
Broadening the Scope of Multi-Objective
Optimizations in Physical Synthesis

of Integrated Circuits

by

David Anthony Papa

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2010

Doctoral Committee:

Associate Professor Igor L. Markov, Chair
Professor David T. Blaauw
Professor Karem A. Sakallah
Professor Dennis M. Sylvester
Charles J. Alpert, International Business Machines Corporation

c© David Anthony Papa 2010
All Rights Reserved

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the immeasurable self-sacrifice

of my perfect wife, Amy. She has worked day and night by my sidefor years to make our

home and family prosperous. I love you very much. Our two beautiful sons George and

Victor have brought me indescribable joy and gave me hope forthe future when it seemed

all was lost. I love you two in ways I never thought possible. Iam eternally grateful to her

for the faith she has placed in me. I will do everything I can toreward her investment.

I am also deeply indebted to her parents Ren Fang Zhang and YueXia Gong who have

come from their home in China to live with us and help raise ourbabies. Without them,

I don’t know how it would be possible for me to balance graduate school, a full-time job,

and a new family. I will be sorry when they return home.

My advisor, Professor Igor Markov, has also poured an incredible amount of work into

training me to be capable of writing this dissertation. He has defended me when it was

not convenient, supported me when it seemed hopeless, and never gave up on me until the

task was complete. I am grateful for all of his efforts as wellas all of the opportunities and

second chances he has given me. I truly hope it has been as worth it for him as it has been

for me.

I also want to thank all of the people at IBM Austin Research Lab, especially my

manager Chuck Alpert and my mentor Gi-Joon Nam. Chuck’s approach to industrial

research is truly unique and I feel very fortunate to have worked with him during graduate

school. Gi-Joon has seen my value from the very start and stuck his neck out for me when

ii

it mattered most. I hope he feels proud of his judgment. I havealso made many friendships

here, and this research group is an amazing place to work. Zhuo Li, Jarrod Roy, Cliff Sze,

Natarajan Viswanathan, Mehmet Yildiz and Nancy Zhou are brilliant people who have

all had their impact on this dissertation. Working with these people on a topic I love has

truly made it a pleasure to come to work each day. I also want tothank Anne Gattiker

for accompanying me on so many occasions while I burned the midnight oil to finish this

thesis. John Keane and Vipin Sachdeva have also been close friends that enriched my life

a lot during our time together at IBM.

I also have to thank all of my friends from igroup who have stayed close despite long

distances and made life bearable. Jarrod Roy has been an especially close friend, and he

is not so far away today. Smita Krishnaswamy has been my friend for even longer, and

still brainstorms with me daily. Aaron may have left igroup along time ago, but he is still

making me laugh every day. George Viamontes has moved on to greener pastures, but he

is always willing to lend good advice when its needed. Esha Krishnaswamy was never

a member of igroup, but she has been there for moral support when I wanted it. Jin Hu

has been a good friend and helped me with this thesis and been my boots on the ground

in Michigan. And while I haven’t been in Michigan for the current group of graduate

students, Myung-Chul Kim, and Dong-Jin Lee, and Hector Garcia have all been good

friends during my visits.

I also want to thank the other friends I have managed to keep over the years despite

everyone being spread all over the country. Brandon Hanson has been by my side through

a lot of interesting adventures, and would be there again if Ineeded him. Jason Feyers has

been a really close friend and showed me a lot about life. Sid Bottoms and his family have

always been good to me, and he is a really great guy. Max Mass taught me a lot of things

and I have to thank him for that. Ryan Park has always been fun and I wish I stayed in

iii

better touch with him now.

Last but not least, I want to thank my parents George and Maureen who gave every-

thing they had to support me, as well as my sister and brothersCrystal, Mitchell and Evan,

who look up to me and give me motivation to carry on. I love you all very much. I could

not have been successful without the foundation they built.I expect my family’s future to

be bright thanks to their support and sacrifices.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . viii

LIST OF TABLES . xvi

ABSTRACT . xviii

PART I Introduction and Prior Art

Chapter I. Timing Closure for Multi-Million-Gate Integrat ed Circuits . . 1

1.1 Challenges in Physical Synthesis 2
1.2 Our Contributions . 5
1.3 Organization of the Dissertation 9

Chapter II. State of the Art in Physical Synthesis 11

2.1 Progression of a Modern Physical-Synthesis Flow 11
2.2 The Controller / Transformation Approach 15
2.3 Circuit Delay Estimation . 16
2.4 Current Trends in Physical Synthesis 18

PART II Local Physical Synthesis and Necessary Analysis Techniques

Chapter III. Buffer Insertion During Timing-Driven Placem ent 22

3.1 Introduction . 23
3.2 Background . 27
3.3 The RUMBLE Timing Model . 29
3.4 Timing-Driven Placement with Buffering 34
3.5 The RUMBLE Algorithm . 42
3.6 Empirical Validation . 47
3.7 Conclusions . 57

57

v

Chapter IV. Bounded Transactional Timing Analysis 58

4.1 Introduction . 59
4.2 Background . 62
4.3 Transactional Timing Analysis .70
4.4 Empirical Validation . 77
4.5 Conclusions . 80

Chapter V. Gate Sizing During Timing-Driven Placement. 82

5.1 Introduction . 83
5.2 Background . 87
5.3 Problem Formulation . 88
5.4 Our Simultaneous Placement and Gate-Sizing Algorithm 93
5.5 Empirical Validation . 101
5.6 Conclusions . 101

PART III Broadening the Scope of Circuit Transformations

Chapter VI. Physically-Driven Logic Restructuring 103

6.1 Introduction . 104
6.2 Background and Preliminaries . 109
6.3 Fast Timing-Driven Gate Cloning .112
6.4 Empirical Validation . 127
6.5 Extensions . 130
6.6 Conclusions . 132

Chapter VII. Logic Restructuring as an Aid to Physical Retiming 135

7.1 Introduction . 135
7.2 Background, Notation and Objectives 139
7.3 Joint Optimization for Physical Synthesis 143
7.4 Empirical Validation . 155
7.5 Extensions . 159
7.6 Conclusions . 160

Chapter VIII. Broadening the Scope of Optimization using Partitioning . 161

8.1 Introduction . 161
8.2 Background . 163
8.3 Forming Subcircuits using Top-Down Netlist Partitioning 165
8.4 Trade-offs in Window Selection .167
8.5 Empirical Validation . 171
8.6 Conclusions . 175

vi

Chapter IX. Co-Optimization of Latches and Clock Networks 176

9.1 Introduction . 177
9.2 Background . 180
9.3 Disruptive Changes in Physical Synthesis 183
9.4 A Graceful Physical-Synthesis Flow 186
9.5 Empirical Validation . 194
9.6 Conclusions . 198

Chapter X. Conclusions and Future Work 199

10.1 Summary of Results . 200
10.2 Future Work . 205

BIBLIOGRAPHY . 209

vii

LIST OF FIGURES

Figure

2.1 Major stages of physical design include floorplanning and logic synthe-
sis, followed by physical synthesis beginning with global placement, and
finishing with routing and design for manufacturing. Physical synthesis
can be iterated with modified parameters to improve the result, however,
this flow does not always converge to an acceptable solution.. 12

2.2 During physical synthesis refinement, optimization is first applied to
most-critical paths, then different optimizations are used to reduce the
total number of critical paths. 14

2.3 In physical synthesis flows, the amount of change to the design is large in
early phases and reduces quickly in later phases. Timing models become
more accurate as the flow progresses. This trade-off is necessary because
using the highest accuracy of analysis while making large changes to
the design is too expensive. (a) An ideal physical synthesisflow that
gradually reduces the size of changes as it increases accuracy. (b) A more
realistic example flow with two global placement steps that move every
gate in the design, and refinement stages that apply local optimizations
to one object at a time. Accuracy is increased in discrete steps. 15

3.1 The contributions in this chapter improve the state of the art in critical
path optimization and timing-driven detailed placement. 23

3.2 The placement of a pipeline latch impacts the slacks of both input and
output paths. A wirelength objective does not capture the timing effects
of this situation, and with equal net weights a placer may choose the con-
figuration in (a). In trying to fix this path, timing-driven net weighting
would increase the weight on netn2, and placement would then choose
the configuration in (b). Placing the latch in the center as in(c) is also
not an optimal approach. There may be only a single optimal location as
shown in (d). 25

viii

3.3 A poorly-placed latch with buffered interconnect. In this case, the buffer
must be moved or removed in order to have the freedom to move the
latch far enough to fix the path. 29

3.4 The layout in (a) has a poorly-placed latch, and existingcritical path
optimizations do not solve the problem. Repowering the gates may im-
prove the timing some in (b), but if it cannot fix the problem, the latch
must be moved. Moving the latch up to the next buffer, shown in(c),
does not give optimization enough freedom. If we move the latch but do
not re-buffer in (d), timing may degrade. Figure 3.12(d) shows the ideal
solution to this problem. 30

3.5 (a) A model for buffered interconnect.Γ describes the optimal distance
between buffers on a two-pin net. (b) A correspondingRC-network of
a single buffer driving a wire segment.Rb andCb represent the intrinsic
resistance and gate capacitance of the buffer whileR andC represent
the per-unit resistance and capacitance of a metal wire. 31

3.6 (a) An example subcircuit and (b) corresponding timing graph used in
RUMBLE. The AATs or RATs of unmovable objects (squares) are con-
sidered known. STA is performed on movable objects (round shapes). . 33

3.7 In many subcircuits there are multiple slack-optimal placements. In
RUMBLE we add a secondary objective to minimize the displacement
from the original placement. This helps to maintain the timing assump-
tions made initially and reduces legalization issues. (a) shows the initial
state of and example subcircuit, (b) a slack-optimal solution commonly
returned by LP solvers, all optimal solutions lie on the dotted line and
(c) a solution given by RUMBLE that maximizes worst-slack then min-
imizes displacement. 34

3.8 (a) A timing arcnu,v connecting an arbitrary gateu to an arbitrary gate
v. (b) The RAT of a gateg is the minimum of RATs of the outputs ofg.
(c) The AAT of a gateg is the maximum of AATs of the inputs ofg. . . 35

3.9 (a) An example subcircuit with an imbalanced latch whoseworst-slack
cannot be improved. Nevertheless, it is possible to improvetiming of
the latch while maintaining slack-optimality. By including a TNS com-
ponent in the objective, the total negative slack can be reduced, as shown
in (b). 38

ix

3.10 Modeling feedback paths within logic requires a new type of gate. Pseu-
domovable gates have timing values that depend on the timingvalues
of neighboring gates, but they cannot be moved. (a) Ignoringthe pres-
ence of feedback paths is overly pessimistic, and it appearsthat the tim-
ing of the latch cannot meet its constraints. (b) Making the fixed gates
along a feedback path pseudomovable allows the latch to meetits tim-
ing constraints, but doing only this can lead to the wrong placement. (c)
Including all gates connected to pseudomovables as fixed timing points
properly models the problem as a convex subcircuit. 43

3.11 Subcircuit selection transparently skips buffers when building a neigh-
borhood of movable gates, and requires detection ofpseudomovables. . 44

3.12 The RUMBLE algorithm proceeds by (a) selecting a subcircuit to work
on. An LP is formulated and solved, with movable gates being relocated
as shown in (b). Existing repeater trees are no longer appropriate, and are
subsequently removed in (c). Finally, the nets are re-buffered, forming
the final subcircuit shown in (d). 46

3.13 The RUMBLE algorithm for moving one latch. 48

4.1 The contributions in this chapter improve the results oftiming analysis
as it is used in physical synthesis. 59

4.2 A physical synthesis transformation improves the subcircuit in (a) by
resynthesizing the logic, resulting in the circuit shown in(b). The tradi-
tional way of evaluating the timing impact of such transformations can
be improved considerably. 63

4.3 Evaluating the timing impact of the physical synthesis transformation in
Figure 4.2 (output side only). (a) Traditional static timing analysis with
lazy evaluation will mark the fanout cone of the change dirty. (b) If the
change is found to have a negative impact on timing, it will bereversed.
This reversal will be treated as another change, and the fanout cone will
be marked dirty for a second time. 68

4.4 Evaluating the timing impact of the physical synthesis transformation in
Figure 4.2 (output side only). (a) Bounded transactional timing analysis
will not propagate the change outside of a specified window. (b) In the
event of a reversion, gates with dirty timing will have theirtiming data
restored. 71

x

4.5 One possible implementation of transactional timing analysis. The func-
tions PROPAGATE-FORWARD and PROPAGATE-BACKWARD shown here
using recursion for brevity are best implemented without recursion. . . 74

5.1 The contributions in this chapter improve the results ofthe critical path
optimization and slack-histogram compression stages of physical syn-
thesis. 83

5.2 Gatesa andg are fixed. Alternate candidate locations for movable gates
b, c, d, e, and f have been determined. Gatef also has two candidate
power levels. 88

5.3 Thedisjunctive timing graphfor our running example. Each timing arc
between a pair of candidate assignments has a distinct value; the actual
arc between any two meta-nodes in a complete solution depends on the
candidates chosen. 92

5.4 Branch-and-boundcomputes an upper bound on the worst negative slack
at every node in search. Any partial solution that cannot improve upon
the best known is pruned. 94

5.5 The delay functionsδ(c, d) andδ(e, f). Here we show the case where
the partial solutionS includes the decisions(d← d1) and(e← e1). The
weakened delay values areδS(c, d) = 3 ps andδS(e, f) = 2 ps. 96

5.6 Pseudocode for the RATCHET algorithm. 97

6.1 Example of interconnect-driven cloning. The arrival times ofF1 andF2

are 0. The required arrival times ofS1 andS2 are 5. For simplicity, this
example uses gate delays of 0. 106

6.2 An example ofarrival time arcK(F). dis(F1, K(F)) = 4, dis(F2, K(F)) =
2, τ = 1. 113

6.3 Examples of the regionZ. (a) BothK(F) andK(S) are−45◦ line seg-
ments; (b)K(F) is a45◦ line segment andK(S) is a−45◦ line segment;
(c) K(F) is a45◦ line segment andK(S) is a single point. 116

6.4 The region division for thearrival time arcK(F). 118

6.5 The slack vs.K(F) curves for each region. 119

6.6 Examples of Best Slack Segment. 120

xi

6.7 Examples of slack curves versus locations: (a) an example that needs
gate duplication; (b) an example in which the rightmost and leftmost
segments do not intersect; (c) an example that does not need gate dupli-
cation. 122

6.8 Our simultaneous cloning and placement algorithm for a movable gate. 125

6.9 Our simultaneous cloning and placement algorithm for a fixed gate. . . 126

6.10 Examples of different optimizations, including buffering, RUMBLE and
cloning.F1 andF2 are fan-ins with same arrival time andS1 andS2 are
fan-outs with same required arrival time.P is the original gate, andP ′

is the new duplicated gate. 133

7.1 Interactions in SPIRE’s joint optimization. 137

7.2 Retiming and gate cloning to improve slack: (a) RegisterE cannot be
moved past gateC because of fanoutE-F . (b) If the NAND gateC is
cloned, creating a new gateC ′ to drive its two sinks, it is possible to
retime the top register without changing the logic function. (c) The final
result with registerE retimed. 140

7.3 A circuit (a) and its timing graph (a). The square objectshave fixed
AATs or RATs. STA is performed only on circular movable objects. . . 140

7.4 An LP for minimum-area retiming. .142

7.5 An LP for min-area, period-constrained retiming. 142

7.6 Advantages of performance-driven retiming with simultaneous re-placement.
Timing values of labeled pins are given, and physical locations of gates
and ports are shown as (x, y) pairs. In the original circuit (a), the timing
path feeding the input of the register has negative slack. Moving the gate
and register in (b) improves the slack, but movement alone does not al-
low the path to meet timing constraints. Only by retiming andmovement
can all timing constraints be met in (c). 144

7.7 Finding minimum slack using LP. 146

7.8 Max-slack retiming with STA embedded. 149

7.9 Optimal register location relative to adjacent gates. 150

7.10 Max-slack retiming with relocation of registers. 151

xii

7.11 Gate cloning in max-slack retiming. 152

7.12 Our SPIRE flow proceeds in phases. First the MILP that represents only
static timing analysis is solved without design changes. The values of
relevant variables are saved and passed to the next stage which runs an
MILP that incorporates retiming and cloning. The retiming variables
are saved and fixed in an MILP that allows latches to move. Finally,
with known values for latch locations and retiming variables we run the
complete linear program. 156

8.1 A generic iterative improvement physical synthesis algorithm that ap-
plies a transformation to a window based on bottom-up clustering. The
performance of this algorithm can be tuned through the choice of clus-
tering strategy, the selection of a controller and transformation pair, and
through the runtime solution quality trade-off controlledby S. Chap-
ter III explores using ann-hop clustering strategy and Chapter V was
applied to windows selected in most-critical-first order. 163

8.2 Venn diagrams illustrating different window selectiontechniques. The
outer rectangle in each image represents the entire design while shaded
regions inside represent clusters or partitions. (a) Clustering grows win-
dows around a seed object and typically creates overlappingwindows
that do not cover the circuit. (b) Partitioning divides the entire circuit
into windows of approximately equal size that do not overlap. (c) The
windows formed by partitioning can be expanded to deliberately create
overlaps between adjacent partitions. (d) Partitioning can be performed
multiple times to find orthogonal partitioning solutions. In (d) two inde-
pendent 4-way partitioning solutions are overlaid, the solution from (b)
is augmented by an additional one with dashed cutlines. 169

8.3 An illustration of SPIRE’s effect onT (TNS) versus the number of ap-
proximately equal-size partitions of three industrial microprocessor de-
sign blocks generated by the hMETIS partitioner [43]. (a) azure08 (b)
azure09 (c) azure10. The horizontal axis indicates the number of parti-
tionsk. The vertical bars extend to +/- one standard deviation fromthe
mean value ofT . The wicks of candlesticks extend from the min to the
max value ofT . The baseline indicates the value ofT without changes
to the circuit. 172

8.4 A histogram of TNS improvement in partitions of a large ASIC. 174

xiii

9.1 The locations of cells during force-directed placementat the clockopt
placement stage. (a) After one iteration of quadratic programming fol-
lowed by cell spreading, a graceful spreading of cells can beobserved.
(b) The final placement resulting from repeating these iterations to con-
vergence, followed by detailed placement and legalization. 180

9.2 The preexisting clock optimization flow exhibits several disruptive fea-
tures. During Unhide1, the last level of the clock network isexposed
to timing analysis, but the latches are not yet optimized. LCB cloning
creates additional LCBs to limit the fanout of each LCB and latch clus-
tering determines which LCB will drive each latch. Global clockopt
placement ignores existing locations when determining a new location
for each gate. Timing is reasserted after placement in Unhide2. Finally,
additional coarse optimization is performed based on new timing condi-
tions. 182

9.3 Our next-generation clock optimization flow uses careful ordering of
steps to avoid the largest degradations. LCB cloning creates additional
LCBs to limit the fanout of each LCB and latch clustering determines
which LCB will drive each latch, this is now done before clocktiming
is exposed. After many new LCBs are inserted, the control signals that
drive them are traveling over an unoptimized high-fanout net. We opti-
mize these control signals paths in LCB fanin opt. Incremental clockopt
placement moves gates as little as possible when ensuring that latches
are placed close to LCBs. Clocks timing is only exposed afterthe LCB
to latch load is reduced to acceptable levels. Finally, coarse optimization
based on mercury is performed. 187

9.4 An illustration of the flow in Figure 9.3. At the beginningof clock opti-
mization in (a) the clock is still idealized and latches are placed around
the chip. In (b) local clock buffers (LCBs) are cloned and used to drive
several latches each. To accommodate the timing impact of all the new
LCBs, LCB control signals are optimized in (c). Global placement then
moves latches close to LCBs in (d). Finally, leaf-level clock networks
are inserted and clocks are unidealized. 188

xiv

9.5 Adding LCBs (shown by vertical bars) reduces the maximumlatch dis-
placement (thin lines). This behavior is controlled by two parameters(i)
maximum increase in the number of LCBs, as a percentage of themin-
imum number(ii) maximum latch displacement, with(i) taking prece-
dence over(ii). (a) The minimum number of LCBs is 56 and the maxi-
mum latch displacement is high. (b) By limiting parameter(i) to 12.5%
we get a maximum of 63 LCBs, and this noticeably reduces the maxi-
mum latch displacement. (c) We limit the maximum latch displacement
to a tight limit using parameter(ii) but relax parameter(i) and end up
with low latch displacement and 100 LCBs. 190

9.6 An algorithm for length-constrained latch clustering.. 191

9.7 Using incremental clockopt placement significantly reduces the disrup-
tion of the clockopt placement step. In each plot, a vector indicates the
movement of a cell during the clockopt phase. Red vectors indicate dis-
placements by over 500 tracks. Yellow, green and blue indicate 200, 100
and 50 tracks respectively. (a) Displacement vectors for all cells result-
ing from traditional force-directed placement. (b) Incremental placement
reduces the number of red vectors drastically. Nearly all ofthe red vec-
tors in this plot are due to latches which must be moved far to get to the
nearest LCB. 192

10.1 The optimizations in this dissertation improve nearlyevery stage of a
state-of-the-art physical synthesis flow. For example, we illustrate that
Chapter IV deals with Timing Analysis by a adding a circled 4 to that
step in the flow. 205

xv

LIST OF TABLES

Table

3.1 Keeping buffers instead of removing and reinserting them degrades RUM-
BLE’s performance. 49

3.2 The RUMBLE model accurately predicts the solution quality improve-
ments in the reference timing model. 50

3.3 Comparison of RUMBLE’s LP to a slack-weighted center-of-gravity tech-
nique. 52

3.4 RUMBLE simultaneously moving aone-hopneighborhood compared to
iteratively moving the same gates individually. 52

3.5 RUMBLE simultaneously moving atwo-hopneighborhood compared to
iteratively moving the same gates individually. 53

3.6 RUMBLE deployed in a physical design flow on circuits thathave pipeline
latch placement problems. ckt1 has 2.92M objects and 629k latches and
ckt2 has 4.74M objects and 247k latches. “old” reports values before
RUMBLE “new” reports results after and “diff” reports theirdifference.
FOM is reported in nanoseconds. 55

4.1 Types of transformations with embedded retraction. Illustrative values
in the “Undo frequency” column suggest that some cases require many
more retractions that other cases. 70

4.2 Empirical results of bounded transactional timing analysis, with and
without lazy evaluation. 77

5.1 Path Smoothing Benchmarks . 100

5.2 Experimental Results on a large industrial design with a2.2ns clock. . . 100

6.1 Experimental results comparing cloning to other optimization techniques
for the circuit shown in Figure 6.10. 129

xvi

6.2 Experimental results comparing cloning to other optimization techniques
for 100 circuits. Buffering refers to timing-driven buffering. RUMBLE
refers to timing-driven gate placement followed by buffering. Clone1
refers to gate duplication with the original gate fixed. Clone2 refers to
gate duplication with the original gate movable. 134

7.1 Minimum slack(M) and total negative slack(T) improvement during
simultaneous retiming+placement on macros of a45nm microprocessor
(see Eqns. VII.1-VII.2). MaximalT improvement (100%) is reached
when design closes on timing. These cases are indicated in bold. %M
is computed as described in Equation VII.14 withP = 174ps. 158

7.2 Total thresholded slack(ΘT) improvement through simultaneous retim-
ing, cloning and placement (see Eqn. VII.3). Cloning also improvedM
on azure6 by3.5%, while on remaining testcases the most-critical paths
were not affected. 158

8.1 Previously reported transformations and the maximum reported size of
subcircuit to which they are applied.162

8.2 A comparison between window selection techniques. 170

9.1 Large-block synthesis benchmark characteristics. TheFINAL #GATES

column shows the range of possible gate counts using data from experi-
ments presented in Tables 9.2 and 9.3. 194

9.2 The impact of individual components in the graceful flow.TIME is the
runtime of physical synthesis in seconds. WORSTSLACK is slack of the
worst path in the circuit in picoseconds.Φ is calculated as in Equation
IX.1 and is expressed in picoseconds. WL is the sum of half-perimeter
wirelengths and is expressed in routing tracks. 196

9.3 The impact of our graceful flow on key design parameters. TIME is the
runtime of physical synthesis in seconds. WORSTSLACK is slack of the
worst path in the circuit in picoseconds.Φ is calculated as in Equation
IX.1 and is expressed in picoseconds. WL is the sum of half-perimeter
wirelengths and is expressed in routing tracks. 197

xvii

ABSTRACT

Broadening the Scope of Multi-Objective Optimizations
in Physical Synthesis of Integrated Circuits

by
David Anthony Papa

Chair: Igor L. Markov

In modern VLSI design, physical synthesis tools are primarily responsible for satisfy-

ing chip-performance constraints by invoking a broad rangeof circuit optimizations, such

as buffer insertion, logic restructuring, gate sizing and relocation. This process is known

as timing closure. Our research seeks more powerful and efficient optimizations to im-

prove the state of the art in modern chip design. In particular, we integrate timing-driven

relocation, retiming, logic cloning, buffer insertion andgate sizing in novel ways to create

powerful circuit transformations that help satisfy setup-time constraints.

State-of-the-art physical synthesis optimizations are typically applied at two scales: i)

global algorithms that affect the entire netlist and ii) local transformations that focus on

a handful of gates or interconnections. The scale of modern chip designs dictates that

only near-linear-time optimization algorithms can be applied at the global scope — typi-

cally limited to wirelength-driven placement and legalization. Localized transformations

can rely on more time-consuming optimizations with accurate delay models. Few tech-

niques bridge the gap between fully-global and localized optimizations. This dissertation

xviii

broadens the scope of physical synthesis optimization to include accurate transformations

operating between the global and local scales. In particular, we integrate groups of re-

lated transformations to break circular dependencies and increase the number of circuit

elements that can be jointly optimized to escape local minima.

Integrated transformations in this dissertation are developed by identifying and re-

moving obstacles to successful optimizations. Integration is achieved through mapping

multiple operations to rigorous mathematical optimization problems that can be solved

simultaneously. We achieve computational scalability in our techniques by leveraging an-

alytical delay models and focusing optimization efforts oncarefully selected regions of

the chip. In this regard, we make extensive use of a linear interconnect-delay model that

accounts for the impact of subsequent repeated insertion. Our integrated transformations

are evaluated on high-performance circuits with over 100,000 gates.

Integrated optimization techniques described in this dissertation ensure graceful timing-

closure process and impact nearly every aspect of a typical physical synthesis flow. They

have been validated in EDA tools used at IBM for physical synthesis of high-performance

CPU and ASIC designs, where they significantly improved chipperformance.

xix

PART I

Introduction and Prior Art

CHAPTER I

Timing Closure for Multi-Million-Gate Integrated
Circuits

Sophisticated integrated circuits (ICs) can be classified as processors (CPUs), application-

specific integrated circuits (ASICs) or systems-on-a-chip(SoCs), which embed CPUs and

intellectual property blocks into ASICs. Mass-produced onsilicon chips, these circuits

fuel consumer and industrial electronics, maintain national and international computer

networks, coordinate transportation and power grids, and ensure the competitiveness of

military systems. The design of new integrated circuits requires sophisticated optimiza-

tion algorithms, software and methodologies — collectively called Electronic Design Au-

tomation (EDA) — which leverage synergies between ComputerScience, Computer En-

gineering and Electrical Engineering. From the algorithmic perspective, a number of NP-

hard problems need to be solved quickly in practice, while their instances grow year after

1

year with Moore’s law. From the software perspective, multiple optimizations must op-

erate on sophisticated design databases and coordinate to ensure consistent results over a

large variety of chip designs. Electrical-engineering aspects of EDA emphasize physical

characteristics of integrated circuits, such as speed-of-light limitations observed in large,

high-speed chips manufactured at sub-65nm technology nodes.

1.1 Challenges in Physical Synthesis

State-of-the-art automated IC design flows begin at a planning stage with rough esti-

mates of chip performance and cost. During this stage, a block-level layout orfloorplan

of the chip is determined. Next, designers describe the function of the chip using a hard-

ware description language (HDL), such as Verilog or VHDL. A logic synthesis tool is

run on the HDL code to create a mapped netlist that implementsthe design in the target

standard-cell library. Timing analysis can then calculatecrude, optimistic estimates of

chip performance, and the HDL code can be improved until it passes this sanity check.

The physical synthesis stagebegins after logic synthesis produces a gate-level netlist

that meets agreed performance targets under optimistic timing conditions. A physical syn-

thesis tool reads the netlist, creates an overlap-free placement of gates, and proceeds to

optimize circuit performance. During physical synthesis,the availability of gate locations

enables more accurate interconnect-delay modeling in timing analysis. Common physical

synthesis operations include inserting or removing buffers and inverters, resynthesizing

small windows, increasing and decreasing gate sizes, as well as relocating gates. When a

design meets its performance constraints, it is said tohave closed on timing. When physi-

cal synthesis is unable to achieve timing closure, designers must study the tool’s logs and

2

the optimized circuit then manually generate additional constraints to guide the optimiza-

tion process. More substantial timing-closure difficulties can cause an expensive return to

the logic synthesis stage, necessitate floorplanning changes or even require changes in the

HDL code.

Designs that have passed timing checks during physical synthesis, transition into the

routing stage, where more accurate timing models are available and new timing-closure

problems may arise. Failure to route or meet timing constraints at this stage can again

cause a return to earlier stages and further iterations. Finally, post-routing optimizations

address any timing-closure issues that remain after routing, such as changing wire layers

to reduce variability, moving detailed routes to reduce cross-talk, or adding redundant vias

to improve manufacturing yield.

Challenges. Aggressive scaling of transistor dimensions according to Moore’s Law

has historically driven performance improvements of CMOS-based integrated circuits (ICs).

This trend has been so successful that now the greater part ofcritical path delay is no

longer in the transistors that compose logic gates — delay through signal nets and re-

peaters now dominates [101]. As a result, logic synthesis can no longer estimate design

performance effectively without physical information. A relatively recent solution, phys-

ical synthesis optimization algorithms employ a complex, multi-phase process that com-

bines netlist optimization, placement, routing and timinganalysis [7,8,112]. Physical syn-

thesis optimization algorithms are primarily designed to achieve timing closure, but there

are other important objectives such as reducing wirelength, area and power consumption

while maintaining routability.

3

Another consequence of technology scaling trends gives IC designers more transistors

at their disposal, which leads to increased design size and complexity. Today’s ICs have

tens of millions of gates and each design has its own performance requirements, which in-

clude reducing power consumption, satisfying area bounds and increasing manufacturing

yield. A physical synthesis tool must accommodate these requirements as well as ensure

that basic physical constraints are met, such as producing alegal, routable placement. As

a result, throughout the physical synthesis flowmultiple objectivesare always present and

must be optimized simultaneously.

Several prior publications formulate non-linear, multi-objective optimization problems

and solve them with some success [109], but these algorithmstypically exhibit super-

linear runtime complexity and do not scale well enough to optimize an entire modern

VLSI design at once. Other approaches focus on a handful of gates, and apply more time-

consuming algorithms to relocate several gates at once, increase drive strength, or insert

buffers to improve performance [10, 112, 114]. However, these approaches are limited in

scope and only near-linear-time algorithms such aswirelength-driven placementcan be

applied at a truly global scope. For example, the scope oftiming-driven gate relocationis

typically limited to finding new positions for a handful of gates so as to improve the delay

of incident paths.1 Few techniques are available between the global and local scopes, but

resynthesis is a notable exception. While logic synthesis techniques are applied to more

than a few gates at once, the delay estimations considered atthat scale do not typically

utilize all of the physical information available and are therefore less accurate [87]. Con-

1This is in contrast totiming-driven placement, which in previous literature usually refers to the appli-
cation of net weights during placement that are based on timing information. Here we are referring to the
detailed placement of a small number of gates while interacting incrementally with a timing analysis engine.

