
Some researchers suggest achieving mas-
sive speedups in computing by exploiting
quantum-mechanical effects such as su-
perposition (quantum parallelism) and

entanglement.1 A quantum algorithm typically
consists of applying quantum gates to quantum
states, but because the input to the algorithm
might be normal classical bits (or nonquantum),
it only affects the selection of quantum gates. Af-
ter all the gates are applied, quantum measure-
ment is performed, producing the algorithm’s
nonquantum output. Deutsch’s algorithm, for in-
stance, solves a certain artificial problem in fewer
steps than any classical (nonquantum) algorithm,
and its relative speedup grows with the problem
size. However, Charles Bennett and his col-
leagues2 have shown that quantum algorithms are
unlikely to solve NP-complete problems in poly-
nomial time, although more modest speedups re-
main possible. Peter Shor designed a fast (poly-
nomial-time) quantum algorithm for number
factoring—a key problem in cryptography that
isn’t believed to be NP-complete. No classical

polynomial-time algorithm for number factoring
is known, and the security of the RSA code used
on the Internet relies on this problem’s difficulty.
If a large and error-tolerant quantum computer
were available today, running Shor’s algorithm on
it could compromise e-commerce.

Lov Grover’s quantum search algorithm is also
widely studied. It must compete with advanced
classical search techniques in applications that use
parallel processing3 or exploit problem structure,
often implicitly. Despite its promise, though, it is
by no means clear whether, or how soon, quantum
computing methods will offer better performance
in useful applications.4 Traditional complexity
analysis of Grover’s algorithm doesn’t consider the
complexity of processing the so-called oracle
queries—that is, certain questions with yes or no
answers. The query process is simply treated as a
black box, thus making Grover’s algorithm appeal-
ing because it needs fewer queries than classical
search. However, with sufficiently time-consuming
query processing, Grover’s algorithm can become
nearly as slow as a simple (exhaustive) classical
search.

In this article, we identify requirements for
Grover’s algorithm to be useful in practice:

1. A search application S where classical meth-
ods don’t provide sufficient scalability.

2. An instantiation Q(S) of Grover’s search for

22 COMPUTING IN SCIENCE & ENGINEERING

IS QUANTUM SEARCH PRACTICAL?

Q U A N T U M
C O M P U T I N G

Gauging a quantum algorithm’s practical significance requires weighing it against the best
conventional techniques applied to useful instances of the same problem. The authors
show that several commonly suggested applications of Grover’s quantum search algorithm
fail to offer computational improvements over the best conventional algorithms.

GEORGE F. VIAMONTES, IGOR L. MARKOV, AND JOHN P. HAYES

University of Michigan

1521-9615/05/$20.00 © 2005 IEEE

Copublished by the IEEE CS and the AIP

MAY/JUNE 2005 23

S with an asymptotic worst-case runtime,
which is less than that of any classical algo-
rithm C(S) for S.

3. A Q(S) with an actual runtime for practical
instances of S, which is less than that of any
C(S).

Yet, we also show that real-life database applications
rarely satisfy these requirements. We also describe a
simulation methodology for evaluating potential
speedups of quantum computation for specific in-
stances of S. We demonstrate that search problems
often contain a great deal of structure, which sug-
gests several directions for future research.

Quantum Search
Grover’s quantum algorithm1,5,6 searches an un-
structured database to find M records that satisfy

a given criterion. (See the “Grover’s Quantum
Search Algorithm” sidebar for a more detailed de-
scription of this algorithm and its implementa-
tion.) For any N-element database, it takes
~ evaluations of the search criterion
(queries to an oracle) on database elements,
whereas classical algorithms provably need at least
~N evaluations for some inputs.

To search a (large) database used in a particular
application S, Grover’s algorithm must be supplied
with two different kinds of inputs that depend on
S:

� the database, including its read-access mech-
anism, and

� the search criteria,

each of which is specified by a black-box predicate

N M/

Grover’s Quantum Search Algorithm

Grover’s quantum algorithm searches for a subset of
items in an unstructured set of N items.1 The algo-

rithm incorporates the search criteria in the form of a black-
box predicate that can be evaluated on any items in the
set. The complexity of this evaluation (query) varies de-
pending on the search criteria. With conventional algo-
rithms, searching an unstructured set of N items requires
�(N) queries in the worst case. In the quantum domain,
however, Grover’s algorithm can perform unstructured
search by making only O() queries, a quadratic
speedup over the classical case. This improvement is con-
tingent on the assumption that the search predicate can be

evaluated on a superposition of all database items. Addi-
tionally, converting classical search criteria to quantum cir-
cuits often entails a moderate overhead, and the quantum
predicate’s complexity can offset the reduction in the num-
ber of queries.

