.9 51 1.3 51
ibm05 29347 28446 7.6 70 6.4 86 4.2 87 3.1 68 1.5 82
ibm06 32185 33354 40 95 5.3 53 3.8 62 2.7 48 1.4 44
ibm07 45135 44394 14 90 4 43 3.1 42 2.1 55 1.4 41
ibm08 50977 47944 36 90 2.7 56 2.1 59 1.7 56 0.9 59
ibm09 51746 50393 38 89 5.6 45 2.7 44 1.9 38 1 26
ibm10 67692 64227 23 94 3.2 56 1.8 50 1.4 50 0.6 49

Table 5: The impact of tethering on stability of global placements produced by the Capo placer. Using ibm-v1
benchmarks, we evaluate the impact of tethering random 2% / 5% / 10% / 50% of cells to a base placement.
We report the average and maximum Manhattan cell-to-cell displacement between tethered placements and the
base placement. The displacement is reported as % of the core bounding box.

(A) (B)
Row Util=70% Row Util=50%
Aspect Ratio=1 Aspect Ratio=1

Figure 6: Capo placements for AES(Rijndael) core.

5 Application: Resizing Existing Placed Designs

The number of buffers will, in general, increase as we move to lower process nodes [23]. This is primarily because

(i) wires are not scaling as well as devices, (ii) transistor counts on chips are increasing, resulting in more number of

buffers per logic gate. As we scale to newer process nodes and existing IP blocks gets embedded in larger designs,

the IP blocks may have to be more porous, i.e. have a larger minimum local whitespace requirements. We extend our

techniques for achieving placement stability to the context of rescaling a layout while maintaining the same relative timing

characteristics. In contrast to current ECO techniques, our proposed rescaling method allows for large-scale optimizations

during the placement process and is not limited to small changes in netlist and layout.

Figure 6 shows 2 different block shapes (floorplans) for the same circuit AES(see Section 5.3). Figure (A) shows the

design with 70% row utilization and an aspect ratio of 1. Figure (B) shows the design with 50% row utilization and an

14

aspect ratio of 1. Our objective in this work is the following : given a layout optimized design (Figure 6 (A)); rescale this

design to fit a larger die (Figure 6 (B)) resulting from higher local minimum whitespace requirements.

We use the techniques for achieving stability presented in Section 4 as the basis of our rescaling technique. We tether

randomly chosen x% of standard cells to the locations specified by the original layout. This helps a decision based placer

such as top-down min-cut placer to make the right decisions while splitting the netlist at each partitioning level. Thus,

the new placement is biased to be similar to the original placement. The objective in Section 4 was to achieve run-to-run

stability for inherently unstable placement algorithms. We use similar concepts to trade off predictability vs. optimization

potential when rescaling a design. Our proposed flow for achieving predictability while rescaling a design is shown in

Figure 7.

5.1 Experimental Flow

For our experiments, we use a well-known academic placer Capo [6] and the industrial placement tool QPlace from

Cadence Silicon Ensemble(SEDSM). In the first step, initial placement of the design is obtained. In an actual scenario,

this would be obtained from the layout optimized design that we are trying to rescale. In our experiments, we obtain this

placement by running the placement tool on the design. We then re-floorplan the design to have a lower row-utilization

(higher whitespace) compared to the original floorplan. A placer which uniformly distributes whitespace will ensure that

the new floorplanned design has a higher local minimum whitespace compared to the original design. However, from our

experiments we observe that the resulting new placements are in general not similar to the original placement in terms

of timing characteristics. In most cases, the most critical paths of the new placement are totally different from the most

critical paths in the original placement of the higher row-utilization design. This points to the instability in the placement

algorithms we used. To achieve similarity in placement we use the following approach. We first rescale the locations of

all the standard cells and terminals from the original placement to the new floorplan. This scaling is straight forward. Let

the floorplan of the block scale from height h and width w to height h′ and width w′. Then the location (x,y) of a standard

cell in the original placement scales to the location (x′,y′) in new floorplan as follows.

x′ = x∗w′/w

y′ = y∗h′/h

After the rescaled placement has been obtained, the straight-forward thing to do is to apply ECO placement techniques

to legalize the new re-scaled placement. This can be done efficiently using current ECO placement techniques such as

QPlace run in the ECO mode. However, in a scenario where the netlist also changes considerably during the rescaling

process, using local ECO changes will result in sub-optimal results. In our proposed flow (Figure 7), we tether the new

rescaled placement using fake pins and fake nets as explained in Section 4. The new tethered netlist is then replaced.