4

sequently, in state-of-the-art physical synthesis tools there is a large gap between the scope

of accurate, local transformations and coarse, global transformations.

More recently, a trend toward integration of suchpoint optimizationsas repowering,

buffering, and timing-driven detailed placement has gained strength. Increasing the scope

of suchcompound transformationsto close the aforementioned gap while maintaining ac-

ceptable runtime and accuracy remains a challenging research problem. It is uncleara

priori if established techniques based on static timing analysis and single-objective opti-

mizations remain sufficient in the context of physical synthesis for sub-45nm ICs. To this

end, Chapter IX reports successful experiments with 32nm and 22nm designs.

1.2 Our Contributions

In this dissertation, we make several contributions that advance the capabilities and strength

of modern software tools for physical synthesis, with the ultimate goal to improve the

quality of leading-edge semiconductor products. In so doing, we broaden the scope of

physical synthesis optimization in two distinct ways:(i) we integrate related transforma-

tions to break circular dependencies and find optimization synergies and(ii) we increase

the number of objects that can be jointly optimized to escapelocal minima.

Integrated transformations in this dissertation are developed by first considering a suc-

cessful optimization and identifying obstacles to its further application. We then derive

methods to overcome those obstacles that call for integration. Integration is achieved

through mapping multiple operations to rigorous mathematical optimization problems and

solving them simultaneously. We achieve scalability in ourtechniques by leveraging ana-

lytical delay models and restricting consideration to carefully selected regions of the chip.

5

In particular, we make extensive use of a linear interconnect-delay model that accounts

for the impact of subsequent repeated insertion. We also demonstrate that bottom-up clus-

tering and top-down partitioning can be used to select smallregions of large circuits on

which our optimizations have a large impact.

Simultaneous placement and buffering. At advanced technology nodes multiple

cycles are required for signals to cross the chip, making latch placement critical to tim-

ing closure. The problem is intertwined with buffer insertion because the placement of

such latches depends on the location of buffers on adjacent interconnect. In Chapter III

we broaden the scope of timing-driven latch placement by integrating it with buffer in-

sertion. We enhance computational scalability by employing analytical delay models and

optimizing delay using state-of-the-art linear programming software.

Bounded transactional timing analysis. As local circuit optimizations become in-

creasingly multi-objective in modern physical synthesis flows, a tighter interaction be-

tween optimization algorithms and timing analysis is necessary. Such optimizations must

employ heuristics to search for good implementations of subcircuits, but many main stream

timing analysis tools offer no support for retracting circuit modifications. In Chapter IV

we describe an extension to traditional static timing analysis that records a history of in-

cremental network delay computations in a stack-based datastructure, so that the timing

can be returned to a previously-known state upon retractionof a circuit modification. It

also explicitlyboundsthe scope of propagation to a local window in anticipation ofre-

traction. These extensions form a necessary infrastructure for modern physical synthesis

6

optimizations and greatly improve the performance of static timing analysis for local cir-

cuit modifications in the presence of retraction.

Simultaneous placement and gate sizing in a discrete domain. Gate locations that

optimize timing depend on boundary timing conditions in thelocal subcircuit. Similarly,

the optimal drive strength of a gate depends on the input slewrate and output capacitance.

But these two problems are related because the output capacitance of a gate depends upon

the length of interconnect it drives. In Chapter V we describe our pairwise delay model

that allows us to analyze the impact of these optimizations simultaneously. Integrating

gate sizing as well as threshold voltage assignment with timing-driven detailed placement

allows our algorithm to explore a broader range of solutionsand ultimately improve the

most critical paths in the circuit.

Timing-driven gate cloning for interconnect optimization. In a complete physi-

cal synthesis flow, optimization transformations that can improve the timing on critical

paths that are already well-optimized by a series of powerful transformations (timing

driven placement, buffering and gate sizing) are invaluable. We develop an innovative

gate cloning technique that integrates placement and buffer insertion to improve intercon-

nect delay on critical paths during physical synthesis. Ourpolynomial-time algorithm

simultaneously finds locations for the original and copied gates and assigns sinks to one

of the copies so as to minimize interconnect delay. Our algorithm leverages analytical de-

lay models developed in Chapter III and thereby accounts forthe impact of future buffer

insertion.

7

Simultaneous performance-driven retiming, placement, buffering and logic cloning.

One of the most common situations in which the latch placement techniques of Chapter III

are insufficient is a critical path wherein moving a gate immediately next to its most-critical

input is the optimal solution but does not meet timing constraints. For example, when relo-

cating the latch adjacent to its only input still violates a setup time constraint, placement is

insufficient to further improve timing. In order to remove this barrier, we develop SPIRE,

a new physical synthesis transformation that integrates retiming with gate relocation and

buffer insertion. To broaden the scope of retiming, we extend this transformation with gate

duplication designed to create new retiming opportunities. We demonstrate the need for

this transformation by example, motivating the integration of all considered techniques to

meet timing constraints.

Broadening the scope of physical-synthesis optimization using partitioning. The

optimizations developed in this dissertation extend physical-synthesis transformations be-

yond a handful of gates. Unfortunately, the computational complexity of such optimiza-

tions makes them too inefficient to apply to entire netlists of large ASIC and SoC de-

signs. Therefore, we develop a technique to identify appropriately-sized subsets of large

designs on which our transformations can be applied efficiently. Our method utilizes ex-

isting hypergraph partitioning algorithms to divide the circuit in a top-down fashion until

the subsets reach the desired size. We show that this technique can work in practice and

demonstrate a run-time solution quality trade-off for SPIRE, the transformation developed

in this dissertation that can optimize subcircuits with thousands of standard cells.

8

Co-Optimization of Latches and Clock Networks in Large-Block Physical Synthesis.

Optimizations developed in this dissertation affect nearly every stage of a typical indus-

trial state-of-the-art physical-synthesis flow. In order to obtain synergies between them, we

explore the infrastructure for physical synthesis used by IBM for large commercial micro-

processor designs. We focus our attention on a very challenging high-performance design

style called large block synthesis (LBS). In such designs the placement of the latches is

particularly critical to the performance of the clock network, which in turn affects timing

and power. Our research uncovers deficiencies in the state-of-the-art physical synthesis

flow vis-à-vis latch placement that result in timing disruptions and hamper design clo-

sure. We introduce a next-generation physical synthesis methodology that seeks a more

graceful timing-closure process. This is accomplished through careful latch placement and

clock-network routing to(i) avoid timing degradation where possible, and(ii) immedi-

ately recover from unavoidable timing disruptions.

1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows:

• Part I introduces our work in this chapter, and outlines relevant background on phys-

ical synthesis in Chapter II.

• Part II covers local transformations and necessary timing analysis techniques for

physical synthesis. Chapter III describes a method for simultaneous placement of

sequential gates and buffering of incident interconnect. Chapter IV describes a tim-

ing analysis technique that is necessary for the efficient implementation of com-

9

pound transformations such as the one described in Chapter V. Chapter V describes

an abstract model for circuit timing under movement and repowering that can be

solved optimally using branch and bound.

• Using the timing models developed in Part II, Part III develops new transforma-

tions that significantly extend the scope of existing physical synthesis optimization.

Chapter VI describes a new physical synthesis optimizationfor gate cloning that

improves worst slack by estimating interconnect delay using the linear delay model

described in Chapter III. Chapter VII integrates retiming,placement, cloning and

static timing analysis into a unified mixed integer-linear program (MILP) that scales

to circuits over 10 times larger than those presented in Chapters III and V. We ap-

ply the techniques in these chapters to larger circuits using partitioning in Chapter

VIII. In Chapter IX, we combine these techniques into a single methodology for

application to large, high-performance designs.

10

CHAPTER II

State of the Art in Physical Synthesis

Physical synthesis is a multi-phase optimization process performed during IC design

to achievetiming closure, thougharea, routability, powerandyield must be optimized

as well. Individual steps in physical synthesis, calledtransformationsare invoked by dy-

namiccontroller functions in complex sequences calleddesign flows(EDA flows). Trans-

formations rely on abstract delay models to analyze timing requirements and guide opti-

mization, as illustrated in Section 2.3. Finally, we describe recent evolution of require-

ments for physical synthesis and discuss current trends.

2.1 Progression of a Modern Physical-Synthesis Flow

The physical design of a semiconductor chip begins when the design’s architect for-

malizes plans for different components. This plan may include partitioning the function-

ality into hierarchical blocks, setting performance constraints, or counting the occurrences

of particular functional units such as memories. Designersthen write hardware descrip-

tion language (HDL) code to describe the behavior of the chipin a manner that can be

synthesized in hardware. Logic synthesis is responsible for translating the HDL code into

a gate-level netlist for the next stage. With input from the early planning stage and the

11

Early Planning

Logic Synthesis

Global Placement

Floorplanning

Electrical Correction

Legalization

Timing Analysis

Detail Placement

Critical-path Optimization

Histogram CompressionGlobal Routing

Detail Routing

Design for Manufacturing

Timing-driven Net Weighting

Timing Constraints Met?Y

N

Clock-network Synthesis

Figure 2.1: Major stages of physical design include floorplanning and logic synthesis, fol-
lowed by physical synthesis beginning with global placement, and finishing
with routing and design for manufacturing. Physical synthesis can be iterated
with modified parameters to improve the result, however, this flow does not
always converge to an acceptable solution.

netlist produced by logic synthesis, floorplanning begins to define the area of the chip and

embed the circuit blocks into those physical boundaries. Figure 2.1 illustrates this pro-

cess in a flow chart. After floorplanning, the design enters the physical synthesis phase,

beginning with global placement. Recent publications [7, 8] describe the major phases of

physical synthesis which can be briefly summarized as follows:

1. Global placement. Computes non-overlapping physical locations for gates. Typi-

cally optimizes half-perimeter wirelength (HPWL) or weighted HPWL. During this

phase, usually some amount of detailed placement is done, and legalization is called

to ensure a legal optimization result.

12

2. Electrical correction. Fixes capacitance and slew rate violations using gate sizing

and net buffering.

3. Legalization. An incremental placement capability that removes overlapscaused

by circuit optimization with minimal disturbance to placement and timing.

4. Timing analysis. Assesses the speed of the design and determines if performance

targets are met. Among other metrics, this phase determinestheslackof every path

in the circuit, which is the difference between the clock period and how long it takes

a signal to traverse the path.

5. Detailed placement.Moves gates to further reduce wirelength and improve timing.

In this phase it is possible to dotiming-drivendetailed placement wherein timing

information is explicitly considered when optimizing gateplacements.

6. Critical-path optimization. At this point one can identify most-critical paths and

can invoke a variety of techniques to increase the slack of the worst timing viola-

tions. These techniques include buffering, gate sizing, logic restructuring, etc. [112].

Figure 2.2 illustrates critical path optimization with an arrow pushing the worst paths

toward increasing slack.

7. Slack-histogram compression.When improvements on most-critical paths are no

longer possible, one can improve the other paths that are less critical, but still violate

timing constraints. The goal is tocompressthe slack histogram by reducing the total

number of paths that fail to meet timing constraints. Figure2.2 illustrates slack-

histogram compression by a series of arrows pushing the histogram downward.

13

0

2. Slack-histogram
Compression

1. Critical-path
optimization

N
um

ber of paths

Slack

Figure 2.2: During physical synthesis refinement, optimization is first applied to most-
critical paths, then different optimizations are used to reduce the total number
of critical paths.

The flow can be repeated with net weighting and timing-drivenplacement for the first

stage to potentially improve results.

With any particular flow of optimizations, at a high level, one can think of physical

synthesis as progressing with increasing detail and accuracy over time, but with reduced

scope and magnitude of change, as shown in Figure 2.3. For example, during global

placement, physical synthesis changes the location of all movable cells in a design but

usually optimizes weighted wirelength, which is a crude model of circuit timing. Later

in physical synthesis, buffers may be inserted to optimize along wire using an Elmore

interconnect-delay model with Steiner-tree estimates. Asthe design starts to converge,

one can apply fine-grained buffering along actual detailed routes using a statistical timing

model.

14

Size of Changes
Accuracy of

Analysis

(a) (b)

Figure 2.3: In physical synthesis flows, the amount of changeto the design is large in early
phases and reduces quickly in later phases. Timing models become more ac-
curate as the flow progresses. This trade-off is necessary because using the
highest accuracy of analysis while making large changes to the design is too
expensive. (a) An ideal physical synthesis flow that gradually reduces the size
of changes as it increases accuracy. (b) A more realistic example flow with
two global placement steps that move every gate in the design, and refinement
stages that apply local optimizations to one object at a time. Accuracy is in-
creased in discrete steps.

After physical synthesis, clock networks are formed by inserting clock buffers and

routing clock nets. Next, signal nets are routed, first by global routing then by detailed

routing. After routing, some optimization is usually necessary to fix any timing degrada-

tions. Finally, the design is optimized for the manufacturing process to increase the yield

of functional chips.

2.2 The Controller / Transformation Approach

With a trend toward larger fractions of critical path delay in interconnect rather than in

gates, it is essential for logic synthesis to be aware of physical information. A recent de-

velopment, physical synthesis optimization flows address this challenge with an approach

that integrates logic synthesis and physical design optimizations into a single tool.

Physical synthesis tools read a circuit that satisfies timing constraints assuming opti-

mistic timing estimates, based onzero wire loadmodels. The first step is to run global

15

wire-length driven placement, followed by the other steps introduced in Section 2.1. In

each of the remaining phases, localtransformationsare applied to the netlist. Transforma-

tions such as buffer insertion, gate resizing, and detailedplacement are applied to improve

performance metrics such as timing, power consumption and yield. The decision as to

which part of the netlist will be optimized is left to acontroller, which has a focus such as

the most critical nets, all critical nets, or non-critical gates. As the controller proceeds, it

can call a timing analysis tool for incremental updates to provide the transformation with

fresh timing data to guide its progress. In this way one can target optimizations to problem

areas and produce a flow which converges on a well optimized design.

2.3 Circuit Delay Estimation

Historically, wirelength was used as a coarse metric for optimizing timing and routabil-

ity during layout synthesis. Efficient algorithms have beendeveloped to compute and opti-

mize many different wirelength calculations, including half-perimeter wirelength (HPWL),

quadratic net length, rectilinear Steiner-minimal tree (RSMT) length [27,92,106]. At tech-

nology nodes larger than 250nm interconnect delay was a negligible fraction of total path

delay, and merely minimizing wirelength was suitable for optimizing design performance,

but this has changed. It is now necessary to consider the delay of connected wires when

choosing the location of a gate. Similarly, when estimatingthe delay of a gate, one must

consider the capacitance of nets it drives in addition to thegates, as well as the slew rate of

the input signals. Various models are used to abstract thesedelay calculations into an ana-

lytical form so that they can be efficiently optimized. We discuss several such abstractions

in the following sections.

16

Elmore delay. Elmore delay is a simple and efficient way to find the delay through a

net. To compute Elmore delay of a net proceed from the sinks ofa net toward the root,

summing the resistance of the current segment times the downstream capacitance. This

approach assumes the net is has a tree topology, which is truefor virtually every signal

net in digital logic. An RSMT of a net will be computed for the purposes of finding

the Elmore delay through the net. This model is known to have some pessimism, but

provides suitable accuracy to guide optimization in the sense that reducing Elmore de-

lay usually results in a reduction in actual delay [10]. For example, this model could be

used to efficiently estimate the delay impact of moving a gateduring detailed placement.

More recent works have improved upon the accuracy of the Elmore delay model. The

authors of [2] improve the accuracy of Elmore delay by fittingcurves to HSpice data with

technology-specific parameters while maintaining a closed-form equation for delay. In ad-

dition, several technology-independent, closed-form equations for computing RC network

delay were shown to have a low error while being relatively easy to implement [9,11].

Buffered path delay. Buffering has become indispensable in timing closure and cannot

be ignored during interconnect delay estimation [6, 29, 101]. Therefore to calculate new

locations of movable gates, one must adopt a buffering-aware interconnect delay model

that accounts for future buffers. We found that the linear delay model described in [6, 79]

is suited to physical synthesis applications. In this model, the delay along an optimally

buffered interconnect is

delay(L) = L(RbC + RCb +
√

2RbCbRC) (II.1)

17

whereL is the length of a2-pin buffered net,Rb andCb is the intrinsic resistance and input

capacitance of buffers and gates whileR andC are unit wire resistance and capacitance

respectively. This model is described in more detail in Chapter III.

Empirical results in [6] indicate that Equation II.1 is accurate up to0.5% when at least

one buffer is inserted along the net.

Slew rate propagation. One of the most costly computations in timing analysis is

propagating the slew rate of a signal through the circuit. However, changes in slew rate

typically do not propagate beyond a small number of logic levels. In order to mitigate the

runtime expense of accurate slew rate computation, an abstraction calledpin-slew mode

can be used. Inpath-slew mode, all slew rates are propagated through all wires and logic

to compute the slew rate at a given point in the circuit. In pin-slew mode, the slew rate at

a given point is computed by looking at the previous logic stage, and asserting adefault

slewrate on its input signals. The slew rate is then propagated through that gate and its

output net to find the slew rate at the given point. The defaultslew rate may be provided

as input, or computed as the average slew rate throughout thecircuit. Leveraging pin-slew

mode, one can create models which are accurate, but also smaller in scope.

2.4 Current Trends in Physical Synthesis

Physical synthesis is transitioning from a novelty into a mature and highly-integrated

capability required of industrial EDA flows. During this transition, the challenges in phys-

ical synthesis and greatest possibilities for improvementcorrespond to the following key

trends.

18

Increased interaction with timing. With advancing technology nodes, increasingly

aggressive and complex transformations are prone to cause inadvertent timing degrada-

tions. An increasing number of transformations have been developed that are aware of

their impact on timing, congestion, wirelength, and other design performance metrics, and

are capable of reversing actions that do unwanted harm.

Transformations already exist in state-of-the-art physical synthesis flows to optimize

the performance of a handful of gates and nets under several known timing models, includ-

ing black-box models and exhaustive search. One consequence of this level of maturity is

that it is not likely, for example, that adding a new algorithm to repower one gate at a time

while considering its neighbors’ timing will improve the results of a modern physical syn-

thesis flow. However, improvement is possible by increasingthe scope or accuracy of such

optimizations. This includes increasing the number of objects optimized simultaneously,

increasing the number of objectives in the optimization, and improving the delay models

used. Making these extensions affordable by decreasing their computational complexity

is a key challenge addressed in this work.

Early, accurate analysis. Nearly every physical design objective entails a chicken-

and-egg problem between analysis and optimization. For example, placement must choose

non-overlapping locations for gates such that worst slack is optimized but accurate static

timing analysis (STA) requires the locations of gates to compute timing slack. This pattern

repeats with such top-tier physical design metrics as timing, power, routability and yield.

Traditionally, iteration-based flows have been used to break the chicken-and-egg cycle,

leveraging the previous analysis to drive the subsequent optimization. This approach con-

19

sumes considerable runtime, requires consistency of results from algorithms and is not

guaranteed to converge to an acceptable solution. Instead,iteration cycles can be reduced

or eliminated by creating fast analysis tools that accurately estimate key performance met-

rics during optimization and can quickly adjust estimates after incremental changes. Such

an approach presumes a high level of integration between analysis and optimization tools,

which requires a carefully designed software infrastructure. Improving the accuracy of

such predictors and estimators as well as creating new ones presents a challenge in phys-

ical synthesis. Our work leverages accurate analysis techniques in new physical synthesis

transformations that perform more comprehensive optimization of large, complex designs

than existing transformations.

Large, complex designs. Moore’s law describes the periodic doubling of transistor

density in integrated circuits due to rapid improvements inmanufacturing technology. At

each new technology node, there are more transistors available in the same chip area and

individual transistors are smaller than before. As of the writing of this dissertation, 45nm

CPUs are widespread, 32nm ICs are commercially available, and 22nm designs are in

early stages of development. New challenges stem from thesetrends as semiconductor

technology approaches fundamental limits to circuit operation.

Some modern ICs contain over a billion transistors. Designing such a complex system

presents enormous challenges in physical design. Perhaps the most obvious challenge is

the overbearing amount of design effort required to complete such a design. Improvements

in productivity due to automation have not kept pace with therate of growth in the number

of transistors on-chip. Hence, thisproductivity gapis a growing problem — fundamen-

20

tal improvements in automation or an increasing number of engineers will be required to

complete the largest designs in future technologies. Our research will develop new trans-

formations and new automation to improve the productivity of designers and address this

key bottleneck.

21

PART II

Local Physical Synthesis and Necessary
Analysis Techniques

CHAPTER III

Buffer Insertion During Timing-Driven Placement

Physical synthesis tools are responsible for achieving timing closure. Starting with

130nm designs, multiple cycles are required to cross the chip, making latch placement

critical to success. We present a new physical synthesis optimization for latch placement

called RUMBLE (Rip Up and Move Boxes with Linear Evaluation)that uses a linear tim-

ing model to optimize timing by simultaneously re-placing multiple gates. RUMBLE runs

incrementally and in conjunction with static timing analysis to improve the timing for crit-

ical paths that have already been optimized by placement, gate sizing, and buffering. The

contributions in this chapter improve the detailed placement and critical path optimization

stages of physical synthesis as illustrated in Figure 3.1.

22

Early Planning

Logic Synthesis

Global Placement

Floorplanning

Electrical Correction

Legalization

Timing Analysis

Detail Placement

Critical-path Optimization

Histogram CompressionGlobal Routing

Detail Routing

Design for Manufacturing

Timing-driven Net Weighting

Timing Constraints Met?Y

N

Clock-network Synthesis

Figure 3.1: The contributions in this chapter improve the state of the art in critical path
optimization and timing-driven detailed placement.

3.1 Introduction

Physical synthesis is a complex multi-phase process primarily designed to achieve tim-

ing closure, though power, area, yield and routability alsoneed to be optimized. Starting

with 130nm designs, signals can no longer cross the chip in a single cycle, which means

thatpipeline latchesneed to be introduced to create multi-cycle paths. This problem be-

comes more pronounced for the90-, 65- and 45-nanometer nodes, where interconnect

delay increasingly dominates gate delay [48]. Indeed, for high-performance ASIC scaling

trends, the number of pipeline latches increases by2.9× at each technology generation,

accounting for as much as10% of the area of90nm designs [28] and as many as18%

of the gates in32nm designs [101]. Hence, the proper placement of pipeline latches is a

growing problem for timing closure.

23

The choice of computational techniques for latch placementdepends on where this

optimization is invoked in a physical synthesis flow. In Chapter II we described the major

phases of physical synthesis: global placement, electrical correction, legalization, timing

analysis, detailed placement, critical-path optimization and compression, which may be

iterated with timing-driven placement to improve solutionquality. We argue that pipeline

latches should be placed only after some amount of timing analysis and optimization.

Figure 3.2(a)-(d) illustrates the complications of using existing global placement tech-

niques to solve the latch placement problem for a single two-pin net. Assume that, for all

four figures, the source A and sink B are fixed in their respective locations, and that global

placement must find the correct location for the latch. This example is representative of

situations in which a fixed block in one corner of the chip mustcommunicate with a block

in the opposite corner, but signal delay inevitably exceedsa single clock period. All four

placements have equal wirelength, therefore unless globalplacement is timing driven, the

placement of the latch between A and B is arbitrary. Considerthe following scenarios:

• Suppose the placement tool chooses (a), which is the worst location for the latch. In

this case, the latch is so far from B that the timing constraint at B cannot be met.

This results in a slack on the input net (n1) of +5ns and a slack on the output net

(n2) of −5ns (even after optimal buffering).1

• With a second iteration of physical synthesis, timing-driven placement could try to

optimize the location of this latch by adding net weights. Any net weighting scheme

will assign a higher weight to netn2 thann1, resulting in a placement where the

1The nets in each scenario could include buffers without changing the trends discussed.

24

A B

Q

QSET

CLR

D

L

n2n1

-5+5

(a)

A B

Q

QSET

CLR

D

L

n2n1

+3-3

(b)

A B

Q

QSET

CLR

D

L

n2n1

-2+2

(c)

A B

Q

QSET

CLR

D

L

n2n1

00

(d)

Figure 3.2: The placement of a pipeline latch impacts the slacks of both input and output
paths. A wirelength objective does not capture the timing effects of this sit-
uation, and with equal net weights a placer may choose the configuration in
(a). In trying to fix this path, timing-driven net weighting would increase the
weight on netn2, and placement would then choose the configuration in (b).
Placing the latch in the center as in (c) is also not an optimalapproach. There
may be only a single optimal location as shown in (d).

latch is very close to B, as in (b). While the timing is improved, there now is a slack

violation on the other side of the latch with−3ns of slack onn1 and+3ns onn2.

• A global or detailed placer could use a quadratic wirelengthobjective to handle

these kinds of nets, giving the location (c), which, while better than (a) and (b), is

suboptimal.

• To achieve the optimal location with no critical nets (0 slack onn1 andn2), the latch

must be placed as shown in (d). In this case, there is only one location that meets

both constraints.

25

This example suggests that wirelength optimization is not well-suited for latch place-

ment, especially when there is little room for error. Instead, one must be able to couple

latch placement with timing analysis and model the impact ofbuffering. The problem is

more complex in practice, and some aspects are not illustrated above. In particular, many

latches have buffer trees in the immediate fan-in and fan-out. Such complications pose

additional challenges that we address in this work. We make the following contributions.

• We show that a linear-wire-delay model is sufficient to modelthe impact of buffering

for the latch placement problem.

• We develop RUMBLE, a linear-programming-based, timing-driven placement al-

gorithm which includes buffering for slack-optimal placement of individual latches

under this model and show its effectiveness experimentally.

• We extend RUMBLE to improve the locations of individual logic gates other than

latches. Further, we show how to find the optimal locations ofmultiple gates (and

latches)simultaneously, with additional objectives. Incremental placement of mul-

tiple cells requires additional care to preserve timing assumptions, optimizing a set

of slacks instead of a single slack, while also biasing the solution towards placement

stability. We describe how RUMBLE handles these situations.

• We empirically validate proposed transformations and the entire RUMBLE flow. We

show how these techniques can be used to significantly improve initial latch place-

ment in a reasonably optimized ASIC design. Ourdo-no-harmacceptance criteria

reject solutions if any quality metrics are degraded. This key feature facilitates the

use of RUMBLE later in physical synthesis.

26

The remainder of this chapter is organized as follows. Section 3.2 discusses back-

ground and previous work. Section 3.3 describes the timing model we use in this work.

Section 3.4 describes how RUMBLE performs timing-driven placement. Section 3.5 de-

scribes the RUMBLE algorithm. Section 3.6 shows experimental results. Conclusions are

drawn in Section 3.7.

3.2 Background

Several approaches improve IC performance by modifying wirelength-driven global

placement through timing-based net weights [40, 50, 53, 59,72, 80]. Such algorithms are

generally referred to as timing-driven placement, but the literature has not yet considered

the impact of buffering on latch placement during global placement. Due to the lack of

such algorithms, it is inevitable that some latches will be suboptimally placed during global

placement. Therefore, new algorithms are needed for post-placement performance-driven

incremental latch movement.

We introduce a high-level description of the incremental latch placement problem be-

low, and elaborate on its multi-move formulation in Section3.4. Given an optimized

design and a small set of gatesM , e.g., a single latch, find new locations for each gate in

M and new buffering solutions for nets incident toM such that the timing characteristics

of the design are improved.

While moving a poorly placed cell can improve adjacent interconnect delay, moving a

latch has special significance since it facilitates time-borrowing: reallocating circuit delay

from a longer (slow) combinational stage to a shorter (fast)combinational stage. This fact

offers a particularly significant boost to our basic approach, and is enhanced even further

27

when surrounding gates are also free to move.

An optimization that performs operations such as moving a gate or latch is called a

transformationusing the terminology of [112]. Transformations are designed to incre-

mentally improve design objectives such as timing. Other examples of transformations

include buffering a single net, resizing a gate, cloning a cell, swapping pins on a gate, etc.

The way transformations are invoked in a physical synthesisflow is determined by the

controllers. For example, a controller designed for critical path optimization may attempt

a transformation on the100 most critical cells. A controller designed for the compression

stage (see Section 3.1) may attempt a transformation on every cell that fails to meet its

timing constraints.

A controller has the option of avoiding transformations that may harm the design (e.g.,

generating new buffering solutions inferior to the original) and can then reject this solution.

Thisdo no harmphilosophy of optimization has received significant recognition in recent

work [18,88]. The RUMBLE approach adopts this same convention which makes it more

trustworthy in a physical synthesis flow.

While no previous work has attempted to solve this particular problem, other solutions

do exist that may be able to help with the placement of poorly placed latches. The authors

of [122] propose a linear programming formulation that minimizes downstream delay to

choose locations for gates in field-programmable gate arrays (FPGAs). The authors of [26]

model static timing analysis (STA) in a linear programming formulation by approximating

the quadratic delay of nets with a piecewise-linear function. Their formulation’s objec-

tive is to maximize the improvement in total negative slack of timing end points. The

28

authors of both approaches conclude that the addition of buffering would improve their

techniques [26,122]. When these transformations are applied at the same point in a physi-

cal synthesis flow that we propose, they will be restricted byprevious optimizations. When

applied somewhat earlier (e.g., following global placement) they are incapable of certain

improvements. Namely, downstream optimizations, such as buffer insertion, gate sizing,

and detailed placement may invalidate the optimality of latch placement. Therefore our

technique focuses on the bad latch placements that we observed in large commercial ASIC

designs after state-of-the-art physical synthesis optimizations.

3.3 The RUMBLE Timing Model

We now introduce the timing model critical to RUMBLE’s success.

A B

Q

QSET

CLR

D

L

-4+5

Figure 3.3: A poorly-placed latch with buffered interconnect. In this case, the buffer must
be moved or removed in order to have the freedom to move the latch far enough
to fix the path.

Figure 3.3 shows an intuitive example of the problem when we try to find new locations

for movable gates. Similar to Figure 3.2, the latch has to be moved to the right to improve

timing. However, since the latch drives a buffer which is placed next to it, we must move

the buffer in order to improve the slack of the latch. Other challenges in latch placement

are illustrated by Figure 3.4. At the same time, the optimal new location of the latch

depends on how the input and output nets are buffered. As a result, the optimal approach

is to simultaneously move the latch and perform buffering, but this is computationally

prohibitive because a typical multiple-objective buffering algorithm runs in exponential

29

(a) (b) (c) (d)

Figure 3.4: The layout in (a) has a poorly-placed latch, and existing critical path optimiza-
tions do not solve the problem. Repowering the gates may improve the timing
some in (b), but if it cannot fix the problem, the latch must be moved. Moving
the latch up to the next buffer, shown in (c), does not give optimization enough
freedom. If we move the latch but do not re-buffer in (d), timing may degrade.
Figure 3.12(d) shows the ideal solution to this problem.

time. As mentioned in Section 3.1, we propose a sequential approach in which we first

compute the new locations for a selected set of movable gatesbased on timing estimation

considering buffers. Then, buffering is applied to the input and output nets of the selected

movable gates. Being practical, effective and efficient, this approach can be integrated

into a typical VLSI physical synthesis flow. The calculationof optimal movement uses a

simple but effective buffered-interconnect delay model, which is discussed next.

Linear buffered-path delay estimation. Buffering has become indispensable in tim-

ing closure and cannot be ignored during interconnect delayestimation [6,29,101]. There-

fore to calculate new locations of movable gates, one must adopt a buffering-aware inter-

connect delay model that accounts for future buffers. Consider the problem of estimating

the delay of an optimally-buffered net of arbitrary lengthL. We briefly review an an-

alytical delay model that is well-suited to this purpose [6,79]. Consider the delay of a

long chain of buffers as shown in Figure 3.5(a). Suppose there arek buffers driving wire

segments each of which are lengthΓ. The model is simplified by assuming the size of a

30

. . .