Figure A shows a high-level circuit representation of
Grover’s algorithm. (See related research2,3 for more de-
tailed circuits.) The algorithm’s first step is to initialize
log(N) qubits, each with a value of |0�. These qubits are
then placed into an equal superposition of all values from 0
to N – 1 (encoded in binary) by applying one Hadamard
gate on each input qubit. Because the superposition con-

N

|0

|0

.

.

.

Iteratively increase the
probability amplitudes
of index states which
match the search criteria

Black-box Predicate:
Is f(x) = 1?

Workspace qubits

Measure qubits to
retrieve one of the
matching indices
probabilistically

Search criteria

Repeat to find multiple matching indices

log(N)
qubits

R iterations

Create an equal
superposition of
indices to N items

Figure A. A high-level circuit depiction of Grover’s quantum search algorithm.

continued on p. 24

24 COMPUTING IN SCIENCE & ENGINEERING

or oracle p(x) that can be evaluated on any record x
of the database. The algorithm then looks for an x
such that p(x) = 1. In this context, x can be ad-
dressed by a k bit string, and the database can con-
tain up to N = 2k records.

Classically, we can evaluate or query p(�) on one
input at a time. In the quantum domain, however,
if p(�) can be evaluated on either x or y, then it can
also be evaluated on the superposition (x + y)/ ,
with the result (p(x) + p(y))/ . This quantum par-
allelism enables search with queries.5 If M el-
ements satisfy the predicate, then
queries suffice.6 The parallel evaluation of p(�) re-
quires a superposition of multiple bit strings at the
input, which can be achieved by starting in the
|00…0� state and applying the Hadamard gate H
on every qubit. This, of course, requires that p(�)
can interpret a bit string as a database record’s in-

dex.
Researchers are aware of several variants of

Grover’s algorithm, including those based on quan-
tum circuits and different forms of adiabatic evolu-
tion. However, as other work has discussed,7 all are
closely related to the original algorithm and have
similar computational behavior.

For comparison, consider a classical determinis-
tic algorithm for unstructured search, assuming that
we aren’t using parallel processing techniques.3 It
requires making many queries because an unsuc-
cessful evaluation of p(x) does not, in general, yield
new information about records other than x. There-
fore, we might need anywhere from 1 to N queries,
depending on the input—N/2 on average. We must
make queries until one of them is successful, and we
can’t take advantage of an unsuccessful query. Thus,
every deterministic algorithm must visit the data-

N M/
N

2
2

tains bit strings, they’re thought of as indices to the N items
rather than as the items themselves.

The next step is to iteratively increase the probability am-
plitudes of those indices in the superposition that match
the search criteria. The key component of each iteration is
querying the black-box predicate. We can view the predi-
cate abstractly as a function f(x) that returns 1 if the index x
matches the search criteria and 0 otherwise. Assuming that
the predicate can be evaluated on the superposition of in-
dices, a single query then evaluates the predicate on all in-
dices simultaneously. In conjunction with extra gates and
qubits (or workspace qubits), the indices for which f(x) = 1
can be marked by rotating their phases by � radians. To
capitalize on this distinction, additional gates are applied to
increase the probability amplitudes of marked indices and
decrease the probability amplitudes of unmarked indices.
Mathematically, this transformation is a form of inversion
about the mean. It can be illustrated on sample input
{–1/2, 1/2, 1/2, 1/2} with mean 1/4, where inversion about
mean produces {1, 0, 0, 0}. Both vectors in the example
have norm 1. In general, the inversion about mean is a uni-
tary transformation. One of Grover’s insights was that it can
be implemented with fairly small quantum circuits.

In the case in which only one element out of N satisfies
the search criterion, each iteration of Grover’s algorithm in-
creases the amplitude of this state by approximately
O(1/). Therefore, approximately iterations are re-
quired to maximize the probability that a quantum mea-
surement will yield the sought index (bit string). For the
more general case with M elements satisfying the search
criteria, the optimal number of iterations4 is

.

Grover’s algorithm also exhibits a periodic behavior, and af-
ter the amplitudes of sought elements peak, they start de-
creasing.

In the final step, quantum measurement is applied to
each of the log(N) qubits, producing a single bit string. The
larger a bit string’s amplitude, the more likely the bit string
is to be observed.

When M items match the search criteria in a particular
search problem, then Grover’s algorithm produces one of
them. Each item is equally likely to appear because the in-
version about the mean process increases the probability
amplitudes of matching items equally. If all such items must
be found, Grover’s algorithm might have to be repeated
more than M times, potentially returning some items more
than once. On the other hand, classical deterministic search
techniques avoid such duplication and might be more suit-
able in applications in which M is a significant fraction of N.

