
Efficient Quantum Circuit Simulation

by

George F. Viamontes

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2007

Doctoral Committee:

Professor John P. Hayes, Co-Chair
Associate Professor Igor L. Markov, Co-Chair
Professor Christopher R. Monroe
Associate Professor Scott A. Mahlke
Assistant Professor Yaoyun Shi

c© George F. Viamontes 2007
All Rights Reserved

To my family and friends

ii

ACKNOWLEDGEMENTS

I would like to thank many people who were instrumental in helping me finish my

Ph.D. My advisors John Hayes and Igor Markov provided me with excellent ideas to pur-

sue, offered endless advice and comments on every publication we worked on together,

and pushed me to do a great deal of solid research over the years.

Maintaining one’s sanity is also a key part of surviving graduate school, and my friends

at Michigan played a major role in that regard. In no particular order, I deeply thank David

Papa, Jarrod Roy, Aaron Ng, Arathi Ramani, DoRon Motter, Saurabh Adya, Julia Lipman,

Steve Plaza, Smita Krishnaswamy, Jin Hu, Manoj Rajagopalan, Kai-hui Chang, James Lu,

Colleen Craig, my friends from Los Alamos National Laboratory, and last but certainly

not least, Patrick Shea.

I never would have gone to graduate school had I not been influenced earlier on in life

to pursue engineering and an advanced degree. My parents played a big role in this regard,

and I still remember my dad asking me to come up with other uses for a fork aside from

eating when I was a child. Also, many of my good friends from my undergraduate days

at Notre Dame went to graduate school in various engineering disciplines, which helped

make going to graduate school seem like less of an alien concept. Lastly, I would like to

thank my entire family and my other close friends from St. Louis, particularly Matt and

Derek, for all the support over the years.

Many brain cells died in the making of this Ph.D. Their noble sacrifice will not be

forgotten.

iii

PREFACE

Quantum-mechanical phenomena are playing an increasing role in information pro-

cessing as transistor sizes approach the nanometer level, while the securest forms of com-

munication rely on quantum data encoding. When they involve a finite number of basis

states, these phenomena can be modeled as quantum circuits, the quantum analogue of

conventional or “classical” logic circuits. Simulation of quantum circuits can therefore be

used as a tool to evaluate issues in the design of quantum information processors. Un-

fortunately, simulating such phenomena efficiently is exceedingly difficult. The matrices

representing quantum operators (gates) and vectors modeling quantum states grow expo-

nentially with the number of quantum bits.

The information represented by quantum states and operators often exhibits structure

that can be exploited when simulating certain classes of quantum circuits. We study the

development of simulation methods that run on classical computers and take advantage

of such repetitions and redundancies. In particular, we define a new data structure for

simulating quantum circuits called the quantum information decision diagram (QuIDD).

A QuIDD is a compressed graph representation of a vector or matrix and permits com-

putations to be performed directly on the compressed data. We develop a comprehensive

set of algorithms for operating on QuIDDs in both the state-vector and density-matrix

formats, and evaluate their complexity. These algorithms have been implemented in a

general-purpose simulator program for quantum-mechanical applications called QuID-

DPro. Through extensive experiments conducted on representative quantum simulation

iv

applications, including Grover’s search algorithm, error characterization, and reversible

circuits, we demonstrate that QuIDDPro is faster than other existing quantum-mechanical

simulators such as the National Institute of Standards and Technology’s QCSim program,

and is far more memory-efficient. Using QuIDDPro, we explore the advantages of quan-

tum computation over classical computation, simulate quantum errors and error correction,

and study the impact of numerical precision on the fidelity of simulations. We also develop

several novel algorithms for testing quantum circuit equivalence and compare them empir-

ically. The QuIDDPro software is equipped with a user-friendly interface and is distributed

with numerous example scripts. It has been used as a laboratory supplement for quantum

computing courses at several universities.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

PREFACE . iv

LIST OF FIGURES . ix

LIST OF TABLES . xiv

LIST OF APPENDICES . xvi

CHAPTER

I. Introduction . 1

1.1 Goals of Quantum Circuit Simulation 3
1.2 Background . 4

1.2.1 Quantum Mechanics 5
1.2.2 Quantum Circuits . 19
1.2.3 Binary Decision Diagrams 22
1.2.4 BDD Operations . 25

1.3 Motivation for Simulation . 28
1.4 Thesis Outline . 29

II. Survey of Simulation Techniques . 32

2.1 Qubit-wise Multiplication . 33
2.2 P-blocked Simulation . 34
2.3 Tensor Networks . 36
2.4 Slightly Entangled Simulation 38
2.5 Stabilizer Circuit Formalism . 42
2.6 Other Simulation Techniques 48
2.7 Summary . 49

III. State Vector Simulation with QuIDDs 51

vi

3.1 QuIDD Theory . 51
3.1.1 Vectors and Matrices 52
3.1.2 Variable Ordering . 54
3.1.3 Tensor Product . 56
3.1.4 Matrix Multiplication 58
3.1.5 Other Linear-Algebraic Operations 60
3.1.6 Measurement . 61

3.2 Complexity Analysis . 62
3.2.1 Complexity of QuIDDs and QuIDD Operations 63
3.2.2 QuIDD Complexity of Grover’s Algorithm 69

3.3 Empirical Validation . 76
3.3.1 Implementation Issues 77
3.3.2 Simulating Grover’s Algorithm 78
3.3.3 Impact of Grover Iterations 81

3.4 Summary . 82

IV. Density Matrix Simulation with QuIDDs 86

4.1 Existing QuIDD Properties and Density Matrices 87
4.2 QuIDD-based Outer Product 89
4.3 QuIDD-based Partial Trace . 92
4.4 Experimental Results . 95

4.4.1 Reversible Circuits 96
4.4.2 Error Correction and Communication 97
4.4.3 Scalability and Quantum Search 100

4.5 Summary . 101

V. Checking Equivalence of States, Operators and Circuits 103

5.1 Motivation for Equivalence Checking 104
5.2 Checking Equivalence up to Global Phase 105

5.2.1 Inner Product . 106
5.2.2 Matrix Product . 107
5.2.3 Node-Count Check 107
5.2.4 Recursive Check . 108
5.2.5 Empirical Results for Global-Phase Equivalence . . . 109

5.3 Checking Equivalence up to Relative Phase 113
5.3.1 Modulus and Inner Product 113
5.3.2 Modulus and Matrix Product 114
5.3.3 Element-wise Division 115
5.3.4 Non-0 Terminal Merge 116
5.3.5 Modulus and DD Compare 117
5.3.6 Empirical Results for Relative-Phase Equivalence . . . 118

vii

5.4 Summary . 120

VI. Further Speed-Up Techniques . 124

6.1 Gate Algorithms . 124
6.1.1 Simulating 1-qubit Gates 125
6.1.2 Simulating Controlled Gates 127
6.1.3 Automatic Usage of Algorithms 131
6.1.4 Empirical Results . 132

6.2 Dynamic Tensor Products and Partial Tracing 133
6.2.1 Language Support 134
6.2.2 Motivation for Error Characterization 134
6.2.3 Remote Entanglement Circuits 135
6.2.4 Error Model . 137
6.2.5 Empirical Results . 142

6.3 Summary . 147

VII. Conclusions . 149

7.1 Summary of Contributions . 150
7.2 Closing Remarks and Future Directions 154

APPENDICES . 157

BIBLIOGRAPHY . 205

viii

LIST OF FIGURES

Figure

1.1 Reversible quantum half-adder circuit. 19

1.2 Quantum circuit which places two qubits into an equal superposition
when |A〉 and |B〉 are initialized to |0〉. 21

1.3 (a) A logic function, (b) its BDD representation, (c) its BDD representa-
tion after applying the first reduction rule, and (d) its ROBDD represen-
tation. 23

1.4 The three recursive rules used by the Apply operation which determine
how a new node should be added to a resultant ROBDD. In the figure,
xi = Var(v f) and x j = Var(vg). The notation xi ≺ x j is defined to mean
that xi precedes x j in the variable ordering. 25

1.5 Pseudo-code for the Apply algorithm. Top Var returns the variable in-
dex from either A or B that appears earlier in the ordering, while IT E
creates a new internal node with children T and E. 27

2.1 Tensor contraction of shared wire (index) o for tensors F and G, each of
which represents a 2-qubit gate. 38

3.1 Sample QuIDDs for state vectors of (a) best, (b) worst and (c) mid-range
size. 53

3.2 (a) 2-qubit Hadamard matrix, and (b) its QuIDD representation multi-
plied by |00〉 = (1,0,0,0). Note that the vector and matrix QuIDDs
share the entries in a terminal array that is global to the computation. . . 54

3.3 (a) n-qubit Hadamard QuIDD depicted next to (b) 1-qubit Hadamard
QuIDD. Notice that they are isomorphic except at the terminals. 57

3.4 General form of a tensor product between two QuIDDs A and B. 64

3.5 Circuit-level implementation of Grover’s algorithm 69

ix

3.6 Probability of successful search for one, two, four and eight items as
a function of the number of iterations after which the measurement is
performed (11, 12 and 13 qubits). Note that the minima and maxima of
the empirical sine curves match the predictions in Table 3.4. 83

3.7 Growth of inverse Quantum Fourier Transform matrix in QuIDD form.
N = 2n for n qubits. 84

4.1 (a) QuIDD for the density matrix resulting from U |01〉〈01|U †, where
U = H ⊗H, and (b) its explicit matrix form. 88

4.2 Pseudo-code for (a) the QuIDD outer product and (b) its complex conju-
gation helper function Complex Conj. The code for Scalar Div is the
same as Complex Conj, except that in the terminal node case it returns
the value of the terminal divided by a scalar. Other functions are typical
ADD operations [4, 66]. 90

4.3 Pseudo-code for the QuIDD partial trace. The index of the qubit being
traced-over is qubit index. 93

4.4 (a) An implementation of a reversible full-adder (RFA), and (b) a re-
versible 4-bit ripple-carry adder which uses the RFA as a module. The
reversible ripple-carry adder circuit computes the binary sum of two 4-
bit numbers: x3x2x1x0 ⊕ y3y2y1y0. cout is the final carry bit output from
the addition of the most-significant bits (x3 and y3). 96

4.5 Quantum circuit for the “bb84Eve” benchmark. 100

5.1 Margolus’ circuit, which is equivalent up to relative phase to the Toffoli
gate. 104

5.2 Pseudo-code for the recursive global-phase equivalence check. 108

5.3 One iteration of Grover’s search algorithm with an ancillary qubit used
by the oracle. CPS is the conditional phase shift operator, while the
boxed portion is the Grover iteration operator. 110

5.4 (a) Runtime results and regressions for the inner product and GPRC on
checking global-phase equivalence of states generated by a Grover itera-
tion. (b) Size in node count and regression of the QuIDD representation
of the state vector. 111

x

5.5 (a) Runtime results and regressions for the matrix product and GPRC on
checking global-phase equivalence of the Grover iteration operator. (b)
Size in node count and regression of the QuIDD representation of the
operator. 112

5.6 A QuIDD state combining x and 7x mod 15 in binary. The first qubit of
each partition is least-significant. Internal node labels are unique hex-
adecimal identifiers based on each node’s memory address with the vari-
able depended upon listed to the left. 113

5.7 Remote EPR-pair creation between the first and last qubits via nearest-
neighbor interactions. 118

5.8 (a) Runtime results and regressions for the inner product, element-wise
division, modulus and DD compare, and non-0 terminal merge algo-
rithms for checking relative-phase equivalence of the remote EPR pair
circuit. (b) Size in node count and regressions of the QuIDD states com-
pared. 119

5.9 Quantum-circuit realization of a Hamiltonian consisting of Pauli opera-
tors. Extra Pauli gates may be needed depending on the Hamiltonian. . . 120

5.10 (a) Runtime results and regressions for the matrix product, element-wise
division, modulus and DD compare, and non-0 terminal merge algo-
rithms for checking relative-phase equivalence of the Hamiltonian ∆t
circuit. (b) Size in node count and regressions of the QuIDD operators
compared. 120

5.11 Pseudo-code for element-wise division algorithm. 123

6.1 (a) A 1-qubit gate applied to a single qubit, and (b) the QuIDD state
vector transformation induced by this operation on qubit i. 126

6.2 Pseudo-code for the 1-qubit gate algorithm. Opi, j denotes accessing the
complex value at row i and column j of the 1-qubit matrix Op. 128

6.3 (a) A CNOT gate applied to the |11〉 state vector, and (b) the same oper-
ation applied using the specialized QuIDD algorithm. 129

xi

6.4 (a) A CNOT whose target precedes its control is shown next to an equiv-
alent circuit composed of 1-qubit Hadamard gates and a CNOT with the
control and target qubits reversed. (b) A swap gate, which exchanges the
values of two qubits, shown next to an equivalent circuit composed of
CNOT gates. The CNOT gate in the center can be converted as shown in
(a). 130

6.5 The remote EPR pair generation circuit which creates an EPR pair be-
tween qubits 0 (the top qubit) and n− 1 (the bottom qubit) via nearest-
neighbor interactions. The gate notation used comes from [51]. There
are 2n−2 gates in the circuit. 136

6.6 The remote EPR pair generation circuit with gate and systematic errors
(see Figure 6.5 for the error-free version). A different randomly gener-
ated ε error parameter may be used for each gate. The total number of
gates in the circuit is (n−1)2 +n. 139

6.7 Reduced version of the faulty, remote EPR pair generation circuit. . . . 141

6.8 Phase-damping decoherence model involving an environment qubit. . . 142

6.9 Probability of error in the remote EPR pair generation circuit due to gate
error only, as a function of the number of qubits. The rotation errors are
randomly selected for each gate from normal distributions ranging from
(a) ±10−5, (b) ±10−6, and (c) ±10−7. The average of 100 runs is used
for each distribution. 143

6.10 Probability of error in the remote EPR pair generation circuit, due to gate
error and systematic error, as a function of the number of qubits. The
rotation errors are randomly selected for each gate from normal distribu-
tions ranging from (a) ±10−5, (b) ±10−6, and (c) ±10−7. The average
of 100 runs is used for each distribution. 144

6.11 Probability of error in the remote EPR pair generation circuit due to gate
error only, as a function of the number of gates. The rotation errors are
randomly selected for each gate from normal distributions ranging from
(a) ±10−5, (b) ±10−6, and (c) ±10−7. The average of 100 runs is used
for each distribution. 145

6.12 Probability of error in the remote EPR pair generation circuit due to gate
error and systematic error, as a function of the number of gates. The
rotation errors are randomly selected for each gate from normal distribu-
tions ranging from (a) ±10−5, (b) ±10−6, and (c) ±10−7. The average
of 100 runs is used for each distribution. 145

xii

6.13 State fidelity in the remote EPR pair generation circuit with decoherence
as a function of the number of qubits. The decoherence angles used are
(a) 0.2, (b) 1.2, and (c) 3.0. Results are only shown for up to 140 qubits
for (b) and (c) since the fidelity drops to approximately 1/

√
2 quickly. . 146

6.14 State fidelity in the remote EPR pair generation circuit with decoherence
as a function of the number of qubits. Bang-bang pulses from the uni-
versal decoupling sequence are used to correct the state after every gate
is applied. The decoherence angles used are (a) 0.2, (b) 1.2, and (c) 3.0.
Results are given from 130 to 200 qubits so that the periodic nature of
the data is easily viewed. The trends continue through 1000 qubits. . . . 147

6.15 State fidelity in the remote EPR pair generation circuit with decoherence
as a function of the number of qubits. Faulty bang-bang pulses from
the universal decoupling sequence with an error range ±10−5 are used
to correct the state after every gate is applied. The decoherence angles
used are (a) 0.2, (b) 1.2, and (c) 3.0. Results are given from 130 to 200
qubits so that the periodic nature of the data is easily viewed. The trends
continue through 1000 qubits. 148

xiii

LIST OF TABLES

Table

2.1 Transformation rules for applying Clifford group generators to Pauli op-
erators [31, 51]. Each transformation rule is equivalent to the expression
Out put = Gate ∗ Input ∗Gate†. Some transformations are not shown
explicitly since they can be generated by combinations of the transfor-
mations listed. For instance, Y is equivalent to SXS†. 45

3.1 Size of QuIDDs (no. of nodes) for Grover’s algorithm. 78

3.2 Simulating Grover’s algorithm with n qubits using Octave (Oct), MAT-
LAB (MAT), Blitz++ (B++) and our simulator QuIDDPro (QP). > 24hrs
indicates that the runtime exceeded our cutoff of 24 hours. > 1.5GB
indicates that the memory usage exceeded our cutoff of 1.5GB. Simula-
tion runs that exceed the memory cutoff can also exceed the time cutoff,
though we give memory cutoff precedence. NA indicates that after a cut-
off of one week, the memory usage was still steadily growing, preventing
a peak memory usage measurement. 79

3.3 Simulating Grover’s algorithm with n qubits using Octave (Oct), MAT-
LAB (MAT), Blitz++ (B++) and our simulator QuIDDPro (QP). > 24hrs
indicates that the runtime exceeded our cutoff of 24 hours. > 1.5GB
indicates that the memory usage exceeded our cutoff of 1.5GB. Simula-
tion runs that exceed the memory cutoff can also exceed the time cutoff,
though we give memory cutoff precedence. NA indicates that after a cut-
off of one week, the memory usage was still steadily growing, preventing
a peak memory usage measurement. 80

3.4 Number of Grover iterations at which Boyer et al. [14] predict the high-
est probability of measuring one of the items sought. 82

4.1 Performance results for QuIDDPro and QCSim on the reversible circuit
benchmarks. > 2GB indicates that a memory usage cutoff of 2GB was
exceeded. 98

xiv

4.2 Performance results for QCSim and QuIDDPro on the benchmarks in-
corporating errors. > 2GB indicates that a memory usage cutoff of 2GB
was exceeded. 101

4.3 Performance results for QCSim and QuIDDPro on the Grover’s quantum
search benchmark. > 2GB indicates that a memory usage cutoff of 2GB
was exceeded. 102

5.1 Performance results for the inner product and GPRC algorithms on check-
ing global-phase equivalence of modular exponentiation states. In (a),
|ψ〉 = |ϕ〉 up to global phase. In (b), (c), and (d), Hadamard gates are
applied to the first, middle, and last qubits of |ϕ〉 so that |ψ〉 6= |ϕ〉 up to
global phase. 114

5.2 Performance results for the matrix product and GPRC algorithms on
checking global-phase equivalence of the QFT operator used in Shor’s
factoring algorithm. > 2GB indicates that a memory usage cutoff of 2GB
was exceeded. 115

5.3 Key properties of the QuIDD-based phase-equivalence checking algo-
rithms. 122

6.1 Performance results comparing QuIDDPro using the specialized algo-
rithms to QuIDDPro using ADD-based matrix multiplication. 133

xv

LIST OF APPENDICES

Appendix

A. A Characterization of Persistent Sets . 158

B. QuIDDPro Simulator . 160

B.1 Running the Simulator . 160
B.2 Functions and Code in Multiple Files 166
B.3 Language Reference . 170

C. QuIDDPro Examples . 199

C.1 Well-known Quantum States 199
C.1.1 Cat State . 199
C.1.2 W State . 200
C.1.3 Equal Superposition State 200

C.2 Grover’s Search Algorithm . 200
C.3 Shor’s Integer Factoring Algorithm 202

xvi

CHAPTER I

Introduction

Richard Feynman observed in the 1980s that simulating quantum mechanical pro-

cesses on a standard classical computer seems to require super-polynomial memory and

time [35]. For instance, a complex vector of size 2n is needed to represent all the informa-

tion in the quantum version of an n-bit vector denoting a quantum mechanical state, and

square matrices of size 22n are needed to model (simulate) the time evolution of states [51].

Consequently, Feynman proposed quantum computing, which uses the quantum mechan-

ical states themselves to simulate quantum processes. The key idea is to replace bits with

quantum bits called qubits as the fundamental units of information. A quantum computer

can operate directly on exponentially more data than a classical computer with a similar

number of operations and information units. Thus in addressing the problem of simulating

quantum mechanical processes more efficiently, Feynman discovered a new computing

model that, as was subsequently shown, can outperform the best known classical compu-

tational methods for certain problems.

Since Feynman’s seminal work, a number of practical information processing appli-

cations that exploit quantum mechanical effects have been proposed. Quantum compu-

1

2

tational algorithms have been discovered to quickly search unstructured databases [33]

and to factor numbers in polynomial time [65]. Implementing quantum algorithms has

proved to be particularly difficult, however, in part due to errors caused by the environment

[41, 50]. Additionally, quantum mechanics has been harnessed for secure key exchange

in encrypted communication since the act of eavesdropping can be detected as destruc-

tive measurement on quantum states [6, 7, 27]. Another related application is the design

of reversible logic circuits. The logic operations performed on qubits in quantum com-

putation must be unitary, so they are all invertible and allow re-derivation of the inputs

given the outputs [51]. This phenomenon gives rise to a host of potential applications in

fault-tolerant computation. Since reversible logic, secure quantum communication, and

quantum algorithms can be modeled as quantum circuits [51], the quantum analogue of

digital logic circuits, quantum circuit simulation could be of major benefit to these appli-

cations. In fact, any quantum mechanical phenomenon with a finite number of states can

be modeled as a quantum circuit [51, 13]. Unfortunately, the very problem which brought

forth quantum mechanics as a useful computational tool is the same problem which, in

general, renders quantum circuit simulation on a classical computer intractable.

Software simulation has long been an invaluable tool for the design and testing of

classical, digital circuits. This problem, typically considered as a computer-aided design

(CAD) task, was once thought to be computationally intractable as well. Early simulation

and synthesis techniques for n-bit circuits often required O(2n) runtime and memory, with

the worst-case complexity being fairly typical. Later algorithmic advancements brought

about the ability to perform circuit simulation much more efficiently in practical cases.

3

One such advance was the development of a data structure called the reduced ordered

binary decision diagram (ROBDD) [17], which can greatly compress the Boolean descrip-

tion of digital circuits and allow direct manipulation of the compressed form. Software

simulation may also play a vital role in the development of quantum hardware by enabling

the modeling and analysis of large-scale designs that cannot be implemented physically

with current technology. Unfortunately, straightforward simulation of quantum designs by

classical computers executing standard linear-algebraic routines requires O(2n) time and

memory [35, 51]. However, just as ROBDDs and other innovations have made the simula-

tion of very large classical computers tractable, new algorithmic techniques can allow the

efficient simulation of quantum computers in many important cases.

1.1 Goals of Quantum Circuit Simulation

Interestingly, if a classical computer can simulate a quantum computer solving a par-

ticular problem, then this implies that a classical computer is computationally as powerful

as a quantum computer for the problem in question. Therefore, by discovering new classi-

cal algorithms which can efficiently simulate quantum computers in certain cases, we are

probing the limitations of quantum computing. In light of this, it might seem that simula-

tion for the sake of improving quantum hardware introduces competing goals. However,

we argue that error characterization and error correction schemes developed with the aid of

efficient classical simulation can in principle be applied to other quantum circuits which

cannot be simulated efficiently. In addition, the automatic creation and optimization of

quantum circuits for various tasks, also known as quantum circuit synthesis, can make use

of classical simulation.

4

In this work we describe the development of practical software methods which enable

such simulation and propose extensions to these methods to encompass an even larger set

of simulatable quantum circuits. Such simulation will be used as a tool to address the

following issues:

1. Characterizing the effect of various errors in practical quantum circuits.

2. Testing multi-qubit error correction techniques to cope with such errors.

3. Verifying the correctness of synthesized quantum circuits.

4. Exploring the boundaries between the quantum and classical computational models.

We have completed a large body of work addressing these topics. This work includes

the development of the quantum information decision diagram (QuIDD), which facilitates

efficient simulation and equivalence checking of a non-trivial class of quantum circuits

[76, 78, 79, 80, 82, 83, 81, 77]. However, before delving into a survey of simulation

techniques in Chapter II, it is instructive to first review some background information on

quantum computation and a few classical CAD data structures. All simulation techniques

described in this dissertation are exact up to machine precision and use no approximations.

1.2 Background

Without assuming prior knowledge of quantum computing, the first two subsections

outline the basic concepts required to understand this work. The third subsection provides

background on the reduced ordered binary decision diagram data structure, which is re-

quired to understand our preliminary work involving the quantum information decision

diagram.

5

1.2.1 Quantum Mechanics

The physics underlying quantum computing is quantum mechanics. To grasp the basics

of quantum computing, a brief overview of the important properties of quantum mechanics

is in order. Although there is more than one model of quantum mechanics, we choose to

restrict the presentation to the Dirac model which makes extensive use of linear algebra.

The Fundamental Postulates

Quantum mechanics, and therefore quantum computing, is governed by four funda-

mental postulates that have been verified over the years through a number of experiments

[59]. Any simulation of quantum computing must implement these four postulates in some

form if true quantum behavior is to be modeled. A brief summary of the four postulates

follows (these postulates can be found in a number of standard quantum mechanical texts

including [51, 59]).

Postulate 1. Quantum states are represented as vectors in a Hilbert space.

Since the vectors that arise in quantum computing have finite sizes, the Hilbert space

of quantum states is simply a complex-valued vector space for which the inner product is

defined. To recall from linear algebra, the inner product of two vectors x and y is

(1.1) Σn
i=1x∗i yi = [x∗1 . . .x∗n]





























z1

.

.

.

zn





























,

where a∗ denotes the complex conjugate of a complex number a.

6

For our purposes, this means that qubits, which are quantum states, are represented as

vectors for which we can compute inner products. The need for a vector representation

comes from a physical phenomenon called superposition. In quantum computing, two low

energy stable states are used to represent the classical values 0 and 1 and are referred to as

computational basis states [51]. Like an analog signal, the range of qubit values is an infi-

nite continuum of values between 0 and 1. However, unlike an analog signal, these values

denote a probability of obtaining a 0 or 1 upon measurement of a qubit. This is the essence

of superposition. More formally, given a state vector for some qubit |ψ〉 1 =







α

β






, α and

β are complex numbers, and |α|2 + |β|2 = 1. α and β are probability amplitudes, such that

|α|2 and |β|2 are the probabilities of measuring the qubit as a 0 and as a 1, respectively.

One can think of α as the amount of “zeroness” and β as the amount of “oneness” that

the qubit contains. In an equal superposition, |α|2 = |β|2, and a qubit in such a state is

interpreted as being both 0 and 1 simultaneously. Mathematically, an equal superposition

of one qubit has the form |+〉 =







1/
√

2

1/
√

2






. It is easy to see that | 1√

2
|2 + | 1√

2
|2 = 1. Sim-

ilarly, the basis states 0 and 1 have the form |0〉 =







1

0






and |1〉 =







0

1






.

As will be demonstrated shortly, the massive parallelism achieved in quantum comput-

ing is due largely to both the property of superposition and Postulate 4. Furthermore, since

the state vectors associated with qubits exist in a finite-dimensional Hilbert space, their in-

ner products must be defined as per the definition of a finite-dimensional Hilbert space.

1|x〉 denotes a ket in the standard Dirac notation and is short-hand for a complex-valued column vector
representing a quantum state.

7

This property is shown to be important in both Postulate 3 and the no-cloning theorem,

which are discussed later.

Postulate 2. Operations on quantum states in a closed system are represented using

matrix-vector multiplication of the quantum state vector by a unitary matrix.

This postulate describes special types of matrices that are analogous to logic gates in

classical computation. A unitary matrix has the property that its adjoint equals its inverse.

The adjoint of a matrix is simply the complex conjugate transpose. In other words, given

a matrix







a b

c d






, its adjoint is







a∗ c∗

b∗ d∗






.

Unitary matrices are operators which can be used to modify the values of qubits like

logic gates. For the remainder of this proposal, the terms operator and gate are used in-

terchangeably. Unlike classical logic gates, however, all quantum operators are reversible.

Given a sequence of operations performed on a set of qubits, the qubits can be returned to

their original state simply by performing the inverse of each operation in the reverse or-

der that the operations are applied. Mathematically speaking, suppose we want to modify

an initial qubit state |ψ〉 using the unitary matrices A, B, and C producing a new state

|ψ′〉. This is accomplished through a series of multiplications: ABC |ψ〉 = |ψ′〉. |ψ〉

is recovered by multiplying in reverse order the inverse of each of the matrices by the

new state: C−1B−1A−1 |ψ′〉 = |ψ〉. This property of reversibility comes from the well-

known result in linear algebra that the inverse of a product of invertible matrices is sim-

ply the product of the inverses of each matrix in reverse order [70]. This can be easily

demonstrated using the fact that any matrix multiplied by its inverse is the identity matrix:

ABCC−1B−1A−1 = ABIB−1C−1 = AIA−1 = I.

8

Since all quantum operators must be unitary, there exists an inverse for every operator

and that inverse is the adjoint of the operator. Thus, by keeping track of the operations

performed on a set of qubits, any quantum computation can be reversed by applying the

adjoint of each operation in reverse order.

An example of a commonly used operator in quantum computing is the Hadamard

operator which has the form

(1.2) H =







1√
2

1√
2

1√
2

− 1√
2






.

This operator is frequently used to put a qubit into an equal superposition (as described in

Postulate 1). To illustrate, we can transform a qubit in state |0〉 into an equal superposition

via matrix-vector multiplication with the Hadamard operator as follows,

(1.3)







1√
2

1√
2

1√
2

− 1√
2













1

0






=







1√
2

1√
2






.

Postulate 3. Measurement of a quantum state |ψ〉 involves a special set of operators.

When such an operator Ω is applied to |ψ〉, the result will be one of the eigenvalues ω of

the operator Ω with a certain probability. Measurement is destructive and will change the

measured state |ψ〉 to |ω〉.

In the context of quantum computing, this postulate has two major consequences. The

first is that measuring the value of a qubit destroys its quantum state, forcing it to a discrete

0 or 1 value corresponding to classical bit states which are not superpositions of values.

After measurement is performed, a quantum computation is no longer reversible in the

strict Postulate 2 sense. The second consequence is that measurement is probabilistic.

There are several different types of measurement, but the one that is most pertinent to this

9

discussion is measurement in the computational basis. In quantum computing, measure-

ment in the computational basis involves measuring with respect to the |0〉 or |1〉 basis

states of a qubit, forcing the qubit to a classical 0 or 1. The actual outcome (i.e. a 0 or 1

result) depends on the probability amplitude associated with each outcome in the super-

position of the qubit (defined as α and β in Postulate 1). In this type of measurement, the

probability of obtaining a 0 or 1 is: p(x) = 〈ψ|Mx |ψ〉 where x is either 0 or 1.2 As an

example, suppose we want to measure a quantum state |ψ〉 =







α

β






in the |1〉 basis. The

operator for this projective measurement is |1〉〈1| which is the multiplicative product of a

column vector and a row vector,

(1.4) |1〉〈1| =







0

1







[

0 1

]

=







0 0

0 1






.

Thus,

p(1) = 〈ψ|1〉〈1|ψ〉

=

[

α∗ β∗
]







0 0

0 1













α

β







=

[

0 β∗
]







α

β







= |β|2.(1.5)

Notice that in general when measuring in the computational basis, the probability of get-

ting a 0 or 1 is the magnitude squared of the probability amplitude associated with that

value.
2〈x| denotes a bra in the standard Dirac notation and is short-hand for the complex conjugate transpose

of a complex-valued column vector (Dirac’s ket) representing a quantum state.

10

Although ideally measurement would be performed in the computational basis to read

the output at the end of a quantum computation, another form of measurement can and

often does occur prematurely. This measurement comes in the form of interference from

the environment surrounding the qubits and is known as decoherence or quantum noise

[43, 51]. In practice it is difficult to isolate stable quantum states from the environment,

and since measurement of any kind is destructive, a computation can easily be ruined be-

fore it completes. This problem alone has been one of the greatest technological hurdles

facing the physical realization of quantum computers [41, 50, 51].

Postulate 4. Composite quantum states are represented by the tensor product of the com-

ponent quantum states, and operators that act on composite states are represented by the

tensor product of their component matrices.

Simply put, this postulate enables the description of multiple qubits and multi-qubit op-

erators via a single state vector and matrix, respectively. The tensor product3 is a standard

linear algebraic operation. Given two matrices (vectors) A and B of dimensions MA ×NA

and MB ×NB, respectively, the tensor product A⊗B multiplies each element of A by the

entire matrix (vector) B to produce a new matrix (vector) of dimensions MA ·MB×NA ·NB.

To illustrate, suppose we want to compute the tensor product of the following complex-

valued matrices,

(1.6) A =







a b

c d






, B =







e f

g h






.

3The tensor product is also known as the Kronecker or direct product.

11

The tensor product operation ⊗ gives

(1.7) A⊗B =





















ae a f be b f

ag ah bg b f

ce c f de d f

cg ch dg dh





















.

Similarly, consider two complex-valued vectors V and W ,

(1.8) V =







a

b






, W =







c

d






.

The tensor product V ⊗W is

(1.9) V ⊗W =





















ac

ad

bc

bd





















.

In general, there is no restriction on the dimensions of tensor product operands. Ma-

trices of different dimensions can be tensored together, as can vectors and matrices. How-

ever, in the quantum domain, we typically perform the tensor product on square, power-of-

two-sized matrices to create larger operators (Postulate 2), and also on power-of-two-sized

vectors to create larger composite quantum states (Postulate 1). To illustrate, suppose we

want the state vector that describes the composite state of the following set of qubits:

|1〉 , |0〉 , |1〉. The composite state vector is computed as

12

(1.10)







0

1






⊗







1

0






⊗







0

1






=



















































0

0

0

0

0

1

0

0



















































.

Dirac notation offers a simple short-hand description of composite quantum states in which

the state symbols are simply placed side-by-side within a single ket. For the preceding

example (Equation 1.10), the Dirac form is |101〉.

Extending the concept of measurement (Postulate 3) to composite quantum states is

fairly straightforward. In the case of vectors, by multiplying each element of a vector V

by an entire vector W , the tensor product produces a vector whose elements are indexed in

binary counting order. To demonstrate, we revisit V ⊗W annotated with binary indices,

(1.11) V ⊗W =







a

b







0

1

⊗







c

d







0

1

=





















ac

ad

bc

bd





















00

01

10

11

.

Whereas the indices 0 and 1 for the single quantum state vectors represent the amount

of “zeroness” and “oneness” in the quantum state, the indices in the above composite vec-

13

tor represent the amount of “00-ness, 01-ness, 10-ness, and 11-ness” respectively. Thus,

when measuring with respect to the computational basis, the binary indices of a state vec-

tor denote the classical bit values that will be measured with a probability given by the

magnitude squared of the value at that location in the vector.

To illustrate the construction of composite quantum operators, we turn to an example

involving the Hadamard operator. A Hadamard operator that can be applied to two qubits

is constructed via the tensor product of two Hadamard matrices,

(1.12)







1√
2

1√
2

1√
2

− 1√
2






⊗







1√
2

1√
2

1√
2

− 1√
2






=





















1
2

1
2

1
2

1
2

1
2 −1

2
1
2 −1

2

1
2

1
2 −1

2 −1
2

1
2 −1

2 −1
2

1
2





















.

The above examples show that n qubits can be represented by n− 1 tensor products

of single qubit vectors, and operators that act on n qubits can be represented by n− 1

tensor products of single qubit operators. A key point to note is that the size of a state

vector resulting from a series of tensor products on n single qubit vectors is 2n. Simi-

larly, a composite operator which can be applied to n qubits is a matrix of size 22n. It is

indeed Postulate 4 which gives rise to the exponential complexity of simulation of quan-

tum behavior on classical computers. A straightforward linear algebraic approach to such

simulation would have time and memory complexity O(22n) for an n-qubit system.

The No-Cloning Theorem

Another interesting property of quantum states is that they cannot be arbitrarily copied

[51]. This leads to yet another fundamental difference between quantum and classical

computing. In classical logic circuits, a wire can fan out from the output of a gate and feed

14

into many other gates. This is not possible in the quantum domain for an arbitrary qubit.

However, this is not a limitation because quantum states that are known to be orthogonal

to each other (including the computational basis states) can be copied. A proof adapted

from [51] is offered below:

Given two unknown quantum states |ψ〉 and |ϕ〉, we try to apply some unitary operator

(in accordance with Postulate 2) such that both |ψ〉 and |ϕ〉 are copied to other quantum

states |s〉 and |t〉. This is represented mathematically as

U(|ψ〉⊗ |s〉) = |ψ〉⊗ |ψ〉(1.13)

U(|ϕ〉⊗ |t〉) = |ϕ〉⊗ |ϕ〉.(1.14)

However, since quantum computing is modeled by a finite-dimensional Hilbert space, the

inner product of both equations must be defined if they are in fact valid evolutions of

quantum states. The inner product of the above two equations reduces to

(1.15) 〈ψ|ϕ〉 = (〈ψ|ϕ〉)2.

Any expression of the form x = x2 (as is the case above) only has two solutions, x = 0 and

x = 1. If the inner product of two state vectors is 0, the vectors are orthogonal. Also, the

only way for the inner product to be 1 is if both state vectors are equal. Thus, it is either

the case that |ψ〉 and |ϕ〉 are orthogonal or that |ψ〉 = |ϕ〉. This proof demonstrates that

arbitrary quantum states cannot be copied. However, if it is known that the quantum states

are orthogonal, they can be copied.

The implication for quantum computing is that the computational basis states |0〉 and

|1〉, which are orthogonal, can be copied. Since the computational basis states are anal-

15

ogous to the classical bit values 0 and 1, the no-cloning theorem suggests that quantum

computers are at least as powerful as classical computers.

A standard quantum operator used to copy computational basis states (among other

functions) is called the CNOT operator [51]. As the name implies, CNOT is a controlled-

NOT operation. It is a unitary matrix (in accordance with Postulate 2) that acts on two

qubits. One qubit is the control qubit while the other qubit is the target qubit. When the

control qubit is in the |1〉 state, the CNOT is “activated”, and the state of the target qubit

is flipped from |0〉 to |1〉 or vice-versa. If the control qubit is in the |0〉 state, however,

the state of the target qubit is unchanged. When both the control and target qubits are

in the computational basis states, the CNOT operation performs the same function as the

classical XOR gate where the target qubit receives the value of the XOR of the control

qubit and the old target qubit value. To demonstrate, a CNOT operator is shown below

changing the state vector |10〉 to |11〉,

(1.16)





















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0









































0

0

1

0





















=





















0

0

0

1





















.

An extension of CNOT is the Toffoli operator, which is basically a CNOT with two

control qubits and one target qubit. In this case, the value of the target qubit is flipped if

both of the control qubits are in state |1〉. So, given two control qubits a and b and a target

qubit c, the Toffoli gate causes c to become c⊕ ab. The Toffoli gate alone is a universal

gate set that can effect any form of classical computation [51]. This is easily demonstrated

by showing that the Toffoli gate can perform the same function as the classical NAND gate

16

which is known to be a universal gate set. To compute a NAND b where a and b are input

qubits, we simply make a and b the control qubits of the Toffoli gate and initialize the target

qubit to |1〉. Such an instance of the Toffoli gate computes the function 1⊕ ab = ¬(ab),

which is equivalent to a NAND b.

Entanglement

Yet another interesting property of quantum states is entanglement. Two quantum

systems are entangled if the measurement outcome of one system affects the measurement

statistics of another system, without any physical interaction at the time of measurement.

A simple example of entangled states is the Bell state or EPR pair [51]. Suppose two

parties, Alice and Bob, each have their own qubit, and the state of both qubits together

is given as, ψAB = |0A0B〉, where the subscript A denotes the portion of the state due to

Alice’s qubit, and the subscript B denotes the portion due to Bob’s qubit. An EPR pair can

be generated from this state by applying a Hadamard gate and a CNOT gate as follows,

(1.17) ψEPR = (CNOT)(H ⊗ I) |0A0B〉 =
1√
2
(|0A0B〉+ |1A1B〉).

The utility of this state lies in the fact that if Alice measures her particle and obtains

a 0, then Bob will subsequently also obtain a 0 upon measurement of his particle (the

same holds true for a measurement of 1). Once the EPR pair is created, the measurement

outcomes of each qubit are correlated even if Alice and Bob physically separate their

qubits by any amount of distance. As a result, entanglement has applications in quantum

teleportation [8] and secure public key exchange [6, 7, 27], which will be discussed later

in Chapters IV and VI.

17

The Density Matrix Representation

An important extension of the state vector is the density matrix. For the purposes

of quantum circuit simulation, it is sufficient to define an n-qubit density matrix as ρ =

|ψ〉〈ψ|, where |ψ〉 is a single state vector for a sequence of n initialized qubits, and 〈ψ|

is its complex-conjugate transpose. In other words, ρ is a 2n × 2n matrix constructed by

multiplying a 2n element column vector with a 2n element row vector. This operation is

also known as the outer product. To illustrate, when |ψ〉 is a single qubit,

(1.18) ρ = |ψ〉〈ψ| =







α

β






[α∗β∗] =







αα∗ αβ∗

βα∗ ββ∗







Like the state vector model, a gate operation U can be applied to a density matrix, but it

takes the form UρU†, where U† is the complex-conjugate transpose of the matrix for U .