�

Rb

�R

�C Cb

(a) (b)

Figure 3.5: (a) A model for buffered interconnect.Γ describes the optimal distance be-
tween buffers on a two-pin net. (b) A correspondingRC-network of a single
buffer driving a wire segment.Rb andCb represent the intrinsic resistance and
gate capacitance of the buffer whileR andC represent the per-unit resistance
and capacitance of a metal wire.

buffer is negligibly small, thenΓ = L
k
. Assume that each buffer and wire segment it drives

is modeled by theRC-network in Figure 3.5(b). Then the delay of the whole chain of

buffers of lengthL is computed ask times the delay through each segment.

delay(L) = k[Rb(
L

k
C) + RbCb + (

L

k
R)(

L

k
C) + (

L

k
R)Cb] (III.1)

WhereL is the length of a2-pin buffered net,Rb andCb are the intrinsic resistance and

input capacitance of buffers and gates whileR andC are unit wire resistance and capaci-

tance respectively.

The model is further simplified by assuming continuous gate sizes and placement sites.

Then the optimal buffering solution must minimize the delayfunction as follows.

δ(delay(L))

δk
= 0 (III.2)

Which leads to this relation on the optimal buffering solution.

L

k
=

√

RbCb

RC
(III.3)

31

By subtituting Equation III.3 into Equation III.1 we can simplify the calculation of delay

to the following.

delay(L) = L(RbC + RCb +
√

2RbCbRC) (III.4)

Note that this equation is linear in terms ofL.

Empirical results in [6] indicate that Equation III.4 is accurate up to0.5% when at least

one buffer is inserted along the net. Furthermore, our own empirical results in Section 3.6

suggest a97% correlation between this linear delay model and the outputof an industry

timing-analysis tool.

The timing graph. In RUMBLE, a set of movable gates is selected, which must

include fixed gates or input/output ports to terminate everypath. Fixed gates and I/Os

help formulate timing constraints and limit the locations of movables. In Figure 3.6(a), we

assume that new locations have to be computed for the latch and the two OR gates, while

all NAND gates are kept fixed.

In the timing graph, each logic gate is represented by a node,while a latch is repre-

sented by two nodes because the inputs and outputs of a latch are in different clock cycles

and can have different slack values. Each edge represents a driver-sink path along a net

and is associated with a delay value which is linearly proportional to the distance between

the driver and the sink gate. In other words, we decompose each multi-pin net into a set of

two-pin edges that connect the driver to each sink of the net.This simplification is crucial

to our linear delay model and is valid because the linear relationship can be preserved for

the most critical sinks by decoupling less-critical paths with buffers [6]. Therefore the

32

(a) (b)

Figure 3.6: (a) An example subcircuit and (b) correspondingtiming graph used in RUM-
BLE. The AATs or RATs of unmovable objects (squares) are considered
known. STA is performed on movable objects (round shapes).

two-pin edge model in the timing graph can guide the computation of new locations for

the movable gates.

In the timing graph, an edge which represents a timing arc is created only for (1)

each connection between the movable gates, and (2) each connection between a movable

gate and a fixed gate. This is because we only care about the slack change due to the

displacement of movable gates. For the subcircuit in Figure3.6(a), the resultant timing

graph is shown in Figure 3.6(b).

For each fixed gate, we assume that the required arrival time (RAT) and the actual

arrival time (AAT) are fixed. The values of RAT and AAT are generated by a static timing

analysis (STA) engine using a set of timing assertions created by designers. An in-depth

exposition of STA can be found in [77, 98] along with algorithms to generate RAT and

AAT. A movable latch corresponds to two nodes in the timing graph, one for the data

input pin and one for the output pin. For the input pin, the RATis fixed based on the clock

period. Similarly, the AAT is fixed for the latch’s output pin. Based on all the fixed RAT

and AAT at fixed gates and latches, the AAT and RAT are propagated along the edges

according to the delay of the timing arcs. The values of AAT are propagated forward to

33

(a) (b) (c)

Figure 3.7: In many subcircuits there are multiple slack-optimal placements. In RUMBLE
we add a secondary objective to minimize the displacement from the original
placement. This helps to maintain the timing assumptions made initially and
reduces legalization issues. (a) shows the initial state ofand example subcir-
cuit, (b) a slack-optimal solution commonly returned by LP solvers, all opti-
mal solutions lie on the dotted line and (c) a solution given by RUMBLE that
maximizes worst-slack then minimizes displacement.

fan-out edges, adding the edge delay to the AAT. On the contrary, RATs are propagated

backward along the fan-in edges, subtracting the edge delayfrom the RAT values. Details

of edge delay, RAT and AAT calculation in our algorithm are covered in Section 3.4.

3.4 Timing-Driven Placement with Buffering

The goal of RUMBLE is to find new locations for movable gates ina given selected

subcircuit such that the overall circuit timing improves. Therefore we maximize the min-

imum (worst) slack of source-to-sink timing arcs in the subcircuit. In contrast to other

objectives used in previous work, we select this objective because we are targeting critical-

path optimization. Hence, we prefer1 unit of worst-slack improvement over2 units of

slack improvement on less-critical nets. Below we introduce the timing-driven placement

technique in RUMBLE that directly maximizes minimum slack.In the following place-

ment formulation we account for the timing impact of our changes by implicitly modeling

static timing analysis in our timing graph. In this work, we estimate net length by the

half-perimeter wirelength (HPWL) and then scale it to represent net delay. More accurate

34

nu v
g

om

o0

... g

i l

i0
...

(a) (b) (c)

Figure 3.8: (a) A timing arcnu,v connecting an arbitrary gateu to an arbitrary gatev. (b)
The RAT of a gateg is the minimum of RATs of the outputs ofg. (c) The AAT
of a gateg is the maximum of AATs of the inputs ofg.

models are possible, but may complicate optimization.

Problem formulation. Consider the problem of maximizing the minimum slack of a

given subcircuitG with some movable gates and some fixed gates, or ports. Let theset

of nets in the subcircuit beN = n0, n1, . . . , nh. Let the set of all gates in the subcircuit

(movable and fixed) beG = g0, g1, . . . , gf . Let the set of movable gates in the subcircuit

(a subset ofG) beM = m0, m1, . . . , mk. τ is a technology dependent parameter that is

equal to the ratio of the delay of an optimally-buffered, arbitrarily-long wire segment to its

length

τ =
delay(wire)

length(wire)
(III.5)

The following equations govern static timing analysis and are used in the next section. A

timing arc is specified for a given netn driven by gateu and having sinkv asnu,v, as

illustrated by Figure 3.8(a). The delay of a gateg is Dg.

The calculation of Required Arrival Time (RAT) and Actual Arrival Time (AAT) of a

gate for combinational circuits shown in Figure 3.8 are computed as follows.

The RAT of a combinational gateg

Rg = min
oj :0≤j≤m

{Roj
− τ ∗ HPWL(ng,oj

)−Dg} (III.6)

35

The AAT of a combinational gateg is

Ag = max
ij :0≤j≤l

{Aij + τ ∗ HPWL(nij ,g) + Dg} (III.7)

Given a clocked latchr, we assume for simplicity that the RAT (Rr) and AAT (Ar) are

fixed and come from the timer. Unclocked latches are treated similarly to the combina-

tional gates above.

The slack of a timing arcnp,q connecting two gates (combinational or sequential, mov-

able or fixed)p andq is

Snp,q
= Rq − Ap − τ ∗ HPWL(np,q) (III.8)

The RUMBLE linear program. We define a linear program to maximize the mini-

mum slackS of a subcircuit as follows.

VARIABLES:

For each movable objectm in M we define two independent variables representing the

location(x, y) of m:

βm
x , βm

y

In terms of these locations, we define the bounding box of eachnet n using four new

variables representing lower-left coordinate

Ln
x, Ln

y

as well as the upper-right coordinate.

Un
x , Un

y

36

Given a gatem, the actual arrival time at the output ofm is defined using the variable

Am

The required arrival time at the input of the gatem is similarly defined using the variable

Rm

The slack of each netn is defined using the variable

Sn

The minimum slack of allSn variables is computed using the variable

S

OBJECTIVE: Maximize S

CONSTRAINTS: For every gategj on netni

Uni
x ≥ β

gj
x , Uni

y ≥ β
gj
y (III.9)

Lni
x ≤ β

gj
x , Lni

y ≤ β
gj
y (III.10)

For every movable gatemi and sink it drivesgj via netnk

Rmi
≤ Rgj

− τ ∗ (Unk
x − Lnk

x + Unk
y − Lnk

y)−Dg (III.11)

For every movable gatemi and gategj that drives one of its inputs via netnk

Ami
≥ Agj

+ τ ∗ (Unk
x − Lnk

x + Unk
y − Lnk

y) + Dg (III.12)

For every timing arc in the subcircuitnp,q associated with netni

Sni
≤ Rq − Ap − τ ∗ (Uni

x − Lni
x + Uni

y − Lni
y) (III.13)

37

(10, 10)

-20

-20

-20

-20
+5 -10

FOM = -90

(15, 10)

-20

-20

-20

-20

0 -5

FOM = -85

(a) (b)

Figure 3.9: (a) An example subcircuit with an imbalanced latch whose worst-slack cannot
be improved. Nevertheless, it is possible to improve timingof the latch while
maintaining slack-optimality. By including a TNS component in the objective,
the total negative slack can be reduced, as shown in (b).

For each netni:

S ≤ Sni
(III.14)

Extensions to minimize displacement. The linear program of RUMBLE is defined

to maximize the minimum slack of a subcircuit. Additional objectives can be considered

as well, such as total cell displacement, which sums Manhattan distances between cells’

original and new locations. We subtract the minimum slack objective from a weighted

total cell displacement term to avoid unnecessary cell movement. The weightWd for

the total cell displacement objective is set to a small value. Therefore the weighted to-

tal displacement component is used as a tie-breaker and has little impact on worst-slack

maximization. Instead, the combined objective is maximized by a slack-optimal solution

closest to cells’ original locations. During incremental timing-driven placement, minimiz-

ing total cell displacement encourages higher placement stability and often translates into

fewer legalization difficulties.

Figure 3.7 shows an example of the RUMBLE formulation with and without the total

displacement objectives. The only movable object in Figure3.7(a) is the latch. An input

38

netn1 and an output netn2 are connected to the latch with slacks−2 and+2 respectively.

Figure 3.7(b) shows the optimal LP solution without the total displacement objective. The

Manhattan net length ofn1 is reduced from20 to 18, and the net length ofn2 is increased

from 20 to 22. This improves the worst slack of the subcircuit from−2 to 0. However, the

latch moves a large distance. Figure 3.7(c) illustrates that including the total displacement

objective may preserve optimal slack, while minimizing latch displacement.

In order to minimize displacement by adding a new objective,we introduce the fol-

lowing variables and constraints to the linear program.

DISPLACEMENT VARIABLES:

Given a gatem, define the upper bounds on the new and original coordinates in thex and

y dimensions using two new variables:

φm
x , φm

y

Similarly define the lower bounds on the new and original coordinates in thex and y

dimensions for the gatem using two new variables:

ωm
x , ωm

y

Then, in terms ofφ andω we define the displacement of the gatem in thex andy dimen-

sions using two variables:

δm
x , δm

y

DISPLACEMENT CONSTRAINTS:

For every movable gatemi, αmi
x andαmi

y denote the originalx andy coordinates. The

upper and lower bounds of the new and original coordinatesφ andω in each dimension

39

are:

φmi
x ≥ βmi

x , ωmi
x ≤ βmi

x

φmi
y ≥ βmi

y , ωmi
y ≤ βmi

y

φmi
x ≥ αmi

x , ωmi
x ≤ αmi

x

φmi
y ≥ αmi

y , ωmi
y ≤ αmi

y

(III.15)

The displacementsδmi for a movable gatemi are defined as

δmi
x = φmi

x − ωmi
x , δmi

y = φmi
y − ωmi

y
(III.16)

Extensions to improve the slack histogram. The minimum slack is the worst slack in

a subcircuit. For two subcircuits with identical worst slack, it is possible that one subcircuit

has few critical paths with worst slack while the other one has many. A timing optimiza-

tion has to improve both the worst slack and the overall totalthreshold slack (TTS) in a

subcircuit. TTS is defined as the sum of all slacks below a threshold. If the slack threshold

is zero, TTS is equivalent to the total negative slack. With the minimum slack as the only

objective, a small improvement in the worst slack may cause alarge TTS degradation.

Therefore we must add a TTS component to the optimization objective. The balance be-

tween the minimum slack and the TTS is controlled by a parameter Wf , which is set to a

relatively small value because the worst slack objective ismore important.

Figure 3.9 shows another scenario where the TTS component may help. During opti-

mization, it may not be always possible to improve the minimum slack of the subcircuit.

In that case, we can still reduce the number of critical cellsby improving the TTS. In Fig-

ure 3.9, there are three movables in the subcircuit. The minimum slack of the subcircuit

is−20, and it is not possible to improve the minimum slack by movingany of the gates.

With the additional TTS component in the objective, the TTS of the subcircuit is improved

40

from−90 to−85, as shown in Figure 3.9(b).

Let Sn denote the slack on netn, then the combined objective has the displacement

and TTS components

Maximize:

S − Wd

∑

m∈M (δm
x + δm

y)

+ Wf

∑

n:n∈N,Sn<Ts
Sn

(III.17)

whereTs is the small slack threshold used to compute the TTS. We have earlier assumed

Wf andWd to be small, withWd < Wf . In our implementation we setWf to 0.005

times the absolute value of the average slack in the subcircuit, and we setWd to 10−6.

These additional terms change the optimal region, but because the weights are so small

the combined optimal region is very near the slack-optimal region.

Preserving the TTS objective. The primary goal of the RUMBLE linear program as

presented in previous sections is to maximize the worst slack of the subcircuit. We define

two additional objectives — one preserves the initial solution as much as possible, the

other can improve the slack histogram when the worst slack cannot be further improved.

However, it is possible that in order to improve a single worst slack path, multiple paths

may degrade to the point of being critical. If RUMBLE is deployed late enough in a physi-

cal synthesis flow, the corresponding TTS degradation may beundesirable. To address this

problem, we have devised an additional constraint that can prevent this type of TTS degra-

dation, but may restrict improvement in worst slack. When TTS should not be degraded,

we add the following constraints to the RUMBLE linear program to preserve TTS.

For each netnk whose slack is greater than the slack thresholdTs, add the following

41

constraint.

Snk
≥ Ts (III.18)

This addition may over-constrain the linear program, in which case it is not possible to

improve the worst slack without harming TTS.

3.5 The RUMBLE Algorithm

In this section we discuss the details of the RUMBLE algorithm, which employs the

linear program from the previous section to incrementally improve the timing of poorly

placed latches.

Subcircuit selection. RUMBLE identifiesimbalanced latches, which we define as

those that exhibit positive slack on their inputs and negative slack on their outputs (or vice

versa). As illustrated in Figure 3.2, the movement of any such imbalanced latch has the

potential to improve timing, even if all surrounding cells are held fixed. More generally,

however, the neighbors and extended neighbors of the targeted latch may also be included

to form a setM of movable cells. In our technique, shown in Figure 3.11, we adopt a basic

N-hop neighborhood approach, where any gate withinN steps of the imbalanced latch is

included in the set of movable cells. This requires both a forward sweep (to collect sinks)

and a backward sweep (to collect sources), which are performed in tandem. Those cells

that areN + 1 steps away from the latch form a setP of fixed peripheral nodes.2

In contrast to prior work that has assumed operation within apre-buffering stage, our

subcircuit selection algorithm must address the presence of buffers. These buffers will

2Variations on this theme, such as metrics that incorporate the degree of neighbors’ criticality [69, 122]
and the size of the subcircuit bounding box are also possible.

42

AAT = +20

RAT +19

RAT = 0

Clock Period = 20

AAT = +11

Delay = +10

RAT = +1
Delay = +9

Clock Period = 20

AAT = +15

Delay = +10

RAT = +5

Clock Period = 20

(a) (b) (c)

Figure 3.10: Modeling feedback paths within logic requiresa new type of gate. Pseudo-
movable gates have timing values that depend on the timing values of neigh-
boring gates, but they cannot be moved. (a) Ignoring the presence of feedback
paths is overly pessimistic, and it appears that the timing of the latch cannot
meet its constraints. (b) Making the fixed gates along a feedback path pseu-
domovable allows the latch to meet its timing constraints, but doing only this
can lead to the wrong placement. (c) Including all gates connected to pseu-
domovables as fixed timing points properly models the problem as a convex
subcircuit.

be encountered in our neighborhood selection algorithm, asthey are part of the current

logic; however, since it is presumed that they would be ripped up when new locations are

determined (a critical assumption that makes our linear-delay model possible), we must

prevent their inclusion in our model of the subcircuit. Therefore, when fetching adjacent

gates, we transparently skip these buffers and omit them from the setM . The recursive

functions TRUE-SOURCE() and TRUE-SINK() in Figure 3.11 provide this additional level of

indirection, returning only those combinational gates that reflect the logical structure of

the subcircuit. Buffers are removed and reinserted on adjacent nets by a state-of-the-art

buffer insertion algorithm after RUMBLE moves gates.

Feedback paths. As noted in [122], the process of extracting gates to form a subcircuit

may suffer from complications when subpaths of combinatorial logic between peripheral

nodes are not modeled. These subpaths introduce additionaltiming constraints that, if left

absent from the model, could invalidate the optimality of the solution.

To illustrate, consider the example in Figure 3.10, in whicha single latch has been

43

BUILD -SUBCIRCUIT-FROM-SEED

� Input: LatchL , int N -hops
� Output: Setmovables , Setpseudo , Setfixed

1 movables =
BUILD -MOVABLES-FROM-SEED(L, N -hops)

2 pseudo =
BUILD -PSEUDOMOVABLES-FROM-MOVABLES(movables)

3 fixed =
BUILD -FIXED-FROM-CORE(movables

⋃

pseudo)

BUILD -MOVABLES-FROM-SEED

� Input: LatchL , int N -hops
� Output: Setmovables

1 inputs = input -fringe = {L}
2 outputs = output -fringe = {L}
3 for i = 1 .. N -hops
4 input -fringe =

⋃
(

GET-INPUTS(input ∈ input -fringe)
)

5 output -fringe =
⋃

(

GET-OUTPUTS(output ∈ output -fringe)
)

6 inputs = inputs
⋃

input -fringe

7 outputs = outputs
⋃

output -fringe

8 movables = inputs
⋃

outputs

BUILD -PSEUDOMOVABLES-FROM-MOVABLES

� Input: Setmovables

� Output: Setpseudo

1 pseudo =⊘
2 do
3 Setfan in = INPUT-CONE(movables

⋃

pseudo)
4 Setfan out = OUTPUT-CONE(movables

⋃

pseudo)
5 Setpseudo′ =

(

fan in
⋂

fan out
)

- movables - pseudo

6 pseudo = pseudo
⋃

pseudo′

7 while pseudo′ 6= ⊘

BUILD -FIXED-FROM-CORE

� Input: Setcore
� Output: Setfixed

1 fixed =⊘
2 for eachGateG ∈ core

3 Setneighbors = GET-INPUTS(G)
⋃

GET-OUTPUTS(G)
4 fixed = fixed

⋃

(neighbors - core)

GET-INPUTS

� Input: GateG
� Output: Setinputs

1 S =⊘
2 for eachpin ∈ IN-PINS(G)
3 S = S

⋃

TRUE-SOURCE(pin)
4 return S

GET-OUTPUTS

� Input: GateG
� Output: Setoutputs

1 S =⊘
2 for eachpin ∈ OUT-PINS(G)
3 S = S

⋃

TRUE-SINKS(pin)
4 return S

TRUE-SOURCE

� Input: Pinp

� Output: Gatesource

1 Net net = NET(p)
2 GateG = DRIVER(net)
3 unlessIS-BUFFER(G)
4 return G
5 p = IN-PIN(G)
6 return TRUE-SOURCE(p)

TRUE-SINKS

� Input: Pinp

� Output: Setsinks

1 Net net = NET(p)
2 Setdriven = DRIVEN(net)
3 S =⊘
4 for each GateG ∈ driven

5 if IS-BUFFER(G)
6 p = OUT-PIN(G)
7 S ′ = TRUE-SINKS(p)
8 elseS ′ = G
9 S = S

⋃

S ′

10 return S

Figure 3.11:Subcircuit selection transparently skips buffers when building a neighborhood
of movable gates, and requires detection ofpseudomovables.

44

selected as a movable gate. After collecting its inputs and outputs, a simple subcircuit

is constructed as shown in Figure 3.10(a), with the two endpoints shown selected as fixed

gates. With the timing constraints as given in the figure, an optimal solution to this problem

will place the latch equidistantly from both endpoints to ensure that the slacks on either

side are balanced. However, consider a scenario where a feedback path exists from the

output to the input, as shown in Figure 3.10(b); in such an event, the RAT of the output

and the AAT of the input aredependenton the location of the latch. If this dependency is

modeled, the solution may be biased toward one of the two neighbors. We loosely refer

to these neighbors aspseudomovablegates. Although timing must be propagated through

them (as it is for movable gates), their physical locations may be fixed.

Pseudomovables are collected by intersecting the transitive cones of logic between in-

puts and outputs to detect feedback paths, as shown in the pseudocode of Figure 3.11.3 To

ensure accuracy, the inputs and outputs of pseudomovables themselves must be bounded

by fixed endpoints, as shown illustrated in Figure 3.10(c). These fringe nodes completely

isolate the timing of the resultingconvexsubcircuit from outer cones of logic.

The do-no-harm philosophy. After gates are moved, it is likely that timing has de-

graded due to, for example, a capacitance violation on a longwire. The subcircuit must be

examined, and its interconnect improved through physical synthesis optimizations, which

might include gate-sizing and buffer-insertion for delay or electrical considerations on

nets.

Even though the linear program of Section 3.4 can be solved optimally, it does not

3To improve runtime, one can limit the depth of these cones to areasonably small constant, as opposed
to the exhaustive expansion in [18].

45

(a) (b) (c) (d)

Figure 3.12: The RUMBLE algorithm proceeds by (a) selectinga subcircuit to work on.
An LP is formulated and solved, with movable gates being relocated as shown
in (b). Existing repeater trees are no longer appropriate, and are subsequently
removed in (c). Finally, the nets are re-buffered, forming the final subcircuit
shown in (d).

account for all the complexities of interconnect optimization. The linear program is an ab-

straction of the subcircuit timing that models physical synthesis optimizations (e.g., virtual

buffering) by prorating wire delay constants based on upcoming physical synthesis opti-

mizations. Despite the high correlation to more accurate timing models in experimental

results, the RUMBLE model ignores certain constraints and legalizing its solution might

result in a timing degradation. For example, nets can cross blockages or congested regions

with no nearby legal locations. As a result, legalization could create a timing degradation.

When running RUMBLE in our physical synthesis flow, we mitigate the harmful ef-

fects of legalization by finding legal locations for gates and buffers when moving or insert-

ing them. Insisting on legal locations can also contribute to a degradation not anticipated

by the RUMBLE model. Fortunately, RUMBLE can examine the timing implications of

its changes before committing to them. It simply stores the initial state of the subcircuit,

and restores it if a timing degradation occurs. In this way, RUMBLE will do no harm

to the circuit by ensuring that whatever solution it keeps isno worse than what existed

before. Such safe delay optimizations are more easily inserted into physical synthesis

46

flows [18,88].

The RUMBLE algorithm. Figure 3.13 shows pseudocode for the RUMBLE algo-

rithm, which assumes a set of movable gates given at input, and Figure 3.12 illustrates the

process. First, the subcircuit that is necessary for incremental placement is extracted (for a

single movable, we extract its one-hop neighborhood of input gates). During this process,

buffers are ignored (viewed as wires) as described in Section 3.5. Next, RUMBLE per-

forms timing analysis so as to measure timing improvement later. Line3 stores the state

of the circuit (gates and nets) so as to possibly undo most recent transformations we are

considering. Once the initial state is safely stored, lines4-6 use the linear program of Sec-

tion 3.4 to compute new gate locations, followed by buffer removal. If the model shows

improvement we continue. Buffers are inserted on line8, and other physical synthesis op-

timizations could also be applied here (e.g, repowering,Vth assignment, etc.). Lines9-12

measure improvement, and in the case of timing degradation,restores the initial solution.

3.6 Empirical Validation

RUMBLE is implemented in C++ (compiled with GCC4.1.0) and integrated into an

industrial physical synthesis flow. For our experiments, weexamined an already optimized

130nm commercial ASIC with clock period2.2ns and3 million objects. We first exam-

ined the most critical latches and then filtered out the ones where the latch was already

well placed. We use the algorithm from [5] to perform buffering after the cells have been

moved. In practice, the LP-solving technique from RUMBLE requires only17 millisec-

onds; the buffering algorithm dominates the runtime (over75%). Since the overall runtime

47

RUMBLE-ONE-LATCH

� Input: Gatemovable

� Output:movable has optimized location and interconnect
1 subcircuit = BUILD -SUBCIRCUIT-FROM-SEED(movable , 0)
2 before-timing = MEASURE-TIMING (subcircuit)
3 initial -solution = CACHE-SUBCIRCUIT(subcircuit)
4 LP = new RUMBLE linear program forsubcircuit

5 after -locs = SOLVE(LP)
6 SET-GATE-LOCATIONS(subcircuit, after -locs)
7 REMOVE-BUFFERS(subcircuit)
8 REINSERT-BUFFERS(subcircuit)
9 after -timing = MEASURE-TIMING (subcircuit)

10 if (after -timing worse thanbefore-timing)
11 RESTORE-GATE-LOCATIONS(subcircuit, initial -solution)
12 RESTORE-INTERCONNECT(initial -solution)

Figure 3.13: The RUMBLE algorithm for moving one latch.

is dependent on the choice of the buffering algorithm we omitthe (trivial) runtimes from

our tables. Note that thedo-no-harm approachof Section 3.5 is applied to all experi-

ments, preventing timing degradation in our tables (i.e., avalue of 0 appears in the imprv.

column).

Re-buffering in RUMBLE. Previously published LP techniques for timing-driven

placement do not allow for re-buffering during optimization. Instead, they are either ap-

plied before buffers have been inserted, or they do not differentiate the buffers from other

gates. Our first experiment is designed to show how importantit is to rip up buffers before

replacing gates and subsequently rebuffering.

We modified our pseudocode in Figure 3.11 so that the functionIS-BUFFER() always

returns false. The effect of this is to stopseeing throughthe buffers, and instead to con-

sider them fixed timing endpoints. This configuration modelsthe work of [122]. We then

calculate a new location for each latch with the LP in Section3.4. The final change is to

48

skip line8 of Figure 3.13, i.e., do not re-buffer. We call this algorithm KEEP-BUFFERS.

Table 3.1 shows the results of RUMBLE on a single latch compared with KEEP-BUFFERS.

Column1 shows the name of the benchmark and columns2 and5 show worst-slacks in

picoseconds before optimization. Columns3 and6 show the slacks after optimization of

KEEP-BUFFERS and RUMBLE respectively. Columns4 and7 show the improvements of

each technique.

Implications of keeping buffers
KEEP-BUFFERS RUMBLE

Slack (ps) Slack (ps)
Subcircuit orig new imprv. orig new imprv.

latch A0 -1480 -1318 162 -1480 26 1506
latch A1 -1268 -1066 202 -1268 186 1454
latch A2 -1020 -939 80 -1020 -791 229
latch A3 -953 -766 187 -953 -390 563
latch A4 -897 -677 220 -897 356 1253
latch A5 -848 -746 101 -848 -278 570
latch A6 -690 -690 0 -690 395 1085
latch A7 -645 -586 59 -645 -19 626
latch A8 -633 -560 74 -633 290 923
latch A9 -610 -466 144 -610 262 872

avg -904 -782 123 -904 4 908

Table 3.1: Keeping buffers instead of removing and reinserting them degrades RUMBLE’s
performance.

From the table we observe the following:

• Despite not ripping up buffers, KEEP-BUFFERSis still able to improve solution quality

for nine out of ten testcases, though the improvement is never more than220ps.

• When rip-up and re-buffering is allowed, RUMBLE is able to significantly outper-

form KEEP-BUFFERSfor all ten testcases. On average the improvement grows by7.4x.

• While KEEP-BUFFERS improves slack by an average of123ps, RUMBLE improves

slack by908ps, which confirms how important it is to rip-up buffers so that they do

49

not anchor the latch into an artificially small region.

Accuracy of the RUMBLE timing model. Theoretical results published by Otten [79]

and discussed in Section 3.3 indicate that optimal buffer insertion on a two-pin net results

in a wire delay that is linearly-proportional to its length.The RUMBLE model heavily

relies on these results.

Table 3.2 compares the model-predicted values for subcircuit slack to values measured

by running a commercial static timing analyzer. Measurements are taken after the RUM-

BLE LP is solved, the latches are moved and connected nets arebuffered. Columns2-4

report the initial, final, and improvement in worst-slack ofthe subcircuit measured by the

timing model presented in Section 3.3. Columns5-7 report the same metrics measured by

the STA engine.

Model timing vs. reference timing
Model slack (ps) Subcircuit slack (ps)

Subcircuit orig new imprv. orig new imprv.
latch A0 -1799 -48 1751 -1480 26 1506
latch A1 -1509 65 1574 -1268 186 1454
latch A2 -1113 -868 245 -1020 -791 229
latch A3 -1147 -527 620 -953 -390 563
latch A4 -1090 180 1269 -897 356 1253
latch A5 -945 -295 650 -848 -278 570
latch A6 -920 320 1241 -690 395 1085
latch A7 -886 49 935 -645 -19 626
latch A8 -913 213 1126 -633 290 923
latch A9 -800 397 1198 -610 262 872

avg -1112 -51 1061 -904 4 908

Table 3.2: The RUMBLE model accurately predicts the solution quality improvements in
the reference timing model.

We make the following observations:

• On average, the RUMBLE model overestimates the actual timing improvement by

50

about15%. This makes sense since it assumes an optimal ideal buffering will be

achievable, but this is not always the case, especially for multi-sink nets.

• However, if one compares actual improvement to model improvement, there is a

97% correlation, suggesting that the model is reasonable enough to justify the latch

location.

We now show how RUMBLE actually improves the design’s timingcharacteristics.

RUMBLE on a single latch. Given that we are solving a new physical synthesis prob-

lem, existing solutions are scarce. Therefore we first consider straightforward approaches

to solve this problem. One possibility is to take thecenter-of-gravity(COG) of adjacent

pins. A timing-driven improvement of the center-of-gravity technique weights each pin by

its slack. A reasonable version of this heuristic works in the following way. For a slack

thresholdTs (see Section 3.4), let the weightw of a pinp with slackSp be:

wp =

1 + |Sp − Ts| Sp < 0

max(0.1, 1− |Sp − Ts|) Sp ≥ 0

Then we compute thex coordinate of movable gatem as the weighted average of thex

coordinates of the set of neighboring pinsP .

mx =

∑

p∈P wppx
∑

p∈P wp

and similarly for they coordinate.

We implemented the above COG technique within the RUMBLE framework in place

of the LP solver presented in Section 3.4. We still allow COG the benefits of ripping up

buffers, and reinserting them after the latches are moved. Table 3.3 shows a comparison

51

between RUMBLE and slack-weighted COG on10 latches. Column1 shows the same

latches as reported in Table 3.2. Columns2-4 show the initial and final slacks, and im-

provement for COG. Columns5-7 show the same for RUMBLE.