References
1. L.K. Grover, “Quantum Mechanics Helps in Searching for a Needle in a

Haystack,” Physical Rev. Letters, vol. 79, no. 2, 1997, pp. 325– 328.

2. M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum In-

formation, Cambridge Univ. Press, 2000.

3. G.F. Viamontes, I.L. Markov, and J.P. Hayes, “More Efficient Gate-Level

Simulation of Quantum Circuits,” Quantum Information Processing, vol.

2, no. 5, 2003, pp. 347–380.

4. M. Boyer et al., “Tight Bounds on Quantum Searching,” Fortschritte der

Physik, vol. 46, no. 4–5, 1998, pp. 493–505.

R
arc M N

=
()⎢

⎣

⎢
⎢
⎢

⎥

⎦

⎥
⎥
⎥

π sin /

4

NN

continued from p. 23

MAY/JUNE 2005 25

base records one by one, in some order, and inde-
pendently try up to 2k database records until it finds
a desired record. Randomized algorithms can pick
records at random and have an edge over deter-
ministic algorithms when many records satisfy p(�)
because, for any input, approximately N/(2M)
queries suffice with very high probability. However,
this improvement doesn’t compare with the qua-
dratic speedup Grover’s algorithm offers.

Application Scalability
Although Grover’s algorithm relies on quantum
mechanics, it nevertheless solves a classical search
problem and competes with advanced classical
search techniques in existing and new applications.
Existing applications include Web search engines,
large databases for real-time processing of credit-
card transactions, analysis of high-volume astro-
nomic observations, and so forth. Such databases
explicitly store numerous pieces of classical infor-
mation (records). Another class of existing applica-
tions is illustrated by code breaking and Boolean
satisfiability, where the input is a mathematical
function p(x) specified concisely by a formula, al-
gorithm, or logic circuit. We seek the bits of x� such
that p(x�) = 1, which might represent a correct pass-
word or encryption key. The database of all possi-
ble values of x is implicit and doesn’t require large
amounts of memory.

Explicit databases in existing applications are often
too large to fit in one computer’s memory. They’re
distributed through the network and searched in par-
allel, and records can be quickly added, copied, and
modified. Distributed storage also facilitates redun-
dancy, backup, and crash recovery. The records in
such databases correspond to physical objects (sen-
sors, people, or Web pages), which tends to limit
databases’ typical growth rates. Explicit databases
might temporarily experience exponential growth, as
exemplified by the Web, but existing search infra-
structures appear scalable enough for such applica-
tions, as Google’s continuing success shows. Grover’s
algorithm, on the other hand, isn’t well-suited to
searching explicit databases of this kind because it de-
mands a quantum superposition of all database
records. Creating such a superposition, or using a su-
perposition of indices in that capacity, seems to re-
quire localizing classical records in one place, which
is impractical for the largest explicit databases.

Consequently, Grover’s search algorithm seems
confined to implicit databases, where it also faces se-
rious competition from classical parallel methods.3

This application class includes cryptographic prob-
lems, which are amenable to classical massively par-
allel computation. For instance, the DES Chal-

lenge II decryption problem was solved in one day
by a custom set of parallel processors built by the
Electronic Frontier Foundation for less than
$250,000 and nearly 100,000 PCs on distrib-
uted.net, an Internet-wide distributed computing
project similar to SETI@home but geared toward
code cracking. (See http://www.eff.org/
Privacy/Crypto/Crypto_misc/DESCracker/ and
http://www.distributed.net for details.)

Implicit search applications typically exhibit ex-
ponential scalability—for example, adding an extra
bit to an encryption key doubles the key space.
This can’t be matched in principle by the linear
scalability of classical parallel processing techniques
such as by adding hardware. Therefore, we believe
that these applications meet Requirement 1 in the
introduction and thus are potential candidates for
practical quantum search tasks.

Oracle Implementation
Although the oracle function p(�) in Grover’s algo-
rithm can be evaluated on multiple inputs simulta-
neously, the description of p(�) is usually left un-

a|000000> + b(|110100> + |111000>)

R0

R1

R2

R3

R4

R5 R5

R4

R3 R3

R2

R1

a 0 b

Figure 1. A 5-qubit state-vector in the QuIDD data structure. Each
decision variable Ri corresponds to a bit i in the binary encoding of
indices in the vector. Dashed lines model zeroes assigned to the index
bit, and solid lines model ones. Top-down paths represent the 32
entries of the state-vector; a path might capture multiple entries with
equal values.