For example, if U = H, the Hadamard operator,

(1.19) HρH† =







1/
√

2 1/
√

2

1/
√

2 −1/
√

2













αα∗ αβ∗

βα∗ ββ∗













1/
√

2 1/
√

2

1/
√

2 −1/
√

2







Perhaps the most useful property of the density matrix is that it can accurately represent

a subset of the qubits in a circuit. One can extract this subset of information with the partial

trace operation, which produces a smaller matrix, called the reduced density matrix [51].

To understand how this extraction can be done, consider the following example in which

a 1-qubit operator U is applied to two qubits |ψ〉 and |φ〉. The density matrix version of

this circuit is (U ⊗U)|ψφ〉〈ψφ|(U ⊗U)† = |ψ′φ′〉〈ψ′φ′|. The state of |φ〉 alone after U is

applied, for instance, can be extracted with the partial trace, tr(U |ψ〉〈ψ|U †)U |φ〉〈φ|U†. tr

is the standard trace operation, which produces a single complex number that is the sum

of the diagonal elements of a matrix. A more concrete example is the partial trace over

18

the first qubit in a density matrix representing two qubits with the state ρ0 ⊗ρ1, such that

ρ0 = |+〉〈+| and ρ1 = |0〉〈0|, where |+〉 denotes an equal superposition.

ρ0 ⊗ρ1 =







1/2 1/2

1/2 1/2






⊗







1 0

0 0






=





















1/2 0 1/2 0

0 0 0 0

1/2 0 1/2 0

0 0 0 0





















(1.20)

trρ0(ρ0 ⊗ρ1) =







1 0

0 0






(1.21)

Although in this example the partial trace reproduces the state of the second qubit, it

does not always extract the original state of the remaining qubits. In particular, when

entanglement exists among two or more qubits, the partial trace will not undo the tensor

product. This issue is central to some of the simulation methods discussed in Chapter II.

Also notice that the partial trace “traces over” the qubit that is not wanted, leaving

behind the desired qubit states. Using the partial trace to extract information about subsets

of qubits in a circuit is invaluable in simulation. As will be shown in Chapter IV, many

practical quantum circuits contain ancillary qubits which help to perform an intermediate

function in the circuit but contain no useful information at the output of the circuit. The

partial trace therefore allows a simulation to report the density matrix information only

for the qubits that contain useful data. Another application of the partial trace in quantum

circuits is the modeling of noise from the environment. Coupling between the environment

and data qubits can be modeled as the tensor product of data qubits with quantum states

controlled by the environment [51]. In such a situation, the partial trace can be used to

extract the state of data qubits after being affected by noise. For these reasons and others,

19

G2

|A〉 • • |A〉
|B〉 • �������� |A⊕B〉 = sum

|C〉 �������� |C⊕ (A AND B)〉 = carry

G1

_ _�
�
�
�
�

�
�
�
�
�

_ _

_ _�

�

�

�

�

�
_ _

Figure 1.1: Reversible quantum half-adder circuit.

it is crucial that a quantum simulator support the density matrix representation.

1.2.2 Quantum Circuits

With the quantum mechanical background in place, we proceed to the topic of quantum

circuits. Quantum circuits are analogous to the logic design level of classical computation,

and therefore in this work we model all quantum computation at the quantum circuit level.

The two major components in a quantum circuit are the qubits (Postulate 1) and the oper-

ators or gates (Postulate 2). The values of the qubits are observed through measurement

(Postulate 3), and multiple qubits and gates can be expressed via the tensor product (Postu-

late 4). Clearly, the postulates of quantum mechanics provide a complete set of properties

with which to perform logic design subject to the fanout constraint of the no-cloning the-

orem. In the remainder of this subsection, we cover two small quantum circuit examples

to familiarize the reader with the standard quantum circuit notation.

The first example, shown in Figure 1.1, is a quantum half-adder. It performs the same

function as the standard half-adder in classical logic circuits when the inputs are all in

the computational basis. Notice that the qubits are depicted graphically as parallel, hor-

izontal lines. These lines can be thought of as wires, but more abstractly they represent

the evolution of the qubits over time. Gates are depicted as objects placed on top of the

20

horizontal qubit lines, affecting only those qubits lines that they are in contact with graph-

ically, similar to a classical logic gate. The spacing between gates on the qubit lines has

no significance. The only important aspect of gate placement is whether one gate appears

before another, implying an order of operations to be performed on the affected qubits.

The quantum half-adder simply consists of a Toffoli gate (G1) affecting all three qubits

followed by a CNOT gate (G2) affecting the first two qubits only. The solid circles repre-

sent inputs for the control qubits, while the unfilled circles represent inputs/outputs for the

target qubits. In general, the input qubits are placed at the left end of the qubit lines, with

the final output state of the qubits appearing at the right end. The matrix representation of

the half-adder gates is written as,

(1.22)

H Adder = G2G1 = (C⊗ I)T =

















































































1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0









































⊗

















1 0

0 1



















































































































































1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



























































































.

An interesting thing to note is that although the circuit diagram flows in a left to right

fashion (e.g. G1 is applied before G2), the matrices representing the unitary operators are

applied in a seemingly reverse order. As shown above, the matrix for G2 (i.e. CNOT ⊗ I;

the identity matrix I is applied to qubit lines with no gates acting on them) appears to the

left of the matrix for G1. The reason that the matrices appear in a reverse order when

21

|A〉 H
NM

|B〉 H
NM

Figure 1.2: Quantum circuit which places two qubits into an equal superposition when |A〉
and |B〉 are initialized to |0〉.

read from left to right is due to the mechanics of the matrix-vector multiplication [70]. In

order to perform the multiplication correctly, the state vector is multiplied on the right-

hand side of an operator. Thus, in linear algebraic terms, the right to left order of the

matrix representations is equivalent to the left to right order in the circuit diagram. This is

analogous to a formula of the form f (g(x)), where the function f (·) is applied after g(·)

even though f (·) appears before g(·) in the formula.

Another pertinent notational nuance is that the graphical symbols for Toffoli and CNOT

gates are a bit different from those of other quantum operators. The convention for quan-

tum gates without controls is to represent their target qubit portions as boxes containing a

label describing the function of the gate. As illustrated in Figure 1.2, the Hadamard gates

have no control qubits and their graphical depiction is simply a box containing an “H”. It

is also a convention to place meter symbols on qubit lines where measurement occurs. In

Figure 1.2, the meters at the end of the qubit lines denote that measurement takes place at

the end of the quantum computation.

The Toffoli and CNOT gates also play an important role in universal quantum gate sets.

Analogous to their classical digital counterparts, universal quantum gate sets can be used to

implement any quantum computation. However, discrete universal quantum gate sets (i.e.

the set contains a finite number of gates) can only approximate arbitrary quantum com-

22

putations, though the approximation can achieve any desired level of accuracy [51]. One

example of a discrete universal quantum gate set consists of the Hadamard, phase, CNOT,

and π/8 gates (see Section 2.5 for a description of the phase and π/8 gates). Another

discrete universal quantum gate set consists of the Hadamard, phase, CNOT, and Toffoli

gates [51]. By contrast, universal quantum gate sets containing an infinite number of gates

enable an exact decomposition of any quantum computation. One such gate set consists

of the CNOT gate and the infinite set of all 1-qubit unitary operators [51]. Interestingly,

given a circuit consisting of gates from this infinite set, the Solovay-Kitaev theorem proves

that an approximation with accuracy ε can be achieved using the aforementioned discrete

gate sets with only polylogarithmically more gates in terms of the number of CNOTs in

the original circuit and ε [42, 51]. Thus, discrete universal gate sets are likely to be of

practical value.

1.2.3 Binary Decision Diagrams

The binary decision diagram (BDD) was introduced by Lee in 1959 [45] in the con-

text of classical logic circuit design. This data structure represents a Boolean function

f (x1,x2, ...,xn) by a directed acyclic graph (DAG); see Figure 1.3. By convention, the top

node of a BDD is labeled with the name of the function f represented by the BDD. Each

variable xi of f is associated with one or more nodes with two outgoing edges labeled then

(solid line) and else (dashed line). The then edge of node xi denotes an assignment of

logic 1 to the xi, while the else edge represents an assignment of logic 0. These nodes are

called internal nodes and are labeled by the corresponding variable xi. The edges of the

BDD point downward, implying a top-down assignment of values to the Boolean variables

23

depicted by the internal nodes.

f = x0 · x1 + x1

x0

x1x1

1 0 1 0

f

x0

x1

1 0

f

x1

1 0

f

(a) (b) (c) (d)

Figure 1.3: (a) A logic function, (b) its BDD representation, (c) its BDD representation
after applying the first reduction rule, and (d) its ROBDD representation.

At the bottom of the BDD are terminal nodes containing the logic values 1 or 0. They

denote the output value of the function f for a given assignment of its variables. Each path

through the BDD from top to bottom represents a specific assignment of 0-1 values to the

variables x1,x2, ...,xn of f , and ends with the corresponding output value f (x1,x2, ...,xn).

The original BDD data structure conceived by Lee has exponential memory complex-

ity Θ(2n), where n is the number of Boolean variables in a given logic function. The

reason for this complexity bound is that in Lee’s initial design, the paths representing all

2n combinations of variable assignments are explicitly represented. Moreover, exponential

memory and runtime are required in many practical cases, making this data structure im-

practical for simulation of large logic circuits. To address this limitation, Bryant developed

the reduced ordered BDD (ROBDD) [17], where all variables are ordered, and decisions

are made in that order. A key advantage of the ROBDD is that variable-ordering facilitates

an efficient implementation of reduction rules that automatically eliminate redundancy

from the basic BDD representation and may be summarized as follows:

24

Rule 1. There are no nodes v and v′ such that the subgraphs rooted at v and v′ are

isomorphic

Rule 2. There are no internal nodes with then and else edges that both point to the

same node

An example of how the rules transform a BDD into an ROBDD is shown in Figure

1.3. The subgraphs rooted at the x1 nodes in Figure 1.3b are isomorphic. By applying

the first reduction rule, the BDD in Figure 1.3b is converted into the BDD in Figure 1.3c.

Notice that in this new BDD, the then and else edges of the x0 node now point to the

same node. Applying the second reduction rule eliminates the x0 node, producing the

ROBDD in Figure 1.3d. Intuitively it makes sense to eliminate the x0 node since the

output of the original function is determined solely by the value of x1. An important

aspect of redundancy elimination is the sensitivity of ROBDD size to the variable ordering.

Finding the optimal variable ordering is an NP-complete problem, but efficient ordering

heuristics have been developed for specific applications. Moreover, it turns out that many

practical logic functions have ROBDD representations that are polynomial (or even linear)

in the number of input variables [17]. In addition, the reduction rules make ROBDDs

canonical, which means that no two ROBDDs represent equivalent Boolean functions.

Thus, equivalence of ROBDDs can be checked in O(1) time by simply comparing the

root nodes [17]. Consequently, ROBDDs have become indispensable tools in the design,

simulation, and synthesis of classical logic circuits.

25

1.2.4 BDD Operations

Even though the ROBDD is often quite compact, efficient algorithms are necessary to

make it practical for circuit simulation. Thus, in addition to the foregoing reduction rules,

Bryant introduced a variety of ROBDD operations whose complexities are bounded by the

size of the ROBDDs being manipulated [17]. Of central importance is the Apply oper-

ation, which performs a binary operation with two ROBDDs, producing a third ROBDD

as the result. It can be used, for example, to compute the logical AND of two functions.

Apply is implemented by a recursive traversal of the two ROBDD operands. For each pair

of nodes visited during the traversal, an internal node is added to the resultant ROBDD

using the three rules depicted in Figure 1.4. To understand the rules, some notation must

be introduced. Let v f denote an arbitrary node in an ROBDD f . If v f is an internal node,

Var(v f) is the Boolean variable represented by v f , T (v f) is the node reached when travers-

ing the then edge of v f , and E(v f) is the node reached when traversing the else edge of

v f .

x i

Rule 1

Apply(T(v),v ,op)f g

Apply(E(v),v ,op)f g

x i

Rule 2

Apply(v ,T(v),op)f

Apply(v ,E(v),op)

g

gf

x i

Rule 3

Apply(T(v),T(v),op)gf

Apply(E(v),E(v),op)f g

xi ≺ x j xi � x j xi = x j

Figure 1.4: The three recursive rules used by the Apply operation which determine how a
new node should be added to a resultant ROBDD. In the figure, xi = Var(v f)
and x j = Var(vg). The notation xi ≺ x j is defined to mean that xi precedes x j

in the variable ordering.

Clearly the rules depend on the variable ordering. To illustrate, consider performing

26

Apply using a binary operation op and two ROBDDs f and g. Apply takes as argu-

ments two nodes, one from f and one from g, and the operation op. This is denoted as

Apply(v f ,vg,op). Apply compares Var(v f) and Var(vg) and adds a new internal node

to the ROBDD result using the three rules. The rules also guide Apply’s traversal of the

then and else edges (this is the recursive step). For example, suppose Apply(v f ,vg,op)

is called and Var(v f) ≺ Var(vg). Rule 1 is invoked, causing an internal node containing

Var(v f) to be added to the resulting ROBDD. Rule 1 then directs the Apply operation to

call itself recursively with Apply(T (v f),vg,op) and Apply(E(v f),vg,op). Rules 2 and

3 dictate similar actions but handle the cases when Var(v f) � Var(vg) and Var(v f) =

Var(vg). To recurse over both ROBDD operands correctly, the initial call to Apply must

be Apply(Root(f),Root(g),op) where Root(f) and Root(g) are the root nodes for the

ROBDDs f and g.

The recursion stops when both v f and vg are terminal nodes. When this occurs, op is

performed with the values of the terminals as operands, and the resulting value is added

to the ROBDD result as a terminal node. For example, if v f contains the value logical

1, vg contains the value logical 0, and op is defined to be ⊕ (XOR), then a new terminal

with value 1⊕ 0 = 1 is added to the ROBDD result. Terminal nodes are considered after

all variables are considered. Thus, when a terminal node is compared to an internal node,

either Rule 1 or Rule 2 will be invoked depending on which ROBDD the internal node

is from. The pseudo-code for Apply is provided in Figure 1.5 (the unary version is very

similar).

The success of ROBDDs in making a seemingly difficult computational problem tractable

27

Apply(A,B,b op) {
if (Is Constant(A) and Is Constant(B)) {

return New Terminal(b op(Value(A),
Value(B)));

}
if (Table Lookup(R,b op,A,B)) return R;
v = Top Var(A,B);
T = Apply(Av,Bv,b op);
E = Apply(Av′,Bv′,b op);
R = IT E(v,T,E);
Table Insert(R,b op,A,B);
return R;

}

Figure 1.5: Pseudo-code for the Apply algorithm. Top Var returns the variable index from
either A or B that appears earlier in the ordering, while IT E creates a new
internal node with children T and E.

in practice led to the development of ROBDD variants outside the domain of logic de-

sign. Of particular relevance to this work are multi-terminal binary decision diagrams

(MTBDDs) [22] and algebraic decision diagrams (ADDs) [4]. These data structures are

compressed representations of matrices and vectors rather than logic functions, and the

amount of compression achieved is proportional to the frequency of repeated values in a

given matrix or vector. Additionally, some standard linear-algebraic operations, such as

matrix multiplication, are defined for MTBDDs and ADDs. Since they are based on the

Apply operation, the efficiency of these operations is proportional to the size in nodes

of the MTBDDs or ADDs being manipulated. Further discussion of the MTBDD and

ADD representations is deferred to Chapter III where the general structure of the QuIDD

is described.

28

1.3 Motivation for Simulation

Building on the background information about quantum mechanics, the quantum cir-

cuit model, and decision diagrams, we now turn to the need for quantum circuit simulation

techniques. Interest has recently grown in efficient, classical simulation of quantum cir-

cuits for a variety of reasons. As noted earlier, quantum circuit simulation provides an

experimental testbed for the development of quantum error correction [87, 46], enables

synthesis and verification of new quantum circuits [56, 61], and probes the boundaries

between quantum and classical computation [84, 37, 80, 76, 1, 72, 48].

Each of these applications has different requirements. To simulate errors, it is impor-

tant that the simulation technique is not limited to subsets of states and operators. As will

be discussed in Chapter VI, continuous error effects originating from gate imprecision and

decoherence cause each matrix element of the states and operators to be different in gen-

eral. Some simulation techniques overcome this issue by keeping states separated as long

as there is little or no entanglement [37, 84].

Synthesis and verification require representations of states and operators that efficiently

expose certain equivalence properties. As noted in the last section, ROBDDs are canoni-

cal, which allows exact equivalence of classical bit states to be checked in O(1) time by

comparing head nodes only. In Chapter V, we show how this property and others are

exploited by QuIDDs to improve equivalence checking in the quantum domain.

Probing the boundaries between quantum and classical computation can be approached

in many ways. Although entanglement has been shown to be a necessary condition for

quantum computation to achieve asymptotic improvements over classical computation

29

[37, 84], it is not a sufficient condition since certain quantum operators exist which gener-

ate large amounts of entanglement but exist in finite groups whose size does not increase

with the number of qubits [31, 1]. Other interesting linear-algebraic properties such as the

matrix Pfaffian have also been exploited to prove insufficiency for other sets of quantum

operators [72]. Whether or not such techniques are practical for error simulation or synthe-

sis, the only requirement for probing the quantum and classical computational boundaries

is to prove that sub-exponential time and memory complexities exist for classical simula-

tion of some class of quantum states and/or operators.

In the next chapter, we delve into the details of many of these quantum circuit simu-

lation techniques as well as a few others not listed here. Each technique exploits one or

more peculiar properties of classical representations of quantum states and operators. The

chapters that follow this survey discuss in detail the QuIDD-based technique that we have

developed and explain how QuIDDs fit in with all of the major simulation applications just

discussed.

1.4 Thesis Outline

QuIDDs are discussed in detail in Chapter III, including a formal description of a

practical class of quantum states and operators which can be simulated efficiently using

QuIDDs. Quantum search is used as a benchmark in Chapter III to evaluate the effec-

tiveness of QuIDDs. The results indicate that QuIDDs enable efficient simulation of two

common instances of quantum search as well as a useful class of quantum states and op-

erators. Further details on this class are provided in Appendix A.

We have also developed significant extensions to the QuIDD data structure which en-

30

able efficient simulation with density matrices, which is a very useful simulation model

for incorporating error effects [76]. These extensions are described in Chapter IV. Also,

density matrix-based simulation with QuIDDs is compared to NIST’s QCSim simulator

on a number of quantum circuit benchmarks including error correction, reversible logic,

quantum communication, and quantum search. Our experimental data demonstrates that

QuIDDs significantly outperform QCSim on all benchmarks.

Chapter V addresses the the goal of verifying synthesized quantum circuits by simu-

lating such circuits and checking for equivalence among the resultant states and operators.

Although checking exact equality for both states and operators is a very efficient operation

with QuIDDs, quantum information introduces other notions of equivalence due to global

and relative phases. Various linear-algebraic and QuIDD properties may be exploited to

check various conditions for such equivalences. A number of QuIDD algorithms imple-

menting these checks is described and analyzed in Chapter V. Results for a number of

benchmarks show that the QuIDD algorithms enable fast equivalence checking in practi-

cal cases.

Throughout the work, various attributes of the QuIDDPro simulator are discussed.

This software tool implements the QuIDD data structure and all related algorithms with a

robust, expressive front-end language. Far from being a set of implementation details, we

show in Chapter VI that the front-end language enables some automatic speed-up tech-

niques for QuIDD-based simulation. In addition to making QuIDDs competitive with

techniques like the stabilizer formalism (see Section 2.5), we leverage these speed-ups to

accurately characterize the effects of gate, systematic, and decoherence error in a quantum

31

circuit that generates remotely entangled EPR pairs. “Bang-bang” error correction is also

simulated in this circuit, confirming its effectiveness in combating decoherence error.

Appendix B provides a brief overview of the QuIDDPro simulator and the complete

QuIDDPro language reference. Appendix C offers several QuIDDPro scripts which simu-

late some of the quantum circuits discussed in this dissertation as well as a few well-known

quantum states. These scripts illustrate how the QuIDDPro language is both compact and

expressive. Chapter VII summarizes the contributions of this dissertation and discusses a

few perspectives on future applications to related problems.

CHAPTER II

Survey of Simulation Techniques

In this chapter we survey the major methods proposed for quantum circuit simulation

methods. In particular, we discuss qubit-wise multiplication, p-blocked simulation, tensor

networks, Vidal’s slightly entangled technique, the stabilizer formalism, and a few other

techniques. Most of these methods simulate specific classes of quantum circuits efficiently

without approximation.

In addition to these simulation methods, a number of “programming environments”

for quantum computing were proposed recently [53, 54, 18] that are mostly front-ends

to quantum circuit simulation techniques. This distinction between front-end (language

and development environment) and back-end (key algorithms and simulation engine) is

similar to what is commonly found in classical circuit simulation. Many of these pro-

gramming environments use naive quantum circuit simulation back-ends which explicitly

multiply matrices and require super-polynomial computational resources in the number of

qubits. Although choosing to interface to such a back-end may ease the job of the front-

end developer, the potential benefits of efficient linear-algebraic operations on compressed

arguments are immense. To illustrate the benefits a more efficient technique would offer,

32

33

consider a 20-qubit system. Such a system entails a 220 × 220 complex-valued matrix,

whose storage is well beyond the memory available in modern computers.

Traditional array-based representations are often insensitive to the actual values stored,

and even sparse matrix storage offers little improvement for quantum operators with no

zero matrix elements (e.g. Hadamard operators). However, the techniques described here

are more sophisticated, and in this chapter we examine their advantages and disadvantages.

2.1 Qubit-wise Multiplication

One popular array-based simulation technique is to simulate k-input quantum gates on

an n-qubit state-vector (k ≤ n) without explicitly storing a 2n × 2n-matrix representation

[12, 52]. The basic idea is to simulate the full-fledged matrix-vector multiplication by a

series of simpler operations. To illustrate, consider simulating a quantum circuit in which

a 1-qubit Hadamard operator is applied to the third qubit of the state-space |00100〉. The

state-vector representing this state-space has 25 elements. A naive way to apply the 1-qubit

Hadamard to |00100〉 is to construct a 25×25 matrix of the form I⊗ I⊗H ⊗ I⊗ I and then

multiply this matrix by the state vector. However, rather than compute (I ⊗ I ⊗H ⊗ I ⊗

I)|00100〉, one can simply compute |00〉⊗H|1〉⊗ |00〉, which produces the same result

using a 2× 2 matrix H. The same technique can be applied when the state-space is in a

superposition, such as α|00100〉+β|00000〉. In this case, to simulate the application of a 1-

qubit Hadamard operator to the third qubit, one can compute |00〉⊗H(α|1〉+β|0〉)⊗|00〉.

As in the previous case, a 2×2 matrix is sufficient.

While the above method allows one to compute a state space symbolically, in a re-

alistic simulation environment state vectors may be much more complicated. Shortcuts

34

that take advantage of the linearity of matrix-vector multiplication are desirable. For ex-

ample, a single qubit can be manipulated in a state vector by extracting a certain set of

two-dimensional vectors. Each vector in such a set is composed of two probability ampli-

tudes. The corresponding qubit states for these amplitudes differ in value at the position of

the qubit being operated on, but agree in every other qubit position. The two-dimensional

vectors are then multiplied by matrices representing single qubit gates in the circuit being

simulated. We refer to this technique as qubit-wise multiplication because the state-space

is manipulated one qubit at a time. Obenland implemented a technique of this kind as part

of a simulator for quantum circuits [52]. His method applies one- and two-qubit opera-

tor matrices to state vectors of size 2n. Unfortunately, in the best case where k = 1, this

only reduces the runtime and memory complexity from O(22n) to O(2n), which is still

exponential in the number of qubits.

Another implicit limitation of Obenland’s implementation is that it simulates with the

state-vector representation only. The qubit-wise technique has been extended, however, to

enable density matrix simulation by Black et al. and is implemented in NIST’s QCSim

simulator [12]. As in its predecessor simulators, the arrays representing density matri-

ces in QCSim tend to grow exponentially. This asymptotic bottleneck is demonstrated

experimentally in Sections 3.3 and 4.4.

2.2 P-blocked Simulation

Avoiding the exponential complexity of the state vector or density matrix can be achieved

by keeping the state separated, if possible, in pieces that do not grow exponentially in size.

To track separable states, it is more typical to use metrics of entanglement and develop

35

state representations whose size is sensitive to such metrics. To this end, Jozsa and Linden

offer a p-blocked state representation, which can be used to simulate any quantum circuit

with low p [37]. This algorithm decomposes the state into blocks of entangled qubits up to

size p, where no p+1 qubits are entangled, ρ = ρ1⊗ρ2⊗·· ·⊗ρk, where ρi is the density

matrix for qubit i. Since each block requires at least 2p coefficients, the space complexity

grows with the number of entangled qubits.

Unfortunately, applying 2-qubit operators that straddle different blocks requires com-

bining both blocks via the tensor product. Once the operator is applied, all possible partial

traces which break up the combined block into two smaller blocks (combinatorially many

in general) are taken. If the tensor product of any two smaller blocks equals the combined

block, then the smaller blocks become the updated blocks representing that portion of the

state. If all possible partial traces fail to produce such blocks, then the combined block

becomes part of the updated representation, increasing p for the system.

Although it may be possible to perform fewer partial traces with proper analysis of

a given circuit, a more significant drawback is that for commonly used states such as

|ψcat〉 = (|00 . . .0〉+ |11 . . .1〉)/
√

2 (the “cat” or GHZ state), this representation requires

exponential space in n when p � log(n). For example, consider the 2-qubit cat state,

which is an EPR pair created by the circuit described in Equation 1.17. Computing the

partial trace over both qubits produces two density matrices whose tensor product is not

equal to the density matrix of the original state as shown below.

36

tr|ψA〉〈ψA|(|ψEPR〉〈ψEPR|) = tr









































1/2 0 0 1/2

0 0 0 0

0 0 0 0

1/2 0 0 1/2









































=







1/2 0

0 1/2






(2.1)







1/2 0

0 1/2






⊗







1/2 0

0 1/2






=





















1/4 0 0 0

0 1/4 0 0

0 0 1/4 0

0 0 0 1/4





















6= |ψEPR〉〈ψEPR|(2.2)

As a result, p must be increased upon creation of the EPR pair, and p increases expo-

nentially with the number of qubits entangled in this fashion when creating an n-qubit cat

state. In contrast, QuIDDs can represent |ψcat〉 using O(n) space by exploiting the massive

redundancy in the amplitudes of this state, as will be demonstrated in Chapters III and IV.

2.3 Tensor Networks

While qubit-wise multiplication targets operators only and p-blocked simulation tar-

gets separable states, tensor networks capture structure in quantum circuits that allow ef-

ficient simulation. Markov and Shi develop this approach by making use of graphs of

tensors, which are a multi-dimensional generalization of matrices [48]. In this method,

tensors represent density matrix states and operators. For example, the operator U acting

on a input qubits and b output qubits is denoted as follows [48],

(2.3) [Uσ1,σ2,...,σa,τ1,τ2,...,τb]σ1,σ2,...,σa,τ1,τ2,...,τb,

where each σi,τ j ∈ |b1〉〈b2| : b1,b2 ∈ {0,1}. Here each index can take on one of the four

37

possible index values of a 1-qubit density matrix.

A separate tensor is created for each gate in a circuit. Treated like a node in a graph,

each tensor is connected to other tensors via shared qubit indices (input/output connec-

tions). These graphs or tensor networks make use of an operation called tensor contraction

which merges connected nodes containing tensors into a single tensor. Tensor contraction

is simply the multi-dimensional generalization of the dot product. To illustrate, consider

the tensor contraction of tensor g and h over a shared output/input connection [48]:

(2.4) fi1,...,im, j′1,..., j′
n′

= ∑
j1,..., jn

gi1,...,im, j1,..., jn ·h j1,..., jn, j′1,..., j′
n′
.

The goal of this method is to contract all tensors into a single tensor describing the action of

the circuit on qubits of interest. Depending on how the tensors are connected, contractions

may either decrease, increase, or leave unaffected the dimensions of the resultant tensor

as compared to the dimensions of the separate tensors. To illustrate, consider the tensor

contraction of F and G over the shared index o as shown in Figure 2.1. F and G are tensor

representations of two 2-qubit quantum gates where an output wire (output tensor index) o

of F is an input wire (input tensor index) to G. Notice that in this case, tensor contraction

produces a new tensor H with larger dimensions than F and G.

Simulation with this method is exponential in d, the maximum dimension of any ten-

sor created by contractions. The tensor-network approach is also applicable to instances

of one-way quantum computation [16]. However, tensor networks can be insensitive to

separable states, and therefore in practice are combined with other simulation techniques

[64]. Aharonov et al. extend tensor networks to demonstrate that the quantum Fourier

transform (QFT), a key operation in Shor’s integer factoring algorithm [65], can be simu-

38

l

F

n l

H

n

m o

G

q
→ m q

p r p r

Figure 2.1: Tensor contraction of shared wire (index) o for tensors F and G, each of which
represents a 2-qubit gate.

lated efficiently on a classical computer [2]. The result does not enable efficient number

factoring on a classical computer, however, since a different operation called modular ex-

ponentiation remains a bottleneck.

2.4 Slightly Entangled Simulation

While p-blocked simulation separates states via tensor products only, more sophisti-

cated techniques may be used to exploit state separability even further. Vidal offers one

such technique which utilizes the Schmidt decomposition (SD) of the quantum state [84].

Cat states and separable states are represented with only quadratic overhead by Vidal’s

technique [84]. Consider n qubits ordered from 0 to n− 1. A bipartite splitting A : B

of the qubits is given by any integer k from 1..n− 2 in the sense that qubits i ≤ k and

j > k form two complementary partitions A and B, respectively. Then the state |ψ〉 can be

decomposed as follows [23],

(2.5) |ψ〉 =
χA−1

∑
α=0

λα

∣

∣

∣
Φ[A]

α

〉

⊗
∣

∣

∣
Φ[B]

α

〉

.

Here,
∣

∣

∣
Φ[A]

α

〉

and
∣

∣

∣
Φ[B]

α

〉

are two orthonormal bases, and ∑α |λα|2 = 1. It is common

to take
∣

∣

∣
Φ[A]

α

〉

and
∣

∣

∣
Φ[B]

α

〉

as eigenvectors of the reduced density matrices ρ[A] and ρ[B],

respectively, which both have the same eigenvalue |λα|2 > 0. The Schmidt rank χA is a

39

measure of entanglement between partitions A and B, and each of χA addends consists of

two vector terms. The entanglement of state |ψ〉 can be quantified by the maximum χA

over all possible bipartite splittings A : B, χ ≡ maxA χA [84, Equation 2]. Depending on

the amount of entanglement, χ can range from 1 for fully separable states, to 2n for fully

entangled states.

The space complexity of Vidal’s representation and the time complexities of related

algorithms are functions of χ. In particular, Vidal decomposes an n-qubit state into sums

of tensor products [84, Equation 15] that we refer to as a dense tensor decomposition

(DTED),

(2.6) |ψ〉 =
(χ0−1),··· ,(χn−2−1)

∑
α0=0,··· ,αn−2=0

∣

∣

∣
ϕ[0]

α0

〉

λ[0]
α0

∣

∣

∣
ϕ[1]

α0α1

〉

. . .λ[n−2]
αn−2

∣

∣

∣
ϕ[n−1]

αn−2

〉

,

In this equation, vectors
∣

∣

∣
ϕ[l]

αl−1αl

〉

are unnormalized 1-qubit states, and the Schmidt coef-

ficients λ[l]
αl

express the correlation information between qubits 0..l and qubits (l +1)..(n−

1) (the tensor product symbols are omitted for simplicity). Each αl index may range from

0 to χl − 1. The DTED of a pure n-qubit state |ψ〉 is derived by applying the SD n− 1

times to the bipartite splittings 0 : n− 1,1 : n− 1, . . . ,n− 2 : n− 1, in such a way that the

maximal possible rank is χ. Each time, this process generates χl coefficients λ[l]
αl

and χ2
l

2-element vectors
∣

∣

∣
ϕ[l]

αl−1αl

〉

. Therefore, the DTED decomposes |ψ〉 into a sum of up to χn

separable states and requires n(2χ2 +χ) complex-valued coefficients [84].

To simulate 1-qubit gates and 2-qubit gates, one uses algorithms that update the DTED

state representation. Vidal offers algorithms that take O(χ2) time for 1-qubit gates and

O(χ3 + nχ2) time1 for nearest-neighbor 2-qubit gates [84]. For a generic circuit with

1When a 2-qubit operator is applied to qubits l and l + 1, partial traces over all other qubits must be

40

g gates, Vidal’s protocol runs in O(ngχ3 + n2gχ2) time. In particular, applying 2-qubit

operators to qubits l and l + 1 requires solving a potentially large eigenvalue problem to

update λ[l]
αl

[84]. While the precise complexity of measurement is not given in [84], we

believe that it requires O(nχ2) time in the DTED formalism.2

To see how these complexity results are derived, consider the algorithms for 1- and

2-qubit operator updates in Vidal’s DTED representation. A 1-qubit unitary operator U is

applied to qubit l as follows [84, Equation 16],

(2.7)
∣

∣

∣
ϕ′[l]

αl−1αl

〉

= U
∣

∣

∣
ϕ[l]

αl−1αl

〉

∀αl,αl+1 = 0, · · · ,(χ−1).

This operation takes O(χ2) time since αl−1,αl ≤ χ. DTED updates for 2-qubit operators

applied to qubits l and l + 1 are much more involved. Vidal explicitly solves for the

eigenvalues and eigenvectors of ρ[(l+1)..(n−1)] (see Equation 2.5), which requires several

major steps. The first step is to apply the 2-qubit unitary operator V to the substates

corresponding to qubits l and l +1 in the following way [84, Equation 22],

(2.8) Θ[l,(l+1)]
αl−1αl+1 = ∑

αl

V
∣

∣

∣
ϕ[l]

αl−1αl

〉

λ[l]
αl

∣

∣

∣
ϕ[l+1]

αlαl+1

〉

.

The resultant density matrix of the second partition becomes [84, Equation 23],

(2.9)

ρ′[(l+1)··(n−1)]
= ∑

j, j′,αl+1,α′
l+1

(∑
αl−1

〈αl−1|αl−1〉Θ[l,(l+1)]
αl−1αl+1(Θ

[l,(l+1)]
αl−1α′

l+1
)∗) | jαl+1〉

〈

j′α′
l+1

∣

∣ ,

where j = 0,1, and [84, Equations 18 and 19],

computed, requiring O(nχ2) time for this step [84, Equations 13, 14, 18, 19, 23, and 26]. This term is not
included in [84, Lemma 2] because it is dominated by χ3 when χ � n. However, it can be significant for
slightly entangled states which are the focus of [84].

2Vidal notes that measurement can be accomplished in time polynomial in χ but apparently assumes in
the analysis that χ = Ω(n).

41

(2.10) |αl−1〉 ≡ λ[l−1]
αl−1

∣

∣

∣
Φ[0··(l−1)]

αl−1

〉

,

(2.11) |αl+1〉 ≡ λ[l+1]
αl+1

∣

∣

∣
Φ[(l+2)··(n−1)]

αl+1

〉

.

Computing 〈αl−1|αl−1〉 using Equation 2.10 requires O(nχ2) time [84, Equation 13].

Equation 2.8 is computed using O(χ3) time since there are three consecutive α indices,

each of which is bounded by χ. With 〈αl−1|αl−1〉 and Equation 2.8 computed, Equation

2.9 is computed using O(χ3) time since it involves summing over all combinations of αl+1,

α′
l+1, and αl−1. The new Schmidt coefficients λ′[l]

αl
are generated by solving for the eigen-

values of ρ′[(l+1)··(n−1)], which can be done using O(χ3) time. The new states
∣

∣

∣
ϕ[l+1]

αlαl+1

〉

are computed by decomposing the eigenvalues and eigenvectors in terms of | jαl+1〉 using

O(χ) time [84, Equation 24]. Lastly, the new states
∣

∣

∣
ϕ[l]

αl−1αl

〉

are computed by decompos-

ing the eigenvalues, eigenvectors, and 〈αl+1|αl+1〉 terms with respect to |αl−1i〉, where

i = 0,1, requiring O(χ) time [84, Equations 26 and 27]. The overall time complexity of

the 2-qubit operator update is therefore O(χ3) while increasing αl by up to 2χ.

To illustrate how Vidal’s protocol works, consider again the creation of an EPR pair. A

simplified version of the notation is used below to track Vidal’s algorithms after application

of the Hadamard and CNOT gates. Initially, the states are unentangled since both qubits

have the value |0〉. This means that χ = 1,
∣

∣

∣
Φ[0]

0

〉

=
∣

∣

∣
Φ[1]

0

〉

= |0〉, and λ0 = 1.

H |0〉⊗ |0〉 = |+〉⊗ |0〉(2.12)

CNOT (|+〉⊗ |0〉) =
1√
2
(|0〉⊗ |0〉) +

1√
2
(|1〉+ |1〉)(2.13)

42

The Hadamard gate does not increase χ since it is applied only to the first qubit. The

CNOT gate, however, increases χ by one as indicated by the presence of a second tensor

product term in the summation. The CNOT gate is applied by computing the tensor prod-

uct |+〉⊗|0〉, multiplying the resulting 4-element vector by the matrix representing CNOT,

computing the density matrix of the resulting vector via the outer product, and solving for

both the eigenvalues and eigenvectors of this density matrix. λ contains the square roots

of the two eigenvalues shared by the reduced density matrices of each qubit (reduced via

the partial trace), and the new state vectors are the eigenvectors of the reduced density

matrices.

An important drawback of DTED and Vidal’s simulation protocol is the redundancy in

state encoding. For a generic state with maximum entanglement (χ = 2n), DTED requires

Ω(n22n) coefficients, whereas 2n amplitudes suffice to characterize the state. Interestingly,

p-blocked simulation and QuIDDs represent generic, maximally entangled states using

only O(2n) space [37, 80]. A key open question is whether the extra coefficients are nec-

essary to ensure that space and time complexity of quantum simulation remain polynomial

in χ.

2.5 Stabilizer Circuit Formalism

The techniques described so far offer general-purpose quantum circuit simulation.

However, sacrificing generality by focusing on particular subsets of quantum operators

can lead to further improvements in simulation. Gottesman describes a simulation method

involving the Heisenberg representation of quantum computation which tracks the com-

mutators of a particular group of operators applied in a quantum circuit [31]. With this

43

model, the state need not be represented explicitly by a state-vector or a density matrix be-

cause the operators describe how an arbitrary state-vector would be altered by the circuit.

Gottesman shows that simulation based on this model requires only polynomial mem-

ory and runtime on a classical computer in certain cases. However, efficient simulation

with this method is limited to quantum circuits containing operators in the Clifford group.

These operators do not form a universal gate set. A recent extension to this technique

enables simulation with any quantum operators, but the complexity grows exponentially

with every operator introduced that is not a generator of the Clifford group [1].

To illustrate how this technique works, we revisit the quantum circuit described in

Section 1.2.1, which generates an EPR pair (Equation 1.17). Initially, the two qubits are

in the ground state |00〉. In general, n stabilizers are needed to represent an n-qubit state

[1]. A stabilizer3 is an n-qubit operator composed of the tensor product of Pauli matrices,

which are members of the Clifford group. The Pauli matrices perform rotations of qubit

state vectors on the X , Y , and Z axes and can be described as

I =







1 0

0 1






X =







0 1

1 0







Y =







0 −i

i 0






Z =







1 0

0 −1






.(2.14)

Representing the initial state |00〉 requires two stabilizers, namely Z ⊗ I and I ⊗ Z. The

choice of these particular stabilizers is not arbitrary and is derived from the following

equation which converts stabilizers to the density matrix of an arbitrary n-qubit quantum

state |Ψ〉 [1],

3The term stabilizer is generally given to any operator with respect to any state vector that is not altered
by application of the operator to all qubits in the state.

44

(2.15) |Ψ〉〈Ψ| = 1
2n Πn

i=1(I +Mi),

where the Mi are the stabilizers. Setting M1 = Z ⊗ I and M2 = I ⊗ Z verifies that this

choice of stabilizers generates the desired initial state. Applying a gate U to the state is

defined by applying U to each stabilizer Mi via the matrix multiplication UMiU†. For the

stabilizer formalism to be efficient, the stabilizers and operations on them cannot be repre-

sented with explicit matrices and matrix operations. Such efficiency can be accomplished

by representing the stabilizers with Pauli symbols (e.g. “ZI” and “IZ”) and by applying

transformations through a set of rules which map Pauli symbols to other Pauli symbols.