Center-of-gravity vs. RUMBLE
COG RUMBLE

Slack (ps) Slack (ps)
Subcircuit orig new imprv. orig new imprv.

latch A0 -1480 -527 953 -1480 26 1506
latch A1 -1268 -203 1065 -1268 186 1454
latch A2 -1020 -800 219 -1020 -791 229
latch A3 -953 -615 338 -953 -390 563
latch A4 -897 -78 819 -897 356 1253
latch A5 -848 -319 529 -848 -278 570
latch A6 -690 -690 0 -690 395 1085
latch A7 -645 -645 0 -645 -19 626
latch A8 -633 -633 0 -633 290 923
latch A9 -610 67 677 -610 262 872

avg -904 -444 460 -904 4 908

Table 3.3: Comparison of RUMBLE’s LP to a slack-weighted center-of-gravity technique.

Iterated RUMBLE vs. RUMBLE: 1-hop
Iterated single-move RUMBLE Multi-move RUMBLE

Slack (ps) TTS (ps) Slack (ps) TTS (ps)
Subcircuit orig new imp. orig new imp. orig new imp. orig new imp.
subckt B0 -1542 -1542 0 -6091 -6091 0 -1542 -130 1412 -6091 -130 5962
subckt B1 -1501 -277 1223 -5924 -277 5647 -1501 55 1556 -5924 0 5924
subckt B2 -1240 -1240 0 -4354 -4354 0 -1240 -980 261 -4354 -4044 310
subckt B3 -848 -278 569 -2523 -812 1710 -848 -279 569 -2523 -813 1709
subckt B4 -690 -79 612 -4090 -79 4011 -690 202 893 -4090 0 4090
subckt B5 -690 48 739 -2053 0 2053 -690 290 980 -2053 0 2053
subckt B6 -645 -18 627 -1921 -32 1889 -645 301 945 -1921 0 1921
subckt B7 -595 86 681 -1937 0 1937 -595 503 1098 -1937 0 1937
subckt B8 -444 -444 0 -889 -889 0 -444 -92 352 -889 -191 698
subckt B9 -418 -46 372 -857 -46 811 -418 6 424 -857 0 857

avg -861 -379 482 -3064 -1258 1806 -861 -12 849 -3064 -518 2546

Table 3.4: RUMBLE simultaneously moving aone-hopneighborhood compared to itera-
tively moving the same gates individually.

We observe the following:

• For all ten cases, RUMBLE generates a better solution than COG. For three of the

cases, COG could not improve the latch placement. These new solutions are rejected

by the controller so as not to make the design worse.

52

Iterated RUMBLE vs. RUMBLE: 2-hop
Iterated single-move RUMBLE Multi-move RUMBLE

Slack (ps) TTS (ps) Slack (ps) TTS (ps)
Subcircuit orig new imp. orig new imp. orig new imp. orig new imp.
subckt C0 -719 -719 0 -8313 -8313 0 -719 -675 44 -8313 -5028 3285
subckt C1 -719 -719 0 -8004 -8004 0 -719 -653 66 -8004 -4386 3617
subckt C2 -690 -79 612 -4090 -79 4011 -690 314 1004 -4090 0 4090
subckt C3 -690 -79 612 -4090 -79 4011 -690 337 1027 -4090 0 4090
subckt C4 -681 -349 333 -3865 -349 3516 -681 -158 524 -3865 -158 3707
subckt C5 -645 -91 554 -3767 -306 3462 -645 371 1015 -3767 0 3767
subckt C6 -645 -33 612 -3767 -52 3716 -645 324 969 -3767 0 3767
subckt C7 -318 -318 0 -940 -940 0 -318 531 848 -940 0 940
subckt C8 -490 227 716 -966 0 966 -490 466 956 -966 0 966
subckt C9 -217 -217 0 -652 -652 0 -217 60 277 -652 0 652

avg -581 -238 344 -3846 -1877 1968 -581 92 673 -3846 -957 2888

Table 3.5: RUMBLE simultaneously moving atwo-hopneighborhood compared to itera-
tively moving the same gates individually.

• On average, COG improves slack by20.9% of the2.2ns cycle time, whereas RUM-

BLE improves slack by41.3%. This shows that one must incorporate slack con-

straints on cells incident on the latch to achieve the most balanced solution.

Optimizing multiple gates simultaneously. For this experiment, we show how an

even better solution can be obtained when one allows cells close to the latch to move. We

show the effectiveness of this technique on two sets of circuits.

• One-hopsubcircuits include every gate (while ignoring buffers andinverters) inci-

dent to the latch of interest that shares an incident net withthe latch. Typically this

results in4 or 5 gates being moved.

• Two-hop subcircuits in addition include all non-buffer and inverter cells incident to

cells in the one-hop neighborhood. These subcircuits rangefrom 11 to 18 movables

with a mean of14.8 movables.

We compare this technique to iterated single-move RUMBLE, where we pick each cell

in the neighborhood and solve the LP for that particular cell, fix it, and then move to the

53

next cell. The experiment is designed to show that multiple cells need to be optimized

simultaneously to obtain the best results.

To measure the improvement one must now consider the slacks of all cells that may

be moved, and the objective becomes to improve the worst slack of the entire subcircuit.

However, when one cannot improve the most critical path, theother paths may have room

for improvement. We use TTS to measure the total improvementof all the slacks in the

subcircuit.

Tables 3.4 and 3.5 compare iterating RUMBLE over each gate one at a time versus

RUMBLE moving multiple gates simultaneously. Columns2-4 show the original and fi-

nal slack, and the slack improvement for iterated single-move RUMBLE, while columns

5-7 show the corresponding TTS measurements for a zero-slack threshold. Columns8-13

show the same measurements for multi-move RUMBLE. We make the following observa-

tions:

• Multi-move RUMBLE is clearly more effective than iterativeRUMBLE both for

one- and two-hop neighborhoods. In fact, for six out of ten one-hop subcircuits and

for seven out of ten two-hop circuits, multi-move actually brought the TTS down to

zero, meaning it fixed all the timing violations. Iterative single move was able to fix

two and four respectively.

• On average, the worst-slack improvements were849ps and673ps respectively for

one- and two-hop subcircuits. The diminished improvement for larger subcircuits is

likely because we are including more nets, some of which cannot be improved as

much as those connected to the imbalanced latch (Figure 3.9 has an example).

54

• Solving the LP takes53ms for one-hop subcircuits and325ms for two-hop subcir-

cuits, on average.

Imb. Imb. FOM Crit. Crit. FOM TTS
old 102768 -21855 7912 -2798 -22448

ckt1 new 93736 -19400 7775 -2644 -20511
diff -9032 2455 -137 154 1937
old 12151 -3080 3206 -1783 -19211

ckt2 new 11037 -2351 2997 -1667 -18170
diff -1114 271 -209 116 1041

Table 3.6: RUMBLE deployed in a physical design flow on circuits that have pipeline
latch placement problems. ckt1 has 2.92M objects and 629k latches and ckt2
has 4.74M objects and 247k latches. “old” reports values before RUMBLE
“new” reports results after and “diff” reports their difference. FOM is reported
in nanoseconds.

RUMBLE in a physical design flow. In the experiments presented so far, we have

compared the effects of RUMBLE to those of other techniques on the most critical latches

of the design. Due to the high runtime of buffering all of the nets in multi-move subcircuits,

multi-move RUMBLE for every critical latch in the design is expensive. Consequently, in

this subsection, we demonstrate the cumulative effect of single-move RUMBLE when

deployed in our physical synthesis flow onall latches with a critical pin. Table 3.6 shows

two circuits that each contain a significant number of poorlyplaced latches. For each

circuit, we report 5 statistics. An imbalanced latch is defined as one that has slack on the

input pins that is greater than the slack threshold,Ts (see Section 3.4), and slack on the

output pins that are lower thanTs, or vice versa. The Imb. column reports the number of

imbalanced latches found in the design. Let the set of imbalanced latches beI, and for

55

each latchl let ws(l) be the worst slack of any pin onl. We define imbalance FOM to be

∑

l∈I

Ts − ws(l) (III.19)

The Imb. FOM column reports this value. A critical latch is defined as one that has pins

on both sides that are belowTs. The Crit. column reports the number of critical latches

found in the design. Similarly to imbalance FOM, ifC is the set of critical latches and for

each latchc let ws(c) be the worst slack of any pin onc, then we define the critical FOM

to be

∑

c∈C

Ts − ws(c) (III.20)

The Crit. FOM column reports this value.

Finally, the TTS column reports the TTS for the entire design. We make the following

observations:

• RUMBLE reduces the number of imbalanced latches by 8.8% and 9.2% on ckt1 and

ckt2, respectively.

• RUMBLE has a harder time optimizing the critical latches than the imbalanced ones.

• RUMBLE reduces circuit TTS by 8.6% and 5.4% on ckt1 and ckt2, respectively.

• RUMBLE improves the characteristics of all columns, and does no harm to the

circuit metrics.

In addition to these observations, we point out that the two most common reasons for

being unable to fix a particular latch are 1) there is a high-fanout net in the subcircuit,

which would degrade the performance of buffering, and we therefore skip this case or 2)

56

the gates are moved to a fixed endpoint, which indicates that RUMBLE does not have

enough freedom to solve the problem entirely. The addition of RUMBLE to our design

flow adds about 4% to the total runtime in these experiments.

3.7 Conclusions

In this work we observe that wirelength-driven placement leads to particularly poor

timing of pipeline latchesin modern physical design flows, which is especially problem-

atic at sub-130nm technology nodes. To address this challenge, we developed RUMBLE

— a linear-programming based, incremental physical synthesis algorithm that incorporates

timing-driven placement and buffering. The latter justifies RUMBLE’s linear-delay model

which exhibited a97% correlation to the reference timing model in our experiments. Em-

pirically this delay model is accurate enough to guide optimization; RUMBLE improves

slack by41.3% of cycle time on average for a large commercial ASIC design.

The linear program (LP) used in RUMBLE is general enough to optimize multiple

gates and latches simultaneously. However, when moving multiple gates considering only

the slack objective, we encountered two challenges: placement stability and TTS degra-

dations. We present our extensions to address these problems directly in our LP objective.

With these additions, moving several gates simultaneouslyimproves upon RUMBLE used

iteratively on the same movables.

57

CHAPTER IV

Bounded Transactional Timing Analysis

Modern physical synthesis flows operate on very large designs and perform increas-

ingly aggressive timing optimizations. Traditional incremental timing analysis now repre-

sents the single greatest bottleneck in such optimizationsand is lacking in features neces-

sary to support them efficiently. We describe a paradigm of transactional timing analysis,

which, in addition to incremental updates, offers an efficient, nestedundo functionality

that does not require significant timing calculations. Thisparadigm extends traditional in-

cremental Static Timing Analysis (STA) and enables necessary infrastructure for a number

of physical synthesis optimizations in this dissertation.

Transactions offer significant performance benefits when working with highly-optimized

netlists, where most candidate transformations are retracted after evaluation. Another con-

text, where our techniques offer speed-ups of two orders of magnitude, is compound op-

timizations where incremental updates are amortized over atree of further possible op-

timizations. We describe efficient implementations ofupdate, begin, commitandundo

functionalities by bounding their impact throughout the netlist.

58

Early Planning

Logic Synthesis

Global Placement

Floorplanning

Electrical Correction

Legalization

Timing Analysis

Detail Placement

Critical-path Optimization

Histogram CompressionGlobal Routing

Detail Routing

Design for Manufacturing

Timing-driven Net Weighting

Timing Constraints Met?Y

N

Clock-network Synthesis

Figure 4.1: The contributions in this chapter improve the results of timing analysis as it is
used in physical synthesis.

4.1 Introduction

Achieving timing closure for large modern ASIC designs requires the use ofphysical

synthesis— a series of performance-driven optimizations that simultaneously alter the

layout, the netlist and electrical parameters of logic gates.

Physical synthesis tightly couplesanalysiswith optimizationin an automated flow

that iteratively improves design parameters. Such flows rely on Static Timing Analysis

(STA) in two essential ways. First, STA identifies the sections of the design that are most

critical to the overall performance. Second, STA assesses the impact of every potential

change on circuit performance, before the change is committed. Circuit optimizations

are bundled intotransformationsthat implement common operations such as relocating

a gate, buffering a net, etc. [112]. Recent state-of-the-art design methodologies consider

compound transformationsto simultaneously perform many simpler transformations that

would not have improved overall performance if applied individually [74].

59

Advanced technology nodes require complex timing models that cannot be captured

analytically with sufficient accuracy, often making timinganalysis the single major bottle-

neck in physical synthesis. Therefore we take a closer look at the conceptual role of STA

and its interfaces with optimization. Mathematically, circuit optimizations often interact

with STA by obtainingarrival timesandrequired arrival timesat timing points throughout

the design [54, 89]. However, running STA on the entire design to evaluate each poten-

tial change is impractical. Therefore, STA can be used (i) inbatch modeto evaluate the

compound impact of many changes, (ii) inincremental mode, where the impact of a single

change is efficiently propagated through the netlist, and (iii) with lazy updates, where tim-

ing data are propagated only in response to queries, essentially batching the changes that

occur between queries.

Multi-objective optimizations now increasingly rely ondo-no-harmmethodologies

that carefully evaluate each change and commit only those that provide tangible improve-

ments [18, 83, 88]. The more aggressive algorithms have veryhigh rejection rates in this

loop, making the speed of incremental STA a major factor in improving physical synthe-

sis. However, batched mode and lazy updates are of limited use when evaluating individual

impact of multiple candidate changes.

The major impact of STA on overall runtime tempts physical synthesis developers to

assume the responsibility for some aspects of timing analysis and shortchange STA en-

gines for handcrafted local delay models, which offer significant opportunities for runtime

improvement. However, this practice risks subtle timing mistakes and also increases the

development effort by lowering reuse. Therefore, we propose improvements to reusable

60

STA engines that better account for the bounded scope of physical-synthesis transforma-

tions.

We present an extension to the interface of static timing analysis to accommodate trans-

action histories. Our technique employs atiming change historydatastructure that stores

changes to the state of the timing graph so that it can be efficiently restored to a pre-

vious state in the event of a retraction. This approach is specifically designed to allow

nesting events that spur timing changes. To further improveworst-case complexity, we

limit changes to the timing graph by way ofbounded timing analysis, an enhancement that

works in conjunction with transactional timing analysis toallow for the rapid exploration

of circuit search space. Finally, we provide an empirical evaluation of bounded transaction

histories for both classical and lazy STA, demonstrating animprovement in performance

by up to two orders of magnitude.

The remainder of this chapter is organized as follows. In Section 4.2 we describe the

state of the art in timing analysis as it applies to physical synthesis and transformation-

driven optimization. We go on to classify several types of physical synthesis transforma-

tions that pose problems to existing timing analysis engines. Section 4.3 presents bounded

transactional timing analysis, along with appropriate details for embedding it into mod-

ern static timing analysis. Section 4.4 provides empiricalevidence demonstrating that

bounded transactional timing analysis greatly improves the speed of transformations that

rely on repeated retractions. Conclusions are drawn in Section 4.5. A review of basic static

timing analysis appears in the appendix.

61

4.2 Background

Timing analysis and its integration into the physical design flow have long been key

topics in design automation. To this end, we review the basics of STA in this section.

Modern static timing engines are products of sophisticatedengineering, and have evolved

substantially over recent decades. Yet, dramatic changes to basic timing models continue

to drive the need for further innovation. For instance, multi-mode timing has become in-

creasingly popular — wherein several timing points are maintained at each node of the

global timing graph, each corresponding to a different corner of design operation. While

these corners enable modern optimization techniques to evaluate the effect of their actions

on many scenarios at once, they also serve as a multiplier of basic computation that the

timing engine must perform. Statistical timing engines that reflect the variance of design

performance require the maintenance of complex distribution models that also signifi-

cantly expand the amount of work placed on the timing engine.These elaborate models,

in conjunction with a stronger emphasis on local transformation-driven operations, have

increased the responsibility of timing engines to provide amuch higher degree of incre-

mental maintenance of internal timing state.

Previous work. The problem of updating only a subset of timing analysis values in

response to a local change is explored in [31], where a depth-first propagation of tim-

ing values is executed until no change is observed. This process was later refined [1], to

reduce the amount of incremental recalculation needed. A distinction between the prop-

agation cost of positive delay changes and negative delay changes is described in [62],

62

demonstrating that the expense of executing an operation may differ from that of its in-

verse. The algorithm of [96] avoids excessive computation by propagating only along

paths that are influenced by altered inputs. A query languagebased on temporal logic is

proposed in [76], along with an algorithm to efficiently retrieve answers to those queries.

Algorithms for incremental timing analysis [105] and incremental criticality updates [35]

have been proposed in the context of FPGAs. The authors of [30] explore an extension

of static timing analysis to model coupling, and exploit circuit structure to determine an

effective node ordering during incremental iterative analysis.

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

(a) (b)

Figure 4.2: A physical synthesis transformation improves the subcircuit in (a) by resyn-
thesizing the logic, resulting in the circuit shown in (b). The traditional way of
evaluating the timing impact of such transformations can beimproved consid-
erably.

Relatively little attention has been given to theexplicit support for the retraction of

local design changes. The recent work of [55] provides support for transactional operations

such asbegin, commit, andundo. However, these operations are restricted only to the

resurrection of previously cachedrouting data, and are not communicated to the timing

engine. Indeed, the decision to revert one or more timing properties to their original state

is typically cast as just another sequence of incremental changes to the system; this forces

the wasteful recomputation of timing data, which may be exacerbated when an inverse

operation takes much longer to execute than the original operation [62]. Other choices in

63

the design flow – such as the decision to compute Steiner treesfor delay estimation – also

compound the effort required to restore timing informationto a previously known state.

The savings, that can be achieved by efficiently rolling backrecent changes, are likely to

escalate in coming years, as compound transformations become increasingly dominant in

physical synthesis and routinely thrash the timer with multiple hypothetical changes.

Incremental static timing analysis. In static timing analysis [97], atiming graph

G = (V, E) is extracted from a combinational logic circuit. Each vertex v ∈ V is a timing

point, and corresponds to an input or output pin of a gate or a global input or output pin.

A pair of vertices,u, v ∈ G, are connected by a directed edgee(u, v) ∈ E if there is

a timing relationship (i.e., a connection) between the pinsu andv. This connection can

occur within a gate, as in between an input pin and an output pin, or it can correspond to a

wire connecting two gates. Each edge has an associated delayδ(u, v) indicating the delay

betweenu andv.

To determine the worst path of the circuit, a topological traversal is performed on the

graph beginning at the sources. The actual arrival timeAAT (v) at a timing pointv in the

circuit is the latest arrival time of any of its predecessorsafter considering delay:

AAT(v) = max
{u|e(u,v)}

(AAT(u) + δ(u, v)) (IV.1)

The required arrival timeRAT (u) at a timing pointu in the circuit is computed in a similar

fashion, traversing backwards from the primary outputs of the circuit:

RAT(u) = min
{v|e(u,v)}

(RAT(v)− δ(u, v)) (IV.2)

A pair of topological traversals are made to determine thesevalues, after which theslackof

64

any timing pointv is calculated as the difference between required arrival time and actual

arrival time:

slack(v) = RAT(v)−AAT(v) (IV.3)

Early STA engines always processed an entire design, which is impractically expen-

sive when evaluating optimization transformations [39]. This expense can be avoided by

using stale timing information or crude estimations, neither of which are acceptable in

modern high-precision physical synthesis [88]. Another alternative is to maintain accurate

timing information throughout the automated flow, but to do so in an incremental fashion.

Research inincremental static timing analysisaims to provide efficient techniques for the

updating of values within a timing network in response to local and partial modifications.

Several varieties of incremental STA have appeared over thepast decade, and are respon-

sible for decreasing timing runtime from hours to minutes following incremental circuit

changes on large ASICs [16].

Further extensions to incremental analysis includelevel-limitedanddominance-limited

schemes to reduce the amount of work performed [102, 121].Lazy evaluation[1, 71], in

which propagation is delayed until triggered by a relevant query, represents a particularly

important improvement in throughput of static timing analysis engines.

The boost in throughput offered by incremental analysis allows an optimization algo-

rithm (as well as a designer) to explore several hypothetical (or “what-if”) scenarios, a

task unaffordable in earlier tools [16]. Such hypotheticalscenarios are typically commu-

nicated to the timing engine as if committing changes. If theresults are unacceptable and

the scenarios are rejected, another set of changes must be committed. This requires new

65

timing calculations, even though the needed timing values have previously been known.

While a single layer of “what-if” support can be added to STA easily, this is insufficient to

handle the evaluation of multiple nested scenarios and their retraction. Detailed use cases

for retraction are discussed in the following section.

Types of Transformation-driven Optimization Recall that timing-driven placement

and synthesis seek non-overlapping locations for all cellssuch that the performance of the

design meets objectives [17]. Timing optimization during physical synthesis is typically

accomplished by gradually modifying and refining an initialnetlist and placement image

[34].

We distinguishcontrollersand optimizationtransformations. A transformationapplies

a particular local optimization to gates and/or nets selected by acontroller. For instance,

IBM’s Placement Driven Synthesis (PDS) [112] makes use of several transformation tem-

plates, including buffering, re-powering, connection reordering, cloning, etc. Acontroller

selects nets and/or gates for optimization, ordering them and judging the impact of opti-

mizations. Both controllers and transformations can querytiming engines. For example,

transformations often make several queries to STA, not onlyto construct a basic model of

the neighboring region (with appropriate arrival times andrequired arrival times), but also

to verify improvement after optimization is complete. Controllers implement optimization

strategies with sophisticated reasoning to handle the feedback received from STA.

Despite extensive support for incremental propagation andlazy evaluation, existing

timing engines often perform unnecessary computation in the context of sophisticated op-

timizations. In this section we illustrate several opportunities for improvement that moti-

66

vate our research, and summarize them in Table 4.1.

Case 1: Inefficiencies in fallible transformations. The simplest transformations first

identify feasible changes and then rely on the timer to evaluate the impact on performance.

For example, acell-movement transformationtrying to relocate a cell on a critical path

may identify several vacant nearby locations, and arepowering transformationmay bind

a critical cell to every power level available in the cell library. In either case, a timing

query must be independently executed after each change is committed to the netlist, to

select the one with greatest slack improvement. We term suchmethodsbind-and-test

transformations.

More advanced transformations attempt to predict the impact of their changes in ad-

vance, so as to quickly weed out unpromising options, then use the timer to select among

few finalists, and verify improvement. In the case of a repowering transformation, the slew

rate at input pins and the load capacitance offer sufficient information to estimate slack at

the output pin for each power level. Such a transformation could guestimate the best power

level, bind it, then verify its slack improvement. If the estimate is too inaccurate, the new

power level may worsen slack, requiring the change to be rolled back. In other words,

such transformations sometimes fail, and we therefore termthemfallible. Aggressive use

of fallible transformations requireserror correctionin the form of anundofunctionality.

Though simple, both fallible and bind-and-test transformations are inherently slow

because repeated changes and timing queries require laborious propagation and updates

of timing information. In our example of bind-and-test repowering, the evaluation of each

power level triggers timing updates for the fan-in cones (for AATs) and fan-out cones

67

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

(a) (b)

Figure 4.3: Evaluating the timing impact of the physical synthesis transformation in Figure
4.2 (output side only). (a) Traditional static timing analysis with lazy evalua-
tion will mark the fanout cone of the change dirty. (b) If the change is found
to have a negative impact on timing, it will be reversed. Thisreversal will
be treated as another change, and the fanout cone will be marked dirty for a
second time.

(for RATs) of the gate. As we point out next, some of this effort could be deferred and

ultimately avoided if the timing engine adopts a philosophyof lazy evaluation. Namely,

after forward-propagating AATs to evaluate the impact of a change, there is no need to

back-propagate RATs, unless the change iscommitted.

A stand-alone reusable STA engine must ensure consistency of its database without

necessarily trusting its clients. Therefore, AATs whose values are not current, would be

marked asdirty. Timing propagation to update dirty data would be invokedonly in the

event of a query (and even then, only to the portion of logic needed to answer the query).

However, if the original location (or power level) is optimal – as it is likely to be if es-

timation routines and detailed placement have done their job properly – the demarcation

of these cones as dirty is unnecessary, since the original arrival times stored within these

cones are in fact a correct representation of the current state. Figure 4.3 illustrates the work

performed by traditional static timing analysis with lazy evaluation when a transformation

is applied to a circuit and subsequently retracts its changes.

68

Case 2: Candidate selection transformations are those that employ multiple strate-

gies to generate several alternatives, orcandidate solutions. In doing so, they try each

optimization, and select the best candidate, rejecting therest. Such transformations lever-

age the fact that different strategies work well in different contexts. For example, consider

a transformation that generates candidates by repowering as well as moving a gate. Often,

moving a gate has greater impact, but if the design has too little whitespace, there may be

no open location where the gate can move to improve timing. Instead, a higher power level

may be available for the same footprint, or enough whitespace may be available nearby to

increase the footprint.

While fallible transformations may occasionally invoke undo forcorrection(e.g., when

they degrade circuit performance due to approximation inaccuracy), a candidate selection

transformation requires undoby construction– after each candidate is computed, the initial

state must be restored so that the next candidate can be generatedindependentlybased on

the initial conditions. In the example of repowering or moving a gate, retraction must

restore the gate to its original power level after repowering so that the movement decision

can be based on the timing of the initial power level. Timing queries for interrogating

initial conditions of each candidate generation strategy can avoid the unnecessary work of

timing updates if undo can restore the initial timing state.

Case 3: Compound transformations not only consider multiple strategies for gen-

erating candidates, but also do so formultiple objects. Such transformations may even

considercomposingoverlapping optimizations to generate a single candidate.For exam-

ple, consider simultaneously moving and/or repowering twoconnected gates in a discrete

69

TYPE UNDO FREQUENCY UNDO PURPOSE

Bind&test (0.1) Already optimal Return to initial state
Fallible (0.1) Upon degradation Error correction
Candidate (1.) For each candidate Metric-indep. changes
Compound (10.) Nested candidatesJoint evaluation

Table 4.1: Types of transformations with embedded retraction. Illustrative values in the
“Undo frequency” column suggest that some cases require many more retrac-
tions that other cases.

domain [74,83]. In this situation, a very large number of candidates can be generated and

evaluated, where each successive decision may depend on theprevious. For example, the

resynthesis transformation illustrated in Figure 4.2 can be thought of as a compound trans-

formation consisting of merging the inverter gates with theOR gate followed by swapping

logically equivalent pins.

The increasingly popular compound transformations stresstiming analysis tools much

more heavily than other use cases, in that the construction of a local model requires the

searchof a large, conditional solution space. Modifications are typically made innested

pairs to generate appropriate timing arcs; indeed, the authors of[74] observe that the

expense of generating their disjunctive timing graph is often more costly than the branch-

and-bound search used to solve it optimally, a consequence of the propagation efforts of the

timer. Whenundocan efficiently restore the previous timing state, combinatorially many

timing updates can be saved in compound transformations.

4.3 Transactional Timing Analysis

In the presence of retractions, the state-of-the-art STA engines perform a large amount

of unnecessary work, as we have demonstrated in Section 4.2.In this section, we present

the details ofbounded transactional timing analysis, which serves to substantially reduce

70

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

(a) (b)

Figure 4.4: Evaluating the timing impact of the physical synthesis transformation in Fig-
ure 4.2 (output side only). (a) Bounded transactional timing analysis will not
propagate the change outside of a specified window. (b) In theevent of a re-
version, gates with dirty timing will have their timing datarestored.

the computation needed to supportundofunctionality. We first consider its application to

classical STA, and then to the more advanced version that supports lazy evaluation.

Support for transactions. By definition, a retraction restores the design to a previously

known state. Current techniques (which view retraction as aseparate incremental change)

discard the original timing values during propagation. In contrast, transactional timing

analysiscachestiming data that becomes invalidated during the execution of a change.

Specifically, when a modification is made to the design, the timer is notified through

a monitoring mechanism that the delay at a particular timingpoint has changed. That

notification triggers a corresponding propagation to the transitive fan-in and fan-out cones.

During transactional timing analysis propagation, prior values are not simply overwritten

(as is commonly done within STA engines), but are rather stored in a change stack as new

values are written in their place. Therefore, if and when change is retracted, the old values

may be restored by “replaying” the timing updates in reverse.

In the case that a sequence of nested transactions are executed (as may occur with com-

pound transformations), each individual change stack serves as a distinct checkpoint of the

71

design state These checkpoints are themselves stored on a transaction stack of all change

stacks. A new change stack is pushed onto the transaction stack when a transformation

requests a new checkpoint. The current state of timing is stored in the timing graph as

usual. When a transformation backtracks and retracts its circuit modifications, changes to

the timing graph may be rolled back to the most recent checkpoint by copying all values

in the current head of the transaction stack back into the timing graph. Changes may be

committed simply by clearing the transaction stack.

Figure 4.5 illustrates one possible implementation of transactional timing analysis.

Several variations of this code are useful in different circumstances. For instance, if a

change is likely to have significant impact on the state of thedesign, the caching of old

timing values could be performed once, prior to rather than during propagation.

Integrating these ideas into a high-performance timing engine requires a sophisticated

interface for optimization transformations. In particular, transformations are required to

communicate their intent, e.g., whether a change request istruly new or seeks to restore a

previous state. This information allows the timer to take appropriate actions on behalf of

each transformation for each change.

Ensuring consistency and compatibility. As noted earlier, it is common for static

timing engines to defer timing updates until needed by a relevant timing query. In many

cases, this avoids work when timing values are invalidated multiple times before they are

actually used. The notification of a change in delay during such lazy executionwill not

trigger timing propagation; instead, the fan-in and fan-out cones of a modified edge are

simply markeddirty, indicating that they must be recomputed.

72

To accommodate transactional timing analysis with lazy execution, dirty bits must

also be considered as part of the state of a timing point. Whereas traditional engines will

leave nodes marked as dirty in the event of a retraction, bounding timing analysis will

revert them back to their state prior to the change. Though not shown in Figure 4.5, this

extension is relatively straightforward: all actions thatalter the dirty bit of a timing point

are recorded, and are subsequently restored if a retractionis issued by the transformation.

Finally, support for transaction histories in the presenceof logic changes (such as in

our example) requires the careful caching of topological modifications to the graph itself

(in addition to the timing values associated with these elements). The creation, deletion,

and modification of graph connectivity can be achieved though a reference labeling of

timing points; changes to structural elements, such as edges and nodes, are recorded with

respect to these unique identifiers, and thus may subsequently be restored. While the

implementation required to properly maintain this bookkeeping is complex and nuanced,

the basic framework we outlined so far encounters no substantial obstacles.

Bounded timing windows. When evaluating the impact of a transformation, it is com-

mon to query timing at specific relative locations to the change. For example, one can

query the slack of the output pin of a gate after repowering, or the slack of an input pin

at the next circuit level after moving a gate. When possible query points can be limited

to awindow of interestknown in advance, one can reduce the maintenance requirements

for timing information and the update effort. This window may be expanded slightly for

safety, and we call the resulting local region abounded timing window.1 Limiting propa-

1Some static timing engines – such as IBM’s EinsTimerTM – provide similar level-limiting features
that serve to circumscribe the scope of local changes; they are not, however, integrated with any form of

73

CHANGED-DELAY

� Input: arc − > timing arc that changed
1 PROPAGATE-FORWARD(arc.input)
2 PROPAGATE-BACKWARD(arc.output)

COMMIT-CHANGES

� Existing changes no longer need to be tracked
1 ChangeHistory.clear()

UNDO-CHANGES

1 AATStack = ChangeHistory .top().AATStack

2 while not AATStack .empty()
3 AATStack .top().node.aat =

AATStack .top().aat
4 AATStack .pop()
5 RATStack = ChangeHistory .top().RATStack

6 while not RATStack .empty()
7 RATStack .top().node.aat =

RATStack .top().aat
8 RATStack .pop()
9 ChangeHistory .pop()

PUSH-CHANGES

1 ChangeHistory .push()

PROPAGATE-FORWARD

� Input: timing-point

1 foreachsuccessorsucc of timing-point

2 if UPDATE-AAT(timing-point , succ)
3 PROPAGATE-FORWARD(succ)

PROPAGATE-BACKWARD

� Input: timing-point

1 foreachpredecessorpred of timing-point

2 if UPDATE-RAT(pred , timing-point)
3 PROPAGATE-BACKWARD(pred)UPDATE-AAT

� Input: pred , succ timing points
1 delay = COMPUTE-DELAY (pred , succ)
2 if (succ.aat < pred .aat + delay)
3 ChangeHistory .top().AATStack.push(TC (succ, succ.aat))
4 succ.aat = pred .aat + delay

5 return True
6 return False

UPDATE-RAT

� Input: pred , succ timing points
1 delay = COMPUTE-DELAY (pred , succ)
2 if (pred .rat > succ.rat - delay)
3 ChangeHistory .top().RATStack.push(TC (pred , pred .rat))
4 pred .rat = succ.rat - delay

5 return True
6 return False

Figure 4.5:One possible implementation of transactional timing analysis. The functions
PROPAGATE-FORWARD and PROPAGATE-BACKWARD shown here using recur-
sion for brevity are best implemented without recursion.

gation to such windows provides cost savings, as it is only necessary to propagate arrival

times (and/or dirty bits, in the case of lazy evaluation) to the boundaries of the window.