26 COMPUTING IN SCIENCE & ENGINEERING

specified.1,5,6 To actually implement Grover’s al-
gorithm for a particular search problem, we must
explicitly construct p(�). Several pitfalls are associ-
ated with this important step and are related to the
complexity of p(�).

The first problem is that to query p(�) using quan-
tum parallelism, we must implement p(�) in quan-
tum hardware. This hardware can take various log-
ical and physical forms.1 If a quantum
implementation of p(�) is derived from classical
hardware design techniques, the classical and quan-
tum implementations’ circuit size might be similar.
Circuit size is estimated by the number of logic op-
erations (gates) used, and computation time by the
circuit’s maximum depth. However, if these num-

bers for an N-item database scale much worse than
, then both classical and quantum searching will

be dominated by the evaluation of p(�), diminishing
the relative value of the quantum speedup on the
log-scale.

A more subtle problem is the complexity of de-
signing hardware implementations of p(�). Even if
a given p(�) can theoretically be implemented with-
out undermining the relative speedup of Grover’s
algorithm, there might not be a practical way to
find compact classical or quantum implementations
in a reasonable amount of time. In classical elec-
tronic design automation (EDA), finding small
logic circuits is an enormously difficult computa-
tional and engineering task that requires synergies

N

Easy to Verify, Hard to Solve

Many practical computational problems exist in science
and engineering that are difficult to solve even on a fast

computer. For some of these problems, the best-known algo-
rithms that find an exact solution require super-polynomially
many computational steps in the problem size. However, ver-
ifying whether a given candidate solution solves the problem
might require up to polynomially many steps. Problems with
this feature are called NP-complete1 and include

• Traveling salesman problem (TSP). Given a list of cities
connected by roads and a gasoline budget of k dollars, a
route must be determined, if one exists, so that a sales-
man visits each city only once, returns to the starting city,
and spends k or fewer dollars on gasoline. There’s a dif-
ferent monetary cost for gasoline associated with travel-
ing between different cities. Indeed, we can formulate
TSP as a graph traversal problem (see Figure B).

• Graph 3-coloring. The input to this problem is three differ-
ent colors and an arbitrary graph. The goal is to find an
assignment of colors to all vertices, if one exists, so that

no two vertices connected by an edge have the same
color. This problem is NP-complete for graphs containing
at least one vertex connected to four or more edges.1

• Boolean 3-satisfiability (3-SAT). This problem requires
finding an assignment of true/false values to variables of
a Boolean function f in conjunctive normal form (CNF)
such that f is true. In CNF, the function consists of the
conjunction (logical AND) of clauses, and each clause is
the disjunction (logical OR) of Boolean variables in com-
plemented or uncomplemented form. In 3-SAT, each
clause contains three variables, though the number of
distinct variables and clauses might vary. To illustrate,
given the CNF formula, f = (a + b + c)(a + –b + d)(–b + –c +
d), where + denotes disjunction and neighboring clauses
imply conjunction, a solution is a, c, d = true; b = false.

Despite the difficulty of finding solutions to NP-complete
problems, researchers have developed many heuristics and
approximation algorithms exhibiting efficient performance
in many useful cases.2,3 Heuristics are generally algorithms
that exhibit good empirical performance though their worst-
case computational complexities might not be well under-
stood. Approximation algorithms have well-defined compu-
tational complexities, but their solution quality and runtime
might be worse than heuristics in specific cases. However,
because we can map any NP-Complete problem to an in-
stance of any other NP-complete problem with negligible
overhead, flexibility exists in choosing different approaches.1

References
1. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to

the Theory of NP-Completeness, W.H. Freeman and Company, 2000.

2. Z. Michalewicz and D.B. Fogel, How to Solve It: Modern Heuristics,

Springer, 2000.

3. V.V. Vazirani, Approximation Algorithms, Springer, 2001.

Farmington Hills

Detroit

Ann Arbor

Livonia

Canton

$2.00

$2.25
$2.00

$2.30

$2.00

$1.00

$0.75

Figure B. A TSP with Ann Arbor as the starting city. Given a
gasoline budget of $9.30, a solution is in green.

MAY/JUNE 2005 27

between circuit designers and expensive design
software. Automatic synthesis of small quantum
circuits appears considerably harder because some
formulations allow gates with a function that de-
pends on continuous parameters,8 rendering dis-
crete methods irrelevant.

Although Grover’s algorithm satisfies Require-
ment 2 in principle, satisfying it by a significant
margin on the log-scale might be difficult in many
cases because a small-circuit implementation of the
oracle-function p(�) might not exist or might re-
quire an unreasonable effort to find.