The tethering fake nets and pins ensure that the netlist is placed similarly to the original placement. We thus ensure

15

1 Rescale Placed Design
2 Obtain initial placement of the design;
3 Rescale locations of all standard cells and

terminals to new layout dimensions
4 Tether x% of cells to resulting placement
5 Replace the tethered netlist
6 Remove the fake tethering pins and nets

Figure 7: Proposed rescaling flow.

Circuit Function #Cells #Nets

AES Rijndael core 10404 11955
MULT 53X53 Multiplier 13803 14359

Table 6: Benchmarks used in our rescaling experiments. Advanced Encryption Standard/Rijndael (AES) core
is encryption core downloaded from http://www.opencores.org. MULT is 53X53 bit multiplier that we
synthesized using synopsys design foundation library.

predictability during rescaling. After the placement, the fake pins and fake nets are removed from the netlist and this

is the final re-scaled placement. The allowed freedom during the second placement run is governed by the number of

standard-cells tethered and the region size of the tethering bounding box around each tethered standard-cell. Our proposed

technique allows one to conveniently trade-off further optimization vs. predictability during the rescaling process.

5.2 Preserving Critical Paths

In the techniques presented in Section 4, the designer specifies the % of cells to be tethered to their initial locations.

Specific cells are chosen at random. This approach works well when one is trying to focus mainly on the average

similarity of the two placements. However, since in our case we are trying to preserve the timing behavior of the design

during the rescaling process we select cells differently. From the initial layout-optimized design, we extract the cells in

the top few (1000 in our experiments) worst paths in the design. We tether these critical cells to the locations, rescaled

from their original locations. The remaining cells to be tethered are generated randomly. We thus try to ensure that the

cells in the critical path are placed close to their rescaled locations with an aim to better preserve the timing behavior of

the design.

As a variant of timing-driven tethering of cells, we also propose to change the size of the tethering region based on

the dimensions of the critical nets in the original placement. By default, the tethering region is chosen to be a certain %(in

our case 0.5% to 5%) of the layout dimensions. The size of the tethering region gives us a knob to trade off optimization

vs. predictability. However, by tethering the critical cells to the bounding box of the critical net they belong to, one would

maximize the optimization potential without sacrificing predictability in terms of timing behavior of the design.

16

Circuit Row Util TetherType HPWL(e5) Clk Period(ns) # Similar paths

AES 70% - 5.141 2.49 -
50% - 5.713 2.68 0/1000
50% Rand 6.211 2.87 996/1000
50% TD 6.138 2.68 1000/1000

MULT 70% - 4.156 1.99 -
50% - 4.767 2.13 0/457
50% Rand 5.014 2.02 279/457
50% TD 5.002 2.07 414/457

Table 7: Rescaling results for Capo. Tethered region size=0.5% of layout size.

5.3 Experimental Results

Table 6 lists the characteristics of benchmarks used in our experiments. We downloaded the verilog code for the Ad-

vanced Encryption Standard/Rijndael (AES) core design from [18]. The MULT design is a 53X53 bit multiplier that we

instantiated from the Synopsys design foundation library. We synthesized these designs using Synopsys Design Compiler

and floorplanned them using Cadence Silicon Ensemble(SEDSM ver. 5.4). For our experiments we use the academic

standard- cell placement tool Capo [6] and leading industrial placement tool QPlace from Cadence.

The results for rescaling are shown in Tables 7, 8 and 9. For all rescaling experiments, we first floorplan the die to

have a row utilization of 70%. We run placement tools on the initial design to get a base placement and an initial timing

report which is generated using Synopsys Primetime tool. All subsequent comparisons are made to this base placement.

The design is then re-floorplanned to have row utilization of 50%. The netlist remains the same. We then replace the

50% utilized design. Next, we employ our proposed rescaling flow to maintain the timing characteristics of the design.

For our flow, we choose 10% of the cells to be tethered for the second placement run. We apply two variants of our flow.

In the first version we select the cells to be tethered randomly. The second version uses timing-driven tethering of cells

by selecting cells on the top critical paths along with a few random cells, as the cells to be tethered. Table 7 presents the

results for Capo when the size of tethering region around each tethered node was chosen to be 0.5% of the layout region

size. As can be seen, without using tethering, Capo produces vastly different results in terms of tethering with 0 out of

worst 1000 paths being similar for AES and MULT. We stabilize the placement considerably using our proposed flow

and produce placements which have very similar timing characteristics compared to the original placement. However,

the wirelength suffers around 10% due to tethering. One of the problems was that the tethered region size was too small,

thus effecting the optimization potential of the placer. So we increased the area of the tethering region to 5% of the layout

region. Results for this configuration of the experiment are shown in Table 8. With this change we are able to reduce

the impact on HPWL to minimal while still maintaining the similarity in the timing behavior of the designs. We repeat

the same experiment on rescaling using industry placer QPlace. Results presented in Table 9 show that QPlace, produces

vastly different results in terms of timing behavior when the floorplan is changed a little. This result suggests that QPlace

is using inherently unstable algorithms. Since our techniques mainly rely on pre-processing and post-processing of the

input net-list, we can perform the same experiments on QPlace and try to improve its behavior in terms of predictability.