Likewise, in the event of a rollback, the data required to restore the graph to its original

state is also reduced. Since immediate timing queries are assumed to be made within the

transaction management.

74

timing window, all values outside the region are consideredto be fixed timing endpoints.

Bounded transactional timing analysis of an example transformation is illustrated by Fig-

ure 4.4.

Selecting an appropriate window size for a particular transformation may require some

care. The effect on timing of an optimization depends on the nature of the optimization;

therefore, choosing a static window size is best done when the transformation is designed

and tested. In particular, differences in slew rate can greatly affect timing for the whole

path in ways that are difficult to predict while only considering slack [120]. For this reason,

timing analysis tools support a mode to limit slew rate propagation to a constant number

of levels. This mode provides a convenient way to limit the scope of timing changes and

improves the speed of timing analysis in physical synthesistools. Any window larger than

the scope of slew rate propagation can provide faster queries with no accuracy loss. Fur-

thermore, in the context of bounded transactional timing analysis, timing queries are only

required to decide if a retraction is necessary. Typically,the effect of an optimization on the

timing of a path is known with enough accuracy to make a decision to retract or not after

a signal is propagated through only a few levels of logic. An additional dynamic approach

runs a small number of trial transformation applications and samples several window sizes

to determine how much accuracy is lost for various window sizes. It then chooses the

smallest window size with tolerable error to be used on the majority of transformation

applications.

Facilitating parallelism. Since a bounded timing window delimits the scope of a local

change, it also provides a guarantee of the mutual independence of disjoint timing islands.

75

This independence meets the requirements set forth fordistributedstatic timing analysis

[32, 33] and could, in theory, be exploited to easily decompose timing optimization into

several parallel processes. Although we do not evaluate such a parallel architecture in this

work, we emphasize that significant runtime savings could begained if these techniques

are integrated with other components of the design flow, e.g., the placement engine, the

data model, etc.

Complexity analysis. Let C denote a fanout cone affected by a given logic transfor-

mation, and letW represent the bounded timing window used in bounded transactional

timing analysis for that change. In traditional incremental static timing analysis with lazy

evaluation, all of the timing points inC are marked dirty upon the change. If the change

is retracted, all of the timing points inC are again marked dirty. Subsequent queries in the

area may need to recompute previously known timing data for those timing points that are

left dirty. When using bounded transactional timing analysis, |C ∩ W| nodes are marked

dirty upon a change. If the change is retracted, no more timing points are recomputed, but

|C ∩ W| timing points are copied back into the timing graph. No timing points are left

dirty.

We use the following notation to estimate the impact of proposed techniques. LetL

represent the depth of a fanout coneC. Let LW denote the depth ofC in the windowW.

Let B be the average branching factor ofC and letR be the average reconvergence factor.

Then |C| is approximately(B − R)L. The size of the fanout cone within the window

|C ∩ W| is approximately(B − R)LW . Therefore, the number of timing points that do

not need to be marked dirty due to bounding is approximately(B − R)L − (B − R)LW .

76

P[undo]
Nodes Expanded Runtime (seconds)

Window Classical STA Lazy STA Classical STA Lazy STA
Size w/o tr w/ tr w/o tr w/ tr w/o tr w/ tr w/o tr w/ tr

0%

∞ 12638 12638 22905 22905 0.28 0.33 (0.8x) 2.09 2.36(0.8x)

40 12638 12638 19356 19356 0.32 0.33 (0.9x) 1.65 1.86(0.8x)

20 10186 10186 7400 7400 0.25 0.26 (0.9x) 0.41 0.47(0.8x)

10 3641 3641 1967 1967 0.08 0.08 (1.0x) 0.1 0.11(0.9x)

10%

∞ 346170 12646 22895 22605 14.5 0.32 (45.3x) 2.07 2.29(0.9x)

40 202821 12646 19346 19056 6.65 0.32 (20.7x) 1.69 1.82(0.9x)

20 41251 10194 7380 7013 1.3 0.25 (5.2x) 0.41 0.43(0.9x)

10 5957 3649 1955 1793 0.14 0.07 (2.0x) 0.09 0.1 (0.9x)

30%

∞ 1124067 12693 22888 21960 46.66 0.32(145.8x) 1.98 2.28(0.8x)

40 510642 12693 19339 18320 14.84 0.32 (46.3x) 1.63 1.76(0.9x)

20 75128 10233 7353 6282 2.13 0.25 (8.5x) 0.39 0.37(1.0x)

10 8716 3649 1948 1599 0.19 0.07 (2.7x) 0.1 0.09(1.1x)

50%

∞ 1733287 12693 22886 9939 73.11 0.32(228.4x) 2 0.67(2.9x)

40 799207 12693 19335 9405 24.5 0.32 (76.5x) 1.62 0.63(2.5x)

20 105003 10233 7351 4012 3.12 0.25 (12.4x) 0.41 0.25(1.6x)

10 11570 3649 1944 1085 0.26 0.08 (3.2x) 0.09 0.06(1.5x)

70%

∞ 1855924 12705 22872 6483 76.47 0.31(246.6x) 2.02 0.48(4.2x)

40 913461 12705 19321 5848 27.52 0.32 (86.0x) 1.65 0.44(3.7x)

20 133800 10245 7339 1882 4.12 0.25 (16.4x) 0.4 0.14(2.8x)

10 15257 3661 1932 397 0.34 0.07 (4.8x) 0.1 0.03(3.3x)

90%

∞ 1947548 12705 22850 5551 76.81 0.33(232.7x) 2.11 0.4 (5.2x)

40 995711 12705 19299 4769 29.02 0.33 (87.9x) 1.62 0.36(4.5x)

20 157328 10245 7315 1078 4.51 0.25 (18.0x) 0.4 0.07(5.7x)

10 17019 3661 1910 173 0.37 0.07 (5.2x) 0.09 0.02(4.5x)

Table 4.2: Empirical results of bounded transactional timing analysis, with and without
lazy evaluation.

The number of timing points restored upon a retraction when using bounded transactional

timing analysis is approximately(B−R)LW , versus approximately(B−R)L timing points

left dirty in traditional incremental static timing analysis.

4.4 Empirical Validation

In order to evaluate the computational benefits of bounded transactional timing anal-

ysis, we have implemented the aforementioned techniques ina new static timing analysis

tool that supports both classical STA (i.e., the academic variety that immediately performs

propagation of modified timing values) and lazy evaluation (e.g., the more popular variety

that performs propagation only on demand). For evaluation of the former, we discount

the runtime required for initial propagation of a change, asthat time is shared by “with-

transaction” and “without-transaction” runs. All incarnations of our timing engine employ

77

some form of incremental propagation.

We modified a simple timing-driven gate movement transformation within a state-of-

the-art industrial physical synthesis flow to query our static timing analyzer when deciding

whether or not to retract the change. Changes to delay valuesin the timing graph of a real

65nm design were simulated and profiled to determine the runtime incurred by STA. Two

parameters were adjusted in these experiments; first, the probability that a delay change

is retracted (P (undo)), and the size of our bounded timing window (where a size of∞

indicates the absence of this technique). Since the frequency of finding timing-driven

placement improvements strongly depends on the circuit andthe state of optimization,

our experimental transformation uses theP (undo) parameter to determine if and when

to retract the change. Thus, we can varyP (undo) independently to study the impact on

runtime of any frequency of retraction.

In experiments, we exercised established physical synthesis transformations that in-

troduced changes in delay values of the timing graph. We thenprofiled those changes in

an STA engine to compare several configurations of timing analysis and measure runtime

savings. Two parameters were varied in these experiments:

• P (undo), the probability that a delay change is retracted.

• LW , the number of levels of logic, both upstream and downstream, in the bounded

timing windowW, where a size of∞ indicates the absence of this technique.

The results of these tests are presented in Figure 4.2. For each setting ofP (undo) and

LW , we report the number of nodes expanded and runtime incurredby all solver variants.

Please note that for evaluation of classical STA, we discount the runtime required for

78

initial propagation of a change, as this time will be incurred by “with-transaction” and

“without-transaction” runs.

We observe the following:

• Transactioning is at a slight disadvantage due to the overhead of state-recording. As

one would expect, benefit is observed only when retractions are performed. The

worst overhead is about 20% and occurs when using large windows with no chance

of undo. In practice, such a transformation should not enable transaction histories.

• For classical STA, a speedup of up to246× is observed. The greatest speedups occur

for the largest windows and greatest probability of undo.

• For lazy evaluation, a speedup of up to5.2× is achieved. Compared to classical STA

without transaction histories, lazy evaluation improves runtime in all configurations

that have a non-zero chance of undo. When transaction histories are introduced to

both, the runtime improvement of lazy evaluation is reduced. In several cases, classi-

cal STA with transaction histories is faster than lazy STA with transaction histories.

• The use of bounded windows dramatically reduces the amount of work, especially

when lazy evaluation is disabled. For example, runtime goesfrom 76.81s to 0.37s

for P (undo) = 90%.

• For all parameter settings and STA variants, when transaction histories are used,

higher frequencies of retraction generally lead to stronger improvements in runtime

and nodes expanded.

These results confirm that even with a moderate amount of undo, the computational

79

savings can be substantial. It can also be observed that bounded timing windows (which

can be exploited independently of transaction histories) are generally effective at reducing

runtime. Indeed, best results are achieved when both transaction histories and bounding

approaches are used in concert.

While the use of lazy evaluation alone prevents a fair amountof thrashing (hence its

adoption in all modern timing engines), its performance cannevertheless be further im-

proved with these techniques. We expect that most physical synthesis flows will realize the

combined benefits of lazy evaluation, transaction histories, and bounded timing windows.

4.5 Conclusions

In this chapter, we have presented the concept ofbounded transactional timing anal-

ysis, described our implementation, and validated it in a production physical synthesis

flow.

Our work has been motivated primarily by deficiencies in static timing analysis that

result in poor runtime for several common physical synthesis operations. Specifically, we

have categorized several types of physical synthesis transformations that utilize retraction

in different ways. Then we have presented an extension to static timing analysis to accom-

modatetransaction histories, in which a history of network delay propagations is tracked

and cached so that the state of the timing graph may be efficiently restored in the event

of a retraction. This approach was further generalized to allow for the nesting of timing

changes. Changes to the timing graph were limited by way ofbounded timing analysis,

an enhancement that works in conjunction with transactional timing analysis to allow for

the rapid exploration of circuit search space. The incremental timing concepts presented

80

in this paper are not unique to physical synthesis; they are equally applicable to the ef-

ficient support of logic synthesis transformations, and some of them may have been in

use for this purpose since the mid 90s. However, conventional logic synthesis does not

stress timing infrastructure as much as modern physical synthesis does, therefore relevant

techniques were not given as much attention and, to this day,remain poorly documented.

We conclude that as transformation-driven optimizations in physical synthesis continue to

increase in complexity, the need to efficiently accommodatehypothetical timing queries is

likely to grow.

81

CHAPTER V

Gate Sizing During Timing-Driven Placement

A fundamental challenge addressed by physical synthesis isreducing circuit delay by

altering timing-critical paths. Several techniques can beapplied to achieve this optimiza-

tion: buffer insertion, gate sizing, cell movement, etc. Inthis work, we propose a powerful

new technique that moves and resizes multiple cells simultaneously to straighten critical

paths, thereby reducing delay and improving worst negativeslack. Our approach offers

several key advantages over previous formulations, including the accurate modeling of

objectives and constraints in the true timing model, and a guarantee of legality for all cell

locations, thereby avoiding overlap with large fixed blockages and the need for subsequent

legalization. We formulate the path smoothing problem in terms of adisjunctive timing

graph, and develop a computation of optimal locations by incorporating a generalization

of static timing analysis into an efficient branch-and-bound framework. Empirically, our

approach consistently improves solution quality in a large-scale modern industrial bench-

mark. Experimental results indicate that the techniques used in this chapter are accurate

enough to improve the critical path optimization and slack-histogram compression stages

of physical synthesis, as illustrated by Figure 5.1.

82

Early Planning

Logic Synthesis

Global Placement

Floorplanning

Electrical Correction

Legalization

Timing Analysis

Detail Placement

Critical-path Optimization

Histogram CompressionGlobal Routing

Detail Routing

Design for Manufacturing

Timing-driven Net Weighting

Timing Constraints Met?Y

N

Clock-network Synthesis

Figure 5.1: The contributions in this chapter improve the results of the critical path opti-
mization and slack-histogram compression stages of physical synthesis.

5.1 Introduction

Timing-driven placement [17, 73, 111] is a critical step in any physical synthesis flow,

and has received steadily increased attention in recent years [8]. Due to its computa-

tional expense and complexity, several algorithms optimize timing objectives indirectly

by relying on edge- or net-weighting methods to cast the problem into one of weighted

wirelength-driven placement. Whether such approaches cantruly be consideredtiming-

driven– or instead, merelytiming-influenced– remains a matter of debate.

A great deal of focus has been given specifically to the construction of cheap, in-

cremental methods for improving timing along critical paths in an optimized design, a

problem we loosely refer to aspath-smoothing.Whether a design simply remains poorly

optimized after running existing P&R tools, or whether one needs to close on timing after

the application of ECOs, there remains a high demand for efficient and automated tech-

niques for timing-driven path smoothing.

83

Prior work on this topic has varied widely in the treatment ofmodel accuracy, includ-

ing various assumptions about physical properties (e.g., gate delay and wire delay) as well

as the set of constraints that must be enforced in the final solution (e.g., whether the design

must be legalized, or subsequently buffered, or repowered,etc.). They also differ in the

specific computational frameworks used to achieve the optimization (e.g., a local search,

greedy algorithm, or dynamic program). These two considerations – choice of model and

choice of algorithm – are typically strongly coupled, as a particular model often gives rise

to a specific search space or methodology.

One of the more popular approaches to incremental timing-driven placement in the lit-

erature is that oflinear programming(LP) [50]. While several flavors exist, a conventional

LP formulation typically involves the association of decision variables with the coordi-

nate(s) of each gate or pin, and the expression of pairwise timing dependencies between

these variables using linear constraints. Since the relationship between pin-to-pin wire

delay and Manhattan distance is quadratic rather than linear, the inaccuracy of this linear

model has been addressed in various ways. For instance, Choiand Bazargan [24] con-

sider an objective function that minimizes total cell displacement to prevent cases where

large cell movement invalidates the linear model. The modelof Wang et al. [122] assumes

that LP-based optimization is followed by perfect buffer insertion. A piecewise-linear ap-

proximation of the quadratic function is employed by Chowdhary et al. [26], along with

additional constraints to capture net length and load capacitance using differential tim-

ing analysis. Luo et al. [69] optimize a weighted slack objective in which Elmore delays

computed from the original placement are scaled linearly bya coefficient; to ensure that

84

gates are not displaced by extremely large distances, movement of individual cells is con-

strained by bounding boxes, similar to the approach taken byHalpin et al. [40]. Most

recently, Papa et al. [83] deploy an LP formulation in late stages of refinement after strip-

ping all repeaters out from combinational logic and subsequently re-buffering long wires

as a post-processing step.

Despite these efforts, linear programming formulations suffer from additional compli-

cations aside from their inability to capture a faithful delay model. Among these deficien-

cies includes the potential to create cell overlap; although several post-placement legaliza-

tion techniques have been adopted in academia and industry [15,41], there is no guarantee

that these procedures will preserve improvements made to timing. Other solutions, in-

cluding the restriction of cell movement to geometrically disjoint bounding boxes [40,69],

severely overconstrains the problem by preventing large and potentially beneficial leaps.

Furthermore, a trend in modern ASIC designs is the presence of large fixed macros that

serve as blockages and limit the possible legal locations for movable logic. For such de-

signs, an accurate model should avoid solutions that place gates on top of fixed obstacles.

Finally, optimizing other discrete design parameters suchas gate sizes and placement si-

multaneously requires an approach that accounts for decisions with finitely-many alterna-

tives, since solutions produced by continuous gate-sizing[20] may degrade unacceptably

when mapped to a standard cell library. Such continuous-to-discrete mappings present

challenges for any of the aforementioned mathematical programming approaches.

In this chapter, we introduce a new direction for incremental, timing driven placement

under models with high-fidelity to an industrial static timing analysis engine. In con-

85

trast to prior efforts that approximate timing objectives using weighted wirelength driven

metrics (and approximate discrete decision variables using lossy, continuous models), our

approach maintains a high degree of accuracy by explicitly encoding placement alterna-

tives into a fully discretized graph-based representation, matching the true timing objec-

tives as computed by an industrial static timing analysis engine. Specifically, we consider

a formulation in which a finite set ofpre-legalizedcandidate locations and power lev-

els are identified for each movable gate, allowing a more faithful and accurate encoding

of pairwise delay, as well as enabling the avoidance of largefixed macros that serve as

blockages. This formulation gives way to adisjunctive timing graph, a compact structure

that captures all possible conditional timing arcs for a given problem instance. We then

propose a means to compute optimal solutions to this model using an efficient branch-and-

bound framework that considers the simultaneous placementof multiple gates. To obtain

upper bounds on worst negative slack (WNS), we develop a means to performGeneral-

ized Static Timing Analysis(GSTA), an extension of traditional static timing analysisthat

produces optimistic slack values even when only a subset of gates have been assigned to

their respective candidates.

The remainder of this chapter is organized as follows. In Section 5.2, we present a

brief review of static timing analysis and timing-driven placement. In Section 5.3, we

describe our problem formulation in detail, including the selection of movable gates and

candidate assignments. In Section 5.3, we formally define the Disjunctive Timing Graph,

and describe our optimization algorithm in Section 5.4. Finally, in Section 5.5, we present

experimental results of our system – named RATCHET – followed by concluding thoughts.

86

5.2 Background

Timing-driven placement seeks non-overlapping locationsof the cells of a circuit such

that the worst slack in the design is maximized. This is in contrast to wirelength-driven

placement wherein the objective is to minimize total half-perimeter wirelength (HPWL).

The problem thatincrementaltiming-driven placement aims to solve is the following:

given an optimized design, select a subset of gatesM from G (whereM may just consist

of a single gate) and find a new location for each gate inM such that the worst negative

slack (WNS) in the entire subcircuit is improved:

WNS(G) = min
v∈V (G)

(min(0, slack(v))) (V.1)

For tie-breaking, a total negative slack (TNS) component may also be optimized, which is

equal to the sum of all negative slacks:

TNS(G) =
∑

v∈V (G)

(min(0, slack(v))) (V.2)

An algorithm that solves this problem is called atransformation, using the terminology

of [34, 112]. More generally, a transformation is any optimization procedure designed to

incrementally improve timing while preserving the logicalcorrectness of a circuit. Other

examples of transformations include: buffering a single net, resizing a gate, cloning a

cell, swapping equivalent pins on a gate, etc. Transformations are invoked in a physical

synthesis flow bycontrollers. For example, a controller for critical path optimization

may attempt a transformation on the 100 most critical cells.A controller designed for

compression may consider every cell that fails to meet its timing constraints.

87

Q

Q
SET

CLR

D

OBSTACLEQ

Q
SET

CLR

D

Q

Q
SET

CLR

D

a

b

b2

b1

c

c1 c2

c3

d

d1

d2

e

e1

e2

f

f2L

f1L
g

f2H

f1H

Figure 5.2: Gatesa andg are fixed. Alternate candidate locations for movable gatesb, c,
d, e, andf have been determined. Gatef also has two candidate power levels.

5.3 Problem Formulation

In formulating our problem, we require three steps to be performed in sequence. The

first identifies the set of gate(s) that should be considered for movement, such as the most

critical gates and their adjacent neighbors. Next, a set of candidate assignments is com-

puted for each movable gate; if desired, these candidates can satisfy current constraints

in the physical synthesis flow, such as avoidance with obstacles, keep-out regions, etc.

Finally, a timing arc is extracted for each pair of candidateassignments.

Selection of movables. The task of selecting a set of movable gates is shared by many

timing-driven placement algorithms. Since our transformation can be enacted by any high-

level controller, we are free to assume that an external mechanism chooses individual gates

for relocation (e.g., such as all imbalanced latches [83]).In expanding the movable logic

to include additional gates, various heuristics have been proposed that incorporate the

88

degree of neighbors’ criticality [69, 122]. We combine the criticality adjacency network

of [69] with an N-hop neighborhood, in which any gate withinN steps of the targeted

gate is included in the set of movable cells; however, we stress that our core timing-driven

placement engine can be parametrized with any well-formed gate-selection strategy. All

peripheral gates connected to the movable logic are collected to form a set of fixed nodes.

Selection of candidate assignments. After the set of movable gates has been de-

termined, we precompute a discrete set ofcandidate assignmentsfor each. Our method

imposes no restrictions on how these candidates are obtained, as there are several possible

strategies ranging from simple to exotic. In the case of placement, examples include the

following:

• For a gate whose current coordinate is(x, y), consider the candidates:

(x + ∆x, y)

(x−∆x, y)

(x, y + ∆y)

(x, y −∆y)

for a given(∆x, ∆y), in addition to the current coordinate of the gate. Such a set

corresponds to the directionsup, down, left, andright.

• The closestfeasiblelocations to each of the candidates in the above set (i.e., respect-

ing blockages and large fixed macros).

• The n nearest feasible locations closest to the gate’s current coordinate, for some

specified numbern.

89

• A set ofm or more locations obtained bym other incremental timing-driven place-

ment algorithms for single gates.

The precomputation of candidate assignments bears some resemblance to graph-based

approaches to buffer insertion [38]; however, it reflects a significant deviation from the

vast majority of existing incremental timing-driven placement approaches that assume a

continuous (and globally feasible) geometric plane. Referto Figure 5.2 for an example in

which each of five movable gates (b, c, d, e, andf) has between two and four candidates

each. The presence of a single large macro prevents candidate locations from appearing

toward the center of the subcircuit.

Although our experiments are limited to multi-move placement, it is important to note

that candidate assignments need not necessarily be new physical locations; for instance,

cell f is shown to have two possible sizes, indicating different candidate power levels for

the gate. Similar assignments can be obtained if considering dual threshold voltage (Vt)

levels [63]. As will be demonstrated later, this generalization permits the simultaneous op-

timization of placement and other transformations, in a similar spirit to [20] but imposing

discrete (rather than continuous) values.1

Disjunctive timing model. The final step in our problem formulation is to construct

a conditional timing arcfor each pair(li, lj) of candidate assignments between source

and sink, which specifies the delay that would occur between them. We refer to the arcs

between these nodes as beingconditionalsince they depend on the chosen candidate(s).

Our algorithm makes no assumptions about the correlation between the values of these

1In practice, a discrete set of candidate values is more appropriate when working with a predefined cell
library, and discretization from continuous values is NP-complete in general [64].

90

timing arcs, and any delay model may be used. For instance, half-perimeter wirelength

(HPWL) may be used to create a linear-delay model if rebuffering will be performed as a

postprocessing step. In this case, delay is a pure function of geometric location:

delay(li, lj) = τ ∗ dist(li, lj) (V.3)

whereτ is a technology dependent parameter equal to the ratio of thedelay of an optimally-

buffered, arbitrarily-long wire segment to its length:

τ =
delay(wire)

length(wire)
(V.4)

Alternatively, if rebuffering will not occur, more elaborate and accurate timing models

are appropriate. For instance, the Elmore delay model captures a quadratic function of

wirelength on 2-pin nets:

delay(li, lj) = KD ∗ r ∗ dist(li, lj) ∗
(c ∗ dist(li, lj)

2
+ Cpinj

)

(V.5)

The delay between gates on higher degree nets may be obtainedby querying a full-blown

industrial timing engine, reconstructing Steiner trees from scratch [18] or via topological

repair [4], or instead by cheaper methods of estimation [9].

The disjunctive timing graph. In the previous paragraphs, we identified the three

major components in our formulation of incremental timing-driven placement: selection

of movable gates, selection of candidate assignments, and generation of conditional timing

arcs. We now formally define an extension of the classical timing graph that captures these

attributes:

Definition: A disjunctive timing graphG is defined by a tuple(V, C, E), where (as in the

traditional timing graph) each elementv ∈ V corresponds to a logic gate in the circuit,

91

a g

d1

d2

f1

f2

f1

f2

low

low

high

high

e1

e2

c2

c3

c1

b1

b2
�(a,b1)

�(a,b2)

�(a,e1)

�(a,e2)

�(b1
,c1

)

�(b 2
,c 1

)

�(b2,c3)

�(b
1 ,c

3)

�(b1,c2)

�(b2
,c2

)

�(c
1,d

1)

�(c3,d2)

�(c
1 ,d

2)
�(c2,d1)
�(c

2,d
2)

�(c 3
,d 1

)

�(e1
,f1L)

�(e1,f2L)
�(e

1,f1H)

�(e2,f2H)

�(e
1 ,f

2H)

�(e2,f1H)

�(e
2
,f 1L

)

�(e 2
,f 2L

)

�(d1,g)

�(d2,g)

�(f1L,g)

�(f 2L
,g)

�(f 1H
,g)

�
(f 2H

,g
)

Figure 5.3: Thedisjunctive timing graphfor our running example. Each timing arc be-
tween a pair of candidate assignments has a distinct value; the actual arc be-
tween any two meta-nodes in a complete solution depends on the candidates
chosen.

and a pair of vertices,u, v ∈ G, are connected by a directed edgee(u, v) ∈ E if there is

a connection from the output of gateu to the input of gatev. The additional parameterC

is a mapping from any gatev ∈ V to a set of candidate assignments{v1, ..., vCv
}. Each

edge has an associatedconditional delay function, δ(ui, vj) → ℜ+, indicating the delay

between any pair of candidatesui andvj. �

The disjunctive timing graph encodes all combinations of pairwise net delays, with

each vertex corresponding to ameta-noderepresenting a set of candidates. See Figure 5.3

for an illustration corresponding to our example. In subsequent sections, it will be useful

to refer to a solution to a disjunctive timing graph, which isobtained simply by selecting

92

a candidate for each gate and extracting the appropriate timing arcs.

Definition: A solutionS to a disjunctive timing graphG is a mappingV → C(V), in

which a single candidate is selected from the domain of each gatev in V . A solution

corresponds to a traditional timing graphG′ = (V ′, E ′), in which the verticesV ′ of G′

correspond to the candidates selected fromG, and the weight of each edgee′(u, v) ∈

E ′ is taken fromδ(ui, vj), whereui andvj are the candidates chosen for gatesu andv

(respectively).�

A solutionS to a disjunctive timing graph is deemedoptimalwith respect to an objec-

tive functionO (e.g., worst negative slack, or delay) if the valueO(S) is as good or better

thanO(S ′) for every other solutionS ′. Observe that, in contrast to a traditional timing

graph, a simple longest path calculation through the disjunctive graph does not suffice,

even if optimizing for delay; such a computation maximizes the longest path, whereas we

instead seek to select a set of candidates such that the longest path isminimized.

5.4 Our Simultaneous Placement and Gate-Sizing Algorithm

The previous section alludes to one possible algorithm for the optimization of a dis-

junctive timing graph: generate every possible solutionS, evaluate its cost, and return

the best solution, an approach generally referred to asexhaustive enumeration. How-

ever, when considering even moderately-sized problems, the computational expense of

this brute-force procedure may be prohibitively expensive. In particular, givenM mov-

able gates andC candidates per gate, a total ofCM solutions will be considered, with each

requiring a full pass of Static Timing Analysis to determineworst negative slack.

Of course, if strict optimality is not required, other possibilities exist. A simple greedy

93

1L
2L 1H

2H 1L
2L 1H

2H

f f

e1 e2

1L
2L 1H

2H 1L
2L 1H

2H

f f

e1 e2

e e

d1 d2

1L
2L 1H

2H 1L
2L 1H

f f

e1 e2

d1 d2

e

2L 1H
2H

f

e1

d dd

e

b

c c

c1 c2 c3

b1 b2

Generalized STA

Generalized STA

Generalized STA

Generalized STA

Generalized STA

Generalized STA

Weakened STA

GSTA GSTA

GSTA

GSTA

2H 1L

Figure 5.4:Branch-and-boundcomputes an upper bound on the worst negative slack at
every node in search. Any partial solution that cannot improve upon the best
known is pruned.

strategy could consider the movement of each gate individually, choosing the location that

maximizes worst slack assuming all other gates are held fixed(requiring the generation of

M×C solutions). However, in many practical cases, it is impossible to improve timing by

moving only a single gate. For instance, suppose a large gateis being driven by a relatively

weak driver, in which case neither gate can be moved a significant distance from the other

without imposing an electrical violation. To accommodate awide range of instances, our

algorithm must consider the simultaneous movement of multiple gates. In response, we

turn to the well-known algorithmic framework of branch-and-bound.

94

Recursive branch-and-bound search. Branch-and-bound is a widely-studied, com-

monly used depth-first-search optimization technique. Rather than explore all possible

combinations of assignments, branch-and-bound prunes partial solutions based on esti-

mates of the objective function calculated during search. Backtracking occurs when-

ever the upper bound on the value of a partial solution is no better than that of the best

found. Recent work in the coupling of graph-based procedures with branch-and-bound

have demonstrated runtime reductions from days to seconds in floorplanning domains [75],

although such advances have yet to be extended toward problems in timing-driven place-

ment.

In Figure 5.4, we display a possible search tree for our running example that has been

pruned as a result of bounding. The partial solutionS = {(b← b1), (c← c1), (d← d1)} is

eventually extended to form a complete solution; however, in exploring the partial solution

S ′ = {(b ← b1), (c ← c1), (d ← d2)}, search is aborted. By visual inspection of Figure

5.2, the distance between candidatesc1 andd2 is relatively large, and contributes to an

excessively long delay inS ′.

In order to make branch-and-bound effective, one must choose intelligent metrics to

guide the process of node expansion. We identify two selection strategies for the branching

schedule: thegate ordering, used to determine which gates should be instantiated earliest

in search, and thecandidate ordering, used to determine which partial solutions should be

attempted before others. For the former strategy, gates that fall along the critical path are

given highest priority; since it is the placement of these gates that has the highest impact

on worst negative slack, their assignment should not be postponed. For the latter strategy,

95

��

��

��

��

����������	�
��	����

��

��

��
��������

����
�����

���

�	
����
�������������

��

(a) (b)

Figure 5.5: The delay functionsδ(c, d) andδ(e, f). Here we show the case where the par-
tial solutionS includes the decisions(d ← d1) and(e ← e1). The weakened
delay values areδS(c, d) = 3 ps andδS(e, f) = 2 ps.

we order candidates by determining their effect on the bounding calculation, as described

in the next section.