Classical Simulation
As in the case of Grover’s algorithm, quantum
computation is often represented in the quantum-
circuit formalism, which can be described mathe-
matically using linear algebra and modeled on a
classical computer.1 Qubits are the fundamental
units of information; k-qubit quantum states can be
represented by 2k-dimensional vectors, and square
matrices of various sizes can represent gates. The
parallel composition of gates corresponds to the
tensor (Kronecker) product and serial composition
to the ordinary matrix product. Like classical cir-
cuits, quantum circuits can be conveniently simu-
lated by computer software for analysis or design
purposes. A quantum circuit can be simulated
naively by a sequence of 2k � 2k matrices applied se-
quentially to a state vector. This reduces quantum
simulation to standard linear-algebraic operations
with exponentially sized matrices and vectors. Mea-
surement is simulated similarly. Because Grover’s
algorithm only requires k qubits for a database of
N = 2k records, a naive classical simulation of
Grover’s algorithm would be exponentially worse
than an actual quantum circuit that implemented
the algorithm.

The linear-algebraic formalism doesn’t differen-
tiate between structured and unstructured data.
However, the state vectors and gate matrices that
appear in typical quantum simulations are anything
but unstructured. In particular, they compress well
when simulated using the Quantum Information
Decision Diagram (QuIDD) data structure.9 A
QuIDD is a directed acyclic graph with one source
and multiple sinks, where each sink is labeled with
a complex number. Matrix and vector elements are
modeled by directed paths in the graph, as Figure 1
illustrates. Linear-algebraic operations can then be
implemented by graph algorithms in terms of com-
pressed data representations. Using data compres-
sion might substantially reduce simulation runtime
for specific applications, especially those dealing
with nonrandom data and circuits. This suggests a

test-by-simulation approach to identify violations
of Requirement 3. Indeed, researchers have pro-
posed polynomial-time simulation techniques for
circuits with restricted gate types10,11 and slightly
entangled quantum computation.12 However, they
haven’t applied these results to quantum search.

We’ve found that QuIDDs enable a classical
computer to simulate a useful class of quantum cir-
cuits using time and memory that scale polynomi-
ally with the number of qubits.9 All the compo-
nents of Grover’s algorithm, except for the
application-dependent oracle, fall into this class.
We’ve also proven that a QuIDD-based simulation
of Grover’s algorithm requires time and memory
resources that are polynomial in the size of the or-
acle p(�) function represented as a QuIDD.9 Thus,
if a particular p(�) for some search problem can be
represented as a QuIDD using polynomial time
and memory resources (including conversion of an
original specification into a QuIDD), then classi-
cal simulation of Grover’s algorithm performs the
search nearly as fast as an ideal quantum circuit. If
a practical implementation of an oracle function p(�)
is known, it’s straightforward to represent it in
QuIDD form because all relevant gate operations
are defined for QuIDDs. Once p(�) is captured by a
QuIDD, a QuIDD-based simulation requires

queries, just like an actual quantum
computer.9 If the size of the QuIDD for p(�) scales
polynomially for k-qubit instances of the search
problem, then Grover’s algorithm offers no
speedup for the given search problem.

We implemented a generic QuIDD-based sim-

N M/

 100

 1,000

 10,000

 100,000

Number of data qubits

Ru
nt

im
e

(s
)

 26 28 30 32 34 36 38 40

0.0017*k*(1.42k)
QuIDDPro

Figure 2. For k qubits, an actual quantum computer implementing
Grover’s algorithm must perform at least ck()k steps where c is a
constant. For the type of predicates Grover originally considered,5 the
empirical runtime of QuIDDPro simulation fits well to this formula
(plotted on a log-log scale), and the value of c is small.

2

28 COMPUTING IN SCIENCE & ENGINEERING

ulator called QuIDDPro in the C++ programming
language.9 We can use this simulator in practice to
perform the test by the simulation we just de-
scribed. Figure 2 gives runtime results for QuID-
DPro simulating Grover’s algorithm for the search
problem considered in Grover’s seminal paper.5

The oracle function for this search problem returns
p(x) = 1 for one item in the database. In all such
cases, the QuIDD for p(�) has only k nodes, and
QuIDD-based simulation is empirically as fast as
an actual quantum computer. Memory usage is
only a few megabytes and grows linearly with the
number of qubits.9 This particular search problem
fails to meet Requirement 3, so it doesn’t benefit by
being implemented on a quantum computer.

Predicates exist that don’t compress well in
QuIDD form, so they require super-polynomial
time and memory resources. However, some of
these predicates might also require a super-poly-
nomial number of quantum gates. This might
cause the evaluation of p(x) to dominate the quan-
tum search’s runtime and undermine the speedup
of Grover’s algorithm over classical search.