This is possible due to a basic result in group theory. Specifically, when a member of a

group is applied to another member of a group, the result is just another member of the

group, possibly multiplied by factors of −1 and i. By restricting the gates of a quantum

circuit to members of the Clifford group, it is guaranteed that the stabilizers representing

the quantum state will always be members of the Clifford group. In fact, it is equivalent

to restrict the allowable gates to the generators of the Clifford group since any member of

a group can be reconstructed using the group’s generators. The generators of the Clifford

group are the CNOT gate, the Hadamard gate, and the phase gate [31]. The phase gate S

is represented by the following matrix,

(2.16) S =







1 0

0 i






.

Multiplication of explicit matrices is not required to update the state after applying a gate

that is a Clifford generator. Instead, a simple look-up table can be employed which con-

45

tains the transformation rules for applying Clifford group generators to Pauli matrices

[31, 1, 51]. These rules are given in Table 2.1.

Gate Input Output
H X Z

Z X
S X Y

Z Z
CNOT X ⊗ I X ⊗X

I⊗ I ⊗X
Z ⊗ I Z ⊗ I
I ⊗Z Z ⊗Z

Table 2.1: Transformation rules for applying Clifford group generators to Pauli operators
[31, 51]. Each transformation rule is equivalent to the expression Out put =
Gate∗ Input ∗Gate†. Some transformations are not shown explicitly since they
can be generated by combinations of the transformations listed. For instance, Y
is equivalent to SXS†.

Returning to the EPR pair example, the initial state is represented by the symbols “ZI”

and “IZ.” Using the transformation rules shown in Table 2.1 and the rule that applying

any gate to the identity operator returns the identity operator, the Hadamard and CNOT

transformations are given as follows.

ZI, IZ →H XI, IZ(2.17)

XI, IZ →CNOT XX ,ZZ(2.18)

Plugging the final stabilizers “XX” and “ZZ” into Equation 2.15 confirms that they do

indeed represent the correct final state 1√
2
(|00〉+ |11〉 .

Interestingly, the states produced by the stabilizer formalism represent a limited set of

probabilistic outcomes for the qubits. In particular, the probability of obtaining a |0〉 or |1〉

upon measurement of any qubit in such a state is always either 0, 1 or 1/2 [1]. Determining

46

the measurement probability for any qubit along with the transformation on the stabilizers

induced by the measurement outcome can be easily accomplished using rules similar to

those shown in Table 2.1 [1].

As noted earlier, the stabilizer formalism can be extended to incorporate gates outside

of the Clifford group. It is easily shown, for example, that any 1-qubit operator can be

decomposed into a sum of Pauli operators as follows,

(2.19) U = Σ jc jPj,

where c j is a complex-valued coefficient and Pj is a Pauli matrix. As a result, the simple

transformation rules can be applied to the stabilizer symbols as before, with the only differ-

ence being that each stabilizer may potentially become a sum of different Pauli operators.

For example, consider the “pi/8” gate whose matrix T is

(2.20) T =







1 0

0 1+i√
2






= αZ +βI,

where α = 0.1464−0.3568i and β = 1−α. Suppose T is applied to a single qubit whose

stabilizer is “X.” By applying the stabilizer transformation rules and rearranging terms,

T XT † produces (X +Y)/
√

2. The new state can be represented with two stabilizer sym-

bols “X” and “Y”, and one or two coefficients. In the worst-case, each application of

a non-Clifford group operator doubles the number of stabilizer symbols and coefficients

that must be maintained per stabilizer, leading to asymptotically exponential runtime and

memory usage.

Aside from this potential blow-up, the formalism still provides a convenient represen-

tation for many quantum circuits since each stabilizer symbol in a sum can be updated with

47

the same rules. The only change is that when performing measurement, each set of stabi-

lizer symbols in a sum contributes a probability of measurement of 0, 1 or 1/2 multiplied

by the appropriate coefficient |c j|2.

A simple and efficient implementation of the stabilizer formalism involves updating a

table of bits [51, 1]. Since there are four Pauli matrices, two bits are required per Pauli

operator symbol in a stabilizer. Formally, two binary variables, xi j and zi j are assigned

to each Pauli operator in a stabilizer. By convention, xi j = 1 indicates the presence of an

X , whereas zi j = 1 indicates the presence of a Z. A value of 1 for both bits indicates the

presence of a Y , whereas a value of 0 for both bits indicates the presence of an I [51]. For

an n-qubit circuit, the table of bits is represented as,

(2.21)















x11 . . . x1n z11 . . . z1n

...
. . .

...
...

. . .
...

xn1 . . . xnn zn1 . . . znn















.

Each row represents one stabilizer, so the dimensions of the table are n× 2n. In the EPR

example considered above, the initial ground state is represented by the stabilizers “ZI”

and “IZ” which in tabular form is

(2.22)







0 0 1 0

0 0 0 1






.

According to Table 2.1, applying a Hadamard gate to the first qubit transforms a “Z” to an

“X.” In the table, this is easily accomplished by simply swapping the bits x11 and z11. In

general, applying a Hadamard gate to qubit j is accomplished by swapping the bits xi j and

zi j for all i. All other transformations are accomplished by similar bit manipulations. As a

result, any gate that is a Clifford group generator can be applied with runtime complexity

48

O(n). Using a modest number of extra bits, determining the measurement outcome and

modifying the stabilizers based on that outcome can be accomplished with runtime com-

plexity O(n3) [1]. Thus, simulation of quantum circuits containing gates that are Clifford

group generators requires O(n3) runtime and memory resources. For each gate applied

that is outside the Clifford group, the bit table is copied and assigned a coefficient as de-

scribed earlier. Each table is then modified separately using the same bit manipulation

rules. In the worst case, an exponential number of tables will need to be created.

Anders and Briegel recently proposed a modified stabilizer simulation technique which

uses graphs instead of bit tables [3]. While the size complexity of the bit table is O(n2), the

size complexity of the graph representation is O(nlog(n)). This more compact represen-

tation also reduces the time complexity of applying gates and performing measurements.

2.6 Other Simulation Techniques

This section briefly mentions a few other techniques which so far have found less prac-

tical applicability in the field, but nevertheless involve other interesting properties. Valiant

provides a technique which can efficiently simulate yet another class of quantum circuits

whose properties are based on efficiently computing the Pfaffian of relevant matrices [72],

where the Pfaffian is a mathematical construct resembling the determinant of a matrix.

However, computing the Pfaffian will not be efficient in general for arbitrary gates.

Other advanced simulation techniques including MATLAB’s “packed” representation,

apply data compression to matrices and vectors, but cannot perform matrix-vector mul-

tiplication without first decompressing the matrices and vectors. A notable exception is

Greve’s graph-based simulation of Shor’s algorithm which uses BDDs [32]. Probability

49

amplitudes of individual qubits are modeled by single decision nodes. Unfortunately, this

only captures superpositions where every participating qubit is rotated by ±45 degrees

from |0〉 toward |1〉.

2.7 Summary

This chapter described a number of sophisticated techniques for quantum circuit sim-

ulation. Each technique exploits a particular property of quantum states and/or operators.

Qubit-wise multiplication, for example, exponentially reduces the complexity of storing

operators but maintains the state vector or density matrix explicitly.

Both p-blocked simulation and Vidal’s technique exploit separable states, which are

states with small amounts of entanglement. In the p-blocked method, states are separated

into tensor products of density matrices with size O(22p). Gates which affect qubits in

separate partitions require combining the affected partitions via the tensor product before

the gate operation is applied. Since no heuristic is offered to compute the partial traces

of the resultant block, the worst-case is assumed which is combinatorial in the number of

qubits. More importantly, tensor products alone do not compress many forms of entangle-

ment, making p an overestimate of the level of entanglement in the system. Vidal improves

this measure by using the maximal Schmidt rank χ of the state. His method additionally

provides a systematic way to break up blocks of multiple qubits by solving eigenvalue

problems and expressing the state with sums of tensor products. An interesting open ques-

tion is whether or not time and memory complexities based on χ are less efficient in the

worst-case situation of maximal entanglement. Vidal’s method also requires O(n) swaps

in arbitrary quantum circuits since only nearest-neighbor qubits may be manipulated with

50

gates.

Tensor networks offer an alternative way of compressing quantum circuits by systemat-

ically contracting tensors representing neighboring gates. Quantum circuits whose tensor

network representation has low treewidth (a graph-based measure of the maximally-sized

tensor created by contractions) are simulated efficiently. In general, treewidth is not sen-

sitive to entanglement, but tensor networks are readily combined with techniques that are

sensitive. The stabilizer formalism exploits a finite group of operators to efficiently simu-

late a class of quantum circuits that contain only those operators. The stabilizer formalism

is extremely fast in practice for such circuits since simulation reduces to the manipulation

of bit tables via fixed transformation rules.

In the remaining chapters we discuss our QuIDD simulation technique. Theoretical as

well as practical properties of the QuIDD technique are analyzed for a number of quantum

circuit CAD applications.

CHAPTER III

State Vector Simulation with QuIDDs

This chapter is based on material appearing in [79, 80, 82, 83]. We have developed

practical algorithms for simulating quantum circuits on conventional computers using the

state vector representation. It is implemented using a data structure we have developed

called the QuIDD which uses decision diagram concepts that are well-known in the con-

text of simulating classical computer hardware [22, 4, 17]. This chapter demonstrates that

QuIDDs allow simulations of n-qubit systems to achieve run-time and memory complexi-

ties that range from O(1) to O(2n), and the worst case is not typical. In the important case

of Grover’s quantum search algorithm [33], we show that a QuIDD-based simulator out-

performs other known simulation techniques in terms of asymptotic runtime and memory

usage.

3.1 QuIDD Theory

The QuIDD was born out of the observation that vectors and matrices which arise

in quantum computing contain entries and sub-matrices which occur repeatedly. Complex

operators obtained from the tensor product of simpler matrices continue to exhibit this type

of repeated sub-structure which certain BDD variants can capture. MTBDDs and ADDs,

51

52

introduced in Section 1.2.4, are particularly relevant to the task of simulating quantum

systems. The QuIDD can be viewed as an ADD or MTBDD with the following properties:

1. The values associated with terminal nodes are complex numbers.

2. Rather than contain the values explicitly, QuIDD terminal nodes contain integer

indices which map into a separate array of complex numbers. This allows the use

of a simpler integer function for Apply-based operations, along with existing ADD

and MTBDD libraries [66], greatly reducing implementation overhead.

3. The variable ordering of QuIDDs interleaves row and column variables, which fa-

vors compression of repeated sub-structure

4. Bahar et al. [4] note that ADDs can be padded with 0’s to represent arbitrarily sized

matrices. No such padding is necessary in the quantum domain where all vectors

and matrices have sizes that are a power of 2

We demonstrate using our QuIDD-based simulator QuIDDPro that these properties greatly

enhance the performance of quantum computational simulation.

3.1.1 Vectors and Matrices

Figure 3.1 shows the QuIDD structure for three 2-qubit states. We consider the indices

of the four vector elements to be binary numbers, and define their bits as decision variables

of QuIDDs. A similar definition is used for ADDs [4]. For example, traversing the then

edge (solid line) of node I0 in Figure 3.1c is equivalent to assigning the value 1 to the first

bit of the 2-bit vector index. Traversing the else edge (dotted line) of node I1 in the same

figure is equivalent to assigning the value 0 to the second bit of the index. These traversals

53

1I1I

0I 0I

1I 1I

0 1 2 3 0 10

1/2

0

00

01

11

10

00

01

10

11

00

01

10

11

1/2
1/2
1/2
1/2

0.26
0.44

−0.10
0.80

1/2
−1/2
−1/2

1/2

0

(b) (c)

2

(a)

Vector representation

QuIDD representation

0 1 3

1/20.260.44

1

−1/2−0.100.80

Figure 3.1: Sample QuIDDs for state vectors of (a) best, (b) worst and (c) mid-range size.

bring us to the terminal value − 1
2 , which is precisely the value at index 10 in the vector

representation.

QuIDD representations of matrices extend those of vectors by adding a second type of

variable node and enjoy the same reduction rules and compression benefits. Consider the

2-qubit Hadamard matrix annotated with binary row and column indices shown in Figure

3.2a. In this case there are two sets of indices: the first (vertical) set corresponds to the

rows, while the second (horizontal) set corresponds to the columns. We assign the variable

name Ri and Ci to the row and column index variables, respectively. This distinction

between the two sets of variables was originally noted in several works including that of

Bahar et al. [4]. Figure 3.2b shows the QuIDD form of this sample matrix where it is used

to modify the state vector |00〉 = (1,0,0,0) via matrix-vector multiplication, an operation

discussed in more detail in Subsection 3.1.4.

54

R0R1

00

01

10

11























1
2

1
2

1
2

1
2

1
2 −1

2
1
2 −1

2

1
2

1
2 −1

2 −1
2

1
2 −1

2 −1
2

1
2























00 01 10 11

C0C1

(a)

0R

1R1R

0C

1C

2

0C

1C

0 1

3

−1/2
20

1C

3

*

1/2
3

1
1

0

(b)

Figure 3.2: (a) 2-qubit Hadamard matrix, and (b) its QuIDD representation multiplied by
|00〉= (1,0,0,0). Note that the vector and matrix QuIDDs share the entries in
a terminal array that is global to the computation.

3.1.2 Variable Ordering

As explained in Subsection 1.2.3, variable ordering can drastically affect the level

of compression achieved in BDD-based structures such as QuIDDs. The CUDD pro-

gramming library [66], which is incorporated into QuIDDPro, offers sophisticated dy-

namic variable-reordering techniques that achieve performance improvements in various

BDD applications. However, dynamic variable reordering has significant time overhead,

whereas finding a good static ordering in advance may be preferable in some cases. Good

variable orderings are highly dependent upon the problem domain. In the case of quan-

tum computing, we notice that all matrices and vectors contain 2n elements where n is the

number of qubits represented. Additionally, the matrices are square and non-singular [51].

55

McGeer et al. demonstrated that ADDs representing certain rectangular matrices can

be operated on more efficiently if row and column variables are interleaved [24]. This

interleaving employs the following variable ordering: R0 ≺C0 ≺ R1 ≺C1 ≺ ...≺ Rn ≺Cn.

Intuitively, the interleaved ordering causes compression to favor regularity in particular

sub-structures of the matrices that are partitions broken up into equally sized quadrants or

blocks. We observe that such regularity is created by tensor products that allow multiple

quantum gates to operate in parallel and also to extend smaller quantum gates to operate

on larger numbers of qubits. The tensor product A⊗B multiplies each element of A by

the whole matrix B to create a larger matrix which has dimensions MA ·MB ×NA ·NB. By

definition, the tensor product propagates block patterns in its operands. To illustrate the

notion of sub-structure and how QuIDDs take advantage of it, consider the tensor product

of two one-qubit Hadamard operators,

(3.1)
[

(1/
√

2) (1/
√

2)

(1/
√

2) −1/
√

2

]

⊗
[

(1/
√

2) (1/
√

2)

(1/
√

2) −1/
√

2

]

=









(

1/2 1/2
1/2 −1/2

) (

1/2 1/2
1/2 −1/2

)

(

1/2 1/2
1/2 −1/2

)

−1/2 −1/2
−1/2 1/2









.

The above matrices have been separated into quadrants, each of which represents a block.

For the Hadamard matrices depicted, three of the four blocks are equal in both of the one-

qubit matrices and also in the larger two-qubit matrix (the equivalent blocks are surrounded

by parentheses). This repetition of equivalent blocks demonstrates that the tensor product

of two equal matrices propagates block patterns. In the above example, all blocks but the

lower-right block of an n-qubit Hadamard operator are equal. Furthermore, the structure

of the two-qubit matrix implies a recursive sub-structure, which can be seen by recursively

partitioning each of the quadrants in the two-qubit matrix,

56

(3.2)

[

(1/
√

2) (1/
√

2)

(1/
√

2) −1/
√

2

]

⊗
[

(1/
√

2) (1/
√

2)

(1/
√

2) −1/
√

2

]

=

















(

(1/2) (1/2)
(1/2) −1/2

) (

(1/2) (1/2)
(1/2) −1/2

)

(

(1/2) (1/2)
(1/2) −1/2

)

(−1/2) (−1/2)
(−1/2) 1/2

















.

The only difference between the values in the two-qubit matrix and the values in the one-

qubit matrices is a factor of 1/
√

2. Thus, we can recursively define the Hadamard operator

as follows,

(3.3) Hn−1 ⊗ Hn−1 =







C1Hn−1 C1Hn−1

C1Hn−1 C2Hn−1






.

where C1 = 1/
√

2 and C2 = −1/
√

2. Other operators constructed via the tensor product

can also be defined recursively in a similar fashion.

Since three of the four blocks in an n-qubit Hadamard operator are equal, significant

redundancy is exhibited. The interleaved variable ordering property allows a QuIDD to ex-

plicitly represent only two distinct blocks rather than four as shown in Figure 3.3. Sections

3.2 and 3.3 demonstrate that compression of equivalent blocks using QuIDDs offers major

performance improvements for many of the operators that are frequently used in quan-

tum computation. In the next subsection, we describe an algorithm which implements the

tensor product for QuIDDs and leads to the compression just described.

3.1.3 Tensor Product

With the concepts of structure and variable ordering in place, operations involving

QuIDDs can now be defined. Most operations defined for ADDs also work on QuIDDs

57

H
1

10

H
n

C H1
n−1

C H2
n−1

1/ 2−1/ 2

C

R0

0

(a) (b)

C

R0

0
0 1

Figure 3.3: (a) n-qubit Hadamard QuIDD depicted next to (b) 1-qubit Hadamard QuIDD.
Notice that they are isomorphic except at the terminals.

with some modification to accommodate the QuIDD properties. The tensor (Kronecker)

product has been described by Clarke et al. for MTBDDs representing various arithmetic

transform matrices [22]. Here we reproduce an algorithm for the tensor product of QuIDDs

based on the Apply operation that bears similarity to Clarke’s description. Recall that the

tensor product A⊗B produces a new matrix which multiplies each element of A by the en-

tire matrix B. Rows (columns) of the tensor product matrix are component-wise products

of rows (columns) of the argument matrices. Therefore it is straightforward to implement

the tensor product operation on QuIDDs using the Apply function with an argument that

directs Apply to multiply when it reaches the terminals of both operands. The main diffi-

culty here lies in ensuring that each terminal of A is multiplied by all the terminals of B.

From the definition of the standard recursive Apply routine, we know that variables which

precede other variables in the ordering are expanded first [17, 22]. Therefore, we must first

shift all variables in B in the current order after all of the variables in A prior to the call

to Apply. After this shift is performed, the Apply routine will then produce the desired

behavior. Apply starts out with A∗B and expands A alone until Aterminal ∗B is reached for

58

each terminal in A. Once a terminal of A is reached, B is fully expanded, implying that

each terminal of A is multiplied by all of B.

The size of the resulting QuIDD A⊗ B and the runtime for generating it given two

operands A and B of sizes |A| and |B| (in number of nodes) is O(|A||B|) because the tensor

product simply involves a variable shift of complexity O(|B|), followed by a call to Apply,

which Bryant showed to have time and memory complexity O(|A||B|) [17].

3.1.4 Matrix Multiplication

Matrix multiplication can be implemented very efficiently by using Apply to imple-

ment the dot-product operation. This follows from the observation that multiplication is

a series of dot-products between the rows of one operand and the columns of the other

operand. In particular, given matrices A and B with elements ai j and bi j, their product

C = AB can be computed element-wise by ci j = Σn
j=1ai jb ji.

Matrix multiplication for QuIDDs is an extension of the Apply function that imple-

ments the dot-product. One call to Apply will not suffice because the dot-product requires

two binary operations to be performed, namely addition and multiplication. To implement

this, we simply use the matrix multiplication algorithm defined by Bahar et al. for ADDs

[4] but modified to support the QuIDD properties. The algorithm essentially makes two

calls to Apply, one for multiplication and the other for addition.

Another important issue in efficient matrix multiplication is compression. To avoid the

same problem that MATLAB encounters with its “packed” representation, ADDs do not

require decompression during matrix multiplication. Bahar et al. [4] addressed this by

tracking the number i of “skipped” variables between the parent node and its child node in

59

each recursive call. To illustrate, suppose that Var(v f) = x2 and Var(T (v f)) = x5. In this

situation, i = 5− 2 = 3. A factor of 2i is multiplied by the terminal-terminal product that

is reached at the end of a recursive traversal [4].

The pseudo-code presented for this algorithm suggests time-complexity O((|A||B|)2),

where A and B are two ADDs [4]. As with all algorithms based on Apply, the size of the

resulting ADD is on the order of the time complexity, that is O((|A||B|)2). For QuIDDs, we

use a modified form of this algorithm to multiply operators by the state vector, meaning

that |A| and |B| will be the sizes in nodes of a QuIDD matrix and QuIDD state vector,

respectively. If either a or b or both are exponential in the number of qubits in the circuit,

the QuIDD approach will have exponential time and memory complexity. However, in

Section 3.2 we prove that many of the operators which arise in quantum computing have

QuIDD representations that are polynomial in the number of qubits.

Two important modifications must be made to the ADD matrix multiply algorithm in

order to adapt it for QuIDDs. To satisfy QuIDD properties 1 and 2, the algorithm must

treat the terminals as indices into an array rather than the actual values to be multiplied

and added. Also, variable ordering must be accounted for when multiplying a matrix by a

vector. A QuIDD matrix is composed of interleaved row and column variables, whereas a

QuIDD vector only depends on column variables. If the ADD algorithm is run as described

above without modification, the resulting QuIDD vector will be composed of row instead

of column variables. The structure will be correct, but the dependence on row variables

prevents the QuIDD vector from being used in future multiplications. Thus, we introduce

a simple extension which transposes the row variables in the new QuIDD vector to the

60

corresponding column variables. In other words, for each Ri variable that exists in the

QuIDD vector’s support, we map that variable to Ci.

3.1.5 Other Linear-Algebraic Operations

Matrix addition is easily implemented by calling Apply with op defined to be addition.

Unlike the tensor product, no special variable order shifting is required for matrix addition.

Another interesting operation which is nearly identical to matrix addition is element-wise

multiplication ci j = ai jbi j. Unlike the dot-product, this operation involves only products

and no summation. This algorithm is implemented just like matrix addition except that op

is defined to be multiplication rather than addition. In quantum simulation, this operation

is useful for matrix-vector multiplications with a diagonal matrix like the conditional phase

shift in Grover’s algorithm [33]. Such a shortcut considerably improves upon full-fledged

matrix multiplication. Interestingly enough, element-wise multiplication and matrix addi-

tion operations for QuIDDs also implement scalar multiplication and addition without loss

of efficiency. That is because a QuIDD with a single terminal node can be viewed either

as a scalar value or as a matrix or vector with repeated values.

Since matrix addition, element-wise multiplication, and their scalar counterparts are

nothing more than calls to Apply, the runtime complexity of each operation is O(|A||B|).

Likewise, the resulting QuIDD has memory complexity O(|A||B|) [17].

Another relevant operation which can be performed on QuIDDs is the transpose. It

is perhaps the simplest QuIDD operation because it is accomplished merely by swapping

the row and column variables. The transpose is easily extended to the complex conjugate

transpose by first performing the transpose of a QuIDD and then conjugating its terminal

61

values. The runtime and memory complexity of these operations is O(a) where a is the

size in nodes of the QuIDD undergoing a transpose.

To perform quantum measurement (see Subsection 3.1.6) one can use the inner prod-

uct, which can be faster than multiplying by projection matrices and computing norms.

Using the transpose, the inner product can be defined for QuIDDs. The inner product of

two QuIDD vectors, e.g., 〈A|B〉, is computed by matrix multiplying the transpose of A

with B. Since matrix multiplication is involved, the runtime and memory complexity of

the inner product is O((|A||B|)2). Our QuIDD-based simulator QuIDDPro supports matrix

multiplication, the tensor product, measurement, matrix addition, element-wise multipli-

cation, scalar operations, the transpose, the complex conjugate transpose, and the inner

product.

3.1.6 Measurement

Measurement can be defined for QuIDDs using a combination of operations. After

measurement, the state vector is described by,

(3.4)
Mm|ψ〉

√

〈ψ|M†
mMm|ψ〉

.

Mm is the measurement operator and can be represented by a QuIDD matrix, and the state

vector |ψ〉 can be represented by a QuIDD vector. The numerator involves a QuIDD matrix

multiplication. In the denominator, M†
m is the complex conjugate transpose of Mm, which is

also defined for QuIDDs. M†
mMm and M†

mMm|ψ〉 are matrix multiplications. 〈ψ|M†
mMm|ψ〉

is an inner product which produces a QuIDD with a single terminal node. Taking the

square root of the value in this terminal node is straightforward. To complete the mea-

surement, scalar division is performed with the QuIDD in the numerator and the single

62

terminal QuIDD in the denominator as operands.

There are two ways two compute the measurement result. The first way is inefficient

and involves computing the above formula explicitly. Performing the matrix multiplication

in the numerator has runtime and memory complexity O((|A||B|)2). The scalar division

of the numerator by the denominator also has the same runtime and memory complexity

since the denominator is a QuIDD with a single terminal node. However, computing the

denominator will have runtime and memory complexity O(|A|16|B|6) due to the matrix-

vector multiplications and inner product. A more efficient method is to multiply the mea-

surement operator as before, but instead of computing the denominator, two calls to Apply

are made. The first call uses Apply to determine the norm of the state vector. The second

call divides each terminal value by the norm. The dominating complexity of all these op-

eration is due to matrix multiplication, resulting in a runtime and memory complexity of

O((|A||B|)2) for measurement.

3.2 Complexity Analysis

In this section we prove that the QuIDD data structure can represent a large class of

state vectors and operators using an amount of memory that is linear in the number of

qubits rather than exponential. Further, we prove that the QuIDD operations required in

quantum circuit simulation, i.e., matrix multiplication, the tensor product, and measure-

ment, have both runtime and memory that is linear in the number of qubits for the same

class of state vectors and operators. In addition to these complexity issues, we also analyze

the runtime and memory complexity of simulating Grover’s algorithm using QuIDDs.

63

3.2.1 Complexity of QuIDDs and QuIDD Operations

The key to analyzing the runtime and memory complexity of the QuIDD-based simu-

lations lies in the mechanics of the tensor product. Indeed, the tensor product is the means

by which quantum circuits can be represented with matrices. In the following analysis,

the size of a QuIDD is represented by the number of nodes rather than actual memory

consumption. Since the amount of memory used by a single QuIDD node is a constant,

size in nodes is relevant for asymptotic complexity arguments. Actual memory usage in

megabytes of QuIDD simulations is reported in Section 3.3.

Figure 3.4 illustrates the general form of a tensor product between two QuIDDs A and

B. In(A) represents the internal nodes of A, while Term(A) denotes the terminal nodes.

The notation for B is similar.

In(A) is the root subgraph of the tensor product result because of the interleaved vari-

able ordering defined for QuIDDs and the variable shifting operation of the tensor product

(see Subsection 3.1.3). Suppose that A depends on the variables R0 ≺C0 ≺ . . . ≺ Ri ≺Ci,

and B depends on the variables R0 ≺C0 ≺ . . .≺R j ≺C j. In performing A⊗B, the variables

on which B depends will be shifted to Ri+1 ≺ Ci+1 ≺ . . . ≺ Rk+i+1 ≺ Ck+i+1. The tensor

product is then completed by calling Apply(A,B,∗). Due to the variable shift on B, Rule

1 of the Apply function (Subsection 1.2.4) will be used recursively after each comparison

of a node from A with a node from B until the terminals of A are reached. Using Rule 1

for each of these comparisons implies that only nodes from A will be added to the result,

explaining the presence of In(A). Once the terminals of A are reached, Rule 2 of Apply

will then be invoked since terminals are defined to appear last in the variable ordering.

64

A C=A B

...

...

Term(A)

In(A)

axa1

B

...

Term(B)

byb1

In(A)

In(B)

In(B) In(B)

a1* b1 ... a1* by ax * b1 ... ax * by

Term(C)

Figure 3.4: General form of a tensor product between two QuIDDs A and B.

Using Rule 2 when the terminals of A are reached implies that all the internal nodes from

B will be added in place of each terminal of A, causing x copies of In(B) to appear in the

result (recall that there are x terminals in A). When the terminals of B are reached, they

are multiplied by the appropriate terminals of A. Specifically, the terminals of a copy of B

will each be multiplied by the terminal of A that its In(B) replaced. The same reasoning

holds for QuIDD vectors which differ in that they depend only on Ri variables.

Figure 3.4 suggests that the size of a QuIDD constructed via the tensor product depends

on the number of terminals in the operands. The more terminals a left-hand tensor operand

contains, the more copies of the right-hand tensor operand’s internal nodes will be added

to the result. More formally, consider the tensor product of a series of QuIDDs ⊗n
i=1Qi =

65

(. . .((Q1⊗Q2)⊗Q3)⊗ . . .⊗Qn). Note that the ⊗ operation is associative (thus parenthesis

do not affect the result), but it is not commutative. The number of nodes in this tensor

product is described by the following lemma.

Lemma 3.5 Given QuIDDs {Qi}n
i=1, the tensor-product QuIDD ⊗n

i=1Qi contains

|In(Q1)|+Σn
i=2|In(Qi)||Term(⊗i−1

j=1Q j)|+ |Term(⊗n
i=1Qi)| nodes.1

Proof. This formula can be verified by induction. For the base case, n = 1, there is a

single QuIDD Q1. Putting this information into the formula eliminates the summation

term, leaving |In(Q1)|+ |Term(Q1)| as the total number of nodes in Q1. This is clearly

correct since, by definition, a QuIDD is composed of its internal and terminal nodes. To

complete the proof, we now show that if the formula is true for Qn then it’s true for Qn+1.

The inductive hypothesis for Qn is |⊗n
i=1 Qi|= |In(Q1)|+Σn

i=2|In(Qi)||Term(⊗i−1
j=1Q j)|+

|Term(⊗n
i=1Qi)|. For Qn+1 the number of nodes is

|(⊗n
i=1Qi)⊗Qn+1| =

|⊗n
i=1 Qi|− |Term(⊗n

i=1Qi)|+ |In(Qn+1)||Term(⊗n
i=1Qi)|+ |Term(⊗n+1

i=1 Qi)|.(3.6)

Notice that the number of terminals in ⊗n
i=1Qi is subtracted from the total number of nodes

in ⊗n
i=1Qi and multiplied by the number of internal nodes in Qn+1. The presence of these

terms is due to Rule 2 of Apply which dictates that in the tensor-product (⊗n
i=1Qi)⊗Qn+1,

the terminals of ⊗n
i=1Qi are replaced by copies of Qn+1 where each copy’s terminals are

multiplied by a terminal from ⊗n
i=1Qi. The last term simply accounts for the total number

1|In(A)| denotes the number of internal nodes in A, while |Term(A)| denotes the number of terminal
nodes in A.

66

of terminals in the tensor-product. Substituting the inductive hypothesis made earlier for

the term |⊗n
i=1 Qi| produces

|In(Q1)|+Σn
i=2|In(Qi)||Term(⊗i−1

j=1Q j)|+ |Term(⊗n
i=1Qi)|− |Term(⊗n

i=1Qi)|

+|In(Qn+1)||Term(⊗n
i=1Qi)|+ |Term(⊗n+1

i=1 Qi)|

= |In(Q1)|+Σn+1
i=2 |In(Qi)||Term(⊗i−1

j=1Q j)|+ |Term(⊗n+1
i=1)|.(3.7)

Thus the number of nodes in Qn+1 is equal to the original formula we set out to prove for

n+1 and the induction is complete. �

Lemma 3.5 suggests that if the number of terminals in ⊗i=1Qi increases by a certain

factor with each Qi, then ⊗n
i=1Qi must grow exponentially in n. If, however, the number of

terminals stops changing, then ⊗n
i=1Qi must grow linearly in n. Thus, the growth depends

on matrix entries because terminals of A⊗B are products of terminal values of A by termi-

nal values of B and repeated products are merged. If all QuIDDs Qi have terminal values

from the same set Γ, the product’s terminal values are products of elements from Γ.

Definition 3.8 Consider finite non-empty sets of complex numbers Γ1 and Γ2, and define

their all-pairs product as {xy | x ∈ Γ1, y ∈ Γ2}. One can verify that this operation is

associative, and therefore the set Γn of all n-element products is well defined for n > 0.

We then call a finite non-empty set Γ ⊂ C persistent iff the size of Γn is constant for all

n > 0.

For example, the set Γ = {c,−c} is persistent for any c because Γn = {cn,−cn}. In

general any set closed under multiplication is persistent, but that is not a necessary con-

dition. In particular, for c 6= 0, the persistence of Γ is equivalent to the persistence of

cΓ. Another observation is that Γ is persistent if and only if Γ∪ {0} is persistent. An

67

important example of a persistent set is the set consisting of 0 and all n-th degree roots of

unity Un = {e2πik/n|k = 0..n−1}, for some n. Since roots of unity form a group, they are

closed under multiplication and form a persistent set. In Appendix A, we show that every

persistent set is either cUn for some n and c 6= 0, or {0}∪ cUn.

The importance of persistent sets is underlined by the following theorem.

Theorem 3.9 Given a persistent set Γ and a constant C, consider n QuIDDs with at most

C nodes each and terminal values from Γ. The tensor product of those QuIDDs has O(n)

nodes and can be computed in O(n) time.

Proof. The first and the last terms of the formula in Lemma 3.5 are bounded by C and

|Γ| respectively. As the sizes of terminal sets in the middle term are bounded by |Γ|, the

middle term is bounded by |Γ|∑n
i=2 |In(Qi)| < |Γ|c since each |In(Qi)| is a constant. The

tensor product operation A⊗B for QuIDDs involves a shift of variables on B followed

by Apply(A,B,∗). If B is a QuIDD representing n qubits, then B depends on O(n) vari-

ables.2 This implies that the runtime of the variable shift is O(n). Bryant proved that the

asymptotic runtime and memory complexity of Apply(A,B,binary op) is O(|A||B|) [17].

Lemma 3.5 and the fact that we are considering QuIDDs with at most C nodes and termi-

nals from a persistent set Γ imply that |A| = O(n) and |B| = O(1). Thus, Apply(A,B,∗)

has asymptotic runtime and memory complexity O(n), leading to an overall asymptotic

runtime and memory complexity of O(n) for computing ⊗n
i=1Qi. �

Importantly, the terminal values do not need to form a persistent set themselves for

the theorem to hold. If they are contained in a persistent set, then the sets of all possible

2More accurately, B depends on exactly 2n variables if it is a matrix QuIDD and n variables if it is a
vector QuIDD.

68

m-element products (i.e. m ≤ n for all n-element products in a set Γ) eventually stabilize

in the sense that their sizes do not exceed that of Γ. However, this is only true for a fixed

m rather than for the sets of products of m elements and fewer.

For QuIDDs A and B, the matrix-matrix and matrix-vector product computations are

not as sensitive to terminal values, but depend on the sizes of the QuIDDs. Indeed, the

memory and time complexity of this operation is O((|A||B|)2) [4].

Theorem 3.10 Consider measuring an n-qubit QuIDD state vector |ψ〉 using a QuIDD

measurement operator M, where both |ψ〉 and M are constructed via the tensor product

of an arbitrary sequence of O(1)-sized QuIDD vectors and matrices, respectively. If the

terminal node values of the O(1)-sized QuIDD vectors or operators are in a persistent

set Γ, then the runtime and memory complexity of measuring the QuIDD state vector3 is

O(n4).

Proof. In Subsection 3.1.6, we showed that runtime and memory complexity for mea-

suring a state vector QuIDD is O((|A||B|)2), where |A| and |B| are the sizes in nodes of

the measurement operator QuIDD and state vector QuIDD, respectively. From Theorem

3.9, the asymptotic memory complexity of both |A| and |B| is O(n), leading to an overall

runtime and memory complexity of O(n4). �

The class of QuIDDs described by Theorem 3.9 and its corollaries, with terminals

taken from the set {0}∪ cU, encompass a large number of practical quantum state vec-

tors and operators. These include, but are not limited to, any equal superposition of n

qubits, any sequence of n qubits in the computational basis states, n-qubit Pauli matrices,

3The worst-case bound is rarely reached in practice as demonstrated later.

69

H

H

H

H

H H

CONDITIONAL
PHASE SHIFT

Oracle "work"
qubit−space

HH

H

H

H

H

X

X

X

X

X

X

X

X

H

H

H

H

ORACLE

R Iterations (Boyer’s Formula)

|0> |0>

|0>

|0>

|0>

|1>

|0>

Figure 3.5: Circuit-level implementation of Grover’s algorithm

and n-qubit Hadamard matrices. The above results suggest a polynomial-sized QuIDD

representation of any quantum circuit on n qubits in terms of such gates if the number

of gates is limited by a constant. In other words, the above sufficient conditions apply if

the depth (length) of the circuit is limited by a constant. Our simulation technique may

use polynomial memory and runtime in other circumstances as well, as shown in the next

subsection.

3.2.2 QuIDD Complexity of Grover’s Algorithm

To investigate the power of the QuIDD representation, we used QuIDDPro to simulate

Grover’s algorithm [33], one of the two major quantum algorithms that have been devel-

oped to date. Grover’s algorithm searches for a subset of items in an unordered database

of N items. The only selection criterion available is a black-box predicate or oracle that

can be evaluated on any item in the database. The complexity of this evaluation (query)

70

is unknown, and the overall complexity analysis is performed in terms of queries. In the

classical domain, any algorithm for such an unordered search must query the predicate

Ω(N) times. However, Grover’s algorithm can perform the search with quantum query

complexity O(
√

N), a quadratic improvement. This assumes that a quantum version of the

search predicate can be evaluated on a superposition of all database items.

A quantum circuit representation of the algorithm involves five major components: an

oracle, a conditional phase shift operator, sets of Hadamard gates, the data qubits, and

an oracle qubit. The oracle is a Boolean predicate that acts as a filter, flipping the oracle

qubit when it receives as input an n bit sequence representing the items being searched

for. In quantum circuit form, the oracle is represented as a series of controlled NOT gates

with subsets of the data qubits acting as the control qubits and the oracle qubit receiving

the action of the NOT gates. Following the oracle circuit, Hadamard gates put the n data

qubits into an equal superposition of all 2n items in the database where 2n = N. Then a

sequence of gates H⊗n−1CH⊗n−1, where C denotes the conditional phase shift operator,

are applied iteratively to the data qubits. Each iteration is termed a Grover iteration [51].

Grover’s algorithm must be stopped after a particular number of iterations when the

probability amplitudes of the states representing the items sought are sufficiently boosted.

There must be enough iterations to ensure a successful measurement, but after a certain

point the probability of successful measurement starts fading, and later changes periodi-

cally. In our experiments, we used the tight bound on the number of iterations formulated

by Boyer et al. [14] when the number of solutions M is known in advance: bπ/4θc where

θ =
√

M/N. The power of Grover’s algorithm lies in the fact that the data qubits store

71

all N = 2n items in the database as a superposition, allowing the oracle circuit to “find”

all items being searched for simultaneously. A circuit implementing Grover’s algorithm is

shown in Figure 3.5. The algorithm can be summarized as follows, with N denoting the

number of elements in the database.

Grover’s Algorithm

Step 1. Initialize n = dlog2 Ne qubits to |0〉 and the oracle qubit to |1〉.

Step 2. Apply the Hadamard transform H to all qubits to put them into a uniform super-

position of basis states.

Step 3. Apply the oracle operation which can be implemented as a series of one or more

CNOT gates representing the search criteria. The inputs to the oracle circuit feed into the

control portions of the CNOT gates, while the oracle qubit is the target qubit for all of the

CNOT gates. In this way, if the input to this circuit satisfies the search criteria, the state of

the oracle qubit is flipped. For a superposition of inputs, those input basis states that satisfy

the search criteria flip the oracle qubit in the composite state-space. The oracle circuit uses

ancillary qubits as its workspace, reversibly returning them to their original states (shown

as |0〉 in Fig 3.5). These ancillary qubits will not be operated on by any other step in the

algorithm.

Step 4. Apply the H gate to all qubits except the oracle qubit.

Step 5. Apply the conditional phase-shift gate on all qubits except the oracle qubit. This

gate negates the probability amplitude of the |000 . . .0〉 basis state, leaving that of the

others unaffected. It can be realized using a combination of X, H and Cn−1-NOT gates as

shown. A decomposition of the Cn−1-NOT into elementary gates is given in [5].

72

Step 6. Apply the H gate to all gates except the oracle qubit.

Step 7. Repeat steps 3-6 (a single Grover iteration) R times, where R = b π
4

√

N
Mc and M is

the number of keys matching the search criteria [14].

Step 8. Apply the H gate to the oracle qubit in the last iteration. Measure the first n qubits

to obtain the index of the matching key with high probability.