Generalized static timing analysis. One question raised by the backtracking frame-

work is how to compute upper bounds on worst negative slack when only a subset of

candidate assignments have been chosen. Traditional versions of Static Timing Analysis

assume that all timing arcs have been fixed, whereas in our model, a disjunctive set of

choices remains until a leaf node (i.e., a fully instantiated solution) in search is encoun-

tered.

We resolve this by performing a generalized version of Static Timing Analysis, which

we callGeneralized Static Timing Analysis(GSTA). In GSTA, each edge in the graph cor-

responding to a source/sink pair is replaced with the most optimistic (or least constraining)

possible timing arc. These weakened values may be safely propagated through the graph

in place of any particular timing arc. Actual arrival times,required arrival times, and slacks

are computed as is typically done in STA, using these weakened values during propaga-

tion. More formally, the actual arrival times and required arrival times for a partial solution

96

RATCHET(DesignD, int Iterations)
1. GateG← SELECTTARGETEDGATE(D)
2. Set〈Gate〉M ← SELECTMOVABLES(D, G)
3. Set〈(Gate,Loc)〉 BestSol← CURRENTASSIGNMENTS(M)
4. for iter = 1, 2, ... Iterations
5. for eachu ∈M

6. Set〈Loc〉 Cu← GETCANDIDATEASSIGNMENTS(u)
7. for each pair of adjacent gatesu, v ∈M

8. for each candidateui ∈ Cu

9. for each candidatevj ∈ Cv

10. arcsu,v(ui, vj)← GETTIMINGARC(ui,vj)
11. SOLVE(⊘, M , C, arcs)
12. returnBestSol

SOLVE(Set〈(Gate,Loc)〉 S, Set〈Gate〉 U , Set〈Set〈Loc〉〉 C, arcs)
1. if (WORSTSLACKUB(S, arcs) ≤WORSTSLACK(BestSol, arcs))
2. return
3. if (TERMINATIONCRITERIONREACHED()) // timeout, # nodes, ...
4. return
5. if (U = ⊘)
6. BestSol← S; returnCu

7. u← CHOOSEMOVABLE(U)
8. Set〈Gate〉 U ′ ← U − {u}Cu

9. for each candidateui ∈ Cu

10. Set〈(Gate,Loc)〉 S′ ← S
⋃{(u, ui)}au

11. COMPUTEDAG(S′, arcs)
12. SOLVE(S′, U ′, C, arcs)

Figure 5.6: Pseudocode for the RATCHET algorithm.

97

S are computed by the following expressions:

AAT(v) = max
{u|e(u,v)}

(AAT(u) + min
ui∈C(u),vj∈C(v)

(δS(ui, vj))) (V.6)

RAT(u) = min
{v|e(u,v)}

(RAT(v)− min
ui∈C(u),vj∈C(v)

(δS(ui, vj))) (V.7)

Since these weakened delay values must hold in any fully instantiated solution, the sound-

ness of the procedure is preserved. Although the worst slackestimate calculated from this

procedure may not be achievable in any complete solution,2 we are guaranteed that no

extension of the partial solution can improve upon it.

If a candidate assignment for one movable gate has been chosen, some entries in the

conditional delay function may be disregarded. For instance, in Figure 5.5, we consider

the case when the partial solutionS includes the decisions{(d ← d1), (e ← e1)}. Since

no extension of this particular search node will consider the selection of candidated2, an

entire column of entries can be ignored, raising the optimistic delay of the conditional

function δS(c, d) up to 3ps from 2ps. A similar effect is observed forδS(e, f). If both

gates have been instantiated with candidate assignments, the actual timing arc between

those specific candidates may be used.

To address issues such as resource contention (i.e., when two different gates attempt

to take the same location), one may check for such conflicts during search, backtracking

accordingly. Alternatively, such locations may be pre-processed prior to search, so that

only one location appears as the candidate of any cell.

Observe that in the case that all gates have only a single candidate assignment (or,

2Interestingly, for subcircuits whose topology is that of a tree, a slight variation of GSTA can provide
provably achievable upper bounds; however, due to space limitations, we omit the details in this 6-page
submission.

98

equivalently, that a single candidate has been chosen for each movable gate), General-

ized STA reduces to traditional STA. It should also be noted that our branch-and-bound

technique is ananytimealgorithm, and may be interrupted prior to completion to obtain a

suboptimal solution (e.g., based on a timeout limit, maximal number of nodes, etc.).

The complete flow. In Figure 5.6, we present the full pseudocode for our algorithm,

named RATCHET. After selecting the targeted gate (line 1) and its surrounding movable

neighbors (line 2), the current location of each gate is stored into the best known solution

(BestSol). The algorithm then repeats the remaining steps for a givennumber ofIterations

(line 4). Within each iteration, candidate assignments foreach movable gate are computed

(lines 5 – 6), as well as the appropriate timing arcs for pairsof candidate assignments

between adjacent gates (lines 7 – 10). These data are passed to the recursive function

SOLVE (line 11). Upon its return (line 12), the optimized solutionwill be stored inBestSol.

Function SOLVE is given the current partial solution of candidate assignments to gates

(S), the unassigned gates (U), the candidate assignments (C), and the timing arcs (arcs).

If branch-and-bound detects that worst slack cannot be improved in any extension of this

node, search is aborted (lines 1 – 2). Similarly, if any othertermination criteria have been

reached (such as a timeout limit, or a maximal number of search nodes), the function

return as well (lines 3 – 4). If a leaf node in the search tree has been reached (line 5), the

fully instantiated solution is recorded as the best known (line 6). Otherwise, a movable

gate is selected heuristically (line 7), removed from the set of unassigned gates (line 8),

and each of its candidate assignments is attempted (line 9).For each location, the partial

solution is extended appropriately (line 10), and the DAG isrecomputed to reflect the new

99

Name # gates # mov. # nets init slack init FOM
ibm-ps-01 3 1 2 -549 ps -549 ps
ibm-ps-02 4 2 3 -522 ps -801 ps
ibm-ps-03 6 3 5 -260 ps -477 ps
ibm-ps-04 8 4 6 -758 ps -1516 ps
ibm-ps-05 15 7 15 -943 ps -1986 ps
ibm-ps-06 18 9 16 -411 ps -1174 ps
ibm-ps-07 19 10 17 -1171 ps -3513 ps
ibm-ps-08 21 13 18 -288 ps -2537 ps
ibm-ps-09 34 15 33 -307 ps -2726 ps
ibm-ps-10 58 21 57 -782 ps -1863 ps
ibm-ps-11 96 29 103 -297 ps -2927 ps
ibm-ps-12 164 49 205 -252 ps -2149 ps

Table 5.1: Path Smoothing Benchmarks

Exhaustive Enumeration RATCHET (B&B)
Name old slack old FOM new slack new FOM cpu (s) new slack new FOM cpu (s)

ibm-ps-01 -549 ps -549 ps 0 ps(24.95%) 0 ps 0.01 0 ps(24.95%) 0 ps 0.01
ibm-ps-02 -522 ps -801 ps -231 ps(13.23%) -450 ps 0.03 -231 ps(13.23%) -450 ps 0.05
ibm-ps-03 -260 ps -477 ps -25 ps(10.68%) -36 ps 0.2 -25 ps(10.68%) -36 ps 0.04
ibm-ps-04 -758 ps -1516 ps -153 ps(27.50%) -307 ps 0.52 -153 ps(27.50%) -307 ps 0.03
ibm-ps-05 -943 ps -1986 ps -704 ps(10.86%) -1388 ps 0.92 -704 ps(10.86%) -1388 ps 0.05
ibm-ps-06 -411 ps -1174 ps -180 ps(10.50%) -571 ps 3.2 -180 ps(10.50%) -571 ps 0.08
ibm-ps-07 -1171 ps -3513 ps -897 ps(12.45%) -2690 ps 7.4 -897 ps(12.45%) -2690 ps 0.2
ibm-ps-08 -288 ps -2537 ps -62 ps(10.27%) -200 ps 14 -62 ps(10.27%) -200 ps 0.43
ibm-ps-09 -307 ps -2726 ps -148 ps(07.23%) -870 ps 68 -148 ps(07.23%) -870 ps 0.69
ibm-ps-10 -782 ps -1863 ps -513 ps(12.23%) -1492 ps 129 -513 ps(12.23%) -1492 ps 0.58
ibm-ps-11 -297 ps -2927 ps -132 ps(07.50%) -2293 ps 290 -132 ps(07.50%) -2293 ps 1.52
ibm-ps-12 -252 ps -2149 ps -19 ps(10.59%) -77 ps 430 -19 ps(10.59%) -77 ps 1.55

avg. -545ps -1852ps -255ps (13.17%) -865ps 78.61 -255ps (13.17%) -865ps 0.44

Table 5.2: Experimental Results on a large industrial design with a 2.2ns clock.

assignment (line 11). The function then recurses (line 12) and returns when all candidates

have been attempted.

RATCHET is meant to be applied in an iterative fashion; each call perturbs the location

of movable gates, and a fresh set of candidate assignments are generated from this new

solution. This process continues until a maximal number of iterations are attempted, or a

threshold on minimal improvement cannot be met. In the unlikely event that a solution is

found to degrade timing (for instance, if delay values for the model had been inaccurately

estimated), we adopt ado-no-harm philosophy[83,88] by reverting the design back to its

pre-transformation state.

100

5.5 Empirical Validation

In order to evaluate the efficacy of RATCHET, we extracted twelve subcircuits from a

large, modern 65nm industrial design that contains severalmacros, keep-out regions, and

other blockages. A summary of these subcircuits is given in Table 5.1.

Since the disjunctive nature of our problem formulation escapes the expressive power

of LP formulations in previous work, we compare our full implementation of RATCHET

against a simple variation on the aforementioned brute-force approach of exhaustive enu-

meration. For this set of experiments, we limit run RATCHET with a controller that selects

imbalanced latches, and vary the number of movable gates to measure scalability. For

candidate selection, we select four locations around the chip (effectively, the legalized po-

sitions corresponding to coordinates to the right, the left, above, and below each movable

gate). Any duplicate locations after the legalization process are lumped into a single can-

didate. Exhaustive enumeration is, as expected, capable ofproducing optimal solutions,

but with a significant runtime penalty. Our branch-and-bound algorithm is able to improve

worst negative slack and TNS on all subcircuits with comparatively negligible runtime.

5.6 Conclusions

The path smoothing problem in timing-driven placement is one that fundamentally ad-

mits a discrete solution space, and requires a corresponding methodology to efficiently

perform discrete optimization. In response, we have proposed a new direction for incre-

mental, timing-driven physical synthesis that directly optimizes timing objectives using

accurate, high-fidelity models. RATCHET couples the graph-based techniques of static tim-

101

ing analysis with a powerful branch-and-bound strategy to achieve efficient optimization

of critical paths in late stages of refinement. In contrast toprior efforts that approximate

timing objectives using weighted-wirelength driven metrics, our approach maintains a high

degree of accuracy by explicitly encoding placement alternatives into adisjunctive timing

graph. We have also developed a method ofGeneralized Static Timing Analysisneces-

sary to obtain upper bounds on worst negative slack (WNS) when only a subset of gates

have been assigned to their respective locations, leading to an efficient branch-and-bound

algorithm shown to improve the solution quality of large industrial designs.

102

PART III

Broadening the Scope of Circuit
Transformations

CHAPTER VI

Physically-Driven Logic Restructuring

In a complete physical synthesis flow, many optimizations are applied to critical paths

that are already optimized by a series of powerful transformations, as described in Chapter

II. Transforms that can further improve the timing of such paths are invaluable for timing

closure. Finding such transformations and applying them efficiently is very challenging.

To this end, we explore new techniques for logic cloning (gate duplication) to improve

timing closure in a physical synthesis environment.

With a buffer-aware interconnect timing model, new polynomial-time optimal algo-

rithms are proposed for timing-driven cloning, including finding appropriate sink parti-

tions (fan-out identification) for the original and the duplicated gates, as well as optimized

103

physical locations for both gates. In particular, we present an O(m)-time optimal algo-

rithm to maximize the worst slack if the original gate is movable, and anO(m logm)-time

optimal algorithm if the original gate is fixed, wherem is the number of fan-outs. To the

best of our knowledge, this work is the first to consider the timing-driven cloning problem

under a buffer-aware interconnect delay model.

6.1 Introduction

Physical synthesis is a complex process that combines physical design with netlist

restructuring to achieve design closure. As described in Chapter II, physical synthesis typ-

ically consists of several stages including placement, legalization, critical-path optimiza-

tion, etc. Among these stages, the critical-path optimization stage is particularly important.

It takes a design that is legally placed and initially optimized for timing, and restructures

critical paths by applying a multitude of different transformations, such as gate sizing,

Vth tuning, and buffering. It is usually not difficult to improvetiming early in a physical

synthesis flow. However, it is more challenging to improve timing if the circuit has been

optimized by a series of powerful transformations in a physical synthesis flow.

Timing closure requires a variety of netlist transformations, each addressing certain

problematic structures. In this chapter, we design severalhighly efficient cloning tech-

niques, also known as cell replication techniques, to improve delay along critical paths.

Cloning is not a new synthesis optimization; Brglez [60] andHwang et al. [47] use cloning

as a mechanism to reduce net-cut during partitioning, and cloned gate placement has

been studied in the FPGA domain [22, 57]. Since cloning helpsin reducing the total

capacitance loading of a high-fanout net, many existing techniques focus on technology-

104

independent delay optimization [21, 68, 107]. A variant cloning problem that considers a

load-dependent gate delay model and zero-wire delay is known to be NP-complete [107].

Under the same delay model, a cloning in sink-to-source order can improve the timing of

a technology-mapped circuit [108]. Due to the computational complexity of the problem,

heuristics are often proposed to speed up the technique. However, all of these techniques

neglect two key features of the problem: interconnect delayand the placement of the du-

plicated gate. Thus, these models can be used in the logic synthesis stage of design but

will be less applicable during the core stages of a physical synthesis flow.

For modern technologies, previous cloning algorithms are largely ineffective for critical-

path optimization because they ignore wire delay, buffering and placement. This is ex-

plained in part by interconnect scaling, which has only recently necessitated that buffers

be inserted on nearly all global nets to overcome wire resistance [101]. Consequently,

when one wants to apply cloning to improve path delay, buffers that have been inserted

previously limit the scope of cloning for timing improvement. To make cloning effective,

one must account for buffers by considering only non-buffersinks, and re-buffering the

resulting circuit.

To the best of our knowledge, the only work which handles bothcloning and buffer

insertion in the placement stage is BufDup [13]. Unfortunately, they consider cloning and

buffer insertion separately. In addition, BufDup uses a timing-oblivious, simplek-means

based clustering algorithm to partition the fanout gates. It does contain a timing-driven

post-processing step, but it can only be used to balance the capacitance loading of the

two partitions and is not designed to improve timing. In contrast to [13], our cloning is

105

F1

F2

S1

S2

P
Delay = 1 Delay = 1

D
el

ay
 =

 3

D
el

ay
 =

 3 Slack = 1

Slack = -1

(a) Original circuit.

F1

F2

S1

S2

P
Delay = 1 Delay = 1

D
el

ay
 =

 3

D
el

ay
 =

 2
.5

Slack = 1

Slack = -0.5

P’

(b) New circuit after cloning leaving
buffering intact.

F1

F2

S1

S2

P
Delay = 1 Delay = 1

D
el

ay
 =

 3

D
el

ay
 =

 3 Slack = 1

Slack = 1

P’
Delay = 1Delay = 1

(c) New circuit after cloning consid-
ering buffering.

Figure 6.1: Example of interconnect-driven cloning. The arrival times ofF1 andF2 are 0.
The required arrival times ofS1 andS2 are 5. For simplicity, this example uses
gate delays of 0.

based on a linear-delay model [6,79] with the knowledge thatbuffered interconnect delay

is linearly-proportional to its length (see Chapter III). This model handles simultaneous

buffering and cloning in an abstract and unified way. Adoption of such a delay model

also helps to reduce the complexity of the gate cloning problem. This work reveals that

cloning with a buffer-aware linear-delay model can be accomplished very efficiently (in

polynomial time).

Other works on simultaneous timing-driven gate placement and buffering are related

to this problem. RUMBLE (see Chapter III) uses a linear-delay buffering model and lin-

ear programming techniques to solve the timing-driven latch and gate placement problem

considering practical constraints. Pyramids uses computational geometry techniques to

efficiently solve a one gate placement problem with a similardelay model [70]. Note that

106

the timing-driven gate placement problem is subsumed by thetiming-driven gate cloning

problem, since a fixed sink partitioning reduces the cloningproblem to the gate placement

problem. Thus, the cloning problem is complicated by the need to find sink partitions and

gate placements simultaneously.

An example of simultaneous cloning and buffering is shown inFigure 6.1. The arrival

times ofF1 andF2 are 0, and the required arrival times ofS1 andS2 are 5. Consider the

situation in Figure 6.1(a) where we consider cloning gateP . There are two sinksS1 andS2

with slacks +1 and -1. The delays from fan-insF1 andF2 to P are 1 and 3 respectively, as

are the delays fromP to S1 andS2, including the delay of buffers and wires along the path.

If we cloneP to P ′ while leaving the original buffer trees intact, we may get the result

shown in Figure 6.1(b) in whichP ′ is placed very close toP , and the slack only improves

to -0.5. Here the new location ofP ′ is restricted by the buffers that must drive bothP and

P ′. However, if one restructures the buffering solution to eliminate this constraint, one can

obtain the superior solution in Figure 6.1(c) which increases both slacks to +1 and obtains

the physically shortest possible paths fromF1 andF2 to S1 andS2. This example suggests

that one must consider buffering and cloning together to effectively reduce delay.

Timing-driven buffering alone can be computationally expensive when used exces-

sively [103]. It is also difficult to use it to derive any guidance for simultaneous cloning

and buffering. To be most accurate, one should explore all possible partitionings of sinks

for each net, find gate placements (i.e, with the technique inChapter III), re-buffer with

dynamic programming, and legalize the design. The whole process is too expensive for

modern designs with hundreds of thousands of nets. It may also waste the majority of its

107

runtime, because in many cases the new solution may be worse than the old solution, and

will therefore be retracted.

Unlike the above approach, we use abstract timing models andbuild a theoretical guide

on top of them. In our approach, the effect of buffering is modeled by a linear-delay model,

introduced in Chapter III. Our algorithms guarantee optimality under this delay model,

and can also be used as a filter to identify a group of critical gates that may benefit from

cloning. Even if our solution does not fix all timing problems, one can still apply more

accurate gate placement techniques based on our sink partitioning and re-buffer on a small

group of nets. In that way, success rate and the total turn-around-time will be improved.

The main contributions of this chapter are summarized as follows.

• We propose several polynomial-time optimal algorithms forsimultaneous timing-

driven cloning and buffering under a linear-delay model. Our algorithms “see through”

buffer trees in the original circuit.

• For circuits surrounding a movable object, anO(m)-time algorithm to compute the

optimal cloning that maximizes worst slack is proposed, where m is the number of

fanouts.

• For circuits surrounding a fixed object, we present anO(m logm)-time algorithm to

compute the optimal cloning.

For the remainder of this chapter, we assume that load-basedcloning techniques have

already been applied during logic synthesis or an early design stage, and we will not

focus on the problem of reducing capacitive load. Also, buffering should have processed

all high-fanout nets before the cloning we propose. The techniques in this chapter are

108

designed primarily for gates driving substantial interconnect delay (medium-length and

long nets).

6.2 Background and Preliminaries

We outline our problem formulation as follows.

Linear Buffered-Path Delay Model. Recall the linear-delay model introduced in

Chapter III. The delay along an optimally buffered interconnect of lengthl is given

by delay(l) = τ · l, whereτ is a technology dependent constant. In general,τ de-

pends on the buffer library size and the input slew rate. In this chapter, we refer to

τ = delay(wire)/length(wire).

Problem Formulation. The circuit for the cloning problem is a directed graphG =

(V, E), whereV = {P} ∪ F ∪ S, andE = (F × {P}) ∪ ({P} × S). VertexP is the

target gate to be duplicated,F is the set offan-in gates that driveP with sizen, andS

is the set offan-outgates thatP drives with sizem.1 Every gateg ∈ V is a logic gate

performing certain logic functions, such as AND, OR, XOR butnot buffers or inverters,

and is associated with physical coordinates(X(g), Y (g)). If there are any buffers/inverters

in the circuit that are fan-ins or fan-outs ofP , we will look through them to find the first

non-repeater logic gate. Each fan-out gateSi ∈ S, is associated with required arrival time

RAT (Si) at its input pin, and each fan-in gateFi ∈ F is associated with arrival time

AAT (Fi) at its output pin.

The location of each gate inS andF can not be changed in our problem formulation,

and we refer them asfixedgates. Note that these gates may be allowed to move during

1Without loss of generality, we assumen andm are of the same order for simplicity of the complexity
analysis.

109

other transformations (e.g., legalization after cloning)but their locations are constrained

during cloning to simplify the analysis. It may also be the case that they are fixed by

designers who want to keep certain gates in specified locations, or in a late stage of the

design flow, one prefers minimal perturbation to the design for stability. GateP may be

movable or fixed.

After cloning, we create a duplicated gate forP , denoted byP ′. Finding a location

for P ′ is one objective of this work. The graphG becomesG′ = (V ′, E ′), whereV ′ =

P ∪ P ′ ∪ F ∪ SP ∪ SP ′, E ′ = (F × P)∪ (P × SP)∪ (F × P ′) ∪ (P ′ × SP ′). In G′, each

fan-in gateFi is also connected to the duplicated gateP ′, but fan-out gatesS are divided

into two disjoint setsSP andSP ′ such thatSP ∪ SP ′ = S, andSP ∩ SP ′. SP is the set of

fan-out gates thatP drives, andSP ′ is the set of fan-out gates thatP ′ drives. We refer to

the division ofS into SP andSP ′ as asink partitioning, andSP andSP ′ assink partitions.

All other notations pertaining toG are valid forG′.

For each edgee = (g1, g2) in G andG′, the Manhattan length of edgee is dis(e) =

|X(g1)−X(g2)|+ |Y (g1)−Y (g2)|, whereg1 ∈ F ∪P ∪P ′, andg2 ∈ P ∪P ′ ∪S. Recall

that all multi-pin nets will be broken into 2-pin nets with a linear-delay model. For each

edgee, edge delay isD(g1, g2) = τ · dis(e). Each edge is also referred as a “net” where

g1 is the driver, andg2 is the sink.

For gatesP andP ′, we denote their gate delays byD(P) andD(P ′), respectively.

In this chapter, we treat these gate delays as constants. This is fairly accurate since we

maintain that buffering must be performed with cloning, andafter that, the load ofP and

P ′ will remain almost the same. Gate sizing can be performed before or after cloning if the

110

original driver is too weak or strong, which will further control the error of this constant

gate delay model.

For a gateg in P ∪ P ′, the required arrival time at the output pin ofg is RAT (g) =

min
Si∈S
{RAT (Si)−D(P, Si)}, whereS is the set of its fan-out gates. The arrival time at the

output pin ofg is AAT (g) = max
Fi∈F
{AAT (Fi) + D(Fi, P)}+ D(g), whereF is the set of

its fan-in gates. The slack of a gateg is Q(g) = RAT (g)− AAT (g).

Without loss of generality, we set gate delaysD(P) andD(P ′) to zero in the following

discussion to simplify the analysis. All algorithms are still valid as long as gate delays are

constants.

It is easy to see that the slack ofP andP ′ determines the slack of the circuitG andG′.

For circuitG, we haveQ(G) = Q(P), and forG′, we haveQ(G′) = min{Q(P), Q(P ′)}.

For each edge (net)e = (g1, g2) ∈ E ∪ E ′, we define the slack ofe as

Q(e) = RAT (g2)−D(g1, g2)− AAT (g1). (VI.1)

Note thatQ(G′) = min
e∈E′

Q(e) andQ(G) = min
e∈E

Q(e).

Cloning Problem: Given a graphG = (V, E), whereP is the target gate, RAT for all

fan-outsSi, AT for all fan-insFi, and a linear-delay constantτ , create a cloned gateP ′ for

P , which induces a new graphG′, findSP , SP ′ and locations ofP ′ andP (if P is movable)

such thatQ(G′) is maximized.

In contrast to most previous work which only identifies the partitionsSP andSP ′, our

algorithms will not only provide a partitioning of fan-outs, but also the placement ofP and

P ′ [68,107]. If the solution is worse than the original circuit, no cloning will be performed.

111

6.3 Fast Timing-Driven Gate Cloning

In this section, we present our algorithms for the cases where P is movable andP is

fixed. We start with several new concepts.

Best Region and Best Arrival Arc Segment.Recall that the set of fan-in gatesF is

connected to both the original gateP and the duplicate gateP ′ after cloning. The set of

fan-out gatesS is split into two disjoint sets (partitions)SP andSP ′ such thatS = SP∪SP ′ .

Treat the whole circuit image as a 2D planeH. For each fan-in gateFi in F , the arrival

time at any pointv in H is AAT (Fi)+D(Fi, v), andD(Fi, v) = τ · dis(Fi, v). Therefore,

if we place a gate atv with the fan-in setF , according to static timing analysis

AAT (v) = max
Fi∈F
{AAT (Fi) + D(Fi, v)}.

Clearly,AAT (v) is a 2D function, parametrized by the locationv. Define the set of points

minimizingAAT (v) on the planeH as

K(F) = {a ∈ H|AAT (a) ≤ AAT (v)
∀v∈H

}.

So K(F) is the set of points which have minimum arrival time for all fan-ins. In the

following, we will show thatK(F) is either a single point or a line segment with45◦

slope. Refer to Figure 6.2 and 6.3 for examples ofK(F).

If there is only a single fan-inF , it is obvious thatK(F) is the same point as the

location ofF itself, with AAT (K(F)) = AAT (F). If there are two fan-insF1 andF2,

112

F1

F2

AT(F1) = 1

AT(F2) = 3

K(F)

AT(K(F))=5

Figure 6.2: An example ofarrival time arcK(F). dis(F1, K(F)) = 4, dis(F2, K(F)) = 2,
τ = 1.

then there are three cases,

K(F) =

{a ∈ H|AAT (F1) + D(F1, a) = AAT (F2) + D(F2, a)},

if |AAT (F1)− AAT (F2)| ≤ D(F1, F2);

vF1
, if AAT (F1) > AAT (F2) + D(F1, F2);

vF2
, if AAT (F2) > AAT (F1) + D(F1, F2);

HerevFi
refers to the location of fan-in gateFi. In the first case, where the difference

between the arrival time atF1 andF2 is smaller thanD(F1, F2), K(F) is aManhattan Arc,

which is a segment with slope45◦ or−45◦ in the bounding box ofF1 andF2. This slope

will always be45◦ or −45◦ as long as technology dependent coefficientτ is a constant.

Note that whenF1 andF2 are either horizontally or vertically aligned,K(F) is a point,

which is a degenerate case of aManhattan Arc. For the other two cases, where one of the

arrival times dominates the other,K(F) is at the location of one of the fan-in gates.

Denote the set of points minimizingAAT (v) for fan-insF1, . . . , Fi by K(Fi). If we

have more than two fan-ins, we will first formK(F2) for F1 andF2, and then mergeK(F2)

with F3 to getK(F3). K(F3) will be anotherManhattan Arcor a single point, depending

on the relationship amongAAT (K(F2)), AAT (F3), anddis(K(F2), F3) which is the

113

shortest Manhattan distance betweenF3 andK(F2). Repeating this procedure for all fan-

ins, we can find the finalK(F). This bottom-up merging process is very similar to the

Deferred-Merge Embedding (DME) algorithm in clock tree construction [19] though the

goal there is to get a zero skew arc. With a similar procedure to the one shown in [19], it is

not hard to prove thatK(F) is always aManhattan Arcor a single point, and our merging

process guarantees thatK(F) will have minimum arrival time for all fan-ins.

In the rest of this chapter, we denote thearrival time arc by K(F) (a point can be

considered a degenerate case of an arc), and the arrival timeon this arc asAAT (K(F)).

An example ofK(F) for two fan-ins is shown in Figure 6.2.

Similarly, we can findK(S), the set of points maximizingRAT (v) on the planeH, for

the set of fan-outsS. We denote therequired arrival time arcby K(S) and the required

arrival time on this arc byRAT (K(S)). Refer to Figure 6.3 for an illustration ofK(S) in

an example. With a procedure similar to that in [19], it is easy to prove that computation

of K(F) andK(S) takesO(m) time assumingm andn are of the same order. Also, given

any order of fan-ins and fan-outs, denote thearrival time arcfor the set of gatesF1, . . . , Fi

by K(Fi), and therequired arrival time arcfor the set of gatesS1, . . . , Si by K(Si). We

can compute all values ofK(Fi) andK(Si) in O(m) time with dynamic programming by

incrementally updating and storing all arcs. Therefore, the amortized cost for computing

eachK(Fi) and K(Si) is constant. We introduce the following lemma to be used in

Section 6.3.

Lemma VI.1 It takesO(m) time to computeK(F), K(S), and all values ofK(Fi) and

K(Si). The amortized cost of computing eachK(Fi) andK(Si) is O(1).

114

The next lemma states that for any point in the plane, its arrival time (required arrival

time) can also be represented by the arrival time atK(F) (K(S)) and the shortest Manhat-

tan distance between the point andK(F) (K(S)). The proof is straightforward, it is based

on the merging process and the fact that computation of arrival time (or required arrival

time) is amax (min) operation.

Lemma VI.2 For any pointv in the planeH, AAT (v) = AAT (K(F))+τ ·dis(K(F), v),

andRAT (v) = RAT (K(S))− τ · dis(K(S), v).

Now we will introduce the concept ofBest Region. DefineZ(F, S) as a region formed

by K(F) andK(S),

Z(F, S) = {v ∈ H|dis(v, K(F)) + dis(v, K(S)) = dis(K(F), K(S))},

wheredis(v, K(F)), dis(v, K(S)) anddis(K(F), K(S)) are the shortest distances be-

tween a point orManhattan Arcand another point orManhattan Arc. WhenK(F) and

K(S) are both single points, thenZ(F, S) is the rectangle bounding box formed by the

two points. Other examples of the regionZ(F, S) for different shapes ofK(F) andK(S)

are shown in Figure 6.3.

It is easy to show that for any pointv outside regionZ, it will have dis(v, K(F)) +

dis(v, K(S)) > dis(K(F), K(S)), and no point exists inH with dis(v, K(F))+dis(v, K(S)) <

dis(K(F), K(S)). Also, all points in regionZ will have the same slack

Q(Z(F, S)) = RAT (K(F))−AAT (K(S))− τ · dis(K(F), K(S)).

The following theorem states the slack optimality of the region Z(F, S).

115

K(S)

K(F)
B(F,S)

K(S)

K(F)

B(F,S)

K(S)K(F)

B(F,S)

(a) (b) (c)

Figure 6.3: Examples of the regionZ. (a) BothK(F) andK(S) are−45◦ line segments;
(b) K(F) is a45◦ line segment andK(S) is a−45◦ line segment; (c)K(F) is
a45◦ line segment andK(S) is a single point.

Theorem VI.1 Given the location of fan-in gatesF , fan-out gatesS, if the gateP is

placed inside a regionZ(F, S) formed with the above process, it achieves the maximum

slack.

Proof: If P is located outside of regionZ with a bigger slack, then based on Lemma

VI.2 we have

Q(P) = RAT (P)− AAT (P)

= RAT (K(S))− AAT (K(F))− τ · (dis(K(F), v) + dis(K(S), v))

< RAT (K(S))− AAT (K(F))− τ · dis(K(F), K(S))

< Q(Z(F, S)),

which contradicts the assumption.

We refer to regionZ as theBest Regionsince it gives the region with the best slack.

We also refer to the above procedure to findZ as FIND-BEST-REGION. The runtime

complexity of FIND-BEST-REGION is O(m) since the only cost is to computeK(F) and

K(S).