Problem-Specific Algorithms
As we discussed earlier, comparisons between
quantum and classical search algorithms often im-
plicitly make strong assumptions—namely, the un-
restricted use of black-box predicates and the mis-
conception that no quantum circuit can be
simulated efficiently on any inputs. These assump-
tions overestimate the potential speedup quantum
search offers. Another, and perhaps more serious,
oversight in popular analysis concerns the structure
present in particular search problems. Therefore,
we must compare Grover’s algorithm against
highly tuned classical algorithms specialized to a
given search problem rather than against generic
exhaustive search.

Boolean 3-satisfiability (3-SAT) and graph 3-col-
oring have been suggested as possible applications
of quantum search because polynomial-time algo-
rithms aren’t known for these NP-complete prob-
lems and are unlikely to be found. (See the “Easy
to Verify, Hard to Solve” sidebar for fuller defini-
tions.) However, classical algorithms13,14 exist that
solve these two problems in less than ~poly(k)1.34k

and ~poly(k)1.37k steps, respectively (k is the num-
ber of variables), thereby outperforming quantum
techniques that require at least ~poly(k)1.41k steps.
(The algorithm Uwe Schöning13 analyzed is a sim-
plified version of the well-known WalkSAT pro-
gram. It’s a type of randomized local search in
which variable assignments are changed one at a
time to statistically decrease the number of unsat-

isfied clauses. Randomization in the algorithm fa-
cilitates hill climbing and an extremely fast move
selection mechanism.) The algorithms that Uwe
Schöning13 and David Eppstein14 describe exploit
subtle structure in problem formulations, so they
have the potential for further improvement. No
such improvement is possible for Grover’s algo-
rithm unless additional assumptions are made.15,7

Of course, many practical NP-complete search
problems have upper bounds that far exceed
~poly(k)1.41k—for example, k-satisfiability and k-
coloring, with k � 4. However, known classical al-
gorithms often finish much faster on certain inputs,
application-derived and artificial, structured, or un-
structured.16 Indeed, we can now solve randomly
generated hard-to-satisfy instances of Boolean sat-
isfiability with a million variables in one day using
a single-processor PC. Grover’s algorithm is
mainly sensitive to the number of solutions, but not
to the solutions themselves or to the input features
(such as symmetries) that classical algorithms
sometimes exploit.

The Euclidean traveling salesman problem (TSP)
and many other geometric optimization problems
have defied fast, exact algorithms so far, but we can
often solve them using polynomial-time approxi-
mation schemes that trade-off accuracy for run-
time.17 Their geometric structure lets us solve these
problems to a given precision 	 > 0 in polynomial
time. Additionally, specific large instances of such
problems have been solved optimally in the past—
for example, the TSP for over 10,000 cities. Op-
portunistic algorithms and heuristics that work well
only on some inputs are useful in practice, but com-
parable quantum heuristics are poorly understood.

Hard cryptography problems have also been
mentioned as potential applications of Grover’s al-
gorithm.3 They include code breaking (particularly,
the Data Encryption Standard [DES] and Ad-
vanced Encryption Standard [AES] cryptosystems)
and reversing cryptographically secure hash func-
tions (Message Digest Algorithm [MD5] and Se-
cure Hash Algorithm [SHA-1]). Indeed, these can
be cast as unstructured search algorithms, but cryp-
tographers have identified the structure in all such
applications. In fact, using clever classical methods,
cryptographers have recently cracked the hash
functions MD5, MD4, HAVAL-128, and
RIPEMD.18 Other new classical attacks have also
been developed that seriously challenge the secu-
rity of SHA-0 and SHA-1.19 The task of breaking
DES has been reduced to Boolean 3-satisfiability20

and clearly doesn’t require a naive enumeration of
keys. Essential algebraic structure21 has been iden-
tified in AES (see http://csrc.nist.gov/Crypto

MAY/JUNE 2005 29

Toolkit/aes/aesfact.html), which has recently re-
placed DES as the US encryption standard.

Although quantum computing has dra-
matically advanced during the past
decade, researchers have yet to
demonstrate its potential applications

at full scale. Such demonstrations are likely to re-
quire breakthroughs in physics, computer sci-
ence, and engineering.4 It’s important to under-
stand current roadblocks to achieving practical
speedups with quantum algorithms. Our hope is
that the work here will temper unreasonable ex-
pectations of quantum speedups and encourage
further study of ways to improve quantum search.