Using explicit vectors and matrices to simulate the above procedure would incur mem-

ory and runtime complexities of Ω(2n). However, this is not necessarily the case when

using QuIDDs. To show this, we present a step-by-step complexity analysis for a QuIDD-

based simulation of the procedure.

Steps 1 and 2. Theorem 3.9 implies that the memory and runtime complexity of Step

1 is O(n) because the initial state vector only contains elements in cUk ∪{0} and is con-

structed via the tensor product. Step 2 is simply a matrix multiplication of an n-qubit

Hadamard matrix with the state vector constructed in Step 1. The Hadamard matrix has

memory complexity O(n) by Theorem 3.9. Since the state vector also has memory com-

plexity O(n), further matrix-vector multiplications in Step 2 each have O(n4) memory

and runtime complexity because computing the product of two QuIDDs A and B takes

O((|A||B|)2) time and memory [4]. This upper-bound can be trivially tightened, however.

The function of these steps is to put the qubits into an equal superposition. For the n data

qubits, this produces a QuIDD with O(1) nodes because an n-qubit state vector represent-

ing an equal superposition has only one distinct element, namely 1
2n/2 . Also, applying a

Hadamard matrix to the single oracle qubit results in a QuIDD with O(1) nodes because

73

in the worst-case, the size of a 1-qubit QuIDD is clearly a constant. Since the tensor prod-

uct is based on the Apply algorithm, the result of tensoring the QuIDD representing the

data qubits in an equal superposition with the QuIDD for the oracle qubit is a QuIDD

containing O(1) nodes.

Steps 3-6. In step 3, the state vector is multiplied by the oracle matrix. Again, the

complexity of multiplying two arbitrary QuIDDs A and B is O((|A||B|)2) [4]. The size of

the state vector in Step 3 is O(1). If the size of the oracle is |A|, then the memory and

runtime complexity of Step 3 is O(|A|2). Similarly, Steps 4, 5 and 6 will have polynomial

memory and runtime complexity in terms of |A| and n.4 Thus we arrive at the O(|A|16n14)

worst-case upper-bound for the memory and runtime complexity of the simulation at Step

6. Judging from our empirical data, this bound is typically very loose and pessimistic.

Lemma 3.11 The memory and runtime complexity of a single Grover iteration in a QuIDD-

based simulation is O(|A|16n14).

Proof. Steps 3−6 make up a single Grover iteration. Since the memory and runtime com-

plexity of a QuIDD-based simulation after completing Step 6 is O(|A|16n14), the memory

and runtime complexity of a single Grover iteration is O(|A|16n14). �

Step 7. This does not involve a quantum operator, but rather it repeats a Grover it-

eration R = bπ
4

√

N
Mc times. As a result, Step 7 induces an exponential runtime for the

simulation, since the number of Grover iterations is a function of N = 2n. This is accept-

able though because an actual quantum computer would also require exponentially many

Grover iterations in order to measure one of the matching keys with a high probability

4As noted in Step 5, the conditional phase-shift operator can be decomposed into the tensor product of
single qubit matrices, giving it memory complexity O(n).

74

[14]. Ultimately this is the reason why Grover’s algorithm only offers a quadratic and not

an exponential speedup over classical search. Since Lemma 3.11 shows that the memory

and runtime complexity of a single Grover iteration is polynomial in the size of the oracle

QuIDD, one might guess that the memory complexity of Step 7 is exponential like the run-

time. However, it turns out that the size of the state vector does not change from iteration

to iteration, as shown below.

Lemma 3.12 The number of internal nodes of the state vector QuIDD at the end of any

Grover iteration i is equal to the number of internal nodes of the state vector QuIDD at

the end of Grover iteration i+1.

Proof. Each Grover iteration increases the probability of the states representing match-

ing keys while simultaneously decreasing the probability of the states representing non-

matching keys. Therefore, at the end of the first iteration, the state vector QuIDD will

have a single terminal node for all the states representing matching keys and one other

terminal node, with a lower value, for the states representing non-matching keys (there

may be two such terminal nodes for non-matching keys, depending on machine preci-

sion). The number of internal nodes of the state vector QuIDD cannot be different at the

end of subsequent Grover iterations because a Grover iteration does not change the pattern

of probability amplitudes, but only their values. In other words, the same matching states

always point to a terminal node whose value becomes closer to 1 after each iteration, while

the same non-matching states always point to a terminal node (or nodes) whose value (or

values) becomes closer to 0. �

75

Lemma 3.13 The total number of nodes in the state vector QuIDD at the end of any

Grover iteration i is equal to the total number of nodes in the state vector QuIDD at the

end of Grover iteration i+1.

Proof. In proving Lemma 3.12, we showed that the only change in the state vector

QuIDD from iteration to iteration is the values in the terminal nodes (not the number of

terminal nodes). Therefore, the number of nodes in the state vector QuIDD is always the

same at the end of every Grover iteration. �

Corollary 3.14 In a QuIDD-based simulation, the runtime and memory complexity of any

Grover iteration i is equal to the runtime and memory complexity of Grover iteration i+1.

Proof. Each Grover iteration is a series of matrix multiplications between the state

vector QuIDD and several operator QuIDDs (Steps 3−6). The work of Bahar et al. shows

that matrix multiplication with ADDs has runtime and memory complexity that is deter-

mined solely by the number of nodes in the operands (see Section 3.1.4) [4]. Since the total

number of nodes in the state vector QuIDD is always the same at the end of every Grover

iteration, the runtime and memory complexity of every Grover iteration is the same. �

Lemmas 3.12 and 3.13 imply that Step 7 does not necessarily induce memory com-

plexity that is exponential in the number of qubits. This important fact is captured in the

following theorem.

Theorem 3.15 The memory complexity of simulating Grover’s algorithm using QuIDDs

is polynomial in the size of the oracle QuIDD and the number of qubits.5

5We do not account for the resources required to construct the QuIDD of the oracle.

76

Proof. The runtime and memory complexity of a single Grover iteration is O(|A|16n14)

(Lemma 3.11), which includes the initialization costs of Steps 1 and 2. Also, the structure

of the state vector QuIDD does not change from one Grover iteration to the next (Lemmas

3.12 and 3.13). Thus, the overall memory complexity of simulating Grover’s algorithm

with QuIDDs is O(|A|16n14), where |A| is the number of nodes in the oracle QuIDD and n

is the number of qubits. �

While any polynomial-time quantum computation can be simulated in polynomial

space, the commonly-used linear-algebraic simulation requires Ω(2n) space. Also note

that the case of an oracle searching for a unique solution (originally considered by Grover)

implies that |A| = n. Here, most of the searching will be done while constructing the

QuIDD of the oracle, which is an entirely classical operation.

As demonstrated experimentally in Section 3.3, for some oracles, simulating Grover’s

algorithm with QuIDDs has memory complexity Θ(n). Furthermore, simulation using

QuIDDs has worst-case runtime complexity O(R|A|16n14), where R is the number of

Grover iterations as defined earlier. If |A| grows polynomially with n, this runtime com-

plexity is the same as that of an ideal quantum computer, up to a polynomial factor.

3.3 Empirical Validation

This section discusses problems that arise when implementing a QuIDD-based simu-

lator. It also presents experimental results obtained from actual simulation.

77

3.3.1 Implementation Issues

Full support of QuIDDs requires the use of complex arithmetic, which can lead to

serious problems if numerical precision is not adequately addressed.

Complex Number Arithmetic. At an abstract level, ADDs can support terminals

of any numerical type, but CUDD’s implementation of ADDs does not. For efficiency

reasons, CUDD stores node information in C unions which are interpreted numerically for

terminals and as child pointers for internal nodes.

However, it is well-known that unions are incompatible with the use of C++ classes

because their multiple interpretations hinder the binding of correct destructors. In partic-

ular, complex numbers in C++ are implemented as a templated class and are incompatible

with CUDD. This was one of the motivations for storing terminal values in an external

array.

Numerical Precision. Another important issue is the precision of complex numeric

types. Over the course of repeated multiplications, the values of some terminals may

become very small and induce round-off errors if the standard IEEE double-precision

floating-point types are used. This effect worsens for larger circuits. Unfortunately, such

round-off errors can significantly affect the structure of a QuIDD by merging terminals

that are only slightly different, or not merging terminals whose values should be equal but

differ by a small computational error ε.

The use of approximate comparisons with ε works in certain cases but does not scale

well, particularly for creating an equal superposition of states (a standard operation in

quantum circuits). In an equal superposition, a circuit with n qubits contains the terminal

78

Circuit Hadamards Conditional Oracles
Size n Initial Repeated Phase Shift 1 2

20 80 83 21 99 108
30 120 123 31 149 168
40 160 163 41 199 228
50 200 203 51 249 288
60 240 243 61 299 348
70 280 283 71 349 408
80 320 323 81 399 468
90 360 363 91 449 528

100 400 403 101 499 588

Table 3.1: Size of QuIDDs (no. of nodes) for Grover’s algorithm.

value 1
2n/2 in the state vector. With the IEEE double precision floating-point type, this

value will be rounded to 0 at n = 2048, preventing the use of epsilons for approximate

comparison past n = 2048. Furthermore, a static value for epsilon will not work well for

different sized circuits. For example, ε = 10−6 may work well for n = 35, but not for

n = 40 because at n = 40, all values may be smaller than 10−6. Therefore, to address

the problem of precision, QuIDDPro uses an arbitrary precision floating-point type from

the GMP library [30] with the C++ complex template. Precision is then limited to the

available amount of memory in the system.

3.3.2 Simulating Grover’s Algorithm

Before simulation of an instance of Grover’s algorithm, we construct the QuIDD repre-

sentations of Hadamard operators by incrementally tensoring together one-qubit versions

of their matrices n− 1 times to get n-qubit versions. All other QuIDD operators are con-

structed similarly. Table 3.1 shows all sizes (in nodes) of respective QuIDDs at n-qubits,

where n ∈ [20..100]. We observe that memory usage grows linearly in n, and as a re-

sult QuIDD-based simulations of Grover’s algorithm are not memory-limited even at 100

79

Oracle 1: Runtime (s)

n Oct MAT B++ QP
10 80.6 6.64 0.15 0.33
11 2.65e2 22.5 0.48 0.54
12 8.36e2 74.2 1.49 0.83
13 2.75e3 2.55e2 4.70 1.30
14 1.03e4 1.06e3 14.6 2.01
15 4.82e4 6.76e3 44.7 3.09
16 > 24hrs > 24hrs 1.35e2 4.79
17 > 24hrs > 24hrs 4.09e2 7.36
18 > 24hrs > 24hrs 1.23e3 11.3
19 > 24hrs > 24hrs 3.67e3 17.1
20 > 24hrs > 24hrs 1.09e4 26.2
21 > 24hrs > 24hrs 3.26e4 39.7
22 > 24hrs > 24hrs > 24hrs 60.5
23 > 24hrs > 24hrs > 24hrs 92.7
24 > 24hrs > 24hrs > 24hrs 1.40e2
25 > 24hrs > 24hrs > 24hrs 2.08e2
26 > 24hrs > 24hrs > 24hrs 3.12e2
27 > 24hrs > 24hrs > 24hrs 4.72e2
28 > 24hrs > 24hrs > 24hrs 7.07e2
29 > 24hrs > 24hrs > 24hrs 1.08e3
30 > 24hrs > 24hrs > 24hrs 1.57e3
31 > 24hrs > 24hrs > 24hrs 2.35e3
32 > 24hrs > 24hrs > 24hrs 3.53e3
33 > 24hrs > 24hrs > 24hrs 5.23e3
34 > 24hrs > 24hrs > 24hrs 7.90e3
35 > 24hrs > 24hrs > 24hrs 1.15e4
36 > 24hrs > 24hrs > 24hrs 1.71e4
37 > 24hrs > 24hrs > 24hrs 2.57e4
38 > 24hrs > 24hrs > 24hrs 3.82e4
39 > 24hrs > 24hrs > 24hrs 5.64e4
40 > 24hrs > 24hrs > 24hrs 8.23e4

Oracle 1: Peak Memory Usage (MB)

n Oct MAT B++ QP
10 2.64e-2 1.05e-2 3.52e-2 9.38e-2
11 5.47e-2 2.07e-2 8.20e-2 0.121
12 0.105 4.12e-2 0.176 0.137
13 0.213 8.22e-2 0.309 0.137
14 0.426 0.164 0.559 0.137
15 0.837 0.328 1.06 0.137
16 1.74 0.656 2.06 0.145
17 3.34 1.31 4.06 0.172
18 4.59 2.62 8.06 0.172
19 13.4 5.24 16.1 0.172
20 27.8 10.5 32.1 0.172
21 55.6 NA 64.1 0.195
22 NA NA 1.28e2 0.207
23 NA NA 2.56e2 0.207
24 NA NA 5.12e2 0.223
25 NA NA 1.02e3 0.230
26 NA NA > 1.5GB 0.238
27 NA NA > 1.5GB 0.254
28 NA NA > 1.5GB 0.262
29 NA NA > 1.5GB 0.277
30 NA NA > 1.5GB 0.297
31 NA NA > 1.5GB 0.301
32 NA NA > 1.5GB 0.305
33 NA NA > 1.5GB 0.320
34 NA NA > 1.5GB 0.324
35 NA NA > 1.5GB 0.348
36 NA NA > 1.5GB 0.352
37 NA NA > 1.5GB 0.371
38 NA NA > 1.5GB 0.375
39 NA NA > 1.5GB 0.395
40 NA NA > 1.5GB 0.398

(a) (b)

Table 3.2: Simulating Grover’s algorithm with n qubits using Octave (Oct), MATLAB
(MAT), Blitz++ (B++) and our simulator QuIDDPro (QP). > 24hrs indicates
that the runtime exceeded our cutoff of 24 hours. > 1.5GB indicates that the
memory usage exceeded our cutoff of 1.5GB. Simulation runs that exceed the
memory cutoff can also exceed the time cutoff, though we give memory cutoff
precedence. NA indicates that after a cutoff of one week, the memory usage was
still steadily growing, preventing a peak memory usage measurement.

80

Oracle 2: Runtime (s)

n Oct MAT B++ QP
13 1.39e3 1.31e2 2.47 0.617
14 3.75e3 7.26e2 5.42 0.662
15 1.11e4 4.27e3 11.7 0.705
16 3.70e4 2.23e4 24.9 0.756
17 > 24hrs > 24hrs 53.4 0.805
18 > 24hrs > 24hrs 1.13e2 0.863
19 > 24hrs > 24hrs 2.39e2 0.910
20 > 24hrs > 24hrs 5.15e2 0.965
21 > 24hrs > 24hrs 1.14e3 1.03
22 > 24hrs > 24hrs 2.25e3 1.09
23 > 24hrs > 24hrs 5.21e3 1.15
24 > 24hrs > 24hrs 1.02e4 1.21
25 > 24hrs > 24hrs 2.19e4 1.28
26 > 24hrs > 24hrs > 1.5GB 1.35
27 > 24hrs > 24hrs > 1.5GB 1.41
28 > 24hrs > 24hrs > 1.5GB 1.49
29 > 24hrs > 24hrs > 1.5GB 1.55
30 > 24hrs > 24hrs > 1.5GB 1.63
31 > 24hrs > 24hrs > 1.5GB 1.71
32 > 24hrs > 24hrs > 1.5GB 1.78
33 > 24hrs > 24hrs > 1.5GB 1.86
34 > 24hrs > 24hrs > 1.5GB 1.94
35 > 24hrs > 24hrs > 1.5GB 2.03
36 > 24hrs > 24hrs > 1.5GB 2.12
37 > 24hrs > 24hrs > 1.5GB 2.21
38 > 24hrs > 24hrs > 1.5GB 2.29
39 > 24hrs > 24hrs > 1.5GB 2.37
40 > 24hrs > 24hrs > 1.5GB 2.47

Oracle 2: Peak Memory Usage (MB)

n Oct MAT B++ QP
13 0.218 8.22e-2 0.252 0.137
14 0.436 0.164 0.563 0.141
15 0.873 0.328 1.06 0.145
16 1.74 0.656 2.06 0.172
17 3.34 1.31 4.06 0.176
18 4.59 2.62 8.06 0.180
19 13.4 5.24 16.1 0.180
20 27.8 10.5 32.1 0.195
21 55.6 NA 64.1 0.199
22 NA NA 1.28e2 0.207
23 NA NA 2.56e2 0.215
24 NA NA 5.12e2 0.227
25 NA NA 1.02e3 0.238
26 NA NA > 1.5GB 0.246
27 NA NA > 1.5GB 0.256
28 NA NA > 1.5GB 0.266
29 NA NA > 1.5GB 0.297
30 NA NA > 1.5GB 0.301
31 NA NA > 1.5GB 0.305
32 NA NA > 1.5GB 0.324
33 NA NA > 1.5GB 0.328
34 NA NA > 1.5GB 0.348
35 NA NA > 1.5GB 0.352
36 NA NA > 1.5GB 0.375
37 NA NA > 1.5GB 0.375
38 NA NA > 1.5GB 0.395
39 NA NA > 1.5GB 0.398
40 NA NA > 1.5GB 0.408

(a) (b)

Table 3.3: Simulating Grover’s algorithm with n qubits using Octave (Oct), MATLAB
(MAT), Blitz++ (B++) and our simulator QuIDDPro (QP). > 24hrs indicates
that the runtime exceeded our cutoff of 24 hours. > 1.5GB indicates that the
memory usage exceeded our cutoff of 1.5GB. Simulation runs that exceed the
memory cutoff can also exceed the time cutoff, though we give memory cutoff
precedence. NA indicates that after a cutoff of one week, the memory usage was
still steadily growing, preventing a peak memory usage measurement.

qubits. Note that this is consistent with Theorem 3.9.

With the operators constructed, simulation can proceed. Tables 3.2a and 3.2b show

performance measurements for simulating Grover’s algorithm with an oracle circuit that

81

searches for one item out of 2n. QuIDDPro achieves asymptotic memory savings com-

pared to qubit-wise implementations (see Section 2.1) of Grover’s algorithm using Blitz++,

a high-performance numerical linear algebra library for C++ [75], MATLAB, and Octave,

a mathematical package similar to MATLAB. The overall runtimes are still exponential

in n because Grover’s algorithm entails an exponential number of iterations, even on an

actual quantum computer [14]. We also studied a “mod-1024” oracle circuit that searches

for elements whose ten least significant bits are 1 (see Tables 3.3a and 3.3b). Results were

produced on a 1.2GHz AMD Athlon with 1GB RAM running Linux. Memory usage for

MATLAB and Octave is lower-bounded by the size of the state vector and conditional

phase shift operator; Blitz++ and QuIDDPro memory usage is measured as the size of the

entire program. Simulations using MATLAB and Octave past 15 qubits timed out at 24

hours.

3.3.3 Impact of Grover Iterations

To verify that the QuIDDPro simulation resulted in the exact number of Grover itera-

tions required to generate the highest probability of measuring the items being sought as

per the Boyer et al. formulation [14], we tracked the probabilities of these items as a func-

tion of the number of iterations. For this experiment, we used four different oracle circuits,

each with 11,12, and 13 qubit circuits. The first oracle is called “Oracle N” and represents

an oracle in which all the data qubits act as controls to flip the oracle qubit (this oracle is

equivalent to Oracle 1 in the last subsection). The other oracle circuits are “Oracle N-1”,

“Oracle N-2”, and “Oracle N-3”, which all have the same structure as Oracle N minus 1,2,

and 3 controls, respectively. As described earlier, each removal of a control doubles the

82

number of items being searched for in the database. For example, Oracle N-2 searches for

4 items in the data set because it recognizes the bit pattern 111...1dd.

Oracle 11 Qubits 12 Qubits 13 Qubits
N 25 35 50

N −1 17 25 35
N −2 12 17 25
N −3 8 12 17

Table 3.4: Number of Grover iterations at which Boyer et al. [14] predict the highest
probability of measuring one of the items sought.

Table 3.4 shows the optimal number of iterations produced with the Boyer et al. formu-

lation for all the instances tested. Figure 3.6 plots the probability of successfully finding

any of the items sought against the number of Grover iterations. In the case of Oracle

N, we plot the probability of measuring the single item being searched for. Similarly, for

oracles N-1, N-2, and N-3, we plot the probability of measuring any one of the 2, 4, and

8 items being searched for, respectively. By comparing the results in Table 3.4 with those

in Figure 3.6, it can be easily verified that QuIDDPro uses the correct number of itera-

tions at which measurement is most likely to produce items sought. Also notice that the

probabilities, as a function of the number of iterations, follow a sinusoidal curve. It is

therefore important to terminate at the exact optimal number of iterations not only from

an efficiency standpoint but also to prevent the probability amplitudes of the items being

sought from lowering back down toward 0.

3.4 Summary

We proposed and tested a new technique for simulating quantum circuits using a data

structure called a QuIDD. We have shown that QuIDDs enable practical, generic and rea-

83

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

50 100 150 200 250

pr
ob

ab
ili

ty

of Grover iterations

1 Target Item (Oracle N)

11 qubits
12 qubits
13 qubits

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

20 40 60 80 100 120 140 160

pr
ob

ab
ili

ty

of Grover iterations

2 Target Items (Oracle N-1)

11 qubits
12 qubits
13 qubits

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

20 40 60 80 100 120

pr
ob

ab
ili

ty

of Grover iterations

4 Target Items (Oracle N-2)

11 qubits
12 qubits
13 qubits

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 40 50 60 70 80
pr

ob
ab

ili
ty

of Grover iterations

8 Target Items (Oracle N-3)

11 qubits
12 qubits
13 qubits

Figure 3.6: Probability of successful search for one, two, four and eight items as a function
of the number of iterations after which the measurement is performed (11, 12
and 13 qubits). Note that the minima and maxima of the empirical sine curves
match the predictions in Table 3.4.

sonably efficient simulation of quantum computation. Their key advantages are faster

execution and lower memory usage. In our experiments, QuIDDPro achieves exponential

memory savings compared to other known techniques.

This result explores the limitations of quantum computing, and we have subsequently

expanded this investigation in [77]. Classical computers have the advantage that they

are not subject to quantum measurement and errors. Thus, when competing with quantum

computers, classical computers can simply run ideal error-free quantum algorithms (as was

done in Section 3.3), allowing techniques such as QuIDDs to exploit the symmetries found

84

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 100 200 300 400 500 600 700 800

of

 n
od

es

n

Size of n x n Inverse Fourier Matrix as a QuIDD

x^2
Data

Figure 3.7: Growth of inverse Quantum Fourier Transform matrix in QuIDD form. N = 2n

for n qubits.

in ideal quantum computation. On the other hand, quantum computation still has certain

operators which cannot be represented using only polynomial resources on a classical

computer, even with QuIDDs. Examples of such operators include the quantum Fourier

transform (QFT) and its inverse which are used in Shor’s number factoring algorithm [65].

Figure 3.7 shows the growth in number of nodes of the N by N inverse QFT as a QuIDD.

Since N = 2n where n is the number of qubits, this QuIDD exhibits exponential growth

with a linear increase in qubits. Therefore, the inverse QFT will cause QuIDDPro to have

exponential runtime and memory requirements when simulating Shor’s algorithm.

Another challenging aspect of quantum simulation is the impact of errors due to defects

in circuit components, and environmental effects such as decoherence. Error simulation

appears to be essential for modeling actual quantum computational devices. It may, how-

85

ever, prove to be difficult since errors can alter the symmetries exploited by QuIDDs. An

important step in studying errors is to extend QuIDDs to encompass the density matrix

representation, and this extension is described in the next chapter.

CHAPTER IV

Density Matrix Simulation with QuIDDs

This chapter extends QuIDD-based quantum circuit simulation to the density matrix

representation and is based on the work published in [76, 78]. As noted earlier (Subsection

1.2.1), the density matrix representation is crucial in capturing interactions between quan-

tum states and the environment, such as noise. In addition to the standard set of operations

required to simulate with the state-vector model, including matrix multiplication and the

tensor product, simulation with the density matrix model requires the outer product and

the partial trace. The outer product is used in the initialization of qubit density matrices,

while the partial trace allows a simulator to differentiate qubit states coupled to noisy envi-

ronments or other unwanted states. The partial trace is invaluable in error modeling since

it facilitates descriptions of single qubit states that have been affected by noise and other

phenomena [51]. As a result, we derive algorithms to implement the outer product and the

partial trace using QuIDDs.

We also describe a set of quantum circuit benchmarks that incorporate errors, error

correction, reversible logic, quantum communication, and quantum search. To empirically

evaluate the improvements offered by QuIDD-based density matrix simulation, we use

86

87

these benchmarks to compare QuIDDPro with an array-based density matrix simulator

called QCSim [12] that makes use of qubit-wise multiplication algorithms. Performance

data from both simulators show that our new graph-based algorithms far outperform the

array-based approach for the given benchmarks. It should be noted, however, that not all

quantum circuits can be simulated efficiently with QuIDDs. A useful class of matrices and

vectors which can be manipulated efficiently by QuIDDs was formally described in the

previous section and is restated below. For some matrices and vectors outside of this class,

QuIDD-based simulation can be up to three times slower due to the overhead of following

pointers in the QuIDD data structure.

4.1 Existing QuIDD Properties and Density Matrices

Although the density matrix representation can be invaluable for simulating environ-

mental noise in quantum circuits, like the state vector representation, it is plagued by

runtime and memory complexity that grows exponentially with the number of qubits in

the worst case. As discussed in Subsection 1.2.1, a straightforward linear-algebraic simu-

lation using density matrices requires O(22n) time and memory resources. Since QuIDDs

have proven useful in reducing this complexity in the state vector paradigm, it is only nat-

ural to extend QuIDDs to the density matrix model in an attempt to reduce the simulation

complexity of this important model in practical cases. Before proceeding to the new ex-

tensions, it is instructive to first review what is already in place that can be re-used in the

density matrix representation.

Figure 4.1a shows the QuIDD that results from applying U = H⊗H to an outer product

as U |01〉〈01|U†. The Ri nodes of the QuIDD encode the binary indices of the rows in the

88

U|01><01|U

R1

C1 C1

-0.25 0.25
0 1

0 1

0.25 -0.25 0.25 -0.25

-0.25 0.25 -0.25 0.25

0.25 -0.25 0.25 -0.25

-0.25 0.25 -0.25 0.25

00

01

10

11

00 01 10 11

R0R1

C0C1

(a) (b)

U|01><01|U

Figure 4.1: (a) QuIDD for the density matrix resulting from U |01〉〈01|U †, where U =
H ⊗H, and (b) its explicit matrix form.

explicit matrix. Similarly, the Ci nodes encode the binary indices of the columns. Solid

lines leaving a node denote the positive cofactor of the index bit variable (a value of 1),

while dashed lines denote the negative cofactor (a value of 0). Terminal nodes correspond

to the value of the element in the explicit matrix whose binary row/column indices are

encoded by the path that was traversed.

Notice that the first and second pairs of rows of the explicit matrix in Figure 4.1b are

the same, as are the first and second pairs of columns. This redundancy is captured by the

QuIDD in Figure 4.1a because the QuIDD does not contain any R0 or C0 nodes. In other

words, the values and their locations in the explicit matrix can be completely determined

without the superfluous knowledge of the first row and column index bits.

Measurement, matrix multiplication, addition, scalar products, the tensor product, and

other operations involving QuIDDs are variations of the well-known Apply algorithm

(Chapter III). Vectors and matrices with large blocks of repeated values can be manipu-

lated in QuIDD form quite efficiently with these operations. Section 3.2 provides a formal

89

description of a class of vectors and matrices that is simulated efficiently with QuIDDs.

Since QuIDDs already have the capability to represent matrices and multiply them, ex-

tending QuIDDs to encompass the density matrix representation requires algorithms for

the outer product and the partial trace.

4.2 QuIDD-based Outer Product

The outer product involves matrix multiplication between a column vector and its

complex-conjugate transpose. Since a column vector QuIDD only depends on row vari-

ables, the transpose can be accomplished by swapping the row variables with column vari-

ables. The complex conjugate can then be performed with a DFS traversal that replaces

terminal node values with their complex conjugates. The original column vector QuIDD

is then multiplied by its complex-conjugate transpose using the matrix multiply operation

previously defined for QuIDDs (Subsection 3.1.4). Pseudo-code for this algorithm is given

in Figure 4.2. Notice that before the result is returned, it is divided by 2num qubits, where

num qubits is the number of qubits represented by the QuIDD vector. This is done because

a QuIDD that only depends on n row variables can be viewed as either a 2n × 1 column

vector or a 2n ×2n matrix in which all columns are the same. Since matrix multiplication

is performed in terms of the latter case [80, 82, 4], the result of the outer product contains

values that are multiplied by an extra factor of 2n, which must be normalized.

Although QuIDDs enable efficient simulation for a class of matrices and vectors in the

state-vector paradigm, it must be shown that the corresponding density matrix version of

this class can also be simulated efficiently. Since state-vectors are converted to density

matrices via the outer product, this requires proving that the outer product of a QuIDD

90

Outer Product(Q,numqubits) {
Q cctrans = Swap Row Col Vars(Q);
Q cctrans = Complex Conj(Q cctrans);
R = Matrix Multiply(Q,Q cctrans);
R = Scalar Div(Q cctrans,2num qubits);
return R;

}

Complex Conj(Q) {
if (Is Constant(Q))

return New Terminal(real(Q),
−1∗ imag(Q));

if (Table Lookup(R,Q)
return R;

v = Top Var(Q);
T = Complex Conj(Qv);
E = Complex Conj(Qv′);
R = ITE(v,T,E);
Table Insert(R,Q);
return R;

}

(a) (b)

Figure 4.2: Pseudo-code for (a) the QuIDD outer product and (b) its complex conjuga-
tion helper function Complex Conj. The code for Scalar Div is the same as
Complex Conj, except that in the terminal node case it returns the value of
the terminal divided by a scalar. Other functions are typical ADD operations
[4, 66].

vector in this class with its complex-conjugate transpose results in a QuIDD density matrix

of size polynomial in the number of qubits.

Theorem 4.1 Given an n-qubit QuIDD state-vector created from tensor products of QuIDDs

with O(1) nodes whose terminal values are in a persistent set, the outer product of this

QuIDD with its complex-conjugate transpose produces a QuIDD matrix with polynomi-

ally many nodes in n.

Proof. Since the given QuIDD state-vector’s terminal values are in a persistent set, the

number of nodes in the QuIDD is O(n) (Theorem 3.9). Consider the pseudo-code for the

QuIDD outer product shown in Figure 4.2a. The first operation is to create a transposed

copy of the QuIDD state-vector. Transposition only requires remapping the internal vari-

91

able nodes to represent column variables instead of row variables. This can be done in one

pass over all the nodes in the QuIDD state-vector (Subsection 3.1.5). Since the number

of nodes is O(n), this operation has O(n) runtime complexity and creates a transposed

copy with O(n) nodes. The next operation is to complex-conjugate the transposed QuIDD

copy. As evidenced by the pseudo-code for complex conjugation of QuIDDs in Figure

4.2b, this involves a single recursive pass over all nodes. All internal nodes are returned

unchanged with the O(1) ADD ITE operation [4], whereas the complex-conjugates of the

terminals are returned when they are reached. Since the number of nodes in the transposed

QuIDD copy is O(n), the runtime complexity of this operation is O(n) and results in a new

QuIDD with O(n) nodes. Next, QuIDD matrix multiplication is performed on the QuIDD

state-vector and its complex-conjugate transpose to produce the QuIDD density matrix.

It has been proven that QuIDD matrix multiplication of some QuIDD A with |A| nodes

and another QuIDD B with |B| nodes has runtime complexity O((|A||B|)2) and results in

a QuIDD with O((|A||B|)2) nodes (Subsection 3.1.4). Since the QuIDD state-vector and

its complex-conjugate transpose each have O(n) nodes, the matrix multiplication step has

runtime complexity O(n4). The final normalization step of the outer product is a scalar

division of the terminal values. Like QuIDD complex conjugation, this operation is im-

plemented by a single recursive pass over the QuIDD, but when the terminals are reached

the scalar division result is returned. Since the QuIDD density matrix has O(n4) nodes,

this operation has runtime complexity O(n4). Based on the complexity of all steps in

the QuIDD outer product algorithm, the overall runtime complexity of the QuIDD outer

product is O(n4) and results in a QuIDD density matrix with O(n4) nodes. �

92

4.3 QuIDD-based Partial Trace

To motivate the QuIDD-based partial trace algorithm, we note how the partial trace

can be performed with explicit matrices. The trace of a matrix A is the sum of A’s diagonal

elements. To perform the partial trace over a particular qubit in an n-qubit density matrix,

the trace operation can be applied iteratively to sub-matrices of the density matrix. Each

sub-matrix is composed of four elements with row indices r0s and r1s, and column indices

c0d and c1d, where r, s, c, and d are arbitrary sequences of bits which index the n-qubit

density matrix.

Tracing over these sub-matrices has the effect of reducing the dimensionality of the

density matrix by one qubit. A well-known ADD operation which reduces the dimension-

ality of a matrix is the Abstract operation [4]. Given an arbitrary ADD f , abstraction of

variable xi eliminates all internal nodes of f which represent xi by combining the positive

and negative cofactors of f with respect to xi using some binary operation. In other words,

Abstract(f ,xi,op) = fxi op fx′i
.

For QuIDDs, there is a one-to-one correspondence between a qubit on wire i (wires

are labeled top-down starting at 0) and variables Ri and Ci. So at first glance, one may sus-

pect that the partial trace of qubit i in f can be achieved by performing Abstract(f ,Ri,+)

followed by Abstract(f ,Ci,+). However, this will add the rows determined by qubit i

independently of the columns. The desired behavior is to perform the diagonal addition

of sub-matrices by accounting for both the row and column variables due to i simultane-

ously. The pseudo-code to perform the partial trace correctly is depicted in Figure 4.3.

In comparing this with the pseudo-code for the Abstract algorithm [4], the main differ-

93

Ptrace(Q,qubit index) {
if(Is Constant(Q))

return Q;
top q = Top Var
if (qubit index < Index(top q)) {

R = Apply(Q,Q,+);
return R;

}
if (Table Lookup(R,Q,qubit index)

return R;
T = Qtop q;
E = Qtop q′ ;
if (qubit index == Index(top q)) {

if (Is Constant(T) or Index(T) > Index(Q)+1)
r1 = T ;

else {
top T = Top Var(T);
r1 = TtopT ;

}
if (Is Constant(E) or Index(E) > Index(Q)+1)

r2 = E;
else {

top E = Top Var(E);
r2 = Etop E ′ ;

}
R = Apply(r1,r2,+);
Table Insert(R,Q,qubit index);
return R;

}
else { /∗ (qubit index > Index(top q)) ∗/

r1 = Ptrace(T,qubit index);
r2 = Ptrace(E,qubit index);
R = ITE(top q,r1,r2);
Table Insert(R,Q,qubit index);
return R;

}
}

Figure 4.3: Pseudo-code for the QuIDD partial trace. The index of the qubit being traced-
over is qubit index.

94

ence is that when Ri corresponding to qubit i is reached, we take the positive and negative

cofactors twice before making the recursive call. Since the interleaved variable ordering

of QuIDDs guarantees that Ci immediately follows Ri [80, 82], taking the positive and

negative cofactors twice simultaneously abstracts both the row and column variables for

qubit i, achieving the desired result of summing diagonals. In other words, for a QuIDD

f , the partial trace over qubit i is Ptrace(f , i) = fRiCi + fR′
iC

′
i
. Note that in the pseudo-code

there are checks for the special case when no internal nodes in the QuIDD represent Ci.

Not shown in the pseudo-code is book-keeping which shifts up the variables in the result-

ing QuIDD to fill the hole in the ordering left by the row and column variables that were

traced-over.

As in the case of the outer product, the QuIDD partial trace algorithm has efficient

runtime and memory complexity in the size of the QuIDD being traced-over, which we

now show.

Theorem 4.2 Given an n-qubit density matrix QuIDD A with |A| nodes, any qubit repre-

sented in the matrix can be traced-over with runtime complexity O(|A|) and results in a

density matrix QuIDD with O(|A|) nodes.

Proof. Consider the pseudo-code for the QuIDD partial trace algorithm in Figure 4.3. The

algorithm performs a recursive traversal over the nodes in the QuIDD density matrix and

takes certain actions when special cases are encountered. If a node is encountered which

corresponds to a qubit preceded by the traced-over qubit in the variable ordering,1 then

recursion stops and the sub-graph is added to itself with the ADD Apply algorithm [17].

1Recall that there is a one-to-one correspondence between a qubit on wire i and variables Ri and Ci

95

This operation has runtime complexity O(|A|) and results in a new sub-graph with O(|A|)

nodes. Next, if the partial trace of the current sub-graph has already been computed, then

recursion stops and the pre-computed result is simply looked up in the computed table

cache and returned. This operation has runtime complexity O(1) and returns a sub-graph

with O(|A|) nodes [17]. If there is no entry in the computed table cache, the algorithm

checks if the current node’s variable corresponds to the qubit to be traced-over. If so,

Apply is used to add the node’s children or children’s children, which again has O(|A|)

runtime and memory complexity. If the current node does not correspond to the qubit being

traced-over, then the partial trace algorithm is called recursively on the node’s children.

Since all the other special cases stop recursion and involve an Apply operation, then the

overall runtime complexity of the partial trace algorithm is O(|A|) and results in a new

QuIDD with O(|A|) nodes. �

4.4 Experimental Results

We consider a number of quantum circuit benchmarks which cover errors, error correction,

reversible logic, communication, and quantum search. We devised some of these bench-

marks, while others are drawn from NIST [12] and from a site devoted to reversible circuits

[49]. For every benchmark, the simulation performance of QuIDDPro is compared with

NIST’s QCSim quantum circuit simulator, which utilizes an explicit array-based compu-

tational engine. The results indicate that QuIDDPro far outperforms QCSim. All experi-

ments are performed on a 1.2GHz AMD Athlon workstation with 1GB of RAM running

Linux.

96

4.4.1 Reversible Circuits

Here we examine the performance of QuIDDPro simulating a set of reversible circuits,

which are quantum circuits that perform classical operations [51]. Specifically, if the input

qubits of a quantum circuit are all in the computational basis (i.e. they have only |0〉 or

|1〉 values), there is no quantum noise, and all the gates are “k-CNOT gates” with k = 0

for X , k = 1 for CNOT, etc. [63], then the output qubits and all intermediate states will

also be in the computational basis. Such a circuit results in a classical logic operation

which is reversible in the sense that the inputs can always be derived from the outputs and

the circuit function. Reversibility comes from the fact that all quantum operators must be

unitary and therefore all have inverses [51].

x
y

c in

c out

c out is initialized to |0>

RFA

RFA

RFA

RFA

RFA

x0
y0
|0>
|0>

x1
y1
|0>
|0>

x2
y2
|0>
|0>

x3
y3
|0>
|0>

x0 y0

x1 y1

x2 y2

x3 y3
cout

(a) (b)

Figure 4.4: (a) An implementation of a reversible full-adder (RFA), and (b) a reversible
4-bit ripple-carry adder which uses the RFA as a module. The reversible
ripple-carry adder circuit computes the binary sum of two 4-bit numbers:
x3x2x1x0 ⊕ y3y2y1y0. cout is the final carry bit output from the addition of the
most-significant bits (x3 and y3).

The first reversible benchmark we consider is a reversible 4-bit ripple-carry adder

which is depicted in Figure 4.4. Since the size of a QuIDD is sensitive to the arrange-

97

ment of different values of matrix elements, we simulate the adder with varied input values

(“rc adder1” through “rc adder4”). This is also done for other benchmarks. Two other re-

versible benchmarks we simulate contain fewer qubits but more gates than the ripple-carry

adder. One of these benchmarks is a 12-qubit reversible circuit that outputs a |1〉 on the

last qubit if and only if the number of |1〉’s in the input qubits is 3, 4, 5, or 6 (“9sym1”

through “9sym5”) [49]. The other benchmark is a 15-qubit reversible circuit that generates

the classical Hamming code of the input qubits (“ham15 1” through “ham15 3”) [49].

Performance results for all of these benchmarks are shown in Table 4.1. QuIDDPro

significantly outperforms QCSim in every case. In fact for circuits of 14 or more qubits,

QCSim requires more than 2GB of memory. Since QCSim uses an explicit array-based

engine, it is insensitive to the arrangement and values of elements in matrices. Therefore,

one can expect QCSim to use more than 2GB of memory for any benchmark with 14 or

more qubits, regardless of the circuit functionality and input values. Another interesting

result is that even though QuIDDPro is, in general, sensitive to the arrangement and values

of matrix elements, the data indicate that QuIDDPro is insensitive to varied inputs on the

same circuit for error-free reversible benchmarks. However, QuIDDPro still compresses

the tremendous amount of redundancy present in these benchmarks.