17

Circuit Row Util TetherType HPWL(e5) Clk Period(ns) # Similar paths

AES 70% none 5.141 2.49 -
50% none 5.713 2.68 0/1000
50% Rand 5.895 2.76 997/1000
50% TD 6.078 2.74 1000/1000

MULT 70% none 4.156 1.99 -
50% none 4.767 2.13 0/457
50% Rand 4.869 2.08 328/457
50% TD 4.818 2.06 403/457

Table 8: Rescaling results for Capo. Tethered region size=5% of layout size.

Circuit Row Util TetherType HPWL(e5) Clk Period(ns) # Similar paths

AES 70% none 6.068 2.46 -
50% none 6.122 2.86 0/1000
50% Rand 6.591 2.48 885/1000
50% TD 6.732 2.88 978/1000

MULT 70% none 3.821 2.26 -
50% none 4.295 2.19 25/457
50% Rand 4.776 2.11 457/457
50% TD 4.745 2.39 457/457

Table 9: Rescaling results for QPlace. Tethered region size=5% of layout size.

As seen from Table 9 we were able to produce placements with very similar timing characteristics even when we changed

the row-utilizations of the design. However, the loss in HPWL due to tethering seems to be more significant for QPlace.

We suspect this is because of the fake fixed pins introduced all over the layout during tethering. Capo does not reserve

any space for these fake pins on the layout, however, QPlace seems to be reserving a site for each of these pins during

placement, thus hurting the optimization of HPWL. Currently, we are trying to alleviate this problem by tweaking our

QPlace flow.

6 Conclusions

Large-scale placement is becoming more sophisticated in the presence of large IP blocks, embedded memories and

macros. Aggressive timing constraints, large whitespace and physical synthesis flows pose new challenges to layout

tools. In particular, local and global incremental changes must be sustained without chaotic effects on congestion and

circuit delay. We observe that “local” whitespace makes layouts amenable to local modifications and re-synthesis, while

stability of placement results facilitates larger incremental changes.

We contribute simple and tunable techniques for ensuring minimum “local” whitespace throughout the core region

without distributing all whitespace uniformly, and empirically demonstrate that such local whitespace is achieved with

approximately 5% precision. Our study is complementary to that in [4] where whitespace is managed using a combination

of min-cut and analytical placement techniques. Similarly, our methods can be used with congestion-driven whitespace

18

allocation from [21, 27]. Our empirical results show that lax controls over whitespace may lead to better half-perimeter

wirelength, but at the same time may increase routed wirelength or even lead to unroutable designs. This may be the

clearest example yet of the divergence between half-perimeter wirelength and routed wirelength as optimization objec-

tives. Our experiments with physical synthesis point out that using a combination of free cells and uniform whitespace

distribution during global placement can significantly improve circuit delay of low-utilization designs.

Our study of stability shows that while min-cut placers may produce solutions with very different congestion maps,

it is possible to stabilize their results by a simple pre-processing. In fact, it takes a surprisingly small modification of the

netlist to tie future placement solutions to a given set of locations. While some algorithms, e.g., analytical placement,

tend to produce consistent results on multiple runs, our techniques can be used to tie the results produced by different

placement algorithms and implementations to each other. In particular, placement predictions made by a fast estimator can

be enforced at a global scale when a slower placer is used to optimize wirelength and various design objectives. We also

address the issue of reshaping an existing layout-optimized design with an aim of preserving the timing characteristics of

the design while still allowing room for further optimizations.

We apply our techniques for achieving stability in placers to devise a flow to rescale an existing layout-optimized

design with the aim of preserving the timing characteristics of the design. We study the optimization vs. predictability

trade-off in this context. The proposed rescaling flow is particularly useful when one also changes the netlist of the block

during its re-implementation. Further, the rescaling flow is not limited to small changes in layout and netlist.

Straightforward implementations of the proposed techniques, such as free cells and fake nets, may increase the mem-

ory footprint of the placer and its runtime. Instead, those techniques can be implemented implicitly so as to guarantee

the original memory footprint and only an insignificant slow-down. However, this is incompatible with the simple pre-

processing approach that enabled our experiments with several placers.

Acknowledgments This work was supported by the Gigascale Silicon Research Center, an IBM University Partner-

ship award and equipment grants from Intel and IBM. We would also like to thank Xiaojian Yang (Synplicity) and Amir

Farrahi (Sun Microsystems) for technical discussions.