In the near term, quantum computers running
Grover’s algorithm are unlikely to be competitive
with the best classical computers in practical appli-
cations. Adding to the arguments of previous re-
searchers3 regarding classical parallelism, we’ve
pointed out that recent work on solving problems
such as Boolean satisfiability and direct simulation
of quantum circuits offers opportunities to exploit
subtle domain-specific structures, even on a single
classical processor. Despite their exponential worst-
case runtime, some of these algorithms are always
faster than Grover’s search.

Some interesting open research issues that de-
serve attention include

• search applications in which classical methods
don’t offer sufficient scalability;

• algorithms for near-optimal synthesis of quan-
tum oracle circuits;

• quantum heuristics that finish faster or pro-
duce better solutions on practical inputs; and

• quantum algorithms that exploit the structure
of useful search problems.

Recent work on variants of Grover’s search accounts
for problem structure and seems particularly
promising. Building on earlier proof-of-concept re-
sults, Jérémie Roland and Nicolas Cerf22 compare
the fastest known classical algorithms for 3-satisfi-
ability13 to their quantum search algorithm cog-
nizant of the 3-literal limitation. Their analysis
shows that the quantum algorithm has a smaller as-
ymptotic expected runtime, averaged over multiple
satisfiability instances with a particular clause-to-
variable ratio (at the phase-transition), which are
known to be the most difficult to solve on average.
Similar comparisons for worst-case asymptotic run-
time remain an attractive goal for future research.

Several considerations in our work aren’t re-

stricted to Grover’s search and apply to other po-
tential applications of quantum computing. The
graph automorphism problem, for example, seeks
symmetries of a given graph and is sometimes sug-
gested as a candidate for polynomial-time quantum
algorithms.4 Classically, this problem appears to re-
quire more than polynomial time in the worst case
but is unlikely to be NP-complete, just like num-
ber factoring. However, graph automorphism is
provably easy for random graphs and can also be
solved quickly in many practical cases—for exam-
ple, in the context of microprocessor verifica-
tion23—making existing algorithms and software
strong competitors of potential future quantum al-
gorithms.

Daniel Curtis and David Meyer have proposed a
novel quantum algorithm application, finding tem-
plate matches in photographs,24 but it relies on the
quantum Fourier transform rather than Grover’s
search. Proposals of this kind also deserve careful
evaluation from the computer science and engi-
neering perspective and must be compared to state-
of-the-art classical methods on realistic inputs.

Acknowledgments
This work is supported in part by DARPA, the US National
Science Foundation, and a US Department of Energy
High-Performance Computer Science graduate
fellowship. The views and conclusions in this article are
those of the authors and do not necessarily represent
official policies or endorsements of their employers or
funding agencies.

References
1. M.A. Nielsen and I.L. Chuang, Quantum Computation and Quan-

tum Information, Cambridge Univ. Press 2000.

2. C. Bennett et al., “Strengths and Weaknesses of Quantum Com-
puting,” SIAM J. Computing, vol. 26, no. 5, 1997, pp. 1510–1523.

3. C. Zalka, “Using Grover’s Quantum Algorithm for Searching Ac-
tual Databases,” Physical Rev. A, vol. 62, no. 5, 2000, pp.
052305-1–052305-4.

4. J. Preskill, “Quantum Computing: Pro and Con,” Proc. Royal Soc.
London A, vol. 454, no. 1969, 1998, pp. 469–486.

5. L.K. Grover, “Quantum Mechanics Helps in Searching for a Nee-
dle in a Haystack,” Physical Rev. Letters, vol. 79, no. 2, 1997, pp.
325–328.

6. M. Boyer et al., “Tight Bounds on Quantum Searching,”
Fortschritte der Physik, vol. 46, no. 4–5, 1998, pp. 493–505.

7. J. Roland and N.J. Cerf, “Quantum-Circuit Model of Hamiltonian
Search Algorithms,” Physical Rev. A, vol. 68, no. 6, 2003, pp.
062311-1–062311-6.

8. V.V. Shende, I.L. Markov, and S.S. Bullock, “Smaller Two-Qubit
Circuits for Quantum Communication and Computation,” Proc.
Design Automation and Test in Europe (DATE), CS Press, 2004, pp.
980–985.

9. G.F. Viamontes, I.L. Markov, and J.P. Hayes, “More Efficient Gate-
Level Simulation of Quantum Circuits,” Quantum Information Pro-
cessing, vol. 2, no. 5, 2003, pp. 347–380.

10. S. Aaronson and D. Gottesman, “Improved Simulation of Stabi-

30 COMPUTING IN SCIENCE & ENGINEERING

lizer Circuits,” Physical Rev. A, vol. 70, no. 5, 2004, pp. 052328-
1–052328-14.

11. L.G. Valiant, “Quantum Circuits That Can Be Simulated Classi-
cally in Polynomial Time,” SIAM J. Computing, vol. 31, no. 4,
2002, pp. 1229–1254.