4.4.2 Error Correction and Communication

Now we analyze the performance of QuIDDPro on simulations that incorporate errors

and error correction. We consider some simple benchmarks that encode single qubits into

Steane’s 7-qubit error-correcting code [69] and some more complex benchmarks that use

the Steane code to correct a combination of bit-flip and phase-flip errors in a half-adder

98

Benchmark No. of No. of QuIDDPro QCSim
Qubits Gates Runtime (s) Peak Runtime (s) Peak

Memory (MB) Memory (MB)
rc adder1 16 24 0.44 0.0625 — > 2GB
rc adder2 16 24 0.44 0.0625 — > 2GB
rc adder3 16 24 0.44 0.0625 — > 2GB
rc adder4 16 24 0.44 0.0625 — > 2GB

9sym1 12 29 0.2 0.0586 8.01 128.1
9sym2 12 29 0.2 0.0586 8.02 128.1
9sym3 12 29 0.2 0.0586 8.04 128.1
9sym4 12 29 0.2 0.0586 8 128.1
9sym5 12 29 0.2 0.0586 7.95 128.1

ham15 1 15 148 1.99 0.121 — > 2GB
ham15 2 15 148 2.01 0.121 — > 2GB
ham15 3 15 148 1.99 0.121 — > 2GB

Table 4.1: Performance results for QuIDDPro and QCSim on the reversible circuit bench-
marks. > 2GB indicates that a memory usage cutoff of 2GB was exceeded.

and Grover’s quantum search algorithm [33]. Secure quantum communication is also

considered here because eavesdropping disrupts a quantum channel and can be treated as

an error.

The first two benchmarks “steaneX” and “steaneZ” encode a single logical qubit as

seven physical qubits with the Steane code and simulate the effect of a probabilistic bit-flip

and phase-flip error, respectively [12]. “steaneZ” contains 13 qubits which are initialized

to the state 0.866025|0000000000000〉+ 0.5|0000001000000〉. A combination of gates

apply a probabilistic phase-flip on one of the qubits and calculate the error syndrome and

error rate. “steaneX” is a 12-qubit version of the same circuit that simulates a probabilistic

bit-flip error.

A more complex benchmark that we simulate is a reversible half-adder with three

logical qubits that are encoded into 21 physical qubits with the Steane code. Addition-

ally, three ancillary qubits are used to track the error rate, giving a total circuit size of

24 qubits. “hadder1 bf1” through “hadder3 bf3” simulate the half-adder with different

99

numbers of bit-flip errors on various physical qubits in the encoding of one of the logical

qubit inputs. Similarly, “hadder1 pf1” through “hadder3 pf3” simulate the half-adder with

various phase-flip errors.

Another large benchmark used is an instance of Grover’s quantum search algorithm

[33]. Whereas the simulations of this algorithm described in the last section utilized

the state vector representation, this experiment utilizes the density matrix representation.

The oracle in this benchmark searches for one element in a database of four items. It

has two logical data qubits and one logical, ancillary oracle-qubit which are all encoded

with the Steane code. Like the half-adder circuit, this results in a total circuit size of 24

qubits. “grover s1” simulates the circuit with the encoded qubits in the absence of errors.

“grover s bf1” and “grover s pf1” introduce and correct a bit-flip and phase-flip error,

respectively, on one of the physical qubits in the encoding of the logical oracle qubit.

In addition to error modeling and error correction for computational circuits, another

important application is secure communication using quantum cryptography. The basic

concept is to use entanglement to distribute a shared key. Eavesdropping constitutes a

measurement of the quantum state representing the key, disrupting the quantum state. This

disruption can be detected by the legitimate communicating parties. Since actual imple-

mentations of quantum key distribution have already been demonstrated [25], efficient

simulation of these protocols may play a key role in exploring possible improvements.

Therefore, we present two benchmarks which implement BB84, one of the earliest quan-

tum key distribution protocols [6]. “bb84Eve” accounts for the case in which an eaves-

dropper is present (see Figure 4.5) and contains 9 qubits, whereas “bb84NoEve” accounts

100

H

H

H

H

H

H

X GAD GADX X

AInfo |0>

ABasis |0>

EInfo |0>

EBasis |0>

BInfo |0>

BBasis |0>

BasesEq |0>

AInfoNEqBInfo |0>

Error |0>

H

H

H

H

H

X X X

Figure 4.5: Quantum circuit for the “bb84Eve” benchmark.

for the case in which no eavesdropper is present and contains 7 qubits. In both circuits, all

qubits are traced-over at the end except for two qubits reserved to track whether or not the

legitimate communicating parties successfully shared a key (BasesEq) and the error due

to eavesdropping (Error).

Performance results for all of these benchmarks are shown in Table 4.2. Again, QuIDD-

Pro significantly outperforms QCSim on all benchmarks except for “bb84Eve” and “bb84NoEve.”

The performance of QuIDDPro and QCSim is about the same for these benchmarks. The

reason is that these benchmarks contain fewer qubits than all of the others. Since each

additional qubit doubles the size of an explicit density matrix, QCSim has difficulty simu-

lating the larger Steane encoded benchmarks.

4.4.3 Scalability and Quantum Search

To analyze scalability with the number of input qubits, we turn to quantum circuits con-

taining a variable number of input qubits. In particular, we reconsider Grover’s quantum

search algorithm. However, for these instances of quantum search, the qubits are not en-

coded with the Steane code, and errors are not introduced. The oracle performs the same

function as the one described in the last subsection except that the number of data qubits

101

Benchmark No. of No. of QuIDDPro QCSim
Qubits Gates Runtime (s) Peak Runtime (s) Peak

Memory (MB) Memory (MB)
steaneZ 13 143 0.6 0.672 287 512
steaneX 12 120 0.27 0.68 53.2 128

hadder bf1 24 49 18.3 1.48 — > 2GB
hadder bf2 24 49 18.7 1.48 — > 2GB
hadder bf3 24 49 18.7 1.48 — > 2GB
hadder pf1 24 51 21.2 1.50 — > 2GB
hadder pf2 24 51 21.2 1.50 — > 2GB
hadder pf3 24 51 20.7 1.50 — > 2GB
grover s1 24 50 2301 94.2 — > 2GB

grover s bf1 24 71 2208 94.3 — > 2GB
grover s pf1 24 73 2258 94.2 — > 2GB

bb84Eve 9 26 0.02 0.129 0.19 2.0
bb84NoEve 7 14 <0.01 0.0313 <0.01 0.152

Table 4.2: Performance results for QCSim and QuIDDPro on the benchmarks incorporat-
ing errors. > 2GB indicates that a memory usage cutoff of 2GB was exceeded.

ranges from 5 to 20.

Performance results for these circuit benchmarks are shown in Table 4.3. Again, QuID-

DPro has significantly better performance. These results highlight the fact that QCSim’s

explicit representation of the density matrix becomes an asymptotic bottleneck as n in-

creases, while QuIDDPro’s compression of the density matrix and operators scales ex-

tremely well.

4.5 Summary

We have described a new graph-based simulation technique that enables efficient den-

sity matrix simulation of quantum circuits. We implemented this technique in the QuID-

DPro simulator. QuIDDPro uses the QuIDD data structure to compress redundancy in

the gate operators and the density matrix. As a result, the time and memory complex-

ity of QuIDDPro varies with the structure of the circuit. However, we demonstrated that

QuIDDPro exhibits superior performance on a set of benchmarks which incorporate qubit

102

No. of No. of QuIDDPro QCSim
Qubits Gates Runtime (s) Peak Memory (MB) Runtime (s) Peak Memory (MB)

5 32 0.05 0.0234 0.01 0.00781
6 50 0.07 0.0391 0.01 0.0352
7 84 0.11 0.043 0.08 0.152
8 126 0.16 0.0586 0.54 0.625
9 208 0.27 0.0742 3.64 2.50
10 324 0.42 0.0742 23.2 10.0
11 520 0.66 0.0898 151 40.0
12 792 1.03 0.105 933 160
13 1224 1.52 0.141 5900 640
14 1872 2.41 0.125 — > 2GB
15 2828 3.62 0.129 — > 2GB
16 4290 5.55 0.145 — > 2GB
17 6464 8.29 0.152 — > 2GB
18 9690 12.7 0.246 — > 2GB
19 14508 18.8 0.199 — > 2GB
20 21622 28.9 0.203 — > 2GB

Table 4.3: Performance results for QCSim and QuIDDPro on the Grover’s quantum search
benchmark. > 2GB indicates that a memory usage cutoff of 2GB was exceeded.

errors, mixed states, error correction, quantum communication, and quantum search. This

result indicates that there is a great deal of structure in practical quantum circuits that

graph-based algorithms like those implemented in QuIDDPro exploit.

CHAPTER V

Checking Equivalence of States, Operators and Circuits

A large body of work has developed around classical synthesis of quantum circuits

[5, 61, 67]. Equivalence-checking of digital circuits is a key task in classical synthesis and

verification, and is likely to be as important in quantum CAD, where equivalence checking

of states and operators is more difficult. Unlike classical circuits, qubits and quantum gates

may differ by global and relative phase yet be equivalent upon measurement [51]. Building

upon the algorithmic blocks developed in Chapter III, we present a number of QuIDD

algorithms which perform equivalence checking for states and operators which appear in

[81]. Solutions to this problem have not been explored very much in the literature, and as

we show, the variety of algorithms which do solve the problem is surprising.

The next section offers motivation for why equivalence checking is useful in quantum

CAD. Section 5.2 describes both linear-algebraic and QuIDD algorithms for checking

global-phase equivalence of states and operators. Section 5.3 covers relative-phase equiv-

alence checking algorithms. Sections 5.2 and 5.3 also contain empirical studies comparing

the algorithms’ performance on various benchmarks. Lastly, a discussion of the results and

a summary of computational complexities for all algorithms are provided in Section 5.4.

103

104

• •

• • ∼= •

Ry(
π
4) �������� Ry(

π
4) �������� Ry(−π

4) �������� Ry(−π
4) ��������

Figure 5.1: Margolus’ circuit, which is equivalent up to relative phase to the Toffoli gate.

5.1 Motivation for Equivalence Checking

The extended notion of quantum equivalence creates several design opportunities. For

example, the Toffoli gate can be implemented with fewer controlled-NOT (CNOT) and

1-qubit gates up to relative phase [5, 67] as shown in Figure 5.1. Normally the Toffoli gate

requires six CNOT and eight 1-qubit gates to implement. The relative-phase differences

induced can be canceled out so long as every pair of these gates in the circuit is strategically

placed [67]. Since circuit minimization is being pursued for a number of key quantum

arithmetic circuits with many Toffoli gates such as modular exponentiation [73, 26, 62, 61],

this type of phase equivalence could reduce the number of gates even further.

Recall that two states |ψ〉 and |ϕ〉 are equal up to global phase if |ϕ〉 = eiθ |ψ〉, where

θ ∈ R. eiθ will not be observed upon measurement of either state [51]. In contrast, two

states are equal up to relative phase if

(5.1) |ϕ〉 =





















eiθ0

eiθ1

. . .

eiθN−1





















|ψ〉 .

The probability amplitudes of the state U |ψ〉 will in general differ by more than relative

105

phase from those of U |ϕ〉, but the measurement outcomes may be the same. Global phase

equivalence may be viewed as a special case of relative-phase equivalence in which all eiθ j

are equal. Furthermore, identical states may be considered a special case of global-phase

equivalence in which the phase factor is 1. Thus, the equivalence checking problem may

be viewed as an equivalence hierarchy in which exact equivalence implies global-phase

equivalence, which implies relative-phase equivalence, which in turn implies measurement

outcome equivalence. The equivalence checking problem is also extensible to quantum

operators with applications to quantum-circuit synthesis and verification, which involves

computer-aided generation of minimal quantum circuits with correct functionality.

The inner product and matrix product may be used to determine such equivalences, but

in this work, we present QuIDD algorithms to accomplish the task more efficiently. The

algorithms solve the equivalence-checking problem asymptotically faster in some cases.

Empirical results confirm the algorithms’ effectiveness and show that the improvements

are more significant for operators than for states. Interestingly, solving the equivalence

problems for the benchmarks considered requires significantly less time than creating the

QuIDD representations, which indicates that such problems can be reasonably solved in

practice using quantum-circuit CAD tools.

5.2 Checking Equivalence up to Global Phase

This section describes algorithms that check global-phase equivalence of two quantum

states or operators. The first two algorithms are well-known linear-algebraic operations,

while the remaining algorithms exploit QuIDD properties explicitly. The section con-

cludes with experiments comparing all algorithms.

106

5.2.1 Inner Product

Since the quantum-circuit formalism models an arbitrary quantum state |ψ〉 as a unit

vector, the inner product 〈ψ|ψ〉 = 1. In the case of a global-phase difference between two

states |ψ〉 and |ϕ〉, the inner product is the global-phase factor, 〈ϕ|ψ〉 = eiθ〈ψ|ψ〉 = eiθ.

Since |eiθ|= 1 for any θ, checking if the complex modulus of the inner product is 1 suffices

to check global-phase equivalence for states.

Although the inner product may be computed using explicit arrays, a straightforward

QuIDD-based implementation is easily derived. The complex-conjugate transpose and

matrix product with QuIDD operands have been previously defined in Chapter IV. Thus,

the algorithm computes the complex-conjugate transpose of A and multiplies the result

with B. The complexity of this algorithm is given by the following lemma.

Lemma 5.2 Consider two state QuIDDs A and B with sizes |A| and |B|, respectively, in

number of nodes. The global-phase difference, if any, can be computed in O(|A||B|) time

and memory.

Proof. Computing the complex-conjugate transpose of A requires O(|A|) time and mem-

ory (Subsection 3.1.5). Matrix multiplication of two ADDs of sizes |A| and |B| requires

O((|A||B|)2) time and memory (Subsection 3.1.4). However, this bound is loose for an

inner product because only a single dot product must be performed. In this case, the ADD

matrix multiplication algorithm reduces to a single call of C = Apply(A,B,∗) followed

by D = Apply(C,+) [4]. D is a single terminal node containing the global-phase factor

if |value(D)| = 1. Apply(A,B,∗) and Apply(C,+) are computed in O(|A||B|) time and

memory [17], while |value(D)| is computed in O(1) time and memory. �

107

5.2.2 Matrix Product

The matrix product of two operators can be used for global-phase equivalence check-

ing. In particular, since all quantum operators are unitary, the adjoint of each operator is

its inverse. Thus, if two operators U and V differ by a global phase, then UV † = eiθI.

With QuIDD representations of U and V , computing V † requires O(|V |) time and

memory (Subsection 3.1.5). The matrix product W = UV † requires O((|U ||V |)2) time and

memory (Subsection 3.1.4). To check if W = eiθI, any terminal value t is chosen from W ,

and scalar division is performed on W as W ′ = Apply(W, t,/) which takes O((|U ||V |)2)

time and memory. Since QuIDDs are canonical, checking if W ′ = I requires only O(1)

time and memory. If W ′ = I, then t is the global-phase factor.

5.2.3 Node-Count Check

The previous algorithms merely translate linear-algebraic operations to QuIDDs, but

exploiting the following QuIDD property leads to faster checks.

Lemma 5.3 The QuIDD A′ = Apply(A,c,∗), where c ∈ C and c 6= 0, is isomorphic to A,

hence |A′| = |A|.

Proof. In creating A′, Apply expands all of the internal nodes of A since c is a scalar, and

the new terminals are the terminals of A multiplied by c. All terminal values ti of A are

unique by definition of a QuIDD (see Chapter III). Thus, cti 6= ct j for all i, j such that

i 6= j. As a result, the number of terminals in A′ is the same as in A. �

Lemma 5.3 states that two QuIDD states or operators that differ by a non-zero scalar,

such as a global-phase factor, have the same number of nodes. Thus, equal node counts

108

GPRC(A,B,gp,have gp) {
if (Is Constant(A) and Is Constant(B)) {

if (Value(B) == 0) return (Value(A) == 0);
ngp = Value(A)/Value(B);
if (sqrt(real(ngp)∗ real(ngp)+

imag(ngp)∗ imag(ngp)) ! = 1)
return false;

if (!have gp) {
gp = ngp;
have gp = true;

}
return (ngp == gp);

}
if ((Is Constant(A) and !Is Constant(B))

or (!Is Constant(A) and Is Constant(B)))
return false;

if (Var(A)! = Var(B)) return false;
return (GPRC(T hen(A),T hen(B),gp,have gp)

and GPRC(Else(A),Else(B),gp,have gp));
}

Figure 5.2: Pseudo-code for the recursive global-phase equivalence check.

in QuIDDs are a necessary but not sufficient condition for global-phase equivalence. To

see why it is not sufficient, consider two state vectors |ψ〉 and |ϕ〉 with elements w j and

vk, respectively, where j,k = 0,1, . . .N − 1. If some w j = vk = 0 such that j 6= k, then

|ϕ〉 6= eiθ |ψ〉. The QuIDD representations of these states can in general have the same

node counts. Despite this drawback, the node-count check requires only O(1) time since

Apply is easily augmented to recursively sum the number of nodes as a QuIDD is created.

5.2.4 Recursive Check

Lemma 5.3 implies that a QuIDD-based algorithm which takes into account terminal

value differences implements a sufficient condition for checking global-phase equivalence.

The pseudo-code for such an algorithm called GPRC is presented in Figure 5.2.

GPRC returns true if two QuIDDs A and B differ by global phase and false otherwise.

109

gp and have gp are global variables containing the global-phase factor and a flag signify-

ing whether or not a terminal node has been reached, respectively. The value of gp is only

valid if true is returned.

The first conditional block of GPRC deals with terminal values. The potential global-

phase factor ngp is computed after handling division by 0. If |ngp| 6= 1 or if ngp 6= gp

when gp has been set,then the two QuIDDs do not differ by a global phase. Next, the

condition specified by Lemma 5.3 is addressed. If the node of A depends on a different

row or column variable than the node of B, then A and B are not isomorphic and thus

cannot differ by global phase. Finally, GPRC is called recursively, and the results of these

calls are combined via the logical AND operation.

Early termination occurs when isomorphism is violated or more than one phase differ-

ence is computed. In the worst case, both QuIDDs will be isomorphic, but the last terminal

visited in each QuIDD will differ by more than a global-phase factor, causing full traver-

sals of both QuIDDs. Thus, the overall runtime and memory complexity of GPRC for

states or operators is O(|A|+ |B|). Also, the node-count check can be run before GPRC

to quickly eliminate many nonequivalences.

5.2.5 Empirical Results for Global-Phase Equivalence

The first benchmark considered is a single iteration of Grover’s quantum search algo-

rithm [33], which is depicted in Figure 5.3. As in Chapter III, the oracle searches for the

last item in the database. One iteration is sufficient to test the effectiveness of the algo-

rithms since the state vector QuIDD remains isomorphic across all iterations, as proven in

Subsection 3.2.2.

110

|0〉 H H

CPS

H •

|0〉 H H H •

|0〉 H H H •

...
...

...
...

|1〉 H �������� H

_ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _

Figure 5.3: One iteration of Grover’s search algorithm with an ancillary qubit used by the
oracle. CPS is the conditional phase shift operator, while the boxed portion is
the Grover iteration operator.

Figure 5.4a shows the runtime results for the inner product and GPRC algorithms (no

results are given for the node-count check algorithm since it runs in O(1) time). The

results confirm the asymptotic complexity difference between the inner product and the

GPRC algorithm. The number of nodes in the QuIDD state vector after a Grover iteration

is O(n) [80], which is confirmed in Figure 5.4b. As a result, the runtime complexity of the

inner product should be O(n2), which is confirmed by a regression plot within 1% error.

In contrast, the runtime complexity of the GPRC algorithm should be O(n), which is also

confirmed by another regression plot within the same error.

Figure 5.5a shows runtime results for the matrix product and GPRC algorithms check-

ing the Grover operator. We showed in Chapter III that the QuIDD representation of this

operator grows in size as O(n), which is confirmed in Figure 5.5b. Therefore, the runtime

of the matrix product should be quadratic in n but linear in n for GPRC. Regression plots

verify these complexities within 0.3% error.

111

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 100 200 300 400 500 600

R
un

tim
e

(s
)

No. of qubits

Inner Product
GPRC

3.90824e-06x^2
2.91557e-05x + 0.01

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600

N
o.

 o
f n

od
es

No. of qubits

Nodes in state
x

(a) (b)

Figure 5.4: (a) Runtime results and regressions for the inner product and GPRC on check-
ing global-phase equivalence of states generated by a Grover iteration. (b) Size
in node count and regression of the QuIDD representation of the state vector.

The next benchmark compares states that appear in Shor’s integer factorization algo-

rithm [65]. In particular, we consider states created by the modular exponentiation sub-

circuit that represent all possible combinations of x and f (x,N) = ax mod N, where N is

the integer to be factored (see Figure 5.6). Each of the O(2n) paths to a non-0 terminal en-

codes a binary value for x and f (x,N). This benchmark demonstrates how the algorithms

fare with exponentially-growing QuIDDs.

Tables 5.1a-d show the results of the inner product and GPRC for this benchmark.

Each N is an integer whose two non-trivial factors are prime.1 a is set to N − 2 since it

may be chosen randomly from the range [2..N − 2]. In the case of Table 5.1a, states |ψ〉

and |ϕ〉 are equal up to global phase. The node counts for both states are equal as predicted

by Lemma 5.3. Interestingly, both algorithms exhibit nearly the same performance. Ta-

bles 5.1b-d contain results for the cases in which Hadamard gates are applied to the first,

1Such integers are likely to be the ones input to Shor’s algorithm since they are the foundation of modern
public key cryptography [65].

112

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 100 200 300 400 500 600

R
un

tim
e

(s
)

No. of qubits

2.33084e-05x^2
Matrix Product

0.000310731x + 0.09
GPRC

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 100 200 300 400 500 600

N
o.

 o
f n

od
es

No. of qubits

7.58331x
Operator

(a) (b)

Figure 5.5: (a) Runtime results and regressions for the matrix product and GPRC on
checking global-phase equivalence of the Grover iteration operator. (b) Size in
node count and regression of the QuIDD representation of the operator.

middle, and last qubits, respectively, of |ϕ〉. These results show that early termination in

GPRC can enhance performance by factors of roughly 1.5x to 10x.

In almost every case, both algorithms represent far less than 1% of the total runtime.

Thus, checking for global-phase equivalence among QuIDD states appears to be an easily

achievable task once the QuIDDs are created. An interesting side note is that in modular

exponentiation, some QuIDD states with more qubits have more exploitable structure than

those with fewer qubits. For instance, the N = 387929 (19 qubits) QuIDD has fewer than

half the nodes of the N = 163507 (18 qubits) QuIDD.

Table 5.2 contains results for the matrix product and GPRC algorithm checking the

inverse QFT operator. As noted in Chapter III, the inverse QFT is a key operator in Shor’s

algorithm [65], and its n-qubit QuIDD representation grows as O(22n). In this case, the

asymptotic differences in the matrix product and GPRC are very noticeable. Also, the

memory usage indicates that the matrix product may need asymptotically more intermedi-

113

x

















7xmod15

















 R0

 R1

 R2

 R3

 R4

 R5

 R6

 R7

 7^x mod 15

6b3db

6b3da 6b3d2

6b3d9

6b3d4 6b3cd 6b3d1

6b3d8

6b3d7

0 + 0i

6b3cc 6b3d06b3d36b3d6

6b3cb6b3cf6b3d5

6b3ce 6b3ca

0.258199 + 0i

Figure 5.6: A QuIDD state combining x and 7x mod 15 in binary. The first qubit of each
partition is least-significant. Internal node labels are unique hexadecimal iden-
tifiers based on each node’s memory address with the variable depended upon
listed to the left.

ate memory despite operating on QuIDDs with the same number of nodes as GPRC.

5.3 Checking Equivalence up to Relative Phase

Like global-phase equivalence, the relative-phase checking problem can be solved in

several ways. The first three algorithms adapt standard linear algebra to QuIDDs, while

the last two algorithms exploit QuIDD properties directly, offering asymptotic runtime and

memory improvements.

5.3.1 Modulus and Inner Product

Consider two state vectors |ψ〉 and |ϕ〉 that are equal up to relative phase and have

complex-valued elements w j and vk, respectively, where j,k = 0,1, . . . ,N − 1. Comput-

114

No. of Creation No. of No. of IP GPRC
Qubits

N
Time (s) Nodes |ψ〉 Nodes |ϕ〉 Time (s) Time (s)

10 993 2.37 273 273 0.012 0.008
11 1317 3.23 1710 1710 0.064 0.048
12 4031 11.9 9391 9391 0.30 0.26
13 6973 24.8 10680 10680 0.34 0.28
14 12127 55.1 18236 18236 0.54 0.46
15 19093 128.3 12766 12766 0.41 0.32
16 50501 934.1 51326 51326 1.7 1.6
17 69707 1969 26417 26417 0.87 0.78
18 163507 12788 458064 458064 19.6 19.6
19 387929 93547 182579 182579 6.62 6.02

No. of IP GPRC
Nodes |ϕ〉 Time (s) Time (s)

508 0.012 < 1e−10
1812 0.052 0.004

10969 0.27 0.036
11649 0.31 0.036
19978 0.54 0.06
13446 0.41 0.036
55447 1.53 0.2
27797 0.78 0.084
521725 19.0 9.18
194964 6.44 4.40

(a) (b)
No. of Creation No. of No. of IP GPRC
Qubits

N
Time (s) Nodes |ψ〉 Nodes |ϕ〉 Time (s) Time (s)

10 993 2.37 273 508 0.016 < 1e−10
11 1317 3.23 1710 2768 0.068 0.024
12 4031 11.9 9391 11773 0.27 0.076
13 6973 24.8 10680 16431 0.43 0.14
14 12127 55.1 18236 29584 0.65 0.22
15 19093 128.3 12766 19207 0.56 0.20
16 50501 934.1 51326 71062 1.76 0.84
17 69707 1969 26417 46942 1.24 0.55
18 163507 12788 458064 653048 31.7 26.1
19 387929 93547 182579 312626 9.33 6.44

No. of IP GPRC
Nodes |ϕ〉 Time (s) Time (s)

508 0.008 0.004
2768 0.056 0.008
14092 0.21 0.088
16431 0.27 0.084
29584 0.53 0.13
19207 0.50 0.084
74919 1.51 0.66
46942 1.13 0.25

629533 29.6 23.7
312626 13.0 8.62

(c) (d)

Table 5.1: Performance results for the inner product and GPRC algorithms on checking
global-phase equivalence of modular exponentiation states. In (a), |ψ〉 = |ϕ〉
up to global phase. In (b), (c), and (d), Hadamard gates are applied to the first,
middle, and last qubits of |ϕ〉 so that |ψ〉 6= |ϕ〉 up to global phase.

ing |ϕ′〉 = ΣN−1
i=0 |v j| | j〉 and |ψ′〉 = ΣN−1

k=0 |wk| |k〉 = ΣN−1
k=0 |eiθkvk| |k〉 sets each phase factor

to 1, allowing the inner product to be applied as in Subsection 5.2.1. The complex mod-

ulus operations are computed as C = Apply(A, | · |) and D = Apply(B, | · |) with runtime

and memory complexity O(|A|+ |B|), which is dominated by the O(|A||B|) inner product

complexity.

5.3.2 Modulus and Matrix Product

For operator equivalence up to relative phase, two cases are considered, namely the

diagonal relative-phase matrix appearing on the left or right side of one of the operators.

Consider two operators U and V with elements u j,k and v j,k, respectively, where j,k =

115

No. of Matrix Product GPRC
Qubits Time (s) Mem (MB) Time (s) Mem (MB)

3 0.036 0.13 0.004 0.13
4 0.30 0.39 0.016 0.13
5 2.53 1.41 0.064 0.25
6 22.55 6.90 0.24 0.66
7 271.62 46.14 0.98 2.03
8 3637.14 306.69 4.97 7.02
9 22717 1800.42 17.19 26.48

10 — > 2GB 75.38 102.4
11 — > 2GB 401.34 403.9

Table 5.2: Performance results for the matrix product and GPRC algorithms on checking
global-phase equivalence of the QFT operator used in Shor’s factoring algo-
rithm. > 2GB indicates that a memory usage cutoff of 2GB was exceeded.

0, . . .N − 1. The two cases in which the relative-phase factors appear on either side of V

are described as u j,k = eiθ jv j,k (left side) and u j,k = eiθkv j,k (right side). In either case the

the matrix product check discussed in Subsection 5.2.2 may be extended by computing

the complex modulus without increasing the overall complexity. Note that neither this

algorithm nor the modulus and inner product algorithm calculate the relative-phase factors.

5.3.3 Element-wise Division

Given the states discussed in Subsection 5.3.1, wk = eiθkvk, the operation wk/v j for

each j = k is a relative-phase factor, eiθk . The condition |wk/v j| = 1 is used to check if

each division yields a relative phase. If this condition is satisfied for all divisions, the states

are equal up to relative phase.

The QuIDD implementation for states is simply C = Apply(A,B,/), where Apply is

augmented to avoid division by 0 and instead return 1 when two terminal values being

compared equal 0, and return 0 otherwise. Apply can be further augmented to terminate

early when |w j/vi| 6= 1. C is a QuIDD vector containing the relative-phase factors. If C

116

contains a terminal value of 0, then A and B do not differ by relative phase. Since a call to

Apply implements this algorithm, the runtime and memory complexity are O(|A||B|).

Element-wise division for operators is more complicated. For QuIDD operators U

and V , W = Apply(U,V,/) is a QuIDD matrix with the relative-phase factor eiθ j along

row j in the case of phases appearing on the left side, and along column j in the case of

phases appearing on the right side. In the first case, all rows of W are identical, meaning

that the support of W does not contain any row variables. Similarly, in the second case

the support of W does not contain any column variables. A complication arises when 0

values appear in either operator. In such cases, the support of W may contain both variable

types, but the operators may in fact be equal up to relative phase. Figure 5.11 presents an

algorithm based on Apply which accounts for these special cases by using a sentinel value

of 2 to mark valid 0 entries that do not affect relative-phase equivalence.2 These entries

are recursively ignored by skipping either row or column variables with sentinel children

(S specifies row or column variables), which effectively fills copies of neighboring row or

column phase values in their place in W . The algorithm must be run twice, once for each

variable type. The size of W is O(|U ||V |) since it is created with a variant of Apply.

5.3.4 Non-0 Terminal Merge

A necessary condition for relative-phase equivalence is that zero-valued elements of

each state vector appear in the same locations, as expressed by the following lemma.

Lemma 5.4 A necessary but not sufficient condition for two states |ϕ〉 = ΣN−1
j=0 v j | j〉 and

|ψ〉 = ΣN−1
k=0 wk |k〉 to be equal up to relative phase is that ∀v j = wk = 0, j = k.

2Any sentinel value larger than 1 may be used since such values do not appear in the context of quantum
circuits.

117

Proof. If |ψ〉 = |ϕ〉 up to relative phase, |ψ〉 = ΣN−1
k=0 eiθkvk |k〉. Since eiθk 6= 0 for any θ,

if any wk = 0, then v j = 0 must also be true where j = k. A counter-example proving

insufficiency is |ψ〉 = (0,1/
√

3,1/
√

3,1/
√

3)T and |ϕ〉 = (0,1/2,1/
√

2,1/2)T . �

QuIDD canonicity may be exploited with this condition. Let A and B be the QuIDD

representations of the states |ψ〉 and |ϕ〉, respectively. First compute C = Apply(A,d| · |e)

and D = Apply(B,d| · |e), which converts every non-zero terminal value of A and B into a

1. Since C and D have only two terminal values, 0 and 1, checking if C and D are equal

satisfies Lemma 5.4. Canonicity ensures this check requires O(1) time and memory. The

overall runtime and memory complexity of this algorithm is O(|A|+ |B|) due to the unary

Apply operations. This algorithm can also be applied to operators since Lemma 5.4 also

applies to u j,k = eiθ j v j,k (phases on the left) and u j,k = eiθkv j,k (phases on the right) for

operators U and V .

5.3.5 Modulus and DD Compare

A variant of the algorithm presented in Subsection 5.3.1 which also exploits the canon-

icity of QuIDDs provides an asymptotic improvement for checking a necessary and suf-

ficient condition of relative-phase equivalence of states and operators. As in Subsection

5.3.1, compute C = Apply(A, | · |) and D = Apply(B, | · |). If A and B are equal up to rela-

tive phase, then C = D since each phase factor becomes a 1. Canonicity again ensures this

check requires O(1) time and memory. Thus, the runtime and memory complexity of this

algorithm is dominated by the unary Apply operations, giving O(|A|+ |B|).

118

|0〉 H •
|0〉 �������� • ��������
|0〉 �������� •

...
|0〉 • ��������
|0〉 �������� •

Figure 5.7: Remote EPR-pair creation between the first and last qubits via nearest-
neighbor interactions.

5.3.6 Empirical Results for Relative-Phase Equivalence

We now present empirical results for the relative-phase equivalence checking algo-

rithms. The first benchmark creates a remote EPR pair, which is an EPR pair between the

first and last qubits, via nearest-neighbor interactions [11]. The circuit is shown in Figure

5.7 and is discussed in detail later in Chapter VI. Given an initial state |00 . . .0〉, it creates

the remote EPR-pair state (1/
√

2)(|00 . . .0〉+ |10 . . .1〉). The circuit size is varied, and the

final state is compared to the state (e0.345i/
√

2) |00 . . .0〉+(e0.457i/
√

2) |10 . . .1〉.

Runtime results for all algorithms are provided in Figure 5.8a. The results show that

all of the algorithms run quickly. For example, the inner product is the slowest algorithm,

yet for a 1000-qubit instance it runs in approximately 0.2 seconds, a small fraction of the

7.6 seconds required to create the QuIDD state vectors.

Regressions of the runtime and memory data reveal linear complexity for all algo-

rithms to within 1% error. This is not unexpected since the QuIDD representations of the

states grow linearly with the number of qubits (see Figure 5.8b), and the complex modulus

reduces the number of different terminals prior to computing the inner product. These

119

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 100 200 300 400 500 600 700 800 900 1000

R
un

tim
e

(s
)

No. qubits

0.000193944x
Inner Product
1.5501e-05x

Element-wise Division
9.82249e-05x

Mod. DD Compare
1.50249e-05x

Non-0 Term. Merge

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500 600 700 800 900 1000

N
o.

 o
f n

od
es

No. of qubits

2.1x
State

State with RP

(a) (b)

Figure 5.8: (a) Runtime results and regressions for the inner product, element-wise di-
vision, modulus and DD compare, and non-0 terminal merge algorithms for
checking relative-phase equivalence of the remote EPR pair circuit. (b) Size
in node count and regressions of the QuIDD states compared.

results illustrate that in practice, the inner product and element-wise division algorithms

can perform better than their worst-case complexity. Element-wise division should be pre-

ferred when QuIDD states are compact since unlike the other algorithms, it computes the

relative-phase factors.

The Hamiltonian simulation circuit shown in Figure 5.9 is taken from [51, Figure 4.19,

p. 210]. When its one-qubit gate (boxed) varies with ∆t, it produces a variety of diagonal

operators, all of which are equivalent up to relative phase. Empirical results for such

equivalence checking are shown in Figure 5.10. As in the case of the teleportation circuit

benchmark, the matrix product and element-wise division algorithms perform better than

their worst-case asymptotic upper-bounds, indicating that element-wise division is the best

choice for compact QuIDD operators.

120

• •

...
...

• •
• •

|0〉 �������� �������� �������� e−i∆tZ �������� �������� �������� |0〉

Figure 5.9: Quantum-circuit realization of a Hamiltonian consisting of Pauli operators.
Extra Pauli gates may be needed depending on the Hamiltonian.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100 200 300 400 500 600

R
un

tim
e

(s
)

No. of qubits

0.000488263x
Matrix Product
0.000182201x

Element-wise Division
0.000336733x

Mod. DD Compare
2.57618e-05x

Non-0 Term. Merge

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200 250 300 350 400

N
o.

 o
f n

od
es

No. of qubits

6.1x
Operator

Operator with RP

(a) (b)

Figure 5.10: (a) Runtime results and regressions for the matrix product, element-wise di-
vision, modulus and DD compare, and non-0 terminal merge algorithms for
checking relative-phase equivalence of the Hamiltonian ∆t circuit. (b) Size
in node count and regressions of the QuIDD operators compared.

5.4 Summary

Although QuIDD properties like canonicity enable exact equivalence checking in O(1)

time, we have shown that such properties may be further exploited to develop efficient al-

gorithms for the difficult problem of equivalence checking up to global and relative phase.

In particular, the global-phase recursive check and element-wise division algorithms ef-

121

ficiently determine equivalence of states and operators up to global and relative phase,

while computing the phases. In practice, they outperform QuIDD implementations of the

inner and matrix product, which do not compute relative-phase factors. Other QuIDD al-

gorithms presented in this work, such as the node-count check, non-0 terminal merge, and

modulus and DD compare, further exploit DD properties to provide even faster checks but

only satisfy necessary conditions for equivalence. Thus, they should be used to aid the

more robust algorithms. A summary of the theoretical results presented in this paper is

provided in Table 5.3.

The algorithms presented here enable QuIDDs to be used in synthesis and verification

of quantum circuits, which was identified as the third goal of quantum circuit simula-

tion. A fair amount of work has been done on optimal synthesis of small quantum circuits

as well as heuristics for synthesis of larger circuits via circuit transformations [56, 61].

Equivalence checking in particular plays a key role in some of these techniques since it

is often necessary to verify the correctness of the transformations. Future work will de-

termine how these equivalence checking algorithms may be used as primitives to enhance

such heuristics. Another interesting direction to explore is the use of density matrices for

synthesis guided by error-based requirements and perhaps even mixed states. Such work

would build upon the developments of Chapter IV in addition to the operator equivalence-

checking algorithms described in this chapter.

122

O(·) time O(·) time
Algorithm

Phase Finds Necessary &
complexity: complexity:type phases? sufficient?

best-case worst-case

Inner
Product

Global Yes N. & S. |A||B| |A||B|

Matrix
Product

Global Yes N. & S. (|A||B|)2 (|A||B|)2

Node-Count Global No N. only 1 1
Recursive

Check
Global Yes N. & S. 1 |A|+ |B|

Modulus and
Inner Product

Relative No N. & S. |A||B| |A||B|

Element-wise
Division

Relative Yes N. & S. |A||B| |A||B|

Non-0
Terminal Merge

Relative No N. only |A|+ |B| |A|+ |B|

Modulus and
DD Compare

Relative No N. & S. |A|+ |B| |A|+ |B|

Table 5.3: Key properties of the QuIDD-based phase-equivalence checking algorithms.

123

RP DIV(A,B,S) {
if (A == New Terminal(0)) {

if (B ! = New Terminal(0))
return New Terminal(0);

return New Terminal(2);
}
if (Is Constant(A) and Is Constant(B)) {

nrp = Value(A)/Value(B);
if (sqrt(real(nrp)∗ real(nrp)+

imag(nrp)∗ imag(nrp)) ! = 1)
return New Terminal(0);

return New Terminal(nrp);
}
if (Table Lookup(R,RP DIV,A,B,S)) return R;
v = Top Var(A,B);
T = RP DIV(Av,Bv,S);
E = RP DIV(Av′,Bv′,S);
if ((T == New Terminal(0)) or

(E == New Terminal(0)))
return New Terminal(0);

if ((T ! = E) and (Type(v) == S)) {
if (Is Constant(T) and Value(T) == 2)

return E;
if (Is Constant(E) and Value(E) == 2)

return T ;
return New Terminal(0);

}
if (Is Constant(T) and Value(T) == 2)

T = New Terminal(1);
if (Is Constant(E) and Value(E) == 2)

E = New Terminal(1);
R = ITE(v,T,E);
Table Insert(R,RP DIV,A,B,S);
return R;

}

Figure 5.11: Pseudo-code for element-wise division algorithm.

CHAPTER VI

Further Speed-Up Techniques

This chapter describes a few ways to speed up QuIDD-based simulation that are cap-

tured by the QuIDDPro language. These techniques apply to QuIDD matrix multiplica-

tion, the tensor product, and the partial trace, which are key operations for simulation with

and without errors. Section 6.1 describes algorithms for applying controlled- and 1-qubit

gates to QuIDD state vectors. The simulator uses these algorithms when processing par-

ticular source-code expressions at the input. Section 6.2 demonstrates how the language

may be used to selectively tensor and remove, via the partial trace over density matrices,

qubits that do not affect the final outcome of a computation. Although this technique can-

not be performed in every case, we focus on a circuit of interest in the literature for which

this optimization exponentially reduces the asymptotic complexity of QuIDD-based sim-

ulation. This circuit is simulated with several types of random, continuous error effects.

The effectiveness of “bang-bang” error correction is also studied.