References

[1] S. N. Adya and I. L. Markov, “Fixed-outline Floorplanning Through Better Local Search”, ICCD 2001, pp. 328-334.

[2] S. N. Adya and I. L. Markov, “Consistent Placement of Macro-Blocks using Floorplanning and Standard-Cell

Placement”, ISPD 2002, pp. 12-17.

[3] S. N. Adya, M. Yildiz, I. L. Markov, P. G. Villarrubia, P. N. Parakh and P. H. Madden, “Benchmarking for Large-

Scale Placement and Beyond,” in IEEE Trans. on CAD, vol. 23(4), April, 2004, pp. 472-487.

[4] C. J. Alpert, G.-J. Nam and P. G. Villarrubia, “Free Space Management for Cut-Based Placement”, ICCAD 2002,

pp. 746-751.

19

[5] H. B. Bakoglu, “Interconnections and Packaging for VLSI”, Addison-Wesley, MA, 1990

[6] A. E. Caldwell, A. B. Kahng, I. L. Markov, “Can Recursive Bisection Alone Produce Routable Placements?” DAC

2000, pp. 477-82.

[7] A. E. Caldwell, A. B. Kahng, I. L. Markov, “Optimal Partitioners and End-case Placers for Standard-cell Layout”,

IEEE Trans. on CAD, vol. 19, no. 11, 2000, pp. 1304-1314

[8] A. E. Caldwell, A. B. Kahng, I. L. Markov, “Hierarchical Whitespace Allocation in Top-down Placement”, IEEE

Trans. on CAD, vol. 22, no. 11, 2003, pp. 716-723

[9] A. B. Kahng and I. L. Markov, “VLSI CAD Bookshelf” http://vlsicad.eecs.umich.edu/BK

[10] C. C. Chang, J. Cong and M. Xie, “Optimality and Scalability Study of Existing Placement Algorithms,” ASP DAC

2003, pp. 621-627.

[11] C.-C. Chang, J. Cong, and X. Yuan, “Multi-level Placement for Large-Scale Mixed-Size IC Designs,” ASPDAC

2003, pp. 325-330.

[12] J. Cong, M. Romesis, M. Xie, “Optimality, Scalability and Stability Study of Partitioning and Placement Algo-

rithms”, ISPD 2003, pp. 88-94.

[13] J. Cong, “An Interconnect-centric Design Flow for Nanometer Technologies”, Proc. of the IEEE, 89(4), April, 2001,

pp. 505-528

[14] W. J. Dally and A. Chang, “The Role of Custom Design in ASIC Chips”, DAC 2000, pp. 643-647.

[15] S. Dutt and H. Thenny, “Partitioning Around Roadblocks: Tackling Constraints with Intermediate Relaxation”,

ICCAD 1997, pp. 350-355

[16] H. Eisenmann and F. M. Johannes, “Generic Global Placement and Floorplanning”, DAC 1988, pp. 269-274.

[17] B. Goplen, P. Saxena and S. Sapatnekar, “Net Weighting to Reduce Repeater Counts during Placement”, DAC 2005,

pp. 503-508

[18] http://www.opencores.org

[19] J. Lou, S. Krishnamoorthy, H. S. Sheng, “Estimating Routing Congestion using Probabilistic Analysis,” ISPD 2001,

pp 112-117.

[20] P. N. Parakh, R. B. Brown, K. A. Sakallah, “Congestion Driven Quadratic Placement”, DAC 1998, pp. 275-278.

[21] A. Rohe and U. Brenner, “An Effective Congestion Driven Placement Framework,” ISPD 2002, pp. 6-11.

[22] M. Sarrafzadeh, M. Wang and X. Yang, “Modern Placement Techniques,” Kluwer 2002.

[23] P. Saxena, N. Menezes, P. Cocchini and D. Kirkpatrick, “The Scaling Challenge: Can Correct-By-Construction

Design Help?”, ISPD 2003, pp. 51-58.

[24] N. Selvakkumaran, P. N. Parakh and G. Karypis, “Perimeter-degree: A priori Metric for Directly Measuring and

Homogenizing Interconnection Complexity in Multilevel Placement”, SLIP 2003, pp. 53-59.

20

[25] L. Scheffer and E. Nequist, “Why Interconnect Prediction Doesn’t Work,” SLIP 2000, pp. 139-144.

[26] M. Wang, X. Yang and M. Sarrafzadeh, “Dragon2000: Standard-cell Placement Tool for Large Industry Circuits,”

ICCAD 2000, pp. 260-263.

[27] X. Yang, B.-K. Choi and M. Sarrafzadeh, “Routability Driven White Space Allocation for Fixed-Die Standard-Cell

Placement,” ISPD 2002, pp. 42-50.

21