12. G. Vidal, “Efficient Classical Simulation of Slightly Entangled
Quantum Computations,” Physical Rev. Letters, vol. 91, no. 14,
2003, pp. 147902-1– 147902-4.

13. U. Schöning, “A Probabilistic Algorithm for k-SAT and Constraint
Satisfaction Problems,” Proc. IEEE Symp. Foundation of Comp. Sci-
ence, ACM Press, 1999, p. 410.

14. D. Eppstein, “Improved Algorithms for 3-Coloring, 3-Edge-Col-
oring, and Constraint Satisfaction,” Proc. Symp. Discrete Algo-
rithms, ACM/SIAM Press, 2001, pp. 329–337.

15. C. Zalka, “Grover’s Quantum Searching Algorithm Is Optimal,”
Physical Rev. A, vol. 60, no. 4, 1999, pp. 2746–2751.

16. H. Kautz and B. Selman, “Ten Challenges Redux: Recent Progress
in Propositional Reasoning and Search,” Proc. Principles and Prac-
tice of Constraint Programming (CP), LNCS 2833, Springer, 2003,
pp. 1–18.

17. S. Arora, “Polynomial-Time Approximation Schemes for Euclid-
ean Traveling Salesman and Other Geometric Problems,” J. ACM,
vol. 45, no. 5, 1998, pp. 753–782.

18. X. Wang et al., “Collisions for Hash Functions MD4, MD5,
HAVAL-128, and RIPEMD,” Cryptology ePrint Archive, report no.
199, Aug. 2004, pp. 1–4.

19. E. Biham and R. Chen, “Near-Collisions of SHA-0,” Proc. Int’l
Cryptology Conf. (CRYPTO), LNCS 3152, Springer, 2004, pp.
290–305.

20. L. Marraro and F. Massacci, “Towards the Formal Verification of
Ciphers: Logical Cryptanalysis of DES,” Proc. Workshop on Formal
Methods and Security Protocols (FMSP), 1999.

21. S.P. Murphy and M.J.B. Robshaw, “Essential Algebraic Structure
within the AES,” Proc. Int’l Cryptology Conf. (CRYPTO), LNCS
2442, Springer, 2002, pp. 1–16.

22. J. Roland and N.J. Cerf, “Adiabatic Quantum Search Algorithm
for Structured Problems,” Physical Rev. A, vol. 68, no. 6, 2003,
pp. 062312-1–062312-7.

23. P.T. Darga et al., “Exploiting Structure in Symmetry Generation
for CNF,” Proc. Design Automation Conf. (DAC), ACM Press, 2004,
pp. 530–534.

24. D. Curtis and D. A. Meyer, “Towards Quantum Template Match-
ing,” Proc. SPIE, vol. 5161 (Quantum Communications and
Quantum Imaging), SPIE Press, 2004, pp. 134–141.

George F. Viamontes is a PhD candidate in the Elec-
trical Engineering and Computer Science Department
at the University of Michigan. He is working to develop
algorithms that exploit implicit problem structure to
simulate quantum mechanical phenomena efficiently.
He has an MS in computer science and engineering
from the University of Michigan. He is a member of the
IEEE and ACM.

Igor L. Markov is an assistant professor in the Electri-
cal Engineering and Computer Science Department at
the University of Michigan. His interests are in quan-
tum computing and combinatorial optimization ap-
plied to the design and verification of integrated cir-
cuits. He received his PhD in computer science from
the University of California, Los Angeles. He is an asso-
ciate editor of the ACM SIGDA newsletter. He also re-
ceived the 2004 IEEE CAS Donald O. Pederson paper-

of-the-year award and the ACM SIGDA Outstanding
New Faculty Award. He is a member of the IEEE and
ACM.

John P. Hayes is a professor in the Electrical Engineer-
ing and Computer Science Department at the Univer-
sity of Michigan, where he holds the Claude E. Shan-
non Chair of Engineering Science. His research interests
include computer hardware design, quantum com-
puting; computer-aided design, testing, and verifica-
tion of digital systems; VLSI design; and fault-tolerant
and embedded computer systems. He is the author of
Computer Architecture and Organization 3rd ed. (Mc-
Graw-Hill, 1998), Layout Minimization for CMOS Cells
(Kluwer, 1992), and Introduction to Digital Logic Design
(Addison-Wesley, 1993). He received the University of
Michigan’s Distinguished Faculty Award in 1999 and
the Humboldt Research Award in 2004. He received his
PhD from the University of Illinois, Urbana-Champaign.
He is a fellow of the IEEE and ACM.