6.1 Gate Algorithms

Matrix multiplication is the main operation for simulating quantum circuits as it pro-

vides the mathematical machinery for applying gates to qubits. QuIDDs utilize a variant

124

125

of the ADD-based matrix multiplication algorithm described in Subsection 3.1.4. This

algorithm is a fairly straightforward translation of dot-products to the graph domain and

makes use of the Apply algorithm [4]. It assumes that the two QuIDD arguments have

the same dimension. A consequence of this assumption is that for small gates, say 1- and

2-qubit gates, a larger operator must be constructed by computing tensor products with

identity matrices. For example, to apply a 1-qubit gate to some qubit of a 5-qubit state

vector or density matrix, the matrix representing the gate must be first tensored with four

1-qubit identity matrices and then multiplied with the QuIDD representing the entire state

vector or density matrix. It is natural to ask, however, if a more clever approach can be

used to apply gates by leveraging the peculiar properties of QuIDDs, at least for certain

types of gates. Indeed, such an improvement is possible as we now explain. Importantly,

the QuIDDPro simulator automatically detects when this optimization may be performed

through special expressions. The specialized algorithms are described first (Subsections

6.1.1 and 6.1.2), followed by a brief discussion of the relevant QuIDDPro language fea-

tures (Subsection 6.1.3), and concluding with empirical results which demonstrate that the

optimizations enable QuIDDs to be competitive with the stabilizer formalism (Subsection

6.1.4).

6.1.1 Simulating 1-qubit Gates

Special processing for small gates can be of great practical value considering that

CNOT and all 1-qubit gates form a universal gate set [5]. The benefit of special processing

for 1- and 2-qubit gates has been recognized previously, and is, in fact, the key notion

underlying qubit-wise multiplication (Section 2.1). Unfortunately, qubit-wise multiplica-

126

UV =

[

u00 u01

u10 u11

][

v0

v1

]

=

[

u00v0 +u01v1

u10v0 +u11v1

]

(a) (b)

Figure 6.1: (a) A 1-qubit gate applied to a single qubit, and (b) the QuIDD state vector
transformation induced by this operation on qubit i.

tion only reduces the computational complexity of representing the operator and leaves the

state vector or density matrix in an explicit, exponentially-sized form. A straightforward

translation of the qubit-wise multiplication algorithm to QuIDDs would still result in ex-

ponential runtime since the algorithm iterates over all the indices of an array containing

the state information.

Instead, an algorithm is needed which can both represent small operators concisely and

update the state efficiently. An important property of QuIDDs is that each internal node

Ri of a QuIDD state vector maps directly to qubit i since Ri represents the ith binary index

of a state vector (Section 3.1). This means that applying a 1-qubit gate to qubit i can be

accomplished simply by manipulating any instances of Ri nodes in a QuIDD state vector.

Given a QuIDD state vector, a top-down traversal is performed which transforms any Ri

visited as shown in Figure 6.1. The transformation on Ri comes from the linear-algebraic

description of a 1-qubit gate U acting on a 1-qubit state vector V to produce a new state

vector V ′. The probability amplitude for the |0〉 component of V ′ is u00v0 + u01v1. As a

result, the subgraph pointed to by the 0 edge of the Ri node, or E(Ri), is transformed into

u00E(Ri)+u01T (Ri). This operation is easily accomplished by two scalar multiplications

via E ′ = Apply(E(Ri),u00,∗) and T ′ = Apply(T (Ri),u01,∗) followed by a single call to

127

Apply(E ′,T ′,+) to add the two results. The same transformation is also performed on the

subgraph pointed to by the 1 edge, except that u10 and u11 are used. If an Ri variable is

missing in any particular path, which can be detected by encountering an R j node such that

i < j, then a new Ri node is created with children u00R j +u01R j and u10R j +u11R j. Special

checks on the node cache are performed to detect if the new children are equal, which

results in the elimination of the Ri node as per the standard BDD rules. By performing this

specialized 1-qubit gate operation on all Ri nodes in the QuIDD, the 1-qubit gate acting

on qubit i need never be expanded into a larger n-qubit gate. All the extra overhead of

the general ADD matrix multiplication algorithm is also avoided. Pseudo-code for this

algorithm is provided in Figure 6.2.

6.1.2 Simulating Controlled Gates

A controlled-U gate can also be implemented more efficiently using the 1-qubit gate

QuIDD algorithm. Suppose a controlled-U gate is applied with qubit i as the control and

qubit j as the target, such that i < j. As before, a top-down traversal is performed, but when

any Ri node is encountered, the traversal only continues down the 1 edge of the Ri node, or

T (Ri), since a standard controlled-U gate performs no action when the control qubit is a

|0〉. After proceeding down the 1 edge of any Ri node, U is applied upon encountering any

R j node using the 1-qubit gate QuIDD algorithm. This operation is analogous to classical

digital circuit simulation where the “controlling” values of logic gates are checked first

before any other inputs [34]. For example, if an input wire of a k-input OR gate carries a 1

signal, then there is no need to check the other inputs since the output must be 1.

Interestingly, the controlled-U QuIDD algorithm is computationally more efficient

128

Q1 ALG(A,Op,qubit index) {
if (Table Lookup(R,Q1 ALG,A,Op,qubit index))

return R;
v = Var(A);
if (Is Constant(A) or Index(v) >= qubit index) {

if (Index(v) == qubit index)) {
T = Av;
E = Av′;

}
else T = E = A;
E00 = Apply(E,New Terminal(Op0,0),∗);
T 01 = Apply(T,New Terminal(Op0,1),∗);
E10 = Apply(E,New Terminal(Op1,0),∗);
T 11 = Apply(T,New Terminal(Op1,1),∗);
E = Apply(E00,T01,+);
T = Apply(E10,T11,+);
R = ITE(v,T,E);
Table Insert(R,Q1 ALG,A,Op,qubit index);
return R;

}
T = Q1 ALG(Av,Op,qubit index);
E = Q1 ALG(Av′,Op,qubit index);
R = ITE(v,T,E);
Table Insert(R,Q1 ALG,A,Op,qubit index);
return R;

}

Figure 6.2: Pseudo-code for the 1-qubit gate algorithm. Opi, j denotes accessing the com-
plex value at row i and column j of the 1-qubit matrix Op.

than the 1-qubit gate QuIDD algorithm. The reason for this is simply that the controlled-U

algorithm reduces the number of nodes in the QuIDD state vector that must be traversed

by only traversing the 1 edges of controlling Ri nodes corresponding to control qubit i.

Generalizing this result to controlled-U gates with multiple controls i, i+1, . . . , i+ k such

that i + k < j shows that increasing the number of controls also increases the computa-

tional efficiency as each control further reduces the number of nodes to be traversed in the

QuIDD state vector.

129

CNOT









0
0
0
1









=









0
0
1
0









(a) (b)

Figure 6.3: (a) A CNOT gate applied to the |11〉 state vector, and (b) the same operation
applied using the specialized QuIDD algorithm.

A further improvement can be made in the specific case of the CNOT gate. The top-

down traversal proceeds as before, but only down the 1 edges of Ri nodes. However, when

an R j node is reached, the E(R j) and T (R j) subgraphs are simply swapped instead of

applying the NOT gate. The reason this can be done is because the action of a NOT gate

is precisely to switch the amplitudes of the |0〉 and |1〉 components of a qubit. A simple

example of this algorithm operating on the QuIDD state vector |11〉 is depicted in Figure

6.3.

An important point to note is that the specialized controlled-U QuIDD algorithm only

considers the case in which the control qubit precedes the target qubit. The reason that

a bottom-up traversal cannot be used to implement a controlled-U gate whose target may

precede one or more controls is due to the sharing of nodes across QuIDDs. For any DD,

nodes are shared within the DD and across multiple instances of such data structures. This

sharing across DDs not only increases efficiency, but it’s a requirement for proper func-

tioning since efficient construction of any new DD through the Apply function requires

130

accessing the same node cache used by the DD arguments to Apply [17, 66]. As a result,

there is no way for a bottom-up traversal to determine which DD it is in, since the terminal

it starts at and any subsequent node it visits can be shared by multiple DDs. In contrast, a

top-down traversal starts at the head of a specific DD.

If this is the case, then what can be done when a CNOT gate is applied to qubits i and

j such that i > j? In this situation, the circuit equivalence for the “upside-down” CNOT is

employed as shown in Figure 6.4a [51]. Using this equivalence, 1-qubit Hadamards can be

applied using the specialized 1-qubit algorithm in conjunction with the specialized CNOT

algorithm. This means that applying specialized controlled-U algorithms to QuIDDs is

computationally more efficient when the control qubit precedes the target qubit.

For the general case in which multiple controls are preceded by the target, swap gates

[51] can be employed to swap the target qubit with the last control qubit. As shown

in Figures 6.4a and 6.4b, the swap gate can be implemented with CNOT and 1-qubit

Hadamard gates. In QuIDDPro, however, a special DD function is used to swap nodes.

This function has better performance by a large constant factor as compared to applying

an actual swap gate since only one traversal of the QuIDD must be performed.

(a) (b)

Figure 6.4: (a) A CNOT whose target precedes its control is shown next to an equivalent
circuit composed of 1-qubit Hadamard gates and a CNOT with the control and
target qubits reversed. (b) A swap gate, which exchanges the values of two
qubits, shown next to an equivalent circuit composed of CNOT gates. The
CNOT gate in the center can be converted as shown in (a).

131

6.1.3 Automatic Usage of Algorithms

In order for these algorithms to be used without putting the burden on the user of

detecting the special cases, the simulator must know when to apply them. To this end,

we introduced a new function to the QuIDDPro input language (see Appendix B) called

cu gate. This function uses a string to specify which qubits are controls (or negated con-

trols) and targets. To demonstrate, suppose the user wants to apply a 1-qubit Pauli gate

Y to qubits 4 and 7 conditional on control qubits 2 and 3, and negated control qubit 5.

Further suppose that the total size of the circuit is 8 qubits. The cu gate expression for this

case is cu gate(sigma y(1),“c2c3x4n5x7′′,8), where c, n, and x flag the subsequent qubit

number as a control, negated control, or target, respectively. All unspecified qubits are

assumed to be unaffected by the gate. Ordering within the specification string is irrelevant

and handled internally by the simulator.

In the absence of the specialized gate-specific functions, QuIDDPro will create a

QuIDD matrix according to the specifications given to cu gate. This is accomplished

efficiently with a series of tensor products and projections, all implemented with QuIDD

algorithms. However, in the case of cu gate(·) ∗ |state :>, where |state :> is a state vec-

tor QuIDD, the simulator does not create the QuIDD matrix. Instead, the specialized

controlled-gate algorithm is performed on the state vector QuIDD directly. The special-

ized 1-qubit algorithm is applied when only “x’s” exist in the string specification (1-qubit

gates are viewed as a special case of a controlled-gate with no controls).

Unfortunately, since QuIDDPro has a very expressive language1, the situation becomes

1QuIDDPro has approximately 100 built-in functions and other language features, which are detailed in
Appendix B.

132

more complicated when the result of a call to cu gate is stored in a variable and applied

at a later time to a state vector QuIDD. For example, consider U = cu gate(·) followed

arbitrarily later in the QuIDDPro script by U ∗ |state :>. To handle such cases, operators

created with cu gate are lazily evaluated. In other words, QuIDDPro associates matrix

variables with control/target information and no QuIDD matrix is created for as long as

possible. When the gate is multiplied with another gate or printed to standard output,

the QuIDD matrix is created only at that point in the simulation. As a result, if gates

are always applied to state vectors, any gates created with cu gate(·) are never actually

created, and the faster algorithms described in the previous subsections are used instead.

As we demonstrate next, this feature greatly enhances QuIDDPro’s performance.

6.1.4 Empirical Results

We tested these specialized algorithms in QuIDDPro against the explicit ADD-based

matrix multiplication algorithm. As evidenced by the results shown in Table 6.1, the spe-

cialized algorithms far outperform the matrix multiplication algorithm. “chp100” is a

randomly generated 100-qubit circuit consisting of CNOT, Hadamard, and phase gates,

which are the Clifford group generators (Section 2.5). “tchp100” is also a randomly gen-

erated 100-qubit circuit consisting of the Clifford group generators, but it also includes

Toffoli gates. The addition of Toffoli gates is interesting since it forms a universal gate set

for classical logic circuits [51]. “cnot200” stress tests the specialized controlled gate al-

gorithm since it is a randomly generated 200-qubit circuit consisting only of CNOT gates.

Similarly, “toff200” is a circuit of the same size but with Toffoli gates only. As evidenced

by the results, the performance improvements are as large as 60×. This indicates that

133

the overhead avoided by specialization is significant. The results also demonstrate that

the specialized algorithms allow QuIDDPro to simulate stabilizer circuits and stabilizer

circuits with non-stabilizer Toffoli gates very efficiently for large circuit sizes, making

QuIDDPro competitive in practice with the stabilizer formalism.

Benchmark No. of No. of Specialized Algorithms ADD-based Multiplication
Qubits Gates Runtime (s) Avg. Time Memory Runtime (s) Avg. Time Memory

per Gate (s) (MB) per Gate (s) (MB)
chp100 100 300 4.57 0.0152 9.85 48.9 0.163 5.18
tchp100 100 300 0.870 0.00290 4.51 10.8 0.0361 1.61
cnot200 200 1000 2.54 0.00254 7.14 125 0.125 6.93
toff200 200 1000 4.61 0.00461 7.20 154 0.154 9.30

Table 6.1: Performance results comparing QuIDDPro using the specialized algorithms to
QuIDDPro using ADD-based matrix multiplication.

6.2 Dynamic Tensor Products and Partial Tracing

This section discusses other language features related to the density matrix model

which enable QuIDDPro to efficiently simulate a particular circuit of interest in the pres-

ence of continuous, random errors. Normally the size of a QuIDD is sensitive to the num-

ber of different matrix elements (see Chapter III), but clever use of the QuIDDPro input

language can reduce the negative effects of this sensitivity in certain cases. In particular,

we dynamically add qubits to a density matrix state via the tensor product and removing

them when they no longer affect the simulation results by tracing over them (Subsection

6.2.1). The benchmark circuit, the error model used, and empirical results are also dis-

cussed in the following subsections. The results include characterizations of imperfect

gate errors, systematic errors, decoherence, and “bang-bang” error correction.

134

6.2.1 Language Support

In general, when some density state ρ1 is not entangled with another state ρ2, then

ρ1 = trρ2(ρ1 ⊗ ρ2) and similarly ρ2 = trρ1(ρ1 ⊗ ρ2). In the course of simulation, if the

qubits described by ρ2 no longer affect the final states of interest, then they may be traced

out to reduce simulation complexity. Rather than hold on to the separated state ρ2 as in

p-blocked simulation, it may be discarded entirely.

As will be shown in the next subsection, circuits with nearest-neighbor interactions

tend to contain qubits that play only fleeting roles in affecting the qubits of interest. The

purpose behind this technique is to introduce such qubits to the state only at the moment

they are needed and to eliminate them from the state (and from memory) the moment they

are no longer needed.

Since the QuIDDPro language provides a linear-algebraic interface, QuIDD matrices

representing qubit states my be tensored at any time with density states of new qubits (see

Appendix B). Furthermore, the partial trace may be efficiently performed at any time on

any desired qubit (see Chapter IV). Although this technique is not automated for the user,

these language features allow the user to very easily implement the optimization at various

points in circuits whose functionality is well-understood. We now describe one such circuit

which is used as a case study to demonstrate the effectiveness of this technique.

6.2.2 Motivation for Error Characterization

Some error-correcting code techniques have been developed to cope with errors in

quantum hardware [69, 20, 29], but they require extra qubits and are most effective in the

presence of single qubit errors only. Since the addition of extra qubits can be a daunting

135

technological task, it can be very helpful to know a priori if error effects will be signif-

icant enough to require such correction. A different error correction approach has been

proposed which involves applying corrective “2πk” pulses without the need for additional

qubits or the single qubit error constraint [9]. The effectiveness of this technique has been

demonstrated in the context of teleporting qubits in nuclear spin chain quantum computers

via remote entanglement 2 achieved by nearest-neighbor interactions [11].

Although the aforementioned work specifically considers nuclear spin quantum com-

puting, remote entanglement through nearest-neighbor interaction is a common phenomenon

in a number of other potential quantum computing technologies [89, 44, 55, 71, 15]. In

the case of ion traps, even though qubits can be physically moved around, once in place,

qubit interactions are performed between neighboring ions [41]. Equally important is the

development of bang-bang error correction techniques which are a generalization of cor-

rective pulses that decouple qubits from the environment, delaying the negative effects of

decoherence error for any technology [87, 46, 86, 39, 57]. As a result, simulating the ef-

fect of error in remote entanglement achieved by nearest-neighbor interactions using the

technology-independent quantum circuit model is an appealing case study.

6.2.3 Remote Entanglement Circuits

Remote entanglement enables teleportation of an arbitrary quantum state from one

party to another. The key ingredient in this scheme is the creation of an EPR pair between

two communicating parties, Alice and Bob, as described in Equation 1.17 of Section 1.2.1.

Recall that the utility of this state lies in the fact that if Alice measures her particle and

2Remote entanglement refers to any entanglement between qubits that are not nearest neighbors.

136

Figure 6.5: The remote EPR pair generation circuit which creates an EPR pair between
qubits 0 (the top qubit) and n− 1 (the bottom qubit) via nearest-neighbor in-
teractions. The gate notation used comes from [51]. There are 2n−2 gates in
the circuit.

obtains a |0〉, then Bob will subsequently also obtain a |0〉 upon measurement of his par-

ticle. With only two qubits in the ground state, an EPR pair can be created by applying a

Hadamard gate followed by a CNOT gate [11, 51, 8],

(6.1) Ψ = (CNOT)(H ⊗ I) |00〉 =
1√
2
(|00〉+ |11〉).

In a circuit with more than two qubits, the above procedure can be generalized us-

ing nearest-neighbor interactions to create an EPR pair between qubits 0 and n− 1 only.

One straightforward generalization is to use a known nearest-neighbor decomposition of

a CNOT gate with qubit 0 as the control and qubit n−1 as the target. Such a CNOT gate

can be decomposed into 4(n− 1) nearest-neighbor CNOT gates [60, Figure 3]. However,

by making use of the fact that all qubits are initialized to the ground state, a smaller de-

composition can be achieved with only 2n− 3 CNOT gates [11]. This circuit is shown in

Figure 6.5 and generates the state

(6.2) ΨR =
1√
2
(|00 . . .0〉+ |10 . . .1〉).

137

In this state, qubits 0 and n−1 are remotely entangled since the measurement outcome of

one qubit affects the measurement outcome of the other, yet the qubits are not neighbors.

The circuit creates a remotely entangled EPR pair in the following way. The Hadamard

gate and first CNOT gate create an EPR pair between qubits 0 and 1, just as in the 2-qubit

case (Equation 6.1). The second CNOT gate creates an EPR “triple” 1√
2
(|000〉+ |111〉)

on the first three qubits. The third CNOT gate eliminates qubit 1 from the triple, leaving

qubits 0 and 2 in an EPR pair, 1√
2
(|000〉+ |101〉). By induction, each subsequent pair of

CNOT gates first creates an EPR triple among qubits 0, i, and i + 1, and then removes

qubit i from the triple, leaving qubits 0 and i+1 in an EPR pair. In this fashion, a remotely

entangled EPR pair is eventually created among qubits 0 and n− 1 via nearest-neighbor

interactions.

In the absence of errors, the two computational basis states |00 . . .0〉 and |10 . . .1〉 occur

upon measurement with a probability of 1
2 . All other states occur with probability 0. In the

presence of errors described in Subsection 6.2.4, the probabilities of the two desired states

will become less than 1
2 , and the probabilities of the other undesired states will become

greater than 0.

6.2.4 Error Model

We first model random continuous gate error. The physical basis for this error is im-

precision in the method used to apply gates to qubits. The implementation of gates for

most known quantum computing technologies involves manipulation of electro-magnetic

(EM) radiation pulses, and the quantum control imprecision for these pulses can manifest

in under- or over-rotation of qubits [50, 41, 20, 9, 11, 89, 44, 55, 71]. As a result, our error

138

model has the general form of a 1-qubit unitary matrix,

(6.3) U(θ) =







cos(θ/2) −sin(θ/2)

sin(θ/2) cos(θ/2)






,

where θ is a rotation parameter which depends directly on the desired EM frequency [51].

Not shown are different phase factors in front of each of the four elements. These fac-

tors are easily set appropriately depending on the type of gate that must be applied [51].

Modeling a faulty 1-qubit gate with continuous error only requires the addition of a small

random ε error parameter to θ,

(6.4) U f (θ,ε) =







cos(θ/2+ ε) −sin(θ/2+ ε)

sin(θ/2+ ε) cos(θ/2+ ε)






,

where ε is normally distributed about 0 with standard deviation σ [29]. This model for

continuous gate error was used to study the effectiveness of error correction codes in

nearest-neighbor qubit arrays. It was shown that for such error correcting codes to be

most effective, the ε error must range between 10−5 and 10−7 [29]. Also, in the nearest-

neighbor nuclear-spin chain setting, an ε of around 10−6 is considered reasonable [9, 11].

The 1-qubit continuous gate error model can be extended to 2-qubit controlled gates as

follows,

(6.5) V f (θ0,θ1,ε0,ε1) = |0〉〈0|⊗U0(θ0,ε0)+ |1〉〈1|⊗U1(θ1,ε1),

where U0 is a faulty gate describing the action on the control qubit, and U1 is a faulty

gate describing the action on the target qubit. In the case of a faulty CNOT, U0 is a

faulty identity gate, and U1 is a faulty X gate [51]. To reverse the order of the control

and target qubits, the operands of the tensor products in Equation 6.5 are simply reversed.

139

Figure 6.6: The remote EPR pair generation circuit with gate and systematic errors (see
Figure 6.5 for the error-free version). A different randomly generated ε error
parameter may be used for each gate. The total number of gates in the circuit
is (n−1)2 +n.

Modeling random continuous gate error in the remote EPR pair generator (Figure 6.5)

can be achieved by replacing the Hadamard gate with H f (π/4,ε), and a CNOT gate with

CNOTf (0,π/2,εi,εi+1). Reversing the tensor products of CNOTf generates a faulty CNOT

gate with reversed control and target qubits.

In addition to gate errors, some quantum computing technologies are vulnerable to

another type of error called systematic error or nonresonant effects [9, 11]. In the presence

of systematic error, applying a gate to qubits i and i + 1 has a small effect on all other

qubits. To apply these small error effects, when any gate G f is applied to one or more

qubits, faulty identity gates of the form Ii(0,εi) are applied to all other qubits not acted

upon by G f . This is a consistent model since in the error-free case, identity gates are

implicitly present when a qubit is not acted upon by a gate.

The new form of the remote EPR pair generation circuit which includes gate and sys-

tematic error is shown in Figure 6.6. By adding in the faulty identity gates, the total num-

ber of gates for the faulty circuit is (n− 1)2 + n. Assuming the worst-case conditions for

140

QuIDD-based simulation, a different randomly generated ε should be used in each faulty

gate including the systematic error identity gates, which reduces the number of repeated

values that the QuIDDs compress. Other error models may cause the number of different

ε values to grow more rapidly, but such models are no harder to simulate with QuIDDs

than the case considered. Since 1000 qubits are easily simulated for this benchmark, other

error conditions can be simulated efficiently.

Jozsa describes a simple set of circuit reduction rules which may be applied to this

circuit to analyze the difficulty of simulation for several different techniques [38]. Essen-

tially, all 1-qubit gates may be merged via matrix multiplication into neighboring 2-qubit

gates, and all neighboring 2-qubit gates applied to the same qubits may also be merged. If

this reduction is performed on the faulty circuit shown in Figure 6.6, the resulting circuit

contains only 2-qubit gates which are applied in a cascade fashion as shown in Figure 6.7.

It is clear from the reduced circuit that after each 2-qubit gate is applied to qubits i

and i + 1, qubit i is no longer affects the computation and may be removed via the partial

trace (with the exception of the first and last qubits). In fact, as the EPR pair propagates

down to the last qubit, each intermediate qubit may be dynamically tensored in with the

previous EPR pair to create the EPR triple. After applying the current 2-qubit gate, the

middle qubit in the triple may be traced out. Using the dynamic tensor product and partial

tracing technique discussed earlier, the space complexity of simulating this circuit is re-

duced to O(1) and the time complexity is reduced to O(n). Given that random, continuous

errors normally cause QuIDDs to blow up exponentially in size, this optimization offers

an asymptotic improvement as verified experimentally in the next subsection.

141

|0〉
G0|0〉

G1
. . .

|0〉
G2|0〉

...
|0〉 . . . Gn−1|0〉

Figure 6.7: Reduced version of the faulty, remote EPR pair generation circuit.

We consider “collective dephasing” decoherence, which is known to be a major source

of decoherence error in the ion trap implementation [40]. This type of decoherence can

be modeled as phase dampening and can be simulated with a single “environment qubit”

which couples to each data qubit through a controlled-Y gate as shown in Figure 6.8 [51].

The angle parameter to the controlled-Y gate is a decoherence angle, where angles closer

to π model a more rapid decoherence process [51]. For simplicity, our experiments assume

the measurement outcome of the environment qubit is always |0〉.3 From the perspective

of simulation, the key fact to note is that since the environment qubit is measured each

time phase dampening is applied, it assumes a classical state and is no longer coupled to

the data qubit.4 Thus, decoherence only adds O(1) runtime overhead using the dynamic

tensoring and partial tracing technique for this circuit because the environment qubit can

be removed via the partial trace.

It is important to note that p-blocked simulation, Vidal’s slightly entangled technique,

3Though an outcome of |1〉 would immediately force the data qubit to |1〉, the fact that the environment
is represented by a qubit is a simplification, and an outcome of |1〉 is not well-defined. The state of the
environment should typically be the “ground state” which in the qubit model is |0〉.

4One-way computation heavily relies on single-qubit measurements [16].

142

ρin • ρout

|0〉 Ry(θ)
NM

Figure 6.8: Phase-damping decoherence model involving an environment qubit.

and tensor networks can all simulate this circuit efficiently in the presence of these errors

as well. However, runtime overhead can be incurred due to swaps in Vidal’s technique.

These implications are discussed more in Chapter VII.

6.2.5 Empirical Results

We used the dynamic tensoring and partial tracing technique in QuIDDPro to effi-

ciently calculate the measurement outcome probabilities of all qubits in a faulty remote

EPR pair generation circuit. As noted in Subsection 6.2.4, a reasonable rotation error

range for faulty gates is 10−5 to 10−7 [29, 9, 11]. As a result, we consider three different

cases in which random rotation errors are selected from normal distributions with ranges

±10−5, ±10−6, and ±10−7, respectively. For each error distribution, we consider the re-

mote EPR pair generation circuit with gate error alone and with gate and systematic errors

together (decoherence error is considered later). In each case, the probability of error is

calculated as 1−P(|00 . . .0〉)−P(|10 . . .1〉), because in the absence of errors the prob-

abilities of obtaining these outcomes should sum to 1. Also, since each gate is given its

own randomly generated rotation error parameter, we compute the average of 100 different

runs per error distribution.

Figures 6.9a-6.9c depict the the probability of error due to gate error only as a function

143

 0
 5e-07
 1e-06

 1.5e-06
 2e-06

 2.5e-06
 3e-06

 3.5e-06
 4e-06

 0 200 400 600 800 1000

P
ro

ba
bi

lit
y

of
 e

rr
or

No. of qubits

Data
3.32e-9x + 1e-7

 0
 5e-09
 1e-08

 1.5e-08
 2e-08

 2.5e-08
 3e-08

 3.5e-08
 4e-08

 0 200 400 600 800 1000

P
ro

ba
bi

lit
y

of
 e

rr
or

No. of qubits

Data
3.33e-11x + 1e-9

 0
 5e-11
 1e-10

 1.5e-10
 2e-10

 2.5e-10
 3e-10

 3.5e-10
 4e-10

 0 200 400 600 800 1000

P
ro

ba
bi

lit
y

of
 e

rr
or

No. of qubits

Data
3.33e-13x + 1e-11

(a) (b) (c)

Figure 6.9: Probability of error in the remote EPR pair generation circuit due to gate error
only, as a function of the number of qubits. The rotation errors are randomly
selected for each gate from normal distributions ranging from (a) ±10−5, (b)
±10−6, and (c) ±10−7. The average of 100 runs is used for each distribution.

of the number of qubits in the remote EPR pair generation circuit. The data indicates that

the probability of error increases linearly with the number of qubits. Figures 6.10a-6.10c

depict the probability of error due to gate error and systematic error as a function of the

number of qubits. This data, however, indicates that in the presence of gate and systematic

error, the probability of error increases quadratically with the number of qubits. This

asymptotic difference between the two cases as a function of the number of qubits is

not too surprising given that the number of faulty gates which must be simulated when

modeling systematic error is quadratic in the number of qubits.

To model the growth of error as a function of the number of gates, the circuit size is

fixed at 1000 qubits. This provides a good growth trend because the application of each

pair of CNOT gates in sequence essentially models a remote EPR pair generation circuit

with one more qubit. In other words, applying CNOT gates up to and including qubits i

and i + 1 is equivalent to simulating a remote entanglement circuit with only i + 1 qubits.

Thus, the error trend for a 1000-qubit remote EPR pair generation circuit as a function

of the number of gates represents the trend for all remote EPR pair generation circuits of

144

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0 200 400 600 800 1000

P
ro

ba
bi

lit
y

of
 e

rr
or

No. of qubits

Data
3.33e-9x^2 + 1e-4

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

 0 200 400 600 800 1000

P
ro

ba
bi

lit
y

of
 e

rr
or

No. of qubits

Data
2.81e-11x^2

 0
 5e-08
 1e-07

 1.5e-07
 2e-07

 2.5e-07
 3e-07

 3.5e-07
 4e-07

 0 200 400 600 800 1000

P
ro

ba
bi

lit
y

of
 e

rr
or

No. of qubits

Data
3.55e-13x^2 + 1e-8

(a) (b) (c)

Figure 6.10: Probability of error in the remote EPR pair generation circuit, due to gate
error and systematic error, as a function of the number of qubits. The rotation
errors are randomly selected for each gate from normal distributions ranging
from (a) ±10−5, (b) ±10−6, and (c) ±10−7. The average of 100 runs is used
for each distribution.

size up to and including 1000 qubits. Figures 6.11a-6.11c depict the probability of error

in a 1000 qubit circuit in the presence of gate error only as a function of the number of

gates. Note that the faulty identity gates are not counted since systematic error is not an

actual gate applied by the implementer of the quantum computer. The data indicates that

the probability of error increases linearly with the number of gates. Figures 6.12a-6.12c

depict the probability of error in the presence of gate and systematic error. This data

indicates that the growth of error increases quadratically with the number of gates. The

similarity in growth trends as a function of the number of gates is not surprising since the

number of gates applied to each qubit is a constant with respect to n.

In all cases, the magnitude of error is very small, even though the error in the presence

of systematic error is several orders of magnitude larger than in the absence of systematic

error. More importantly, the growth of error as functions of the number of qubits and gates

is sub-exponential. As a result, since remote EPR pair generation is a key step in quantum

teleportation, error correction aimed at gate errors and/or systematic error is probably not

145

 0
 5e-07
 1e-06

 1.5e-06
 2e-06

 2.5e-06
 3e-06

 3.5e-06
 4e-06

 0 400 800 1200 1600 2000

P
ro

ba
bi

lit
y

of
 e

rr
or

No. of gates applied

Data
1.67e-9x + 1e-7

 0
 5e-09
 1e-08

 1.5e-08
 2e-08

 2.5e-08
 3e-08

 3.5e-08
 4e-08

 0 400 800 1200 1600 2000

P
ro

ba
bi

lit
y

of
 e

rr
or

No. of gates applied

Data
1.67e-11x + 1e-9

 0
 5e-11
 1e-10

 1.5e-10
 2e-10

 2.5e-10
 3e-10

 3.5e-10
 4e-10

 0 400 800 1200 1600 2000

P
ro

ba
bi

lit
y

of
 e

rr
or

No. of gates applied

Data
1.67e-13x + 1e-11

(a) (b) (c)

Figure 6.11: Probability of error in the remote EPR pair generation circuit due to gate error
only, as a function of the number of gates. The rotation errors are randomly
selected for each gate from normal distributions ranging from (a) ±10−5, (b)
±10−6, and (c) ±10−7. The average of 100 runs is used for each distribution.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0 400 800 1200 1600 2000

P
ro

ba
bi

lit
y

of
 e

rr
or

No. of gates applied

Data
7.99e-10x^2 + 1e-4

 0

 5e-06

 1e-05

 1.5e-05

 2e-05

 2.5e-05

 3e-05

 3.5e-05

 0 400 800 1200 1600 2000

P
ro

ba
bi

lit
y

of
 e

rr
or

No. of gates applied

Data
7.89e-12x^2 + 1e-6

 0

 5e-08

 1e-07

 1.5e-07

 2e-07

 2.5e-07

 3e-07

 3.5e-07

 0 400 800 1200 1600 2000

P
ro

ba
bi

lit
y

of
 e

rr
or

No. of gates applied

Data
7.96e-14x^2 + 1e-8

(a) (b) (c)

Figure 6.12: Probability of error in the remote EPR pair generation circuit due to gate error
and systematic error, as a function of the number of gates. The rotation errors
are randomly selected for each gate from normal distributions ranging from
(a) ±10−5, (b) ±10−6, and (c) ±10−7. The average of 100 runs is used for
each distribution.

necessary for quantum teleportation of a qubit state.

We also simulated the circuit in the presence of collective-dephasing decoherence error

modeled as phase dampening. Whereas gate and systematic errors tend to increase the

probability of measuring incorrect outcomes, phase dampening also skews the probability

distribution of measuring the correct outcomes |00 . . .0〉 or |10 . . .1〉 (i.e. the probabilities

of measuring one correct state instead of the other are not equal). Thus, a better metric

for these experiments is the fidelity of the faulty state σ as compared to the correct state ρ.

146

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000

F
id

el
ity

No. of qubits

Data
0.7071

 0.7
 0.72
 0.74
 0.76
 0.78
 0.8

 0.82
 0.84
 0.86
 0.88

 0 20 40 60 80 100 120 140

F
id

el
ity

No. of qubits

Data
0.7071

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120 140

F
id

el
ity

No. of qubits

Data
0.7071

(a) (b) (c)

Figure 6.13: State fidelity in the remote EPR pair generation circuit with decoherence as
a function of the number of qubits. The decoherence angles used are (a) 0.2,
(b) 1.2, and (c) 3.0. Results are only shown for up to 140 qubits for (b) and
(c) since the fidelity drops to approximately 1/

√
2 quickly.

For density matrices, this is expressed as, F(ρ,σ) = tr
√

ρ1/2σρ1/2, where F(ρ,σ) ranges

between 0 (the states are completely different) and 1 (the states are equal) [51].

The first set of experiments simulate phase dampening alone with three different de-

coherence angles, 0.2, 1.2, and 3.0. The results are shown in Figures 6.13a-c, and they

confirm that the fidelity drops much more quickly for decoherence angles closer to π.

The second set of experiments simulate phase dampening with bang-bang error correction

[87, 46, 86, 39, 57]. There are many ways to define the bang-bang corrective operators. In

these experiments, the “universal decoupling” sequence is used, which alternates between

the Pauli X and Z operators after every gate is applied [86, 39]. Compared to corrective

operators that involve negations of the decoherence operator itself [87], this choice is ar-

guably more realistic and useful to experimental physicists since it requires no knowledge

of the Hamiltonian representing the underlying decoherence process. As shown in Figures

6.14a and 6.14b, this set of bang-bang operators is extremely effective for this particular

circuit. Unlike the previous results, the fidelity never reaches 0. However, Figure 6.14c

shows that the extremely rapid decoherence process modeled by decoherence angle 3.0 is

147

 0.99997

 0.999975

 0.99998

 0.999985

 0.99999

 0.999995

 1

 130 140 150 160 170 180 190 200

F
id

el
ity

No. of qubits

Data

 0.98

 0.985

 0.99

 0.995

 1

 130 140 150 160 170 180 190 200

F
id

el
ity

No. of qubits

Data

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 130 140 150 160 170 180 190 200

F
id

el
ity

No. of qubits

Data
0.7071

(a) (b) (c)

Figure 6.14: State fidelity in the remote EPR pair generation circuit with decoherence as
a function of the number of qubits. Bang-bang pulses from the universal
decoupling sequence are used to correct the state after every gate is applied.
The decoherence angles used are (a) 0.2, (b) 1.2, and (c) 3.0. Results are
given from 130 to 200 qubits so that the periodic nature of the data is easily
viewed. The trends continue through 1000 qubits.

not effectively dealt with by this choice of operators. Since this angle is so close to π, there

may be no practical way to cope with such a rapid decoherence process using bang-bang

operations.

An open question is how effective bang-bang operators are in the presence of gate error

due to imprecision [88, 39]. Figures 6.15a-c provide data from the last set of experiments

which model phase dampening, the bang-bang operators used in the previous experiments,

and a gate error range of ±10−5 (the worst-case range). Interestingly enough, the bang-

bang operators are indeed able to cope with decoherence angles 0.2 and 1.2 as before,

suggesting that gate imprecision may not be a significant problem for bang-bang error

correction.

6.3 Summary

This chapter discussed two important language-level techniques for state-vector and

density-matrix simulation. In the case of state vector simulation, the simulator automati-

148

 0.99997

 0.999975

 0.99998

 0.999985

 0.99999

 0.999995

 1

 130 140 150 160 170 180 190 200

F
id

el
ity

No. of qubits

Data

 0.98

 0.985

 0.99

 0.995

 1

 130 140 150 160 170 180 190 200

F
id

el
ity

No. of qubits

Data

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 130 140 150 160 170 180 190 200

F
id

el
ity

No. of qubits

Data
0.7071

(a) (b) (c)

Figure 6.15: State fidelity in the remote EPR pair generation circuit with decoherence as a
function of the number of qubits. Faulty bang-bang pulses from the universal
decoupling sequence with an error range ±10−5 are used to correct the state
after every gate is applied. The decoherence angles used are (a) 0.2, (b) 1.2,
and (c) 3.0. Results are given from 130 to 200 qubits so that the periodic
nature of the data is easily viewed. The trends continue through 1000 qubits.

cally detects when to apply specialized gate-specific algorithms depending on the expres-

sions used. This demonstrates that QuIDDs are competitive with stabilizer simulation for

several large benchmarks, including one benchmark that contains non-stabilizer Toffoli

gates. In the case of density matrix simulation, particular language features are utilized to

introduce qubits only when they are needed and remove them when they no longer affect

the qubits of interest. This approach is used to characterize gate, systematic, and deco-

herence errors as well as bang-bang error correction in the remote EPR pair generation

circuit.

CHAPTER VII

Conclusions

In the worst case, quantum circuit simulation requires runtime and memory resources

that grow exponentially with the number of qubits simulated. Quantum circuits are also

significantly more complicated than classical digital logic circuits, and their unique prop-

erties are difficult to capture using traditional CAD techniques. One of the most important

of these properties is the fragile nature of quantum information. Quantum states are of-

ten damaged over time by several types of gate-specific and environmental errors, which

experimental physicists find difficult to characterize. Additionally, the notion of equiva-

lence, while trivial in the classical case, takes on a surprisingly rich set of interpretations

in the quantum case, offering several computational challenges of varying complexity. As

a result, useful quantum CAD tools must incorporate special models and efficient, classi-

cal simulation techniques to overcome these obstacles for classes of circuits with practical

value.

Our work centers around developing such techniques and implementing them in a uni-

fied framework. The algorithms, data structures, and simulation package we developed

provide an efficient testbed for analyzing quantum circuit properties via simulation. In the

149

150

remaining sections, a detailed discussion of our contributions is offered, followed by some

final perspectives and a discussion of future applications.

7.1 Summary of Contributions

In this thesis, we have evaluated a number of simulation techniques, contributed a new

and efficient technique of our own, and developed a comprehensive software tool based

on this technique. Our contributions directly facilitate further further analysis of quantum

speed-ups, exploitable structure in quantum information, error characterization, language

development, and synthesis, among others. A summary of the major contributions of this

dissertation is as follows:

• Development of the QuIDD data structure and QuIDD-based algorithms for general-

purpose quantum circuit simulation. The algorithms cover all of the key simulation

operations.

• Implementation and evaluation of the QuIDDPro simulator which supports general

simulation of both state vector and density matrix representations of quantum cir-

cuits and offers approximately 100 functions to provide a wide range of simulation

applications to quantum circuit CAD.

• Fast, memory-efficient QuIDD simulation of numerous benchmark circuits, demon-

strating the practical value of our technique. We also formally describe a class of

states and operators that require O(n) or smaller time and memory resources when

simulated with QuIDDs.

151

• Algorithms and other techniques enabling QuIDDs to simulate circuits using the

density matrix model, including the ability to trace over qubits which represent en-

vironmental interference or other effects.

• Fast algorithms that exploit QuIDD properties to perform equivalence checking up

to global and relative phase of both states and operators.