116

Theorem VI.2 FIND-BEST-REGION finds Best RegionZ in O(m) time for a net withm

fan-outs.

Now we introduce the concept ofBest Arrival Time Arc. We defineBest Arrival Time

Arc B(F, S) as the intersection ofK(F) andZ(F, S). B(F, S) is part ofK(F), while

the detailed shape is decided byK(F) andK(S). In examples illustrated in Figure 6.3,

B(F, S) is K(F) in Figure 6.3 (a), a single point in Figure 6.3 (b), and a partial segment

of K(F) in Figure 6.3 (c). From Theorem VI.1, we know that every pointonB(F, S) still

achieves the maximum slack. Define the slack onB(F, S) asQ(B(F, S)), and we have

Q(B(F, S)) = Q(Z(F, S)). In next section, the concept ofB(F, S) is used to design our

algorithm.

The case of movable original gate.In this section, we present the algorithm for the

case when the original gateP is movable. The main idea is to limit the solution search

space toK(F), and then findBest Arrival Time ArcB(F, SP) andB(F, SP ′) efficiently by

dividing the plane into six regions (Figure 6.4) and using the unique properties of fan-out

slack of each region to find the best locations ofP andP ′.

WhenP is movable, we are free to place bothP andP ′. From Section 6.3, given a par-

titioning SP andSP ′, we can simply placeP andP ′ on the best arrival time arcB(F, SP)

andB(F, SP ′) to achieve the optimal solution. The goal is to find the partitioning,SP and

SP ′, which gives best slack among all possible partitionings. However, without knowing

the partitionings,B(F, SP) andB(F, SP ′) are not apparent.

An important observation is that both arcs must coincide with K(F), which is known.

Therefore, rather than trying all partitionings, we will limit our solution search space for

117

bothP andP ′ to K(F), which enables efficient algorithms. This is the key observation

used to derive the partitioning and computation ofbest arrival time arcs. By limiting P

andP ′ onK(F), we haveAAT (P) = AAT (P ′) = AAT (K(F)).

Lemma VI.3 If arrival time arcK(F) is a single point, no cloning is needed.

Proof: If K(F) is a single point, thenB(F, SP) = B(F, SP ′) is a single point. One

can placeP atB(F, SP) and achieve the maximum worst slack without cloning.

As stated in Section 6.1, we assume that the capacitive load of the gate is reasonable

and no capacitance-based cloning is needed.

H1

H2

H5

H5H2

H4

H4

H3

H6

K(F)

Fan-outs
Fan-ins

Figure 6.4: The region division for thearrival time arcK(F).

Now we discuss the case whenK(F) is a Manhattan Arc. Since bothP andP ′ are

movable, we useP as an example in the following discussion. Without loss of generality,

we assumeK(F) is a45◦ line segment (analysis for the−45◦ case is similar), as shown

in the Figure 6.4. Denote the lower-left and upper-right endpoint of K(F) as i and j,

respectively. The planeH is divided into six regions,H1, H2, H3, H4, H5, andH6, based

on i andj as shown in Figure 6.4. Note that some fan-ins may be located outside region

H6 as shown in Figure 6.4 since the arrival time of all fan-in gates could be different.

118

One can also refer Figure 6.2 as an example. For any fan-out gate Si in each region, we

analyze the relation between the slack of the edge (net)e = (P, Si) and the location ofP

onK(F). Note thatQ(e) is purely determined byRAT (Si)−D(P, Si) sinceAAT (P) =

AAT (K(F)).

Figure 6.5 shows the typical curves of edge slack vs. location of P onK(F) for each

region. The horizontal coordinate is the distance along theline segment from pointi to

point j. For example, if a fan-out is located in regionH1, then whenP is located ati,

we will get the maximum slack for this net, and whenP is located atj, we will get the

minimum slack for this net. When a fan-out is located inH2, then whenP is located from

i to a certain point onK(F), the slack will stay constant, and begins to decrease whenP

moves towardsj.

S
la

ck

1

S
la

ck

2

S
la

ck
3

S
la

ck

4

S
la

ck

5

S
la

ck

6

Figure 6.5: The slack vs.K(F) curves for each region.

If we intersect all slack curves in the setSP (SP ′), a minimum slack curve can be gen-

erated by taking the minimum slack among all slack curves foreach point onK(F). The

119

segment with maximum slack on this new curve will be the best slack we can achieve for

this set of fan-outs. This segment is either a level segment or a single point, as illustrated

in Figure 6.6. Let us refer to this segment as theBest Slack Segment. Then the corre-

sponding segment for theBest Slack SegmentonK(F) is B(F, SP) (B(F, SP ′)). Clearly,

we seek the partitioning with the greatestBest Slack Segment, and if we find it, theBest

Slack Segment, B(F, SP) andB(F, SP ′) are also determined. Two examples ofBest Slack

Segmentsare illustrated in Figure 6.6.

S
la

ck

B(F,SP)

Best-slack
segment

S
la

ck

B(F,SP)

Best-slack
segment

Figure 6.6: Examples of Best Slack Segment.

We have now two cases, namely, whether or not there are fan-outs in regionH6.

The case when there are no fan-outs in regionH6. Consider Figure 6.5. By putting

all fan-out gates fromH1 andH2 in one set (saySP), and all fan-out gates fromH3 and

H4 in another set (saySP ′), theBest Slack Segmentfor each set is the maximized since

it avoids potential intersection (i.e. fan-outs fromH1 andH3). In that case,B(F, SP)

is a line segment onK(F) starting fromi, andB(F, SP ′) is a line segment onK(F)

starting fromj. Fan-out gates fromH5 can be put in either set and do not affect the results

since for every point in regionH5, the distances to all locations onK(F) are equal. This

partitioning is one of the best partitionings and achieves the best slack.

Lemma VI.4 If bothP andP ′ are movable, and no fan-out gates are located in the region

120

H6, the cloning problem can be solved optimally inO(m) time.

Proof: If we put all fan-out gates fromH1 andH2 in SP , all fan-out gates fromH3

andH4 in SP ′, and all fan-out gates fromH5 in either set, we have an optimal partitioning.

One of the optimal placement solutions placesP at i andP ′ at j. The time complexity is

O(m), which is the time of computingK(F). The case when the slope ofK(F) is−45◦

can be proved similarly.

From Lemma VI.4, it follows that

Lemma VI.5 If P is movable, and no fan-out gates are located in regionH6 ∪ H1 ∪ H2

(or H6 ∪H3 ∪H4), no clone is needed and optimal slack can be achieved by placing P at

j (or i).

Now we present the general algorithm.

The case when there are fan-outs in regionH6. A slack curve as shown in Figure

6.5 for any regionH1, H2, H3, H4, H5 andH6 can be regarded as a trapezoid-like curve

(referred to as trapezoids for notational convenience henceforth) or a degenerate case (e.g.,

a line segment) of a trapezoid. Consider a graph containing slack curves corresponding

to all fan-out gates. In the following, a side of a trapezoid will be called a line segment.

The slope of any such line segment is one of0◦, τ or−τ . A 0◦ line segment in a trapezoid

is called a level segment. In the degenerate case where the slack curve is a single line

segment, the level segment is defined as the end point with maximum slack.

In all trapezoids, we first find the rightmostτ -slope line segment and the leftmost−τ -

slope line segment. For example, the left (right) side of thedottedt1 (t2) in Figure 6.7(a)

shows the rightmostτ -slope (leftmost−τ -slope line segment). The line segment of a

121

trapezoid is rightmost (leftmost) if no line segment of the slope is to the right (left) of the

line segment. The leftmost and rightmost line segments can be found in linear time.

S
la

ck

a b c d

t1 t2
t3
t4
t5

S
la

ck

t1 t2

t3 S
la

ck

a b

t1 t2
t3
t4
t5

(a) (b) (c)

Figure 6.7: Examples of slack curves versus locations: (a) an example that needs gate
duplication; (b) an example in which the rightmost and leftmost segments do
not intersect; (c) an example that does not need gate duplication.

First note that any point in a slack curve for fanoutSi refers to the net slackQ(P, Si)

when placingP alongi, j as defined in Figure 6.4. Given a single slack curvet1, the best

slack it can achieve is the slack corresponding to the level segment. To achieve it, one can

place the gate anywhere along that level segment.

Case 1:When the rightmostτ -slope line segment and the leftmost−τ -slope line seg-

ment do not intersect, as shown in Figure 6.7(b), the lower level segment of all trapezoids,

which is theBest Slack Segment, determine the maximum worst slack and no gate dupli-

cation is needed. Note that in this case, pure line segments in regionsH1, H2, H3 andH4

are considered as well, since they are degenerate cases of trapezoids. One can just place

P anywhere on that level segment and this achieves the best slack.

Case 2:When the rightmostτ -slope line segment and the leftmostτ -slope line seg-

ment intersect, first find the trapezoids that these two line segments belong to. Without

loss of generality, the identified trapezoids are ast1 andt2, respectively, in Figure 6.7(a).

122

We compute the intersections of all other trapezoids witht1 andt2, and put them into the

setsSP andSP ′ formed byt1 andt2, respectively. All other trapezoids can be divided into

three groups.

Group A: For any trapezoid intersecting neithert1 nor t2, called azero-intersecting

trapezoid, we arbitrarily assign it to a set. The zero-intersecting trapezoids will not im-

pact the worst slack. Note that if all trapezoids other thant1 andt2 are zero-intersecting

trapezoids, the lowest level segment in each oft1 andt2 is theBest Slack Segmentin each

set.

Group B:For any trapezoid intersecting only one oft1 andt2, called aone-intersecting

trapezoid, we can always assign it to the opposite set (formed by the line segment not

intersecting with it). For example, the trapezoidt3 in Figure 6.7(a) only intersectst2 and it

is assigned toSP formed byt1. The one-intersecting trapezoids will not impact the worst

slack as long as they are assigned appropriately. Note that if all trapezoids other thant1

andt2 are one-intersecting trapezoids, the lowest level segmentin each oft1 andt2 is the

Best Slack Segmentof each set.

Group C: For any trapezoid intersecting both oft1 and t2, called atwo-intersecting

trapezoid, we have two intersecting points. A two-intersecting trapezoid will be assigned

to the set containing the higher intersecting point. For example, botht4 andt5 are assigned

to theSP formed byt1. One then needs to find the two-intersecting trapezoid with lowest

level segment, such ast4 in Figure 6.7(a). Subsequently, the lowest level segment int1,

t2 and t4 determines theBest Slack Segment. In Figure 6.7(a), theBest Slack Segment

for P is in t2. This means thatP can be anywhere betweena, b andP ′ can be anywhere

123

betweenc, d. For the partitioning of the set of fan-out gatesS, P will connect toSP which

contains all the trapezoids assigned toSP determined byt1, andP ′ will connect toSP ′

which contains all the trapezoids assigned toSP ′ determined byt2. Note that the lowest

level segment of a two-intersecting trapezoid can be lower than the intersection oft1 and

t2, see, e.g.,t5 in Figure 6.7(c). However, it will not impact our algorithm.This just means

that one cannot improve the slack by gate duplication since the worst slack is determined

by the level segment oft5.

The algorithm is optimal since the above two cases cover all possible situations and

in each situation, it is easy to see that the optimal solutionis computed. In the algorithm,

one needs to first compute the rightmostτ -slope and the leftmost−τ -slope line segment.

If they do not intersect, the slack is determined by the lowerlevel segment. Otherwise,

for each of the remainingm − 2 trapezoids, compute its intersections witht1 andt2. As-

sign the trapezoids to partitions accordingly based on their groups. For a two-intersecting

trapezoid, one also needs to record its higher intersectionpoint. Next, find the trapezoid

with lowest higher intersecting point (e.g.,t4 in Figure 6.7(a)), which takes linear time.

One can then immediately find the maximum possible worst slack the circuit can achieve

by comparing it with the level segment oft1 andt2. The above algorithm runs in linear

time.

Theorem VI.3 The optimal cloning can be computed inO(m) time if the original gate is

movable.

Pseudo-code of the algorithm appears in Figure 6.8.

The case of fixed original gate.When the original gateP is fixed, the algorithm in

124

CLONING-MOVABLE

� Input: GraphG
� Output: Location ofP andP ′, SP andS ′

P

1 Find arrival time arcK (F) given the set of fan-in gatesF
2 if K (F) is a point
3 MoveP to K (F) andreturn
4 Divide the placement region byK (F) into 6 regions
5 if noSi in H6

6 ComputeSP , S ′
P

, P , P ′ according to Lemma VI.4,return
7 Put all slack curves into a single graph
8 Find the rightmostτ -slope and leftmost−τ -slope line segment and trapezoids
9 if they do not intersect

10 Slack is determined by the lower level segment
11 else
12 Compute intersections between remaining trapezoids

with the above trapezoids and assign them toSP andS ′
P

accordingly. ComputeP andP ′ as above.
13 return the location ofP andP ′, SP andS ′

P

Figure 6.8: Our simultaneous cloning and placement algorithm for a movable gate.

Figure 6.8 does not work since we can not expectP to be placed on thearrival time arc

K(F). Let us assume all fan-outs inS are sorted in a non-increasing order ofRAT (Si)−

D(P, Si).

Lemma VI.6 There are at mostm uniqueQ(P) values ifP is fixed.

Proof: SinceP is fixed,AAT (P) andD(P, Si) are constant. Then for all possible

partitionings,Q(P) can only be one of the values amongRAT (S1)−D(P, S1)−AAT (P),

RAT (S2)−D(P, S2)− AAT (P), . . ., RAT (Sm)−D(P, Sm)− AAT (P).

The above lemma states that if fan-outSi is in SP , then we can put all fan-outsSj,

wherej < i into SP , andQ(P) does not change. With Lemma VI.6, we can start with

puttingS1 in S(P), while putting all other gates inS(P ′), and get the worst slack ofQ(P)

andQ(P ′). If Q(P ′) ≥ Q(P), we can stop since we have found the possible best slack. If

125

CLONING-FIXED

� Input: GraphG , Original SlackQori

� Output: Location ofP ′, SP andS ′
P

1 SORT S in non-increasing order ofRAT (Si)−D(P ,Si)
2 for i = 1 tom-1
3 SP = {S1 . . .Si}, S ′

P
= S −SP

4 Call FIND-BEST-REGION to get the location ofP ′

ComputeQ(P) andQ(P ′)
5 if Q(P ′) ≥ Q(P)
6 break
7 Compare the solution withQori and

return the location ofP ′, SP andS ′
P

Figure 6.9: Our simultaneous cloning and placement algorithm for a fixedgate.

not, we can putS1 andS2 in S(P), which will decreaseQ(P), but may increaseQ(P ′).

Again, if Q(P ′) ≥ Q(P), this will be the best possible slack since further additions to

S(P) can only decreaseQ(P). The pseudo-code of the algorithm is shown in Figure 6.9.

The sorting ofS takesO(m log m) time. AfterS is sorted, we can compute allK(SP ′)

for all possiblem cases inO(m) time based on Lemma VI.1. Each FIND-BEST-REGION

then takesO(1) time sinceAAT (K(F)) is a constant andK(SP ′) has been precomputed.

The total complexity isO(m log m).

An interesting corollary is that one solution to this problem involves disconnecting all

sinks fromP and letting the cloned gateP ′ drive all fan-outs, then placingP ′ optimally.

If permissible, this case is similar to RUMBLE (see Chapter III), and we can compare the

solution with the above results and choose the best one. If this is undesirable behavior, we

can constrain the solution to include at least one sink driven byP .

Theorem VI.4 The optimal cloning can be computed inO(m log m) time if the original

gate is fixed.

126

6.4 Empirical Validation

To show the effectiveness of cloning and compare it to other optimizations, we first

create 100 testcases at the 45nm process node. We randomly created circuits with different

fan-ins and fan-outs and placed them in a region with the bounding box size ranging from

1mm to 15 mm. The number of fan-ins range from two to four, and the number of fan-outs

range from two to eight. We choose 16 buffers and inverters for the buffer insertion.

We implemented four different optimizations including cloning as follows, to show the

benefit of our techniques. They are

• Buffering: Timing-driven buffer insertion [67]. This optimization is treated as the

baseline to which all other optimizations are compared.

• RUMBLE: Moving the original gate and rebuffering as described in Chapter III.

• Clone1: Our cloning algorithm when the original gate is fixed.

• Clone2: Our cloning algorithm when both the original and duplicated gates can be

moved.

Before the optimizations RUMBLE, Clone1, and Clone2, we always perform buffer

insertion to fix slew rate violations and begin with reasonable timing. The results are also

compared to buffer insertion results (which means Buffering is the baseline). This is to

guarantee that any improvement we see from our techniques isdue to cloning instead of

merely buffering the original net. In addition, we also use the RUMBLE algorithm inside

our cloning algorithms to determine the best gate location after a partitioning is fixed.

For each partition, we will perform RUMBLE to find the gate location and slack, and then

127

choose the best solution for all partitions derived from ouralgorithm. Note that this is only

for comparison purposes, and one can apply our algorithm first to find the best partitioning

and only apply the RUMBLE algorithm once.

All algorithms including buffering and RUMBLE are implemented in C++ and tested

on an AMD Opteron computer with 2.8GHz CPU and adequate memory. For cloning, we

apply all optimization steps, including ripping up buffer trees for the circuits, duplicating

and placing the gates, re-buffering and legalization. For RUMBLE, we also rip up buffer

trees and place the original gate in the new location. We use an industrial static timing

analysis (STA) engine for timing analysis. For rebuffering, we implement the buffering

algorithm in [67] to get the best timing-area trade-off, andthe buffer tree is constructed to

be placement-congestion aware.

To clearly illustrate the impact of each optimization, we first choose one circuit and

show its layout after each optimization from Figure 6.10(b)to Figure 6.10(d), where Figure

6.10(a) shows the original circuit without buffering. The Manhattan distance betweenS1

andS2 is 13 mm. The timing information after each optimization algorithm is shown in

Table 6.1. It clearly shows the benefit of the Buffering, RUMBLE, Clone1 and Clone2

approaches. Clone2 gives the best results in terms of worst slack and total negative slack.

Clone1 is still better than RUMBLE and achieves the same worst slack as Clone2, but can

not do better forS2. RUMBLE achieves better slack than pure buffering by placing the

original gate in the middle, however, it sacrifices the slackatS1 for S2. Note that the slack

of S1 andS2 are not exactly the same for RUMBLE and Clone2. This is explained by

slew rate differences; the buffering topology chosen by theplacement congestion aware

128

buffer-tree algorithm considers placement density, as well as the order of buffer insertion

for all the nets which results in asymmetric timing constraints.

Optimization Slack atS1 (ns) Slack atS2 (ns)

Buffering (Figure 6.10(b)) -2.855 -2.206
RUMBLE (Figure 6.10(c)) -2.410 -2.403

Clone1 (Figure 6.10(d)) -1.606 -2.076
Clone2 (Figure 6.10(e)) -1.606 -1.590

Table 6.1: Experimental results comparing cloning to otheroptimization techniques for
the circuit shown in Figure 6.10.

For the rest of the circuits, we list the top 10 circuits with the best improvement due to

cloning with detailed information. The results are shown inTable 6.2. For all experiments,

we present worst slack (WSLK) improvement over “Buffering”, total negative slack (TNS,

the sum of all negative paths) improvement over “Buffering”, final area and wirelength,

where Buffering serves as the baseline. The area includes the original fan-in gates, fan-out

gates, cloned gate and buffering area. We also list the summary results of all 100 circuits

in Table 6.2 by averaging all metrics. The runtime for all testcases is less than 5 seconds,

including all static timing analysis, buffer insertion, linear programming inside RUMBLE,

I/O processing and model build time.

The table clearly shows the same trend as shown in Figure 6.10. In terms of worst

slack, Clone1 and Clone2 are better than RUMBLE, which is better than buffering. Clone2

gives the best timing results in general, although with the cost of area and wirelength

increase. We also notice that for all cases, Clone1 and Clone2 both achieve better TNS

improvement than buffering. Note that our algorithms may not get the best TNS, especially

Clone1, which does not entail movement of the original gate.The summary data show that

Clone2 and Clone1 still outperform RUMBLE and buffering on average.

129

6.5 Extensions

Our algorithms naturally accommodate several additional objectives that we briefly

summarize in this section.

Wirelength optimization. Note that in our formulation, we do not directly consider

wirelength. However, our approach can be extended to consider wirelength while not

sacrificing slack. For example, in the case where both gates are movable and no gates are

placed in regionH6, after we determine the partitioning, and putP at i andP ′ at j, we

can still find the best regionZ which is bounded byi andSP for P (similarly for P ′ with

a region bounded byj andSP ′). When regionZ is not a single point, it may be possible to

find a solution with same slack but better wirelength. We briefly summarize theO(m3)-

time algorithm as follows. Consider the Hanan gridH composed of the coordinates of all

fan-ins and fanouts of some gateP . Each rectangular region ofH will have some distinct

function of wirelength in terms of the location ofP . Begin by finding the slack-optimal

regionZ for the gateP . Then iterate over all regionsR of H and compute the minimum

wirelength value for locations inR ∩ Z. Skip this region ifR ∩ Z = ∅. Record the best

wirelength for each regionR of H, then choose the best wirelength solution among all

recorded. Because this coordinate is withinZ it is guaranteed to have the optimal slack,

and because we exhaustively searchedH, it is guaranteed to have the best wirelength of all

locations withinZ. Note that the wirelength optimal region may be contained within Z,

in which case the wirelength optimal solution is also slack optimal. This algorithm runs

in O(m3)-time because there areO(m2) rectangular regions withinH and evaluating each

region requiresO(m) time for the wirelength calculation.

130

A wirelength-suboptimal Clone2 example is shown in Figure 6.10(f). It has the same

slack and TNS as Figure 6.10(e), however, Figure 6.10(e) clearly shows smaller wirelength

(and fewer buffers), and it can be proved that the location ofP in Figure 6.10(e) is a

wirelength optimal solution.

TNS Optimization. Though our algorithms can improve the TNS objective (see Equa-

tion V.2) by improving worst slack, our algorithms do not directly optimize the TNS ob-

jective. It can, for example, hurt TNS by reducing slack on two paths, while seeking to

improve the slack on a third worst-slack path. In the late stages of the flow, this may be

unacceptable, and we may wish not to harm TNS, or to directly optimize TNS or the num-

ber of negative paths. When both gates are movable and there is no fan-out in regionH6,

it is easy to prove that our solution gives the best solution in terms of TNS. When there

are gates in regionH6, one can tune the algorithm CLONING-MOVABLE to be TNS aware.

When we assign trapezoids, even if it does not change worst slack, we can assign based on

its own slack and achieve better TNS. Finally, we can preventharm to the TNS objective

by incorporating it into the acceptance criteria for any cloning solution.

Placement Blockages.When there are placement blockages in the design, such as

IP, macros, or high-gate-density regions, one may not be able to place gates in optimal

locations. Our algorithms can be extended to handle blockages as follows. When the

best regionZ is not a single point, and not completely blocked by placement blockages,

we placeP (or P ′) in the region insideZ with free space and still achieve the optimal

slack. IfZ is completely blocked, thenP is placed at the legal location with the minimum

Manhattan distance to the regionZ.

131

6.6 Conclusions

This chapter revisits timing-driven cloning under a linearinterconnect-delay model

that accounts for buffering during physical synthesis. We present several highly efficient

algorithms for timing-driven cloning to optimize the worstslack of a circuit. The primary

contribution of this work is an optimal method for simultaneously determining which sinks

will be driven by the which copy of a gate, as well as the locations of a gate and its replica

under the given delay model. We also describe several extensions to the algorithm for

accommodating additional objectives. Our empirical results demonstrate improved circuit

performance as a result of increased optimization scope.

132

P

F2

F�

S�

S�

(a) Original circuit.

P

F�

S�

S�

F�

(b) New circuit after buffer
insertion.

P

F�

S�

S�

F�

(c) New circuit after gate re-
placing and buffer insertion
(RUMBLE, see Chapter III).

P

F�

P’

S�

S�

F�

Buffer

(d) New circuit after cloning
and replacing new gate only
(Clone1).

F�

P
F	

P’

S	

S�

(e) New circuit after cloning
and replacing both gates
(Clone2).

F

P

F�

P’

S�

S

(f) New circuit after Clone2
with wirelength-suboptimal
solution.

Figure 6.10: Examples of different optimizations, including buffering, RUMBLE and
cloning. F1 and F2 are fan-ins with same arrival time andS1 andS2 are
fan-outs with same required arrival time.P is the original gate, andP ′ is the
new duplicated gate.

133

Ckt Transforms
WSlk (ns) TNS (ns)

Area WL
Improvement Improvement

1

Buffering 0 0 1158 181960
RUMBLE 1.548 3.630 609 117637

Clone1 1.553 3.645 799 117632
Clone2 1.581 3.747 601 141977

2

Buffering 0 0 1110 166546
RUMBLE 1.111 2.895 859 162461

Clone1 1.175 3.091 889 162419
Clone2 1.542 4.660 1026 164254

3

Buffering 0 0 942 142242
RUMBLE 0.956 1.859 722 131794

Clone1 1.030 2.298 850 145908
Clone2 1.073 2.611 765 135896

4

Buffering 0 0 709 95520
RUMBLE 1.050 1.113 636 88441

Clone1 1.022 1.092 636 88441
Clone2 1.050 1.113 636 88441

5

Buffering 0 0 1758 253393
RUMBLE 0.839 6.128 1120 194261

Clone1 0.814 6.262 1109 194260
Clone2 1.028 5.413 1410 241818

6

Buffering 0 0 1604 225577
RUMBLE 0.773 3.282 998 177139

Clone1 1.014 1.041 1529 241626
Clone2 1.017 2.152 1293 233053

7

Buffering 0 0 1781 268237
RUMBLE 0.302 0.189 1583 257903

Clone1 0.830 1.049 1990 315835
Clone2 0.815 1.121 2047 330826

8

Buffering 0 0 1578 227047
RUMBLE 0.262 4.270 1153 195097

Clone1 0.681 2.118 1836 272108
Clone2 0.732 4.866 1633 251854

9

Buffering 0 0 998 140556
RUMBLE 0.685 1.512 861 122344

Clone1 0.687 1.514 848 122411
Clone2 0.718 1.530 871 122360

10

Buffering 0 0 998 159705
RUMBLE 0.269 1.312 831 140127

Clone1 0.672 1.759 916 150529
Clone2 0.673 1.754 899 150490

Avg.
Buffering 0 0 1407 205891

of 100
RUMBLE 0.192 0.797 1337 198247

circuits
Clone1 0.279 1.050 1472 216617
Clone2 0.309 1.267 1471 220089

Table 6.2: Experimental results comparing cloning to otheroptimization techniques for
100 circuits. Buffering refers to timing-driven buffering. RUMBLE refers to
timing-driven gate placement followed by buffering. Clone1 refers to gate du-
plication with the original gate fixed. Clone2 refers to gateduplication with the
original gate movable.

134

CHAPTER VII

Logic Restructuring as an Aid to Physical Retiming

The impact of physical synthesis on design performance is increasing as process tech-

nology scales. Current physical synthesis flows generally perform a series of individual

netlist transformations based on local timing conditions.However, such optimizations lack

sufficient perspective or scope to achieve timing closure inmany cases. To address these

issues, we develop an integrated transformation system that performs multiple optimiza-

tions simultaneously on larger design partitions than existing approaches. Our system,

SPIRE, combines physically-aware register retiming, along with a novel form of logic

cloning and register placement. SPIRE also incorporates a placement-dependent static

timing analyzer (STA) with a delay model that accounts for buffering and is suitable for

physical synthesis.

7.1 Introduction

Recall from Chapter II that the physical synthesis process begins by computing a tenta-

tive cell placement and proceeds to restructure timing-critical paths. Traditional physical-

synthesis flows in the industry [8, 112] apply a series of local, mostly greedy transforma-

tions such as inserting individual buffers on particular nets, or relocating individual gates

135

in the limited context of their neighboring gates. Several iterations of such transforma-

tions may be required for timing closure [8, 112]. However, growing reliance on physical

synthesis for timing closure motivates the development of transformations that are more

powerful in two specific ways.

• Greater optimization scope: the ability to effect larger changes in the circuit in terms

of simultaneously moving or altering several objects in order to achieve timing closure.

• Larger optimization window size: the ability to consider temporal and spatial con-

straints from partitions of a design.

Increasing the optimization scope and window sizes can helpavoid local minima in the

solution space that trap individual, local transformations. Additionally, this circumvents

the ordering problemof individual transformations, since different sequencescan yield

different results.

We facilitate more powerful optimizations through retiming. Unlike traditional gate-

and net-centric timing optimizations that aim to satisfy given stage-timing constraints,

retiming can optimize the constraints themselves to betterfit a given netlist. Therefore,

we propose aSystem forPhysically-awareIncrementalRetiming andEnhancements, or

SPIRE, that performs register-retiming with accurate delay models, buffering, placement,

and logic cloning to seamlessly integrate retiming into physical synthesis. Key features of

SPIRE are:

• Multiple degrees of freedom to optimize the circuit, including gate placement, register

retiming, andgate cloning.

136

PLACEMENT RETIMING

STA with virtual buffering

JOINT
OPTIMIZATION

CLONING

3
4

7
8

5
6

2

1

1: CLONING changes the netlist and influences PLACEMENT
2: RETIMING helps select combinational gates for CLONING
3: CLONING creates new opportunities for RETIMING (see Fig. 7.2)
4: RETIMING relocates netlist registers, causing new PLACEMENT
5: PLACEMENT changes interconnect delays used in STA
6: Register PLACEMENT after retiming is performed based on STA
7: RETIMING relocates netlist registers, changing paths in STA
8: STA computes min slack — the optimization goal for RETIMING

Figure 7.1: Interactions in SPIRE’s joint optimization.

• A mixed-integer linear programming (MILP) framework for joint optimization that em-

phasizes synergies between point optimizations as shown inFigure 7.1.

• An embedding of placement-dependent STA computations withvirtual buffering into

the MILP, which allows for efficient and accurate consideration of timing constraints

from large design partitions.

SPIRE allows for placement, retiming, and cloning to simultaneously optimize a cir-

cuit, as shown in Figure 7.1. In physical synthesis, such a joint optimization problem

is often considered intractable. Instead, one chains individual optimizations with limited

scope. However, as shown in Figure 7.2, suchseparation of concernsoverlooks oppor-

tunities for joint optimization. Therefore, we propose a powerful transformation that is

computationally expensive, but can be applied to sizable circuit windows. Window sizes

137

can be selected subject to runtime constraints imposed on the system. Our experimental

results in Section 7.4, in fact, show that SPIRE can handle window sizes of thousands of

gates by efficiently encoding the problem as an MILP with linearly many constraints in

the size of the circuit.

Retiming methods based on [65] enforce timing constraints by requiring a register on

every path whose delay exceeds a threshold. However, such methods require computationally-

expensive path enumeration within the linear programming formulation. We avoid path

enumeration by enforcing linearly many conditional STA-like constraints which deter-

mine optimal retiming and placement. Further, different choices for retiming, cloning and

gate relocation perturb only a small set of local constraints directly (those affecting nearby

edges). Aside from the system as a whole, we highlight the following contributions of this

work:

• A method for retiming with an accurate STA-like embedded delay computation model.

• A novel gate-cloning technique to create opportunities forretiming.

• A simultaneous retiming and re-placement technique.

The remainder of this chapter is organized as follows. Section 7.2 reviews background

and notation. Section 7.3 presents our maximum-slack retiming formulation that incorpo-

rates STA, placement, and cloning. In Section 7.4, our methods are validated on a 45nm

high-performance microprocessor against leading-edge physical synthesis tools. Section

7.5 outlines additional optimizations that can further increase the scope of SPIRE. Con-

clusions are drawn in Section 7.6.

138

7.2 Background, Notation and Objectives

In this section, we provide the necessary background in static timing analysis and

period-constrained retiming.