• Specialized gate algorithms and pre-processing algorithms that dramatically en-

hance the performance of applying controlled- and 1-qubit gates to QuIDDs. This

allows QuIDDs to enjoy some of the advantages of the stabilizer formalism on large

circuit benchmarks without the severe limitation on allowed gate types.

• Algorithms which enable QuIDD characterization of several common forms of ran-

dom, continuous errors as well as error correction in a case study circuit that creates

remote EPR pairs via faulty nearest-neighbor interactions.

In Chapter II, we surveyed the major quantum circuit simulation techniques. Each

technique exploits some form of structure in quantum information. In addition to these

techniques, we described our QuIDD data structure and QuIDD algorithms in Chapter III.

This chapter focuses on the state vector model of quantum computation and describes a

class of states and operators which can be represented with O(n) size complexity, includ-

ing instances of Grover’s search algorithm depending on the search criteria encoded by

the oracle. The results build the foundations for addressing the goals of quantum circuit

simulation, which are characterizing the effect of various errors in practical quantum cir-

cuits, testing multi-qubit error correction techniques to cope with such errors, verifying

152

the correctness of synthesized quantum circuits, and exploring the boundaries between

the quantum and classical computational models. They also illuminate the boundaries

between the quantum and classical computational models.

QuIDD algorithms are introduced in Chapter IV to model density matrices, which

provides specific tools to address the first two goals of quantum circuit simulation, namely

characterizing physical error effects and evaluating error correction techniques. The QuIDD

algorithms implement key density matrix operations such as the partial trace and outer

product. Benchmarks which include errors, error correction, reversible logic, quantum

communication, and quantum search were used to demonstrate that QuIDDs offer dra-

matic practical improvements over NIST’s QCSim package. Although QuIDD represen-

tations of density matrices have exponential size complexity in general, the benchmark

results demonstrate that the class of states and operators which QuIDDs represent effi-

ciently includes important applications.

Classical CAD tools are frequently used to reduce the size of logic circuits while pre-

serving equivalent functionality. In this context, a major use of simulation is to verify

functional equivalence. Although the canonicity of ordered decision diagrams facilitates

exact equivalence checking with QuIDDs in only O(1) time, equivalence checking up

to global and relative phases does not enjoy this property. Therefore we provided other

equivalence-checking algorithms in Chapter V to check for looser equivalence relations.

We showed that global- and relative-phase equivalence among states and operators may be

checked efficiently for a number of benchmarks ranging from Hamiltonian simulation to

quantum number factoring.

153

Lastly, in Chapter VI, we discussed algorithms which speed-up key simulation oper-

ations in certain situations. In the case of state vectors, pre-processing can be used to

distinguish controlled- and 1-qubit gates from arbitrary gates. We presented several spe-

cialized algorithms which are utilized automatically by the simulator instead of QuIDD

matrix multiplication to optimize simulation of such gates. These optimizations make

QuIDDs competitive with specialized simulation methods such as the stabilizer formalism

for a variety of large stabilizer circuit benchmarks. Additionally, we showed how dynamic

tensor products and tracing over unentangled qubits enables QuIDDs to simulate differ-

ent forms of continuous, random error including decoherence. Relevant language features

allow simulation of such errors in the n-qubit remote EPR pair generation circuit using

O(1) memory and O(n) time, which is an asymptotic improvement over using an n-qubit

QuIDD state vector and no tracing. Furthermore, decoherence error and “bang-bang” error

correction were simulated in this circuit with only O(1) time and memory overhead versus

the O(n) time overhead required by Vidal’s technique due to qubit swapping. Simulation

of these errors in addition to error correction addresses the first two goals of quantum

circuit simulation.

In the next section we discuss how the QuIDD data structure, algorithms, and language

properties relate to some of the other major simulation techniques surveyed earlier. We

also provide several final perspectives on quantum CAD and ideas for future developments

in the field.

154

7.2 Closing Remarks and Future Directions

Although all of the techniques discussed efficiently simulate different classes of quan-

tum circuits depending on various properties, it is still unclear how much overlap exists

among these techniques for practical simulation applications. For example, the remote

EPR pair generation circuit analyzed in Chapter VI can also be simulated by Vidal’s tech-

nique or tensor networks. However, decoherence errors can induce O(n) swaps when

using Vidal’s method. This overhead appears avoidable by dynamically concatenating

single-qubit tensors to Vidal’s tensor decomposition, similar to what is done with QuIDDs

and dynamic tensor products in Chapter VI. The concatenation should be straightforward

when introducing a new qubit in the ground state since there is no entanglement between

the current state and the new qubit (χ = 1). The partial trace would also be required to

remove the environment qubit after decoherence and measurement are applied.

This example illustrates several key points about practical quantum circuit simula-

tion. First, regardless of the back-end simulation technique, the front-end language and

supporting functionality are important. Without the power to express certain simulation

optimizations, such as dynamic tensor products and partial tracing, or specialized gates,

a great deal of computational resources may be wasted. In some cases, such unnecessary

runtime and memory overhead may grow asymptotically.

Second, formal descriptions of how the various classes of efficiently simulatable quan-

tum circuits overlap would provide a powerful tool for further work in theoretical compu-

tation. For instance, new developments are appearing which combine some of the simula-

tion techniques discussed in this dissertation. Shi, Duan and Vidal offer such an approach

155

by replacing the tensors in Vidal’s decomposition with tensor networks [64]. Whereas

it was shown that Vidal’s technique alone efficiently simulates one-dimensional quantum

many-body systems [85] and tensor networks alone efficiently simulate tensor networks

with low tree width, the hybrid approach efficiently simulates quantum many-body sys-

tems of arbitrary dimension so long as their tensor network representation has low tree

width [64]. In addition to enabling hybrid approaches, formal descriptions of the overlap

among techniques could make the incorporation of powerful, classical data structures more

transparent. Anders and Briegel’s replacement of the bit tables with a graph-based data

structure in the stabilizer formalism reduced the complexity of simulating that particular

class of quantum circuits [3]. QuIDDs too can be viewed as an analogous replacement for

explicit matrices and vectors. Such data structures draw from many seemingly disjoint ar-

eas of computer science and engineering, ranging from theoretical algorithmic analysis to

heuristic CAD for classical digital logic design. It is likely that other classical data struc-

tures, algorithms, and heuristics exist which will further benefit quantum circuit CAD.

Lastly, studying more benchmark circuits of interest with various types of physically

realistic errors is crucial to expanding the practical value of the various simulation tech-

niques. Although there is great theoretical value in identifying the classes of circuits that

may be simulated efficiently by all of the different techniques, experimental physicists,

like electrical engineers who design modern classical processors, have very practical re-

quirements for specific applications. For quantum circuit CAD to find use as a practical

tool, theoretical simulation results should be treated as a foundation on which to build

robust, efficient software packages. QuIDDPro is an “end-to-end” project which started

156

with our theoretical contributions to simulation and culminated in a rich software package

aimed at providing physicists and many other researchers in the field with a useful tool.

As illustrated by our discussions of other simulation techniques, it is clear that there are

many solid foundations on which to expand quantum circuit CAD development. We hope

that QuIDDPro will serve as a helpful example of how to pursue such development. The

continued efforts of many researchers in the emerging field of quantum computation com-

bined with decades of experience accumulated in classical circuit CAD will undoubtedly

produce even more powerful tools for quantum circuit design.

APPENDICES

157

158

APPENDIX A

A Characterization of Persistent Sets

The following sequence of lemmas published in [80] leads to a complete characterization

of persistent sets from Definition 3.8. This definition considers finite non-empty sets of

complex numbers Γ1 and Γ2, and denotes their all-pairs product as {xy | x ∈ Γ1, y ∈ Γ2}.

One can verify that this operation is associative, and therefore the set Γn of all n-element

products is well defined for n > 0. We then call a finite non-empty set Γ ⊂ C persistent iff

the size of Γn is constant for all n > 0. We start by observing that adding 0 to, or removing

0 from, a set does not affect its persistence.

Lemma A.1 All elements of a persistent set Γ that does not contain 0 must have the same

magnitude.

Proof. For Γ to be persistent, the set of magnitudes of elements from Γ must also be

persistent. Therefore, it suffices to show that each persistent set of positive real numbers

contains no more than one element. Assume, by way of contradiction, that such a persis-

tent set exists with at least two elements r and s. Then among n-element products from Γ,

we find all numbers of the form rn−ksk for k = 0..n. If we order r and s so that r < s, then

it becomes clear that the products are all different because rn−k+1sk−1 < rn−ksk. �

159

Lemma A.2 All persistent sets without 0 are of the form cΓ′, where c 6= 0 and Γ′ is a

finite persistent subset of the unit circle in the complex plane C, containing 1 and closed

under multiplication. Vice versa, for all such sets Γ′ and c 6= 0, cΓ′ is persistent.

Proof. Take a persistent set Γ that does not contain 0, pick an element z ∈ Γ and define

Γ′ = Γ/z, which is persistent by construction. Γ′ is a subset of the unit circle because

all numbers in Γ have the same magnitude. Due to the fact that z/z = 1 ∈ Γ′, the set of

n-element products contains every element of Γ′. Should the product of two elements of

Γ′ fall beyond the set, Γ′ cannot be persistent. �

Lemma A.3 A finite persistent subset Γ′ 3 1 of the unit circle that is closed under

multiplication must be of the form Un (roots of unity of degree n).

Proof. If Γ′ = {1}, then n = 1, and we are done. Otherwise consider an arbitrary

element z 6= 1 of Γ′ and observe that all powers of z must also be in Γ′. Since Γ′ is finite,

zm = zk for some m 6= k, hence zm−k = 1, and z is a root of unity. Therefore Γ′ is closed

under inversion, and forms a group. It follows from group theory, that a finite subgroup of

C is necessarily of the form Un for some n. �

Theorem A.4 Persistent sets are either of the form cUn for some c 6= 0 and n, or {0}∪

cUn.

160

APPENDIX B

QuIDDPro Simulator

QuIDDPro is a quantum circuit simulator we have developed around our QuIDD data

structure and QuIDD-based algorithms. It provides numerous built-in functions and lan-

guage features which make QuIDDs transparent and easy to use. This appendix provides

a brief overview of how to run the simulator as well as a language reference.

B.1 Running the Simulator

The QuIDDPro simulator can be run in two modes, namely batch mode and interactive

mode. In batch mode, the user supplies the simulator with an ASCII text file containing

the script code to be executed. The text file can be provided as an argument in the com-

mand line to the simulator executable or redirected to standard input as in the following

examples:

File “my code.qpro” passed as an argument:

% ./qp my code.qpro

File “my code.qpro” redirected to standard input:

% ./qp < my code.qpro

161

Note that although the examples use a “.qpro” extension in the filenames, any valid file-

name will do.

Interactive mode is triggered when the simulator executable is given no arguments at

the command line. In this mode, the simulator will be started and produce a prompt to

await input from the user as shown in the next example:

% ./qp

QuIDDPro>

Similar to MATLAB, valid lines of code may be typed at the prompt and executed

when the return or enter key is pressed (i.e. when a newline is given as input). The

command “quit” can be issued to exit the simulator. Also, multiple expressions may be

placed in a single line by separating each expression by one or more semicolons. An

example of this method of input is as follows:

QuIDDPro> a = pi/3; r op = [cos(a/2) -i*sin(a/2); -i*sin(a/2) cos(a/2)]

r op =

0.866025 0-0.5i

0-0.5i 0.866025

In this example, a 1-qubit rotational X operator matrix is created with the θ parameter

π/3. Notice that only the value of the variable “r op” is printed out. In general, the value of

the last expression is printed out for an input line containing multiple expressions separated

by semicolons. However, the other expressions are still computed. In this example, for

instance, the variable “a” will contain the value pi/3, even though this result is not printed

out. This is clearly true since the definition of “r op” depends on the value of “a.” In

162

addition to providing the means to place multiple expressions on the same line, semicolons

can be used more generally to suppress output to the screen. If screen output for any

particular expression is not desired, simply place a semicolon at the end of the expression

to compute it silently. MATLAB behaves in the same fashion.

QuIDDPro contains a number of built-in functions and predefined variables. A list-

ing of such functions and variables can be found in Section B.3. Notice that in the last

example, the predefined variables “pi” and “i” are used. “pi” contains the value π (to a

large number of digits), while “i” contains the value 0 + i. Predefined variables can be

overwritten by the user. In addition to the predefined variables just mentioned, the built-in

functions “cos” and “sin” were also used in the last example. To demonstrate the use of

built-in functions further, consider the next example:

QuIDDPro> r op = rx(pi/3, 1)

r op =

0.866025 0-0.5i

0-0.5i 0.866025

In this example, the built-in function “rx” is used to create the same matrix that was

created in the previous example, namely the 1-qubit rotational X operator. QuIDDPro

provides a number of such functions to create commonly used operators. See Section B.3

for more details.

Although interactive mode is useful for quick calculations, it may not be preferable

for non-trivial pieces of code that are reused many times. Thus, batch mode is highly

recommended for most contexts. In the next example, we demonstrate how to use QuIDD-

163

Pro to simulate a quantum circuit in batch mode. The code shown here can be placed into

a file for execution at any time. In fact, this particular example and others can be found in

the examples/ directory.

Consider the canonical decomposition of a two-qubit unitary operator U described in

[21]. U can be expressed as:

U = (A1 ⊗B1)ei(θxX⊗X+θyY⊗Y+θzZ⊗Z)(A2⊗B2)

subject to the constraint that π
4 ≥ θx ≥ θy ≥ |θz| and A1, A2, B1, and B2 are one-qubit

unitary operators.

Suppose we wish to simulate a quantum circuit in which some two-qubit unitary op-

erator U is to be applied to two qubits in the density matrix state |10〉〈10|. Further sup-

pose that U must be computed given the canonical decomposition parameters θx = 0.702,

θy = 0.54, and θz = 0.2346. Additionally, we are given that A1 is a one-qubit Hadamard

operator, A2 is X , B1 is I, and B2 is Y . This can be implemented with the following code

(from examples/misc/two q canonical.qpro):

theta x = 0.702;

theta y = 0.54;

theta z = 0.2346;

A1 = hadamard(1);

A2 = sigma x(1);

B1 = identity(1);

B2 = sigma y(1);

Next, U can be computed with the code:

164

Xpart = theta x*kron(sigma x(1), sigma x(1));

Ypart = theta y*kron(sigma y(1), sigma y(1));

Zpart = theta z*kron(sigma z(1), sigma z(1));

U = kron(A1, B1)*expm(i*(Xpart + Ypart + Zpart))*kron(A2, B2)

U is then applied to the density matrix state |10〉〈10| with the code:

state = cb(‘‘10’’);

final state = U*(state*state’)*U’

Deterministic measurement can be performed to eliminate the correlations associated with

each qubit:

q index = 1;

while (q index < 3)

final state = measure(q index, final state);

q index = q index + 1;

end

measured state = final state

U can also be applied very easily to the state vector representation of the state if it is

preferred to the density matrix representation. In addition, the probability of measuring a

1 or 0 for any qubit in the state vector can be computed using other measurement functions:

final state v = U*state

p0 qubit1 = measure sv0(1, final state v)

p1 qubit1 = measure sv1(1, final state v)

p0 qubit2 = measure sv0(2, final state v)

165

p1 qubit2 = measure sv1(2, final state v)

Probabilistic measurement can also be performed on both density matrices and state vec-

tors. See pmeasure and pmeasure sv in Section B.3 for more details.

Upon execution of the above script, the output is:

U =

-0.110927-0.0265116i -0.0530448-0.222078i -0.650863+0.15556i 0.162218-0.678733i

-0.162218+0.678733i 0.650863-0.15556i 0.0530448+0.222078i 0.110927+0.0265116i

-0.110927-0.0265116i 0.0530448+0.222078i 0.650863-0.15556i 0.162218-0.678733i

0.162218-0.678733i 0.650863-0.15556i 0.0530448+0.222078i -0.110927-0.0265116i

final state =

0.447822 2.15483e-05+0.152794i -0.447822 2.15483e-05+0.152794i

2.15483e-05-0.152794i 0.0521324 -2.15483e-05+0.152794i 0.0521324

-0.447822 -2.15483e-05-0.152794i 0.447822 -2.15483e-05-0.152794i

2.15483e-05-0.152794i 0.0521324 -2.15483e-05+0.152794i 0.0521324

measured state =

0.447822 0 0 0

0 0.0521324 0 0

0 0 0.447822 0

0 0 0 0.0521324

final state v =

-0.650863+0.15556i

0.0530448+0.222078i

0.650863-0.15556i

0.0530448+0.222078i

166

p0 qubit1 =

0.499955

p1 qubit1 =

0.499955

p0 qubit2 =

0.895644

p1 qubit2 =

0.104265

Although the examples in this section demonstrate scripts that use small numbers

of qubits, the real power of QuIDDPro lies in simulating quantum-mechanical systems

with many quantum states (usually 10 or more). See steaneX.qpro, steaneZ.qpro, and

large h.qpro in the examples/ directory for examples of such systems. large h.qpro, for in-

stance, applies a 50 qubit Hadamard operator to a density matrix of 50 qubits. steaneX.qpro

and steaneZ.qpro demonstrate error correction in quantum circuits of 12 and 13 qubits, re-

spectively. On a single-processor workstation, each of these scripts requires less than 5

seconds to run and less than 0.5 MB of peak memory usage.

B.2 Functions and Code in Multiple Files

QuIDDPro supports user-defined functions via the “m-file” model commonly used in

MATLAB. Specifically, a function call to a user-defined function may appear anywhere

as long as the function body is contained in a separate file in the working directory. The

name of the file containing the function body must be the same as the function name with

167

“.qpro” or “.qp” appended. To illustrate, consider the following script which uses an oracle

function to implement a simple instance of Grover’s algorithm shown on page 256 of [51].

Notice that Dirac-style syntax maybe used for state vector QuIDDs.

(examples/functions/simple grover.qpro)

|state:> = cb(‘‘001’’);

|state:> = hadamard(3)*|state:>;

|state:> = oracle(|state:>);

|state:> = cu gate(hadamard(1), ‘‘xxi’’)*|state:>;

|state:> = cu gate(sigma x(1), ‘‘xxi’’)*|state:>;

|state:> = cu gate(hadamard(1), ‘‘ixi’’)*|state:>;

|state:> = cu gate(sigma x(1), ‘‘cxi’’)*|state:>;

|state:> = cu gate(hadamard(1), ‘‘ixi’’)*|state:>;

|state:> = cu gate(sigma x(1), ‘‘xxi’’)*|state:>;

|state:> = hadamard(3)*|state:>

(examples/functions/oracle.qpro)

function |new state:> = oracle(curr state)

|new state:> = cu gate(sigma x(1), ‘‘ccx’’)*|curr state:>;

The user-defined function is “oracle” with its function body defined in the file “ora-

cle.qpro.” The other functions used are part of the QuIDDPro language (see Section B.3

for more details). Notice that in this particular example, the QuIDD “state” is passed as a

function argument. In QuIDDPro, a QuIDD function argument only requires O(1) mem-

ory usage because a pointer to the head of the QuIDD is passed to a function rather than

168

the entire QuIDD. The same holds true for returning QuIDDs from a function. Thus, pass-

ing QuIDD arguments and return values is extremely efficient. In general, a user-defined

function can contain any number of parameters which can be any combination of QuIDDs

or complex numbers. Arguments passed as parameters to functions are not modified by

the function (i.e. pass-by-value is always used).

Unlike MATLAB, QuIDDPro functions must have only one return variable (a function

that returns nothing is also not allowed). If the function is intended to return no values,

such as a diagnostic printing function, then a dummy variable can be used for the return

variable. The return variable need not be used in the function body, and when this occurs,

it is automatically assigned a value of 0. A semicolon can be appended to the function call

to suppress the output of the 0 value. When multiple return values are desired, they can

be stored together in a matrix. Thus, requiring a single return variable does not actually

restrict the number of values that can be returned.

Like MATLAB and other languages, variables declared locally in a function body exist

in their own scope. In other words, variables declared in a function body are undefined

upon leaving the function body. By the same token, such variables do not overwrite the

values of variables with the same name declared outside the function body.

In addition to functions, QuIDDPro supports the run command. Like its MATLAB

counterpart, this command runs script code contained in another file. In the following

example, the same circuit as before is simulated, but this time the run command is used

instead of a user-defined function.

169

(examples/run/simple grover.qpro)

run ‘‘oracle def.qpro’’

state = cb(‘‘001’’);

state = hadamard(3)*state;

state = oracle*state;

state = cu gate(hadamard(1), ‘‘xxi’’)*state;

state = cu gate(sigma x(1), ‘‘xxi’’)*state;

state = cu gate(hadamard(1), ‘‘ixi’’)*state;

state = cu gate(sigma x(1), ‘‘cxi’’)*state;

state = cu gate(hadamard(1), ‘‘ixi’’)*state;

state = cu gate(sigma x(1), ‘‘xxi’’)*state;

state = hadamard(3)*state

(examples/run/oracle def.qpro)

oracle = cu gate(sigma x(1), ‘‘ccx’’);

Notice that the run command does not introduce a new scope. All variables declared in

a run file exist in the current scope. As a result, the run command is ideal for declaring

variables which can be re-used in multiple projects. Also, there is no constraint on where

a run command may appear other than that it may not be placed within an explicit matrix.

170

B.3 Language Reference

This section provides a reference for the QuIDDPro input language. Although the lan-

guage is similar to MATLAB, there are many functions in QuIDDPro specific to quantum-

mechanics which do not exist in MATLAB. There are also a large number of functions

in MATLAB which are not supported by QuIDDPro. Additionally, some of the functions

that have the same names as those in MATLAB have slightly different functionality from

their MATLAB counterparts. New language features will be added in future versions of

the QuIDDPro simulator, and we welcome user suggestions.

== =̃, != < <=

> >= && ||

+ - * /

= ’ (. . .) ∧

cutoff val i

output prec pi

qp epsilon r2

r3

[. . .] ; a(n, k)
a(n1,n2,n3, . . .) else elseif

function if run

tic toc while

for end

Operations Predefined variables Language features

atan cb cnot conj

cos cps cu gate dump dot

echo exp expm eye

fredkin gen amp damp hadamard identity

kron norm measure measure sv

measure sv0 measure sv1 pmeasure pmeasure norm sv

pmeasure sv proj0 proj1 projplus

ptrace px, Px py, Py pz, Pz

quidd info rand round rx, Rx

ry, Ry rz, Rz sigma x sigma y

sigma z sin sqrt swap

toffoli zeros

Built-in Functions

• [. . .] defines a matrix explicitly. Expressions are placed between the brackets. Ele-

ments in the same row are separated by whitespace (including newlines) or commas,

171

while rows are separated by one or more semicolons. The brackets can be nested

within other brackets (matrices within matrices).

• # starts a one-line comment. Everything from the # symbol to the first newline is

ignored. An alternative comment symbol is %.

• % starts a one-line comment. Everything from the % symbol to the first newline

is ignored. An alternative comment symbol is #.

• ′ returns the complex-conjugate transpose of a matrix. For example, [1 2; 3 +

2i 4]′ → [1 3−2i; 2 4]

• == equality operation that returns 1 if the two expressions compared are equal;

otherwise it returns 0. Comparison between matrices is supported. A complex num-

ber and a matrix are considered not equal unless the matrix has dimensions 1× 1

and contains a number equal to the one being compared to.

• ˜= inequality operation that performs the complement function of ==.

• ! = an alternative symbol for ˜=.

• < less than operation. It returns 1 if the left-hand expression is less than the

right-hand express; otherwise it returns 0. It can only be used to compare numbers.

For numbers with nonzero imaginary components, only the real parts are compared.

• <= less than or equal operation. It returns 1 if the left-hand expression is less

than or equal to the right-hand express; otherwise it returns 0. It can only be used to

172

compare numbers. For numbers with nonzero imaginary components, only the real

parts are compared.

• > greater than operation. It returns 1 if the left-hand expression is greater than the

right-hand express; otherwise it returns 0. It can only be used to compare numbers.

For numbers with nonzero imaginary components, only the real parts are compared.

• >= greater than or equal operation. It returns 1 if the left-hand expression is

greater than or equal to the right-hand express; otherwise it returns 0. It can only be

used to compare numbers. For numbers with nonzero imaginary components, only

the real parts are compared.

• && logical AND connective. It returns 1 if both sides of the operator evaluate

to 1; otherwise it returns 0. It can only be used to compare numbers with nonzero

imaginary components.

• || logical OR connective. It returns 1 if either side of the operator evaluates to

1; otherwise it returns 0. It can only be used to compare numbers with nonzero

imaginary components.

• + addition operation. For complex numbers, it returns the sum of the numbers.

For matrices, it returns the element-wise addition of both matrices (both matrices

must have the same number of rows and columns). When a matrix is added to a

complex number, the complex number is added to each element of the matrix as a

scalar.

173

• − subtraction operation. For complex numbers, it returns the difference of the

numbers. For matrices, it returns the element-wise difference of both matrices (both

matrices must have the same number of rows and columns). When a matrix is

subtracted from a complex number or vice-versa, scalar subtraction is performed

element-by-element. When there is no left-hand expression, it is treated as a unary

minus applied to the right-hand side expression. Within a matrix definition, for ex-

ample [1− 2], the minus sign is treated as a unary minus. However, in [1− 2] and

[1−2], the minus sign is treated as the binary minus expression. Parenthesis can be

used to force the minus sign to be treated one way or the other.

• ∗ multiplication operation. For complex numbers, it returns the product of the

numbers. For matrices, matrix multiplication is performed (as opposed to element-

wise multiplication). Scalar multiplication is performed when a matrix and a com-

plex number are multiplied together.

• / division operation. For complex numbers, it returns the quotient. Unlike the C

language, integer division is not performed if the operands are both integer values.

Double floating point division is always performed. For matrices, element-wise divi-

sion is performed (both matrices must have the same number of rows and columns).

When a matrix is divided by a complex number, scalar division is performed. How-

ever, a complex number may not be divided by a matrix.

• = assignment operation. It assigns the value of an expression (right-hand side) to

a variable (left-hand side). The expression may result in either a complex number

or a matrix. The left-hand side expression must be a variable name (it must start

174

with a letter and contain only alpha-numeric characters and optionally underscores).

Variables can be assigned “on-the-fly.” In other words, unlike languages like C/C++,

variables are not declared nor typed in any way prior to their first assignment. How-

ever, a variable must be assigned a value before it can be used in an expression.

Similar to languages such as C/C++, an assignment expression returns a value just

like any other expression, namely the value that was assigned to the variable on the

left-hand side. Therefore, statements such as x = y = 3+4i are valid. In statements

like these, if output is not suppressed, the value of the leftmost variable will be out-

put to the screen. Although the other variables assigned values will not be output to

the screen, they are still assigned their values. Another important note is that even

though string literals appear as arguments in some functions, including cu gate and

echo, assignment of a string literal to a variable is not yet supported.

• ∧ exponentiation operation for complex numbers. It returns the expression on the

left-hand side of the ∧ raised to the power of the expression on the right-hand side.

For matrix exponentiation, see the expm function.

• (. . .) forces precedence for an expression as in any other programming language.

An expression within the parentheses is evaluated before evaluating expressions out-

side of the parentheses.

• ; the semicolon suppresses output of an expression. For example, x = 1 stores

the value of 1 in the variable x and output x = 1 to standard output, whereas x = 1;

also stores the value of 1 in the variable x but would not output anything to standard

output. When a semicolon appears in a matrix definition, it has a different meaning

175

entirely. Within a matrix definition, a semicolon denotes the end of a row.

• a(n, k) if a is a variable containing a matrix, then this expression returns the

element indexed by the row index n and the column index k. Numbering of indices

starts at 1. Unlike languages such as MATLAB, this expression may not be used

to assign values to elements of a matrix. It may only be used to read a particular

element from a matrix (e.g. x = a(1, 2) + 2 is valid, but a(1, 2) = 3+2 is not).

Future versions may support this, however, if there is demand for such functionality.

n and k must be complex numbers with no imaginary components. n and k must also

each be within 10E − 5 of an integer value (e.g. 9.99999, 1.00001, and 3 are valid,

but 4.5 is not), and values that are within this threshold are rounded to the nearest

integer (e.g. 9.99999 is interpreted as 10). In addition, n and k must each be at least

1 after rounding.

• a(n1, n2, n3, . . .) if a is not a variable containing a matrix, it is considered to

be user-defined function call. n1, n2, and n3 are function arguments that can be

expressions or variables of any type. There is no constraint on the number of ar-

guments. Also note that passing QuIDD arguments and QuIDD return values only

requires O(1) memory since only a single pointer to the head of a QuIDD needs to

be passed. Arguments passed as parameters to functions are not modified by the

function (i.e. pass-by-value is always used). See Section B.2 for more details.

• atan(n) returns the arc tangent of the expression n passed as an argument. If n is

a matrix, it returns a matrix containing the element-wise arc tangent of n.

176

• cb(“. . .”) returns a computational basis state vector. The string literal argument

consists of a sequence of any number and combination of ’0’ and ’1’ characters.

The string is parsed from left to right. Each ’0’ causes a |0〉 to be tensored into the

vector, and each ’1’ causes a |1〉 to be tensored into the vector. cb can easily be used

to create density matrices by using it in conjunction with the complex-conjugate

transpose operation (’), matrix multiplication, and scalar operations.

• cnot(“. . .”) returns a 2-qubit controlled-NOT (CNOT) gate matrix. This is a

faster, specialized version of cu gate. If a controlled gate matrix with different

numbers of controls/targets and/or a different action (U operator) is desired, then

use the more general cu gate function. The argument of cnot is a string literal

using the same gate specification syntax as cu gate. However, the only valid pa-

rameters accepted by cnot are ’cx’ and ’xc’, since these string specifications are the

only possible strings that produce a valid 2-qubit CNOT gate matrix. For example,

cnot(’cx’) produces a CNOT gate matrix with the control on the “top” wire and

the action (X operator) on the “bottom” wire. For a discussion of how the concept

of wires relates to creating controlled gate matrices, see cu gate.

• conj(n) returns the complex-conjugate of the expression n passed as an argument.

n can be a complex number or a matrix.

• cos(n) returns the cosine of the expression n passed as an argument. If n is a

matrix, it returns a matrix containing the element-wise cosine of n.

177

• cps(n) returns an n-qubit conditional phase shift (CPS) gate matrix. n must be

a complex number with no imaginary component. n must also be within 10E − 5

of an integer value (e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and

values that are within this threshold are rounded to the nearest integer (e.g. 9.99999

is interpreted as 10). In addition, n must be at least 1 after rounding. Always use

this function instead of explicitly defining your own CPS matrix. This function is

asymptotically faster and uses asymptotically less memory than defining the matrix

explicitly. The conditional phase shift gate is particularly useful in Grover’s quantum

search algorithm [33].

• cu gate(a, “. . .”) is a generalized controlled-U gate matrix creation function.

It returns a controlled or uncontrolled gate matrix given an action matrix (a) and a

string literal with the gate specification (the second argument contained in “s). The

string literal consists of a sequence of characters. The idea is for the string literal

to specify what the gate should do to each “wire” in a quantum circuit. When con-

ceptualizing a quantum circuit graphically and reading top-down, the first character

corresponds to the first qubit wire, the second character corresponds to the second

qubit wire, etc. Each character can take one of four possible values. ’i’ denotes the

identity, which means that the gate does nothing to the wire at that location. ’x’

denotes an action, which means that the matrix specified by the argument a is ap-

plied to the wire at that location. ’c’ denotes a control, which means that the wire

at that location is used as a control on any ’x’ wire (a |1〉 state forces a to operate

on any ’x’ wire, whereas a |0〉 causes nothing to happen on any ’x’ wire). ’n’ is a

178

negated control, which is the opposite of ’c’ (a |0〉 state forces a to operate on any

’x’ wire, whereas a |1〉 causes nothing to happen on any ’x’ wire). Any sequence

of these characters may be used. Although there is no “actual” circuit, the string

characters allow a user to conceptualize a circuit and construct a matrix which op-

erates on the wires in that conceptualized circuit. a may be a matrix that operates

on more than one qubit as long as one or more blocks of contiguous ’x’ characters

appear such that the size of each block is equal to the number of qubits operated

on by a. For examples, see steaneX.qpro and steaneZ.qpro under the examples/nist/

subdirectory. Always use this function instead of defining your own gates explic-

itly, since it is asymptotically faster and uses asymptotically less memory. Since

cu gate must parse the input specification string, other functions such as hadamard

and cps should be used instead of cu gate for specific gates because they do not

perform any parsing and are therefore a bit more efficient. An alternative func-

tion name for cu gate is lambda. Also see the alternative, condensed version of

cu gate discussed next. The alternative version may be preferable for circuits with

many qubits.

• cu gate(a, “. . .”, n) is an alternative syntax for cu gate which takes a con-

densed string literal “. . .”. This condensed string literal specifies only the actions

and controls along with the qubit wires they are applied to. For example, a Toffoli

gate in a 5-qubit circuit, with controls on the second and fourth wires and the action

on the fifth wire, can be created with the call cu gate(sigma x(1), “c2c4x5”, 5).

As implied by this example, n is the total number of qubits in the circuit that the

179

gate is applied to. n must be a complex number with no imaginary component. n

must also be within 10E − 5 of an integer value (e.g. 9.99999, 1.00001, and 3 are

valid, but 4.5 is not), and values that are within this threshold are rounded to the

nearest integer (e.g. 9.99999 is interpreted as 10). In addition, n must be at least 1

after rounding. More examples can be found in the examples/ directory and include

hadder bf1.qpro and rc adder1.qpro, among others.

• cutoff val If the cutoff value is set, any portion of all QuIDD element values that

is less than the cutoff value will be rounded. For example, cutoff val = 1e− 15

will cause all subsequently created QuIDD element values to be rounded at the 15th

decimal place. By default, the cutoff value is not set and no rounding occurs. If the

cutoff value is set by the user, it can be reset to the default (i.e. no rounding) by

assigning 0 to cutoff val.

• dump dot(“. . .”, “. . .”, a) outputs the dot form of the graphical QuIDD repre-

sentation of the matrix/vector a to a file specified by the second argument. The first

argument is the name that will appear at the top of the QuIDD image. dot is a simple

scripting language supported in the Graphviz package1 Once the dot file is gener-

ated, dot can be run from the command line to produce a PostScript image of the

QuIDD representation as such:

dot -Tps filename.dot -o filename.ps

dot can generate other graphical file formats as well. Consult Graphviz for more

details. A simple example is contained in the examples/dot subdirectory.

1Graphviz can be obtained at http://www.graphviz.org/.

180

• echo(“. . .”) prints the string literal passed as an argument to standard output.

Putting one or more semicolons after echo does not suppress its output. echo has

no return value, so it cannot be used in expressions.

• else is a program flow control construct that is part of an “if-elseif-else” control

block sequence. Its meaning is the same as in just about any other language. Only

one else may optionally appear in an “if-elseif-else” block, and it must appear only

at the end of the block. If an else block is used, its body (a sequence of zero or more

expressions and/or control blocks to be executed) must be terminated by an end even

if the body is empty. The body following else is executed when the preceding if

and elseif conditions evaluate to “false” (i.e. a complex numbered value of zero).

• elseif is a program flow control construct that is part of an “if-elseif-else” con-

trol block sequence. Its meaning is the same as in just about any other language. It

contains a condition which is an expression enclosed in parentheses. Zero or more

elseif’s may appear in an “if-elseif-else” block, but the first elseif must appear

after an if, and the last elseif must appear before an optional else. If no else

appears after an elseif, the body of the elseif (a sequence of zero or more ex-

pressions and/or control blocks to be executed) must be terminated by an end even

if the body is empty. The condition determines whether or not the statements in the

body are executed. The body of the elseif is executed when the following two

conditions are met: 1.) the preceding if and elseif conditions evaluate to “false”

(i.e. a complex numbered value of zero), and 2.) the elseif condition evaluates to

“true” (i.e. any non-zero complex numbered value).

181

• end keyword that signifies the end of a program flow control construct. In other

words, end should be used to denote the end of “if-elseif-else” and “while” blocks.

• exp(n) returns en. If n is a matrix, then it returns a matrix containing the element-

wise computation of ek where k is an element from n.

• expm(n) returns en, where n is a matrix. This is standard matrix exponentiation

and is approximated by a finitely bounded Taylor series. In the current version of

the QuIDDPro simulator, you may only apply expm to a matrix n whose dimensions

do not exceed 8× 8 for efficiency reasons. Future versions may support larger di-

mensional arguments, but it is unlikely that larger dimensional arguments will be

needed for most quantum-mechanics applications. If n is a complex number, then it

returns en.

• eye(n) returns an n×n identity matrix. If you only need an identity matrix whose

dimensions are a power of 2 in size (e.g. for k-qubit identity gate matrices) then

use identity(k) instead (see below), which runs slightly faster. n must be a complex

number with no imaginary component. n must also be within 10E −5 of an integer

value (e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values that are

within this threshold are rounded to the nearest integer (e.g. 9.99999 is interpreted

as 10). In addition, n must be at least 1 after rounding. Always use eye or identity

instead of defining identity matrices explicitly because they are asymptotically faster

and use asymptotically less memory.

• fredkin() returns a Fredkin gate matrix.

182

• function var name = func name(n1, n2, n3, . . .) defines a function body. This

definition should exist in a file by itself with a filename that matches func name

appended by the “.qpro” or “.qp” extensions. var name is the name of the variable

that contains the return value. n1, n2, and n3 are function parameters that can be of

any type. There is no constraint on the number of parameters. Also note that passing

QuIDD arguments and QuIDD return values only requires O(1) memory since only

a single pointer to the head of a QuIDD needs to be passed. Arguments passed as

parameters to functions are not modified by the function (i.e. pass-by-value is always

used). Following the return value/function name line, the script code comprising the

function body should appear. See Section B.2 for more details.

• gen amp damp(d, p, n, a) performs generalized amplitude dampening (see [51, p.

382] for a description of generalized amplitude dampening). a is a density matrix

(it must be square and have dimensions that are a power of 2 in size) on which

dampening is to be performed. a is not modified, but the result of dampening applied

to a is returned. d is the dampening parameter and must be a complex number with

no imaginary component. p is the probability parameter and must also be a complex

number with no imaginary component. d and p must each be in the range [0,1].

n is the qubit wire number that dampening is to be applied to. This wire number

is only conceptual and can alternatively be thought of as the nth quantum state in

the density matrix (see cu gate for a more detailed description of wire numbers and

steaneX.qpro and steaneZ.qpro under examples/nist/ for examples). n must be a

complex number with no imaginary component. n must also be within 10E − 5 of

183

an integer value (e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values

that are within this threshold are rounded to the nearest integer (e.g. 9.99999 is

interpreted as 10). In addition, n must be at least 1 after rounding.

• hadamard(n) or H(n) returns an n-qubit Hadamard gate matrix. n must be a

complex number with no imaginary component. n must also be within 10E − 5 of

an integer value (e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values

that are within this threshold are rounded to the nearest integer (e.g. 9.99999 is

interpreted as 10). In addition, n must be at least 1 after rounding. Always use this

function instead of explicitly defining your own Hadamard matrix. This function is

asymptotically faster and uses asymptotically less memory than defining the matrix

explicitly.

• i is a variable that is preset to the value 0+1i. It can be overwritten at runtime by

the user.

• identity(n) returns an n-qubit identity gate matrix. n must be a complex number

with no imaginary component. n must also be within 10E − 5 of an integer value

(e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values that are within

this threshold are rounded to the nearest integer (e.g. 9.99999 is interpreted as 10).

In addition, n must be at least 1 after rounding. Always use this function instead of

explicitly defining your own identity matrix. This function is asymptotically faster

and uses asymptotically less memory than defining the matrix explicitly. Also see

the eye function.

184

• if is a program flow control construct that is part of an “if-elseif-else” control

block sequence. Its meaning is the same as in just about any other language. It

contains a condition which is an expression enclosed in parentheses. An “if-elseif-

else” block must be started by a single if, but “if-elseif-else” blocks can be nested

within other “if-elseif-else” blocks (nesting with “while” blocks is also allowed). An

if must be followed by a body of zero or more expressions and/or control blocks,

and this body must be terminated by either an elseif, an else, or an end, even if

the body is empty. The condition determines whether or not the statements in the

body are executed. The body is executed once if the condition evaluates to “true”

(i.e. any non-zero complex numbered value). Otherwise if the condition evaluates

to “false” (i.e. a complex numbered value of zero), the body is not executed.

• kron(n, k) returns the tensor (Kronecker) product of the matrix expressions n and

k. If n and k are complex numbers, then they are multiplied together.

• lambda(a, “. . .”) is an alternative name for the function cu gate.

• measure(n, a) performs deterministic measurement on the nth qubit in the den-

sity matrix a. In other words, all off-diagonal correlations corresponding to the

qubit being measured are zeroed out, and the resultant density matrix is returned

(for probabilistic measurement of a qubit in a density matrix that returns a 1 or 0,

see pmeasure). a must be square and have dimensions that are a power of 2 in

size. a is not modified, but the result of measurement applied to a is returned. n

is the qubit wire number that measurement is to be applied to. This wire number

is only conceptual and can alternatively be thought of as the nth quantum state in

185

the density matrix (see cu gate for a more detailed description of wire numbers and

steaneX.qpro and steaneZ.qpro under examples/nist/ for examples). n must be a

complex number with no imaginary component. n must also be within 10E − 5 of

an integer value (e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and val-

ues that are within this threshold are rounded to the nearest integer (e.g. 9.99999 is

interpreted as 10). In addition, n must be at least 1 after rounding.

• measure sv(n, a) perform probabilistic measurement on qubit n. A state vector is

returned which represents the state vector a as modified by the measurement result

and its associated norm. If the measurement result and the associated norm have al-

ready been computed with a previous call to pmeasure norm sv, then measure sv

can be called with the alternative syntax measure sv(n, a, res, norm). res and

norm denote the precomputed measurement result and associated norm, respec-

tively. Since a must be a state vector, one of the dimensions must be 1, and the

other dimension must be a power of 2. a is not modified by this function. n must be

a complex number with no imaginary component. n must also be within 10E −5 of

an integer value (e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values

that are within this threshold are rounded to the nearest integer (e.g. 9.99999 is in-

terpreted as 10). In addition, n must be at least 1 after rounding. res must have the

value 0 or 1 to within the rounding threshold. norm should be a valid norm of a state

vector.

• measure sv0(n, a) returns the probability of measuring qubit n as a 0 in state

vector a (for probabilistic measurement of a qubit in a state vector that returns a

186

1 or 0, see pmeasure sv). Since a must be a state vector, one of the dimensions

must be 1, and the other dimension must be a power of 2. a is not modified by this

function. n must be a complex number with no imaginary component. n must also

be within 10E−5 of an integer value (e.g. 9.99999, 1.00001, and 3 are valid, but 4.5

is not), and values that are within this threshold are rounded to the nearest integer

(e.g. 9.99999 is interpreted as 10). In addition, n must be at least 1 after rounding.

• measure sv1(n, a) returns the probability of measuring qubit n as a 1 in state

vector a (for probabilistic measurement of a qubit in a state vector that returns a

1 or 0, see pmeasure sv). Since a must be a state vector, one of the dimensions

must be 1, and the other dimension must be a power of 2. a is not modified by this

function. n must be a complex number with no imaginary component. n must also

be within 10E−5 of an integer value (e.g. 9.99999, 1.00001, and 3 are valid, but 4.5

is not), and values that are within this threshold are rounded to the nearest integer

(e.g. 9.99999 is interpreted as 10). In addition, n must be at least 1 after rounding.

• norm(a) returns the norm of a state vector or complex number a. Since a must be

a state vector, one of the dimensions must be 1, and the other dimension must be a

power of 2.

• output prec denotes the output precision. When assigned a non-negative integer

value, it specifies how many digits should be output to the screen. Any digits which

exceed this number are rounded. For example, output prec = 3 will cause 1/3

to output 0.333 to the screen. Note that the internal precision of any numbers and

variables are unaffected. output prec only affects the screen output precision. By

187

default, the variable output prec is not set, but the output precision is initially 6.

Assigning a negative value to output prec restores the default output precision.

However, assigning a matrix to output prec leaves the precision unchanged from

its previous value.

• pi is a variable that is preset to the value of π to a large number of decimal places.

It can be overwritten at runtime by the user.

• pmeasure(n, a) performs probabilistic measurement on the nth qubit in the

density matrix a. The result returned is a 1 or 0 (for deterministic measurement of a

qubit in a density matrix, see measure). a must be square and have dimensions that

are a power of 2 in size. a is not modified by this function. n must be a complex

number with no imaginary component. n must also be within 10E −5 of an integer

value (e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values that are

within this threshold are rounded to the nearest integer (e.g. 9.99999 is interpreted

as 10). In addition, n must be at least 1 after rounding.

• pmeasure norm sv(n, a) performs probabilistic measurement on the nth qubit in

the state vector a. A 1×2 vector is returned containing a 1 or 0 for the measurement

result (the first element) and the norm associated with the measurement result (the

second element). Since a must be a state vector, one of the dimensions must be 1,

and the other dimension must be a power of 2. a is not modified by this function.

n must be a complex number with no imaginary component. n must also be within

10E − 5 of an integer value (e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not),

and values that are within this threshold are rounded to the nearest integer (e.g.

188

9.99999 is interpreted as 10). In addition, n must be at least 1 after rounding.

• pmeasure sv(n, a) performs probabilistic measurement on the nth qubit in the

state vector a. The result returned is a 1 or 0 (for deterministic measurement of

a qubit in a state vector see measure sv0 and measure sv1). Since a must be a

state vector, one of the dimensions must be 1, and the other dimension must be a

power of 2. a is not modified by this function. n must be a complex number with

no imaginary component. n must also be within 10E − 5 of an integer value (e.g.

9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values that are within this

threshold are rounded to the nearest integer (e.g. 9.99999 is interpreted as 10). In

addition, n must be at least 1 after rounding.

• proj0(n) returns an n-qubit |0〉 projector gate matrix (i.e. |0 . . .0〉〈0 . . .0|, for n

0’s). n must be a complex number with no imaginary component. n must also be

within 10E −5 of an integer value (e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is

not), and values that are within this threshold are rounded to the nearest integer (e.g.

9.99999 is interpreted as 10). In addition, n must be at least 1 after rounding. Always

use this function instead of explicitly defining your own |0〉 projector matrix. This

function is asymptotically faster and uses asymptotically less memory than defining

the matrix explicitly.

• proj1(n) returns an n-qubit |1〉 projector gate matrix (i.e. |1 . . .1〉〈1 . . .1|, for n

1’s). n must be a complex number with no imaginary component. n must also be

within 10E −5 of an integer value (e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is

not), and values that are within this threshold are rounded to the nearest integer (e.g.

189

9.99999 is interpreted as 10). In addition, n must be at least 1 after rounding. Always

use this function instead of explicitly defining your own |1〉 projector matrix. This

function is asymptotically faster and uses asymptotically less memory than defining

the matrix explicitly.

• projplus(n) returns an n-qubit |+〉 projector gate matrix (i.e. |+ . . .+〉〈+ . . .+ |,

for n +’s). n must be a complex number with no imaginary component. n must

also be within 10E − 5 of an integer value (e.g. 9.99999, 1.00001, and 3 are valid,

but 4.5 is not), and values that are within this threshold are rounded to the nearest

integer (e.g. 9.99999 is interpreted as 10). In addition, n must be at least 1 after

rounding. Always use this function instead of explicitly defining your own |+〉

projector matrix. This function is asymptotically faster and uses asymptotically less

memory than defining the matrix explicitly.

• ptrace(n, a) performs the partial trace over the nth qubit in the density matrix

a. a must be square and have dimensions that are a power of 2 in size. a is not

modified, but the result of the partial trace applied to a is returned. n is the qubit

wire number that is traced over. This wire number is only conceptual and can al-

ternatively be thought of as the nth quantum state in the density matrix (see cu gate

for a more detailed description of wire numbers and steaneX.qpro and steaneZ.qpro

under examples/nist/ for examples). n must be a complex number with no imagi-

nary component. n must also be within 10E − 5 of an integer value (e.g. 9.99999,

1.00001, and 3 are valid, but 4.5 is not), and values that are within this threshold are

rounded to the nearest integer (e.g. 9.99999 is interpreted as 10). In addition, n must

190

be at least 1 after rounding.

• px(p, n, a) applies a probabilistic Pauli X gate matrix to the nth qubit in the density

matrix a. a must be square and have dimensions that are a power of 2 in size. a is not

modified, but the result of dampening applied to a is returned. p is the probability

parameter and must be a complex number with no imaginary component. p must be

in the range [0,1]. n is the qubit wire number that the probabilistic X gate matrix is to

be applied to. This wire number is only conceptual and can alternatively be thought

of as the nth quantum state in the density matrix (see cu gate for a more detailed de-

scription of wire numbers and steaneX.qpro and steaneZ.qpro under examples/nist/

for examples). n must be a complex number with no imaginary component. n must

also be within 10E − 5 of an integer value (e.g. 9.99999, 1.00001, and 3 are valid,

but 4.5 is not), and values that are within this threshold are rounded to the nearest

integer (e.g. 9.99999 is interpreted as 10). In addition, n must be at least 1 after

rounding.

• Px(p, n, a) an alternative name for the function px.

• py(p, n, a) applies a probabilistic Pauli Y gate matrix to the nth qubit in the density

matrix a. a must be square and have dimensions that are a power of 2 in size. a is not

modified, but the result of dampening applied to a is returned. p is the probability

parameter and must be a complex number with no imaginary component. p must be

in the range [0,1]. n is the qubit wire number that the probabilistic Y gate matrix is to

be applied to. This wire number is only conceptual and can alternatively be thought

of as the nth quantum state in the density matrix (see cu gate for a more detailed de-

191

scription of wire numbers and steaneX.qpro and steaneZ.qpro under examples/nist/

for examples). n must be a complex number with no imaginary component. n must

also be within 10E − 5 of an integer value (e.g. 9.99999, 1.00001, and 3 are valid,

but 4.5 is not), and values that are within this threshold are rounded to the nearest

integer (e.g. 9.99999 is interpreted as 10). In addition, n must be at least 1 after

rounding.

• Py(p, n, a) an alternative name for the function py.

• pz(p, n, a) applies a probabilistic Pauli Z gate matrix to the nth qubit in the density

matrix a. a must be square and have dimensions that are a power of 2 in size. a is not

modified, but the result of dampening applied to a is returned. p is the probability

parameter and must be a complex number with no imaginary component. p must be

in the range [0,1]. n is the qubit wire number that the probabilistic Z gate matrix is to

be applied to. This wire number is only conceptual and can alternatively be thought

of as the nth quantum state in the density matrix (see cu gate for a more detailed de-

scription of wire numbers and steaneX.qpro and steaneZ.qpro under examples/nist/

for examples). n must be a complex number with no imaginary component. n must

also be within 10E − 5 of an integer value (e.g. 9.99999, 1.00001, and 3 are valid,

but 4.5 is not), and values that are within this threshold are rounded to the nearest

integer (e.g. 9.99999 is interpreted as 10). In addition, n must be at least 1 after

rounding.

• Pz(p, n, a) an alternative name for the function pz.

192

• qp epsilon This checks an internal cache when creating new QuIDD element

values, a cache is checked internally to see if those values have already been created.

The more repeated values there are in a matrix, the more the matrix is compressed

by its QuIDD representation. When checking the cache, QuIDDPro compares the

equality of a new value to other values already in the cache to using an epsilon.

Specifically, a and b are considered equal if abs(a− b) < epsilon ∗ a and abs(a−

b) < epsilon ∗ b. Epsilon can be changed by assigning values to qp epsilon. By

default, the epsilon value is 1e− 8. Currently, the epsilon value is not always used

when creating new QuIDD element values, but in future versions of QuIDDPro, the

epsilon value will play a much greater role.

• quidd info(a) prints information about an operator or state to standard output.

This information includes the number of qubits represented (or acted upon), the

dimensions of the explicit representation of the matrix, and the number of nodes in

the QuIDD representation of the matrix. Note that the explicit matrix representation

is not actually stored anywhere. a must be a valid operator, state vector, or density

matrix.

• r2 is a variable that is preset to the value of
√

2 to a large number of decimal

places. It can be overwritten at runtime by the user.

• r3 is a variable that is preset to the value of
√

3 to a large number of decimal

places. It can be overwritten at runtime by the user.

193

• rand(n) returns a pseudo-random value between 0 and n. n can be any real value,

including negative values.

• round(n) returns n with its real and imaginary parts rounded to the nearest integer.

“Halfway” cases are rounded away from 0. Since there is no native integer type

supported in QuIDDPro, round can be extremely helpful in ensuring that values

which are supposed to be integer values are indeed integer values.

• run “. . .” executes all script code contained in the file specified by the argument.

The run command may appear anywhere in a script except inside an explicit ma-

trix. This command is ideal for declaring variables that may be re-used in multiple

projects.

• rx(n, k) returns a k-qubit rotational Pauli X gate matrix given a real valued angle

parameter n. n must be a complex number with no imaginary component. n must

be in the range [0,1]. k must be a complex number with no imaginary component.

k must also be within 10E −5 of an integer value (e.g. 9.99999, 1.00001, and 3 are

valid, but 4.5 is not), and values that are within this threshold are rounded to the

nearest integer (e.g. 9.99999 is interpreted as 10). In addition, k must be at least 1

after rounding.

• Rx(n, k) is an alternative name for the function rx.

• ry(n, k) returns a k-qubit rotational Pauli Y gate matrix given a real valued angle

parameter n. n must be a complex number with no imaginary component. n must

be in the range [0,1]. k must be a complex number with no imaginary component.

194

k must also be within 10E −5 of an integer value (e.g. 9.99999, 1.00001, and 3 are

valid, but 4.5 is not), and values that are within this threshold are rounded to the

nearest integer (e.g. 9.99999 is interpreted as 10). In addition, k must be at least 1

after rounding.

• Ry(n, k) is an alternative name for the function ry.

• rz(n, k) returns a k-qubit rotational Pauli Z gate matrix given a real valued angle

parameter n. n must be a complex number with no imaginary component. n must

be in the range [0,1]. k must be a complex number with no imaginary component.

k must also be within 10E −5 of an integer value (e.g. 9.99999, 1.00001, and 3 are

valid, but 4.5 is not), and values that are within this threshold are rounded to the

nearest integer (e.g. 9.99999 is interpreted as 10). In addition, k must be at least 1

after rounding.

• Rz(n, k) is an alternative name for the function rz.

• sigma x(n) returns an n-qubit Pauli X gate matrix. n must be a complex number

with no imaginary component. n must also be within 10E − 5 of an integer value

(e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values that are within

this threshold are rounded to the nearest integer (e.g. 9.99999 is interpreted as 10).

In addition, n must be at least 1 after rounding. Always use this function instead

of explicitly defining your own X matrix. This function is asymptotically faster and

uses asymptotically less memory than defining the matrix explicitly.

195

• sigma y(n) returns an n-qubit Pauli Y gate matrix. n must be a complex number

with no imaginary component. n must also be within 10E − 5 of an integer value

(e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values that are within

this threshold are rounded to the nearest integer (e.g. 9.99999 is interpreted as 10).

In addition, n must be at least 1 after rounding. Always use this function instead

of explicitly defining your own X matrix. This function is asymptotically faster and

uses asymptotically less memory than defining the matrix explicitly.

• sigma z(n) returns an n-qubit Pauli Z gate matrix. n must be a complex number

with no imaginary component. n must also be within 10E − 5 of an integer value

(e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values that are within

this threshold are rounded to the nearest integer (e.g. 9.99999 is interpreted as 10).

In addition, n must be at least 1 after rounding. Always use this function instead

of explicitly defining your own X matrix. This function is asymptotically faster and

uses asymptotically less memory than defining the matrix explicitly.

• sin(n) returns sine of the expression n passed as an argument. If n is a matrix, it

returns a matrix containing the element-wise sine of n.

• tan(n) returns the tangent of the expression n passed as an argument. If n is a

matrix, it returns a matrix containing the element-wise sine of n.

• sqrt(n) returns the square root of the expression n passed as an argument. If n is

a matrix, it returns a matrix containing the element-wise square root of n.

196

• swap(n, k, a) returns the vector resulting from swapping qubits n and k in the

state vector a. This function swaps qubits much more quickly than swapping using

CNOT and Hadamard gates. Since a must be a state vector, one of the dimensions

must be 1, and the other dimension must be a power of 2. a is not modified by this

function. n and k must be complex numbers with no imaginary components. n and

k must also be within 10E −5 of an integer value (e.g. 9.99999, 1.00001, and 3 are

valid, but 4.5 is not), and values that are within this threshold are rounded to the

nearest integer (e.g. 9.99999 is interpreted as 10). n and k must also be at least 1

after rounding.

• tic starts a timer and also starts to record the peak memory usage from the point

tic is called. tic has no return value, so it cannot be used in expressions. The timer

only records time spent and memory used while running code. Thus, in the case of

interactive mode, the timer will not be recording time spent nor memory used while

at an idle prompt.

• toc stops a timer started by a previous tic or toc command. It outputs to standard

output the time that has elapsed (i.e. time spent running code), the number of gates

applied, the average runtime per gate, and memory that was used (peak memory)

since the last tic or toc command. It also outputs the base memory which is the

memory used in initializing the simulator and reading the input code. Base memory

should be interpreted as a one-time initialization cost of the simulator and should

not be considered when measuring performance. Operations that are recorded as

applied gates include matrix multiplication, gen amp damp, measure, measure sv,

197

Px, Py, and Pz.

• toffoli(“. . .”) returns a 3-qubit Toffoli gate matrix. This is a faster, special-

ized version of cu gate. If a controlled gate matrix with different numbers of con-

trols/targets and/or a different action (U operator) is desired, then use the more gen-

eral cu gate function. The string argument uses the same syntax as that of cu gate.

However, toffoli only accepts the strings ’ccx’, ’cxc’, and ’xcc’, since these are the

only valid Toffoli specifications. For example, toffoli(’ccx’) produces a Toffoli

gate matrix with the controls on the “top” two wires and the action (X operator) on

the “bottom” wire. For a discussion of how the concept of wires relates to creating

controlled gate matrices, see cu gate.

• while is a program flow control construct that allows multiple iterations of a body

of code (“looping”). Its meaning is the same as in just about any other language.

It contains a condition which is an expression enclosed in parentheses. A “while”

block must be started by a single while, but “while” blocks can be nested within

other “while” blocks (nesting with “if-elseif-else” blocks is also allowed). A while

must be followed by a body of zero or more expressions and/or control blocks, and

this body must be terminated by an end, even if the body is empty. The condition

determines whether or not the statements in the body are executed. As long as the

condition evaluates to “true” (i.e. any non-zero complex numbered value), the body

is iteratively executed. The iterations stop when the condition becomes “false” (i.e. a

complex numbered value of zero). The condition is checked once prior to executing

each iteration of the body. for loops are also implemented with the counter variable,

198

termination condition, and incrementing expression separated by commas.

• zeros(n, k) returns an n× k matrix of all 0’s. x and y must be complex num-

bers with no imaginary components. n and k must be complex numbers with no

imaginary component. n and k must also each be within 10E −5 of an integer value

(e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values that are within

this threshold are rounded to the nearest integer (e.g. 9.99999 is interpreted as 10).

In addition, n and k must each be at least 1 after rounding. Always use zeros in-

stead of defining zero matrices explicitly because it is asymptotically faster and uses

asymptotically less memory.

199

APPENDIX C

QuIDDPro Examples

This appendix provides several sample QuIDDPro implementations of various quantum

circuits. Section C.1 contains small examples which create three well-known quantum

states. Sections C.2 and C.3 offer larger examples which implement Grover’s quantum

search algorithm [33] and Shor’s quantum integer factoring algorithm [65], respectively.

C.1 Well-known Quantum States

This section contains QuIDDPro code which implements the cat (GHZ) state, the W

state, and the equal superposition state. These examples illustrate how the language can

be used to produce code that is as compact as the formal definition of such states.

C.1.1 Cat State

The cat state is an n-qubit generalization of the EPR pair and is defined as |ψcat〉 =

(|00 . . .0〉+ |11 . . .1〉)/
√

2. A QuIDDPro function which creates this state given the num-

ber of qubits n is listed below.

function |cs:> = create cat state(n)

|cs:> = (|0:> n + |2^n - 1:>)/sqrt(2);

200

C.1.2 W State

The W state is an n-qubit state defined as |ψW〉= (|10 . . .0〉+|01 . . .0〉+|00 . . .1〉)/√n.

A QuIDDPro function which creates this state given the number of qubits n is given below.

function |ws:> = create w state(n)

|ws:> = |1:> n;

for (j = 1, j < n, j++)

|ws:> += |2^j:>;

end

|ws:> /= sqrt(n);

C.1.3 Equal Superposition State

The equal superposition state is an n-qubit state which represents all possible 2n mea-

surement outcomes with equal probability. It is defined as 1√
2n ∑2n−1

j=0 | j〉 and can be created

with Hadamard gates. A QuIDDPro function which creates this state given the number of

qubits n is provided below.

function |sps:> = create equal superposition(n)

|sps:> = H(n)*|0:> n;

C.2 Grover’s Search Algorithm

This section demonstrates how Grover’s quantum search algorithm can be implemented

in QuIDDPro. The first function provided below takes as arguments the number of qubits

n, the oracle defining the search criteria, and an estimated number of items in the database

201

which match the search criteria. This function returns the integer representation of the in-

dex measured of an item in the database (the left-most qubit in the state is most-significant).

One ancillary qubit is used in conjunction with the oracle. As noted in the last appendix,

assignment of QuIDDs only requires O(1) time, which means that passing the oracle

QuIDD to this function involves very little overhead. Another function is included later in

this section which creates an oracle that searches for the last item in the database (the item

with index |11 . . .1〉) which can be used in conjunction with the function implementing

Grover’s algorithm.

function index = grover search(n, oracle, matches)

|state:> = H(n)*|1:> (n + 1);

grover op = H(n)*cps(n)*H(n)*oracle;

Compute the optimal number of Grover iterations.

N = 2^n;

x = sqrt(matches/N);

theta = atan(x/sqrt(1 - x^2));

num iterations = pi/4/theta;

Perform the Grover iterations.

for (g = 0, g < num iterations, g++)

|state:> = grover op*|state:>;

end

Measure an index.

index = 0;

202

for (q = 1, q <= n, q++)

if (pmeasure sv(q, |state:>))

index += 2^(n - q);

end

end

function oracle = create last item oracle(n)

oracle spec = ‘‘x’’;

for (j = 0, j < n, j++)

oracle spec = ‘‘c’’ + oracle spec;

end

oracle = cu gate(sigma x(1), oracle spec);

C.3 Shor’s Integer Factoring Algorithm

This section demonstrates a possible implementation of the main portion of Shor’s

algorithm. Given an integer N and its size in bits n, the following function uses quan-

tum order-finding to find a non-trivial factor of N. Order-finding solves the problem of

determining r such that ar mod N = 1. For the purposes of factoring, a may be chosen

randomly from the range (1..N), and in the following function it is simply passed as an

argument. Quantum modular exponentiation is used to compute all possible values for x

and ax mod N simultaneously. Following this step, the inverse QFT is applied to increase

the probability of measuring qubit values for which the state representation of ax mod N

203

encodes the value 1 in binary. The value for x that is entangled with this part of the state is

r. Classical post-processing is shown at the end, which makes use of the greatest common

divisor algorithm. Not shown are functions implementing quantum modular exponentia-

tion and the inverse QFT, each of which can be implemented in a variety of different ways

[74, 73, 28].

function factor = shor factor(N, a, n)

if (N{1} == 0)

factor = 2;

else

Put the exponent state into an equal superposition.

|x:> = H(n)*|0:> n;

|mod:> = |1:> n;

Compute modular exponentiation and the inverse QFT.

|res:> = mod exp(|x:>, |mod:>, N, a, n);

|res:> = inv qft(|res:>, n);

Measure the exponent qubits.

r = 0;

for (q = 1, q <= n; q++)

if (pmeasure sv(q, |res:>))

r += 2^(n - q);

end

end

204

Check if r can be used to calculate a factor.

if ((r{1} == 0) && (rem(a^(r/2), N) != 1))

cand fac1 = gcd(a^(r/2) - 1, N);

cand fac2 = gcd(a^(r/2) + 1, N);

if (rem(N, cand fac1) == 0)

factor = cand fac1;

elseif (rem(N, cand fac2) == 0)

factor = cand fac2;

else

factor = -1;

end

else

factor = -1;

end

end

BIBLIOGRAPHY

205

206

BIBLIOGRAPHY

[1] S. Aaronson and D. Gottesman, “Improved Simulation of Stabilizer Circuits,” Phys.
Rev. A 70, 052328, 2004.

[2] D. Aharonov, Z. Landau, and J. Makowsky, “The Quantum FFT can be Classically
Simulated,” quant-ph/0611156, 2006.

[3] S. Anders and H. J. Briegel, “Fast Simulation of Stabilizer Circuits Using a Graph
State Representation,” Phys. Rev. A 73, 022334, 2006.

[4] R. I. Bahar et al., “Algebraic Decision Diagrams and their Applications,” Journal of
Formal Methods in System Design 10 (2/3), pp. 171-206, 1997.

[5] A. Barenco et al., “Elementary Gates for Quantum Computation,” Phys. Rev. A 52, pp.
3457-3467, 1995.

[6] C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution
and Coin Tossing,” In Proc. of IEEE Intl. Conf. on Computers, Systems, and Signal
Processing, pp. 175-179, 1984.

[7] C.H. Bennett, “Quantum Cryptography Using Any Two Nonorthogonal States,” Phys.
Rev. Lett. 68, pp. 3121-3124, 1992.

[8] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters,
“Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-
Rosen Channels,” Phys. Rev. Lett. 70, 1895, 1993.

[9] G. P. Berman, G. D. Doolen, G. V. López, and V. I. Tsifrinovich, “Simulations of
Quantum-logic Operations in a Quantum Computer with a Large Number of Qubits,”
Phys. Rev. A 61, 062305, 2000.

[10] G.P. Berman et al., “Analytic Solutions for Quantum Logic Gates and Modeling Pulse
Errors in a Quantum Computer with a Heisenberg Interaction,” International Journal
of Quantum Information 2 (2), pp. 171-182, 2003.

[11] G. P. Berman, G. V. López, and V. I. Tsifrinovich, “Teleportation in a Nuclear Spin
Quantum Computer,” Phys. Rev. A 66, 042312, 2002.

[12] P. E. Black et al., Quantum Compiling and Simulation,
http://hissa.nist.gov/~black/Quantum/.

207

[13] B. M. Boghosian and W. Taylor, “Simulating Quantum Mechanics on a Quantum
Computer,” Physica D 120, pp. 30-42, 1998.

[14] M. Boyer, G. Brassard, P. Hoeyer and A. Tapp, “Tight Bounds on Quantum Search-
ing,” Fortsch. Phys. 46, pp. 493-506, 1998.

[15] G. K. Brennen, “Distant Entanglement with Nearest Neighbor Interactions,”
quant-ph/0206199, 2002.

[16] H. J. Briegel and R. Raussendorf, “Persistent Entanglement in Arrays of Interacting
Particles,” Phys. Rev. Lett. 86, pp. 910-913, 2001.

[17] R. Bryant, “Graph-based Algorithms for Boolean Function Manipulation,” IEEE
Trans. on Computers C35, pp. 677-691, 1986.

[18] B. Butscher and H. Weimer, “libquantum: the C Library for Quantum Computing,”
http://www.enyo.de/libquantum/.

[19] G. L. Celardo, C. Pineda, M. Znidaric, “Stability of Quantum Fourier Transformation
on Ising Quantum Computer,” quant-ph/0310163, 2003.

[20] J. Chiaverini et. al, “Realization of Quantum Error Correction,” Nature 432, pp. 602-
605, 2004.

[21] A. M. Childs, H. L. Haselgrove, and M. A. Nielsen, “Lower Bounds on the Com-
plexity of Simulating Quantum Gates,” Phys. Rev. A 68, 052311, 2003.

[22] E. Clarke et al., “Multi-Terminal Binary Decision Diagrams and Hybrid Decision
Diagrams,” in T. Sasao and M. Fujita, eds, Representations of Discrete Functions, pp.
93-108, Kluwer, 1996.

[23] A. Ekert and P. L. Knight, “Entangled Quantum Systems and the Schmidt Decompo-
sition,” Am. J. Phys. 63 (5), pp. 415-423, 1995.

[24] E. Clarke, M. Fujita, P. C. McGeer, K. McMillan, and J. Yang, “Multi-Terminal
Binary Decision Diagrams: An Efficient Data Structure for Matrix Representation,”
IWLS ’93, pp. 6a:1-15, May 1993.

[25] CNET News, Start-up Makes Quantum Leap in Cryptography, CNET News.com,
November 6, 2003.

[26] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, “A New Quantum
Ripple-carry Addition Circuit,” quant-ph/0410184, 2004.

[27] A.K. Ekert, “Quantum Cryptography Based on Bell’s Theorem,” Phys. Rev. Lett. 67,
pp. 661-663, 1991.

[28] A. G. Fowler, S. J. Devitt, and L. C. L. Hollenberg, “Implementation of Shor’s Algo-
rithm on a Linear Nearest Neighbour Qubit Array,” Quantum Information and Compu-
tation 4, pp. 237-251, 2004.

208

[29] A. G. Fowler, C. D. Hill, and L. C. L. Hollenberg, “Quantum-error Correction on
Linear-nearest-neighbor Qubit Arrays,” Phys. Rev. A 69, 042314, 2004.

[30] “GNU MP (GMP): Arithmetic Without Limitations,” http://www.swox.com/gmp/

[31] D. Gottesman, “The Heisenberg Representation of Quantum Computers,” Plenary
speech at the 1998 International Conference on Group Theoretic Methods in Physics,
http://www.arxiv.org/abs/quant-ph/9807006, 1998.

[32] D. Greve, “QDD: A Quantum Computer Emulation Library,”
http://thegreves.com/david/QDD/qdd.html, 1999

[33] L. Grover, “Quantum Mechanics Helps In Searching For A Needle In A Haystack,”
Phys. Rev. Lett. 79, pp. 325-328, 1997.

[34] J. P. Hayes, Introduction to Digital Logic Design, Addison-Wesley, 1993.

[35] A. J. G. Hey, ed., Feynman and Computation: Exploring the Limits of Computers,
Perseus Books, 1999.

[36] G. Jaroszkiewicz, “Quantum Register Physics,” quant-ph/0409094, 2004.

[37] R. Jozsa and N. Linden, “On the Role of Entanglement in Quantum Computational
Speed-up,” quant-ph/0201143, 2002.

[38] R. Jozsa, “On the Simulation of Quantum Circuits,” quant-ph/0603163, 2006.

[39] K. Khodjasteh and D. A. Lidar, “Fault-tolerant Quantum Dynamical Decoupling,”
Phys. Rev. Lett. 95, 180501, 2005.

[40] D. Kielpinski, V. Meyer, M. A. Rowe, C. A. Sackett, W. M. Itano, C. Monroe, and
D. J. Wineland, “A Decoherence-free Quantum Memory Using Trapped Ions,” Science
291, pp 1013-1015, 2001.

[41] D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a Large-scale Ion-
trap Quantum Computer,” Nature 417, pp. 709-711, 2002.

[42] A. Y. Kitaev, “Quantum Computations: Algorithms and Error Correction,” Russ.
Math. Surv. 52 (6), pp. 1191-1249, 1997.

[43] A. Y. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and Quantum Computation,
American Mathematical Society, Graduate Studies in Mathematics, 47, 2002.

[44] T. D. Ladd, J. R. Goldman, F. Yamaguchi, and Y. Yamamoto, “All-silicon Quantum
Computer,” Phys. Rev. A 89, 017901, 2002.

[45] C. Y. Lee, “Representation of Switching Circuits by Binary Decision Diagrams,” Bell
System Tech. J. 38, pp. 985-999, 1959.

209

[46] D. A. Lidar and L. A. Wu, “Quantum Computers and Decoherence: Exorcising the
Demon from the Machine,” quant-ph/0302198, 2003.

[47] S. Lloyd, “Universal Quantum Simulators,” Science 273 (5278), pp. 1073-1078,
1996.

[48] I. L. Markov and Y. Shi, “Simulating Quantum Computation by Contracting Tensor
Networks,” quant-ph/0511069, 2005.

[49] D. Maslov, G. Dueck, and N. Scott, “Reversible Logic Synthesis Benchmarks Page,”
http://www.cs.uvic.ca/~dmaslov/.

[50] C. Monroe, “Quantum Information Processing with Atoms and Photons,” Nature
416, pp. 238-246, 2002.

[51] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information,
Cambridge Univ. Press, 2000.

[52] K. M. Obenland and A. M. Despain, “A Parallel Quantum Computer Simulator,”
High Performance Computing, 1998.

[53] B. Ömer, “QCL - A Programming Language for Quantum Computers,”
http://tph.tuwien.ac.at/~oemer/qcl.html.

[54] Open Qubit Quantum Computing, http://www.ennui.net/~quantum/.

[55] D. Petrosyan and G. Kurizki, “Scalable Solid-state Quantum Processor Using Subra-
diant Two-atom States,” Phys. Rev. Lett. 89, 207902, 2002.

[56] A. K. Prasad, V. V. Shende, K. N. Patel, I. L. Markov, and J. P. Hayes, “Algorithms
and data structures for simplifying reversible circuits,” to appear in ACM J. of Emerging
Technologies in Computing, 2007.

[57] V. Protopopescu, R. Perez, C. D’Helon, and J. Schmulen, “Robust Control of Deco-
herence in Realistic One-qubit Quantum Gates,” J. Phys. A: Math. Gen. 36, pp. 2175-
2189, 2003.

[58] QuIDDPro: High-Performance Quantum Circuit Simulation,
http://vlsicad.eecs.umich.edu/Quantum/qp/.

[59] R. Shankar, Principles of Quantum Mechanics 2nd Ed., Plenum Press, 1994.

[60] V. V. Shende, S. S. Bullock, and I. L. Markov, “A Practical Top-down Approach to
Quantum Circuit Synthesis,” In Proc of the Asia South Pacific Design Automation Conf.
(ASPDAC), pp. 272-275, 2005.

[61] V. V. Shende, S. S. Bullock, I. L. Markov, “Synthesis of Quantum Logic Circuits,”
IEEE Trans. on Computer-Aided Design 25, pp. 1000-1010, 2006.

210

[62] V. V. Shende and I. L. Markov, “Quantum Circuits for Incompletely Specified Two-
qubit Operators,” Quantum Information and Computation 5 (1), pp. 49-57, 2005.

[63] V. V. Shende, A. K. Prasad, I. L. Markov and J. P. Hayes, “Synthesis of Reversible
Logic Circuits,” IEEE Trans. on Computer-Aided Design, 22 (6), pp. 710-722, 2003.

[64] Y. Shi, L. Duan, and G. Vidal, “Classical Simulation of Quantum Many-body Sys-
tems with a Tree Tensor Network,” Phys. Rev. A 74, 022320, 2006.

[65] P. W. Shor, “Polynomial-time Algorithms for Prime Factorization and Discrete Log-
arithms on a Quantum Computer,” SIAM J. of Computing 26, pp. 1484-1509, 1997.

[66] F. Somenzi, “CUDD: CU Decision Diagram Package,” ver. 2.4.0, Univ. of Colorado
at Boulder, 1998.

[67] G. Song and A. Klappenecker, “Optimal Realizations of Simplified Toffoli Gates,”
4, pp. 361-372, 2004.

[68] R. T. Stanion, D. Bhattacharya, and C. Sechen, “An Efficient Method for Generat-
ing Exhaustive Test Sets,” IEEE Trans. on Computer-Aided Design 14, pp. 1516-1525,
1995.

[69] A. M. Steane, “Error-correcting Codes in Quantum Theory,” Phys. Rev. Lett., 77, p.
793, 1996.

[70] G. Strang, Linear Algebra and its Applications, Harcourt College Publishers, 1988.

[71] L. Tian and P. Zoller, “Quantum Computing with Atomic Josephson Junction Ar-
rays,” quant-ph/0306085, 2003.

[72] L. G. Valiant, “Quantum Computers that can be Simulated Classically in Polynomial
Time,” Proc. of ACM Symp. on Theory of Computing (STOC), pp. 114-123, 2001.

[73] R. Van Meter and K. M. Itoh, “Fast Quantum Modular Exponentiation,” Phys. Rev.
A 71, 052320, 2005.

[74] V. Vedral, A. Barenco, and A. Ekert, “Quantum Networks for Elementary Arithmetic
Operations,” Phys. Rev. A 54, pp. 147-153, 1996.

[75] T. Veldhuizen, “Arrays in Blitz++,” In Proc 2nd Intl. Symp. on Computing in OO
Parallel Environments, http://www.oonumerics.org/blitz/, 1998.

[76] G. F. Viamontes, I. L. Markov, and J. P. Hayes, ”Graph-based simulation of quantum
computation in the density matrix representation,” Quantum Information and Compu-
tation 5 (2), pp. 113-130, 2005.

[77] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Is Quantum Search Practical?”
Computing in Science and Engineering 7 (4), pp. 22-30, 2005.

211

[78] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Graph-based Simulation of Quantum
Computation in the Density Matrix Representation,” In Proc. of SPIE 5436, pp. 285-
296, 2004.

[79] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “High-performance QuIDD-based
Simulation of Quantum Circuits,” In Proc. of the Design, Automation and Test in Eu-
rope Conference (DATE) 2, pp. 1354-1355, 2004.

[80] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Improving Gate-level Simulation of
Quantum Circuits,” Quantum Inf. Processing 2 (5), pp. 347-380, 2003.

[81] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Checking Equivalence of Quantum
States, Operators and Circuits,” submitted for publication, Quantum Information and
Computation, 2006.

[82] G. F. Viamontes, M. Rajagopolan, I. L. Markov, and J. P. Hayes, “Gate-level Sim-
ulation of Quantum Circuits,” In Proc. of ACM/IEEE Asia and South-Pacific Design
Automation Conf. (ASPDAC), pp. 295-301, 2003.

[83] G. F. Viamontes, M. Rajagopalan, I. L. Markov, and J. P. Hayes, “Gate-Level Simu-
lation of Quantum Circuits,” In Proc. of the 6th Intl. Conference on Quantum Commu-
nication, Measurement, and Computing, pp. 311-314, 2002.

[84] G. Vidal, “Efficient Classical Simulation of Slightly Entangled Quantum Computa-
tions,” Phys. Rev. Lett. 91, 147902, 2003.

[85] G. Vidal, “Efficient Simulation of One-dimensional Quantum Many-Body Systems,”
Phys. Rev. Lett. 93, 040502, 2004.

[86] L. Viola, E. Knill, and S. Lloyd, “Dynamical Decoupling of Open Quantum Sys-
tems,” Phys. Rev. Lett. 82, pp. 2417-2421, 1999.

[87] L. Viola and S. Lloyd, “Dynamical Suppression of Decoherence in Two-state Quan-
tum Systems,” Phys. Rev. A 58, pp. 2733-2744, 1998.

[88] L. Viola, S. Lloyd, and E. Knill, “Universal Control of Decoupled Quantum Sys-
tems,” Phys. Rev. Lett. 83, 4888, 1999.

[89] R. Vrijen et. al, “Electron-spin-resonance Transistors for Quantum Computing in
Silicon-germanium Heterostructures,” Phys. Rev. A 62, 012306, 2000.

ABSTRACT

Efficient Quantum Circuit Simulation

by

George F. Viamontes

Co-Chairs: John P. Hayes and Igor L. Markov

Quantum-mechanical phenomena are playing an increasing role in information pro-

cessing as transistor sizes approach the nanometer level, while the securest forms of com-

munication rely on quantum data encoding. When they involve a finite number of basis

states, these phenomena can be modeled as quantum circuits, the quantum analogue of

conventional or “classical” logic circuits. Simulation of quantum circuits can therefore be

used as a tool to evaluate issues in the design of quantum information processors. Un-

fortunately, simulating such phenomena efficiently is exceedingly difficult. The matrices

representing quantum operators (gates) and vectors modeling quantum states grow expo-

nentially with the number of quantum bits.

The information represented by quantum states and operators often exhibits structure

that can be exploited when simulating certain classes of quantum circuits. We study the

development of simulation methods that run on classical computers and take advantage

of such repetitions and redundancies. In particular, we define a new data structure for

simulating quantum circuits called the quantum information decision diagram (QuIDD).

A QuIDD is a compressed graph representation of a vector or matrix and permits com-

putations to be performed directly on the compressed data. We develop a comprehensive

set of algorithms for operating on QuIDDs in both the state-vector and density-matrix

formats, and evaluate their complexity. These algorithms have been implemented in a

general-purpose simulator program for quantum-mechanical applications called QuID-

DPro. Through extensive experiments conducted on representative quantum simulation

applications, including Grover’s search algorithm, error characterization, and reversible

circuits, we demonstrate that QuIDDPro is faster than other existing quantum-mechanical

simulators such as the National Institute of Standards and Technology’s QCSim program,

and is far more memory-efficient. Using QuIDDPro, we explore the advantages of quan-

tum computation over classical computation, simulate quantum errors and error correction,

and study the impact of numerical precision on the fidelity of simulations. We also develop

several novel algorithms for testing quantum circuit equivalence and compare them empir-

ically. The QuIDDPro software is equipped with a user-friendly interface and is distributed

with numerous example scripts. It has been used as a laboratory supplement for quantum

computing courses at several universities.