Static timing analysis with buffered wires. SPIRE depends on the ability to encode

timing constraints efficiently, and in such a way that they can be easily adjusted to ac-

commodate changes resulting from circuit optimizations. Static timing analysis relies on

models to compute the delays of gates and nets. For example, it is common to use a look-

up table to represent gate delays in terms of its inputs. In advanced CMOS technologies,

buffering is utilized heavily during physical synthesis toreduce wire delay and improve

timing. Therefore, it is important to estimate buffered wire delay in an interconnect de-

lay model. In SPIRE we efficiently accommodate these considerations by using constant

gate delays that are obtained from look-up-table-based delay models, and by using a linear

interconnect-delay model introduced in Chapter III. Theseassumptions allow the con-

straints represented in SPIRE to be in terms of a local neighborhood, and are thus only

linear in number (assuming constant maximum edge and vertexdegree).

To compute the initial conditions for SPIRE, the RAT and AAT of all fixed timing

points are generated by an STA engine using very accurate delay models and a set of

timing assertions created by designers [77, 98]. SPIRE considers the timing of register’s

input pin fixed and uses a static timing engine to determine its RAT value. Similarly, the

AAT is fixed on output pin of a register. The timing analysis engine includes considerations

of setup and hold time.

The timing metrics that we optimize include the minimum slack of all vertices(M),

139

Q

QSET

CLR

D

Q

QSET

CLR

DD
G

A

B

C
E

F

H

I

Q

QSET

CLR

D

Q

QSET

CLR

D

D G

A

B

C
E

F

H

I

C’

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

D
G

A

B

CE

F

H

I

C’

E’

(a) (b) (c)

Figure 7.2: Retiming and gate cloning to improve slack: (a) RegisterE cannot be moved
past gateC because of fanoutE-F . (b) If the NAND gateC is cloned, creat-
ing a new gateC ′ to drive its two sinks, it is possible to retime the top register
without changing the logic function. (c) The final result with registerE re-
timed.

(a) (b)

Figure 7.3: A circuit (a) and its timing graph (a). The squareobjects have fixed AATs or
RATs. STA is performed only on circular movable objects.

the total negative slack in the circuit(T), and the total slack below a threshold(ΘT),

computed as shown below. Note thatT = Θ0.

M = min
u
S(u) (VII.1)

T =
∑

u

min(0,S(u)) (VII.2)

ΘT =
∑

u

min(0,S(u)− T) (VII.3)

In SPIRE, registers are allowed to move, while combinational gates remainfixed in

place; this limitation is not inherent, as discussed in Section 7.5. After gate cloning (Sec-

tion 7.3), the cloned gates can be physically relocated. Forefficiency, we restrict our

140

timing graph edges to those representing (1) each connection between the movable gates,

and (2) each connection between a movable gate and a fixed gate. For the subcircuit in

Figure 7.3(a), the resultant timing graph is shown in Figure7.3(b).

Register retiming. The original linear programming formulations for minimum-period

and minimum-area retiming were developed by Leiserson and Saxe [65]. In their frame-

work, a circuit is represented by aretiming graphG(V, E), where each vertexv ∈ V

represents a combinational gate, and each edge(u, v) ∈ E represents a connection be-

tween a driveru and sinkv. An edge is labeled by a weightw(u, v), indicating the number

of registers (flip-flops) betweenu andv. The objective of minimum-area retiming is to

determine labelsr(v) for each vertexv, denoting the number of registers that are moved

from the outputs to the inputs ofv, that minimize the total sum of edge weights. The

weight of an edge after retiming is given by:

wr(u, v) = w(u, v)− r(u) + r(v) (VII.4)

Therefore, the total number of registers in the retimed circuit can be minimized in

terms of the following expression.

∑

(u,v)∈E

w(u, v)− r(u) + r(v) (VII.5)

Additionally, retiming labels have to meetlegality constraints,w(u, v) ≥ r(u)− r(v)

for each edge, to enforce the fact that edges cannot have negative weights. A linear

program for the minimum-area retiming problem is given in Figure 7.4. Leiserson and

Saxe [65] observe that this problem is the dual of a min-cost network flow problem and

141

can therefore be solved in polynomial time.

Minimize
∑

(u,v)∈E w(u, v)− r(u) + r(v)

subject to
∀(u, v) ∈ E, r(u)− r(v) ≤ w(u, v)

Figure 7.4: An LP for minimum-area retiming.

As shown in Figure 7.5, the period can be constrained in this formulation by requir-

ing weight≥ 1 on every path between two vertices with delay exceeding target period

P . However, this formulation requiresΘ(|V |2) constraints in the form of matrixD that

stores the delay of the longest path between the vertices(u, v) in D(u, v), and matrixW

that stores the weight of that path. Then, a binary search is performed to determine the

minimum achievable clock period. The feasibility of each period according to the legality

constraints is checked using the Bellman-Ford algorithm [65].

Minimize
∑

(u,v)∈E w(u, v)− r(u) + r(v)

subject to
∀(u, v) ∈ E, r(u)− r(v) ≤ w(u, v)
∀(u, v) ∈ E|D(u, v) > P, r(u)− r(v) ≤W(u, v)− 1

Figure 7.5: An LP for min-area, period-constrained retiming.

Prior work in retiming also includes the ASTRA [99] algorithm, which is a faster ap-

proach. It relates the problem of clock skew optimization ateach flip-flop to a retiming

solution for minimum-period retiming, and uses the BellmanFord algorithm to derive

the longest path. Recently, the authors of [123] used program derivation to automatically

generate an algorithm for min-period retiming. Retiming was also explored for slack bud-

geting and power minimization for FPGAs [45].

142

Challenges in min-period retiming. Algorithms based on techniques from [65] enforce

timing constraints by requiring registers on gate-to-gatepaths that exceed a length thresh-

old. This involves computationally expensive enumerationof such paths. Therefore, in our

approach we avoid path enumeration by using slack, rather than period as a metric. Slack

constraints are linear in the size of the circuit and all pathdelays are implicitly encoded

through the AAT and RAT constraints.

Other retiming algorithms use network-flow based approaches which are difficult to

extend to a multi-objective optimization [99]. Using interconnect delays instead of lengths

has been a challenge, as wires can be dynamically re-buffered when their lengths change

[100]. Unlike much of past literature, we use a buffered delay model to account for this.

Inherent limitations of retiming are associated with multi-fanout branches. To move a

register backward through a gate, all fanout branches of thegate must include (or share)

a register, and all these registers must be retimed at once. This constraint ensures that

the number of registers on any PI-to-PO path stays constant during retiming. Therefore,

fanouts can be a bottleneck for retiming. In order to alleviate this problem, we clone

gates within the retiming formulation so as to provide additional backward-movement

opportunities for registers (see Figure 7.2).

7.3 Joint Optimization for Physical Synthesis

This section introduces the SPIRE system which combines several optimizations used

individually in the past literature. As shown in Figure 7.6,combining retiming and place-

ment is better than applying them individually. In this example, only the combined ap-

proach closes timing. The main difficulty in combining placement, cloning and retiming

143

(a)
Q

QSET

CLR

D

(10, 20)

(10, 10)

(35, 15)
(30, 15)

(25, 18)

A

B

C
D

E

Delay(C)= 30

AAT(a) = 25
AAT(b) = 25

a

b

d q e

RAT(d) = 50
RAT(e) = 50

AAT(q) = 1

(b)
Q

QSET

CLR

D

(10, 20)

(10, 10)

(15, 18)
(20, 15)

(35, 15)D
A

B

C E

Delay(C)= 30

AAT(a) = 25
AAT(b) = 25

a

b

d q e

RAT(d) = 50
RAT(e) = 50

AAT(q) = 1

(c) Q

QSET

CLR

D

Q

QSET

CLR

D(10, 20)

(10, 10) (26, 12)

(26, 25)

(30, 15) (35, 15)

Delay(C)= 30

AAT(a) = 25
AAT(b) = 25

A

B

C ED

D’

a

b

d

d’

q

q’

e

RAT(d) = 50
RAT(d’) = 50
RAT(e) = 50

AAT(q) = 1
AAT(q’) = 1

Figure 7.6: Advantages of performance-driven retiming with simultaneous re-placement.
Timing values of labeled pins are given, and physical locations of gates and
ports are shown as (x, y) pairs. In the original circuit (a), the timing path feed-
ing the input of the register has negative slack. Moving the gate and register
in (b) improves the slack, but movement alone does not allow the path to meet
timing constraints. Only by retiming and movement can all timing constraints
be met in (c).

is their inter-dependence—optimal locations and cloned configurations depend on the tim-

ing constraints which are altered by retiming.

Embedding the STA backplane into an ILP.In order to incorporate STA into SPIRE,

we first encode the RAT and AAT variable computations into an MILP, with constraints

corresponding to actual arrival time and required arrival time calculations, both of which

are linear. Then, alternative constraints are introduced to analyze each timing arc, for the

case where a register is between the source and sink of the arc. Figure 7.7 shows an LP

simply for computing the worst-case slack. For circuitC with gatesG = {u1, u2 . . . un},

and registersR = {l1, l2, . . . lm}, the variables in this program are:

144

• AAT and RAT for eachu ∈ G, denotedAu, andRu.

• M for the minimum slack.

In other words, for a gateu driven by i1, i2, . . . iS the constraints to enforceAu are

shown below. Here1 ≤ j ≤ S:

Au ≥ Aij + τ ∗ HPWL(ij , u) + Du (VII.6)

SinceAu must actually be equal to one of the values in Equation VII.6,it is added to

the objective function so that it can be minimized. The constraints guarantee that it will be

greater than any path’s delay. Adding it to the objective guarantees that it will be no more

than the greatest path delay. Similarly forRu, supposing thatu drives gateso1, o2, . . . oT ,

then the corresponding constraints are of the form for1 ≤ k ≤ T :

Ru ≤ Rok
− τ ∗ HPWL(g, ok)−Du (VII.7)

We add−RAT(u) to the objective function since this variable is maximized rather than

minimized. The AAT and RAT of registers (and other end pointslike primary input and

output pins) are simply set according to initial values obtained form the reference timing

model. The term−M is added to the minimization objective. The total slackT can also

easily be computed from the MILP and added as an objective. Inpractice, we minimize

both. However, for brevity, we dropT from the MILP formulations for the remainder of

the chapter. Note that the number of constraints in this formulation is proportional to the

number of2-pin arcs in the circuit and not the number of paths. Further,the number of

145

constraints in which each gate and2-pin connection appears is limited, which is key to

incorporating retiming, placement and cloning.

Max-slack retiming. Retiming is the most powerful optimization within SPIRE be-

cause it can effect drastic changes on the timing constraints. For instance, moving one

register past a gate can allowcycle stealingon the order of gate delays along all paths that

cross the register. In order to utilize the STA constraints described in the previous section,

we develop a maximum slack formulation. The key idea in maximum-slack retiming is

that there are two versions of the AAT and RAT computations oneach vertex depending

upon whether the vertex drives/is driven by a register. The constraints that are actually

enforced are determined by the retiming. Therefore, the retiming program seeks a solution

in which the values of retiming variables maximize worst-case slack.

Objective
Minimize : −M
+∀(u)(Au − Ru)

subject to
∀u M≤ S(u)
∀u∀(fanins f of u)Au ≥ Af + τ ∗ HPWL(f, u) + Du

∀u∀(fanouts f of u)Ru ≤ Rf − τ ∗ HPWL(u, f)−Du

∀register r, Rr ≥ clock period
∀register r, Ar ≤ 0

Figure 7.7: Finding minimum slack using LP.

Figure 7.8 shows the MILP that combines the STA constraints with retiming. During

retiming, we only know the contents of theretiming graph(not the timing graph), because

any edge in the retiming graph can include a newly retimed register. Therefore, STA

constraints change depending on the retiming variable values. However, there are only two

possibilities for each retiming arc: either the arc contains a register after retiming, or it does

146

not (and combinations of arcs are implicitly considered). This situation is modeled through

IF-THEN logic based on the retimed weight of the edge. If the weight is greater than zero,

then the wirelengths involved in RAT and AAT computations change to incorporate the

newly retimed register. For simplicity of presentation, wetemporarily assume that the

new registerl will be placed at thecenter of gravity (COG)of the neighboring gates ofl.

Thus, the net connectingu to l has lengthHPWL(u, COG(l)) and the net connectingl to

v has lengthHPWL(COG(l), v). In the next section, we eliminate this simplification and

consider the static timing analysis of nearby gates when calculating slack-optimal register

locations.

if(wr(u,v) == 0)

Ru ≤ Rv − τ ∗ HPWL(u, v)−Du

Av ≥ Au + τ ∗ HPWL(u, v) + Dv

if(wr(u,v) ≥ 1)

Ru ≤ Rl − τ ∗ HPWL(u, COG(l))−Du

Av ≥ Al + τ ∗ HPWL(COG(l), v) + Dv

(VII.8)

This IF-THEN logic is incorporated into a linear program using thebig-M formulation.

Under this formulation, a constraintv < k takes the formv < k+MvI , whereM is a large

constant. IfvI == 0, the constraint reduces to the original, ifvI 6= 0 then the constraint

simply becomes a bound on the variablev, i.e.,v < MvI . Alternatively, IF-THEN logic

can be modeled usingindicators—binary variables that turn constraints on and off.1 In

our program, we define an indicatorhasReg(u, v) as follows:

1Indicators are supported by the commercial MILP engine CPLEX 12.1.

147

if(wr(u,v) > 0)hasReg(u, v) = 1

if(wr(u,v) ≤ 0)hasReg(u, v) = 0

(VII.9)

This variable can be set in a variety of ways. One way is to use the constrainthasReg(u, v) ≤

wr(u, v) and maximize it. Ifwr(u, v) == 0 thenhasReg(u, v) = 0. If wr(u, v) ≥ 1 then,

sincehasReg(u, v) is maximized, it is set to1. However, maximization can sometimes

conflict with the objective, therefore we use the following constraints instead:

hasReg(u, v) ≤ wr(u, v)

if(hasReg(u, v) == 0) wr(u, v) = 0

(VII.10)

The second constraint uses thehasReg variable as an indicator. Together, these two

constraints require thathasReg = 0, if and only if wr(u, v) = 0. For simplicity, we

omit the setting of this variable from our formulations. As we will see in Section 7.3,

maximization of real and integer variables can also fail when the objective has conflicting

terms. Our formulation uses the constraints below to maximize general variables (without

adding terms to the objective). We constrain the variableC = max(A, B) as follows:2

C ≥ A, C ≥ B, (C == A)||(C == B) (VII.11)

Themin function is evaluated similarly. In Figure 7.8, the slack, RAT, and AAT vari-

ables are real values while the retiming variables must be integer-valued. We utilize a

constant weighting factorK to reconcile area with slack. The constantK can be adjusted

based on the available area.
2The Logic-OR can be implemented using intermediary variablesδA, δB and indicator variablesIA,

IB with the following constraints:δA = C − A, δB = C − B, IA ≤ δA, if(I A == 0) δA = 0,
Ib ≤ δB, 6) if(IB == 0) δB = 0, IA + IB ≤ 1.

148

Objective
Minimize : −M+

∑

(u,v)∈E(K) wr(u, v)

subject to
∀(u, v), r(u)− r(v) ≤ w(u, v)
∀(u, v), if(!hasReg(u, v))

Ru ≤ Rv − τ ∗ HPWL(u, v)− Du

∀(u, v), if(!hasReg(u, v))
Av ≥ Au + τ ∗ HPWL(u, v) + Dv

∀(u, v), if(hasReg(u, v))
Ru ≤ Rl − τ ∗ HPWL(u, COG(l))− Du

∀(u, v), if(hasReg(u, v))
Av ≥ Al + τ ∗ HPWL(COG(l), v) + Dv

∀u ∈ V, M≤ S(u)

Figure 7.8: Max-slack retiming with STA embedded.

Note that the formulation in Figure 7.8 does not require the derivation of theW or D

matrices that were described in Section 7.2. Instead, timing calculations are performed

within the MILP. Thus, the number of constraints is onlyO(|E|) for a retiming graph with

edge setE.

Register placement. Registers have special significance in a timing graph because

their inputs are in a different clock cycle than their outputs. This facilitatestime borrowing

— the ability to shift delay from one timing path to another bydecreasing the delay on

inputs paths at the cost of increased delay on output paths, and vice versa. By physically

relocating registers, the interconnect delay around registers can be allocated to either the

input or output paths.

In this section, we describe a formulation that integrates register placement with the

retiming described in the previous section. Register locations alter STA constraints by

changing interconnect length, and therefore, delays. On each edge with a register, SPIRE

chooses the physical location that results in the best possible slack. The placement also

149

Objective :
Maximize L

subject to
∀e = (u, l) ∈ El, Ue

x ≥ αu
x, Ue

y ≥ αu
y

∀e = (u, l) ∈ El, Le
x ≤ αu

x, Le
y ≤ αu

y

∀f = (l, v) ∈ El, Uf
x ≥ αv

x, Uf
y ≥ αv

y

∀f = (l, v) ∈ El, Lf
x ≤ αv

x, Lf
y ≤ αv

y

∀e ∈ El, L
e
x ≤ β l

x ≤ Ue
x

∀f ∈ El, L
f
y ≤ β l

y ≤ Uf
y

∀e = (u, l) ∈ El, Ru ≤ Rl − τ(Ue
x − Le

x + Ue
y − Le

y)− Du

∀f = (l, v) ∈ El, Av ≥ Al + τ(Uf
x − Lf

x + Uf
y − Lf

y) + Dv

∀e = (u, l) ∈ El, L ≤ Ru − Au − Du

∀f = (l, v) ∈ El, L ≤ Rv −Av − Dv

Figure 7.9: Optimal register location relative to adjacentgates.

interacts with retiming in that the retiming variables willoptimize the STA constraints

while considering register locations for each edge.

In order to perform this integration, we utilize the same type of case-logic as in the

previous section. First we modify constraints so that AATs and RATs on edges with reg-

isters are calculated with respect to the placement. Register sharing along adjacent edges

further complicates the formulation. However, we utilize the formulation from [84], to

refine the placement of the shared register based on related timing. The retiming variables

are, as in the previous section, optimized to activate the most favorable STA constraints.

This interplay between retiming, placement, and STA is shown in Figure 7.1.

We first describe an LP formulation for local register relocation based on a simplified

form of the LP in [84]. We then incorporate it into our retiming formulation.

Suppose registerl can be incrementally placed to improve slack while leaving all other

gates fixed. We define a timing graphGl = (Vl, El) that consists of vertices and edges that

are adjacent tol. Vl contains the driveru, and sinksv, of l. The edge setEl contains the

150

Objective
Minimize : −M +

∑

(u,v)∈E(K) wr(u, v)

subject to
∀(u, v), r(u)− r(v) ≤ w(u, v)
if(!hasReg(u,v)) :
∀(u, v), Ru ≤ Rv − τ ∗ HPWL(u, v)−Du

∀(u, v), Av ≥ Au + τ ∗ HPWL(u, v) + Dv

Let l be register on (u,v)
∀e = (u, l) ∈ El, L ≤ Ru − Au − Du

∀f = (l, v) ∈ El, L ≤ Rv −Av − Dv

if(hasReg(u,v)):
e = (u, l), Ue

x ≥ αu
x, Ue

y ≥ αu
y

e = (u, l), Le
x ≤ αu

x, Le
y ≤ αu

y

f = (l, v), Uf
x ≥ αv

x, Uf
y ≥ αv

y

f = (l, v), Lf
x ≤ αv

x, Lf
y ≤ αv

y

∀e = (u, l), Le
x ≤ β l

x ≤ Ue
x

∀f = (l, v), Lf
y ≤ β l

y ≤ Uf
y

e = (u, l), Le
x ≤ β l

x ≤ Ue
x

e = (u, l), Le
y ≤ β l

y ≤ Ue
y

f = (l, v), Lf
x ≤ β l

x ≤ Uf
x

f = (l, v), Lf
y ≤ β l

y ≤ Uf
y

Ru ≤ Rl − τ ∗ (Uf
x − Lf

x + Uf
y − Lf

y)− Du

Av ≥ Al + τ ∗ (Ue
x − Le

x + Ue
y − Le

y) + Dv

Figure 7.10: Max-slack retiming with relocation of registers.

timing arcs that are adjacent tol. The LP formulation computes the variablesβl
x andβl

y,

the optimalx- andy-coordinates ofl. The variables in this LP are as follows:

• αv
x, α

v
y: fixedx- andy-coordinates of verticesv ∈ Vl.

• Ue
x, Ue

y , L
e
x, L

e
y: upper and lower bounds for the location of netse ∈ El. These upper and

lower bounds determine the HPWL of the particular net described by edgee as follows:

HPWL(e) = (Ue
x − Le

x + Ue
y − Le

y). As the location of the register changes, these net

boundaries also change, and, in turn, change the HPWL.

• Ru, Au: the AAT and RATs of nodes inVl.

151

Objective
Minimize : −M+
∑

(u,v)∈E(K)RegCt(u, v) +
∑

(u)IsCloned(u)

subject to
∀u, ∀ fanins i of u, minPush(u) ≤ w(i, u)− r(i)
∀u, ∀ fanouts o of u, maxPull(u) ≥ w(u, o) + r(o)
∀u, if(r(u) > 0)maxPull(u) ≥ r(u)
∀u, if(r(u) < 0)minPush(u) ≤ −r(u)
∀(u, v), if(wr(u, v) > 0)

RegCt(u, v) = wr(u, v), CloneCt = 0
∀(u, v), if(!isClone(u) && !hasReg(u, v)) :

Ru ≤ Rv − τ ∗ HPWL(u, v)− Du

∀(u, v), if(!isClone(u) && hasReg(u, v)) :
Ru ≤ Rl − τ ∗ HPWL(u, COG(l))− Du

∀(u, v), if(isClone && hasClone(u, v)) :
Rclone(u) ≤ Rv − τ ∗ HPWL(COG(clone(u)), v)− Du

∀(u, v), if(isClone(u) && !hasClone(u, v)) :
Ru ≤ Rv − τ ∗ HPWL(u, v)− Du

∀(u, v), if(!isClone(v) && !hasReg(u, v)) :
Av ≥ Au + τ ∗ HPWL(u, v) + Dv

∀(u, v), if(!IsClone(v) && hasReg(u, v)) :
Av ≥ Al + τ ∗ HPWL(COG(l), v) + Dv

∀(u, v), if(isClone(v)) :
Av ≥ Au + τ ∗ HPWL(u, v) + Dv

Aclone(v) ≥ Av + τ ∗ HPWL(u, v) + Dv

∀u, if(isClone(u))
M≤ Rclone(u) − Aclone(u) −Dclone(u)

∀u,M≤ Ru − Au − Du

Figure 7.11: Gate cloning in max-slack retiming.

• L: the local worst-case slack (of the worst pin inVl).

The MILP to determine optimal register placement is shown inFigure 7.9. This pro-

gram sets the values ofβl
x andβl

y such thatL is maximized. Here,Au of any vertexu ∈ Vl

thatdrivesregisterl is fixed. SimilarlyRv for any vertexv that isdriven byl is also fixed.

The only independent variables areβl
x andβl

y which determine theU andL variables.

These, in turn, determineAv, Ru for all nodes.

152

The program in Figure 7.9 is modified in Figure 7.10 to simultaneously incorporate

retiming and placement, and no longer fixes the neighboring RAT and AAT variables. In

this figure, each edge(u, v) on which a register appears constrains the placement of the

register in question. It is assumed that all edges starting at u, i.e., of the form(u, v), such

thathasReg(u, v) = 1 share the same registers. The register is placed in a location which

minimizes the slack of neighboring gates. Since the slacks of neighboring gates in turn

affect those oftheir neighboring gates, and so forth, a ripple effect ensues. Therefore, the

register is actually placed in an optimal location with respect to the entire circuit. The key

here is to enforce a small set of local constraints for each edge that interact with each other

such that globally optimal solutions are chosen.

Cloning to increase the scope of retiming.A key insight in our work is thatopportu-

nities for backward register movements are often limited byfanout branches in combina-

tional circuits.As illustrated in Figure 7.2, retiming movements are blocked when fanouts

of a gate do not share registers. We hope to increase these opportunities by cloning fanout

branches such that registers can move beyond the cloned gate. We achieve this by relaxing

legality constraints in specific ways that allow extra registers to move backwards. In addi-

tion, the fanouts of any cloned vertex are divided such that the STA on some of the edges

is computed with respect to the cloned, rather than originalvertex.

The legality constraints in retiming ensure that no edge hasnegative weight. With

cloning, edges can indeed have negative weight due to registers being retimed backwards

through a cloned gate. However, forward retiming of registers still follows traditional

legality rules.

153

Suppose nodeu has fanoutsO = {o1, o2, . . . oT} and faninsI = {i1, i2, . . . im}. We

represent this situation by imposing two constraints on theretiming variable r(u) for a node

u: one which is enforced whenr(u) is positive, and one which is enforced whenr(u) is

negative. Ifr(u) is positive (i.e., the retiming is backward), then the maximum number of

registers that are allowed to pass backwards is the greatestnumber of registers that appear

on any fanout branch ofu. If r(u) is positive, then the constraint is the same as before:

maxPull(u) = maxo∈O(w(u, o) + r(o))

minPush(u) = mini∈I(w(i, u)− r(i))

if(r(u) > 0)r(u) < maxPull(u)

if(r(u) < 0)minPush(u) ≥ −r(u)

(VII.12)

Together, these two constraints can completely replace thegeneral legality constraints.

The presence of registers is indicated by a positive weight on an edge. Negative weights

indicate that the driver of the edge was cloned. The originaldriver is connected to the

retimed register on the (neighboring) edge(s) with non-negative weight, and the cloned

driver drives the remaining sinks (as identified by edges with negative weight). We use

the additional variablehasClone(u, v) which is set to1 iff the register count on edge

(u, v) is negative. These variables can be set in a similar way ashasReg. Recall that all

constraints triggered under logical conditions can be incorporated into an MILP through

indicator variables or big-M formulations.

The MILP incorporating cloning is shown in Figure 7.11. For clarity, we illustrate

cloning incorporated into the basic STA-based program withCOG-based placements. In

practice, we simultaneously place and clone registers and gates.

154

The slack is computed slightly differently in the presence of clones. New variables in

Figure 7.11 include indicator variablesisCloned(u), Aclone(u), Rclone(u) for each vertexv.

The variableisCloned(u) = 1 if hasClone(u, v) = 1 for one of the edges of the form

(u, v). The computation ofAclone(u), Rclone(u) are:

if(wr(i,u) − r(i) > 0)
Aclone(u) ≥ Ai + τ ∗ HPWL(i,COG(l)) + Du

if(wr(u, i) − r(i) ≤ 0)
Aclone(u) ≥ Ai + τ ∗HPWL(i, u) + Du

if(wr(u, i) − r(i) ≤ 0)
Rclone(u) ≤ Ri − τ ∗ HPWL(COG(clone(i)), i) −Du

For the new RAT variable, we assume that a node driven by a clone has no registers on

the connecting edge. As illustrated in Figure 7.11, the maindifferences in slack computa-

tion include 1) the additional edge(u, clone(v)) for every edge(u, v) wherev is cloned, 2)

the use of the clone’s AAT,Aclone(u), when computing the AAT of verticesv where(u, v)

has a clone. We minimize the number of registers and clones inthe retimed circuit using

two variablesisCloned andRegCt, which is computed as follows:

if(wr(u,v) > 0) RegCt(u, v) = wr(u, v) (VII.13)

7.4 Empirical Validation

For very small circuits, a single mixed integer linear program implementing all of the

optimizations in SPIRE can be solved in a reasonable amount of time. However, in order

to push the boundaries of the largest circuits that SPIRE cansolve, it is important to solve

instances in several phases. Each of the components of SPIREcan be solved separately

before being combined into a single mixed integer linear program. By saving the partial

155

STA
STA+Retiming+

Cloning
STA+

Placement
STA+Retiming+

Cloning+Placement

Figure 7.12: Our SPIRE flow proceeds in phases. First the MILPthat represents only static
timing analysis is solved without design changes. The values of relevant
variables are saved and passed to the next stage which runs anMILP that
incorporates retiming and cloning. The retiming variablesare saved and fixed
in an MILP that allows latches to move. Finally, with known values for latch
locations and retiming variables we run the complete linearprogram.

solutions and using them as a starting point for the next stage, we are able to achieve a

significant speedup for large SPIRE instances without sacrificing optimality. Figure 7.12

shows the flow we use to improve the speed of SPIRE. It begins byrunning STA without

any design changes allowed. The solution of this program is stored and used to seed

the next stage, which adds retiming and cloning but fixes the locations of latches at the

center-of-gravity of connected components. The solution of this program is used to add

constraints to the next program, which allows latches to move, but not be retimed. Finally,

the solution of that program is used to seed the combined program.

Experimental environment. We integrate our optimizations into an industrial phys-

ical synthesis flow. Our benchmarks are the largest functional units of a 45nm high-

performance microprocessor design. We operate on these benchmarks after timing-driven

synthesis, timing-driven placement, electrical correction, and critical path optimization

(through buffering and gate sizing) are completed [7]. We use an industrial timing anal-

ysis tool to obtain initial conditions for AATs and RATs throughout the circuit [51]. Our

experiments were conducted on an8-core system with2.8 GHz AMD Opteron854 CPUs

and80 GB of memory. Our MILPs were solved with ILOG CPLEX12.1 configured to

use up to8 cores in parallel.

156

Table 7.1 shows a7.7% improvement (on average) in worst-case slack (M) and a69%

improvement intotal negative slack(T) when retiming with simultaneous placement. The

slack improvements are reported in terms of the clock periodP = 174ps. T is computed

as shown in Equation VII.2 with threshold ofT = 0. Percentage improvement in min-

slackM is computed as follows:

%M =
Mnew −Mold

P ∗ 100% (VII.14)

In addition, we note that the slack numbers are reported withrespect tobufferedwire

delay. Past literature reports unbuffered wire delay, where slack may improve more dra-

matically, but such improvements may be misleading due to the need for subsequent

buffering. In this experiment, the MILP for retiming with placement was given initial so-

lution seeds from the max-slack MILP retiming shown in Figure 7.8. This helped CPLEX

to calculate MILP solutions quickly. The entire optimization sequence took< 41s on

each benchmark. Since our joint optimization was performedafter several iterations of

individual optimizations including placement, buffering, and gate sizing, and was able to

significantly improve the slack, we can conclude that the individual optimizations were

unable to find these solutions.

Table 7.2 evaluates the impact of cloning during retiming. In this experiment, we mea-

sure thetotal thresholded slack(ΘT), as defined in Equation VII.3, with the threshold

T = 100ps. The threshold value represents the desired amount of guard-banding (protec-

tion) against process variations and NBTI, which can degrade timing. Empirical results

indicate that cloning can improve theΘT of the circuit by up to57% over just retiming

157

#std. Initial Retiming+Placement Overhead Improvements
Design cells M, ps Regs T , ps M, ps Regs T , ps Time, s % cells % M % T
azure1 536 3.42 41 0.00 10.14 49 0.00 1.19 0.00 3.87 0.00
azure2 1097 -2.53 79 -15.17 2.95 155 0.00 4.46 6.93 3.15 100.00
azure3 1032 -16.22 97 -212.69 -6.49 108 -37.95 0.4 1.07 5.59 82.16
azure4 1125 -2.30 79 -2.30 3.82 96 0.00 7.66 1.51 3.52 100.00
azure5 1140 -13.18 89 -114.54 9.39 161 0.00 40.71 6.32 12.97 100.00
azure6 1156 -10.49 83 -91.39 7.14 149 0.00 10.80 5.71 10.13 100.00
azure7 1198 -29.84 80 -3399.92 -17.02 145 -259.67 20.73 5.43 7.37 92.36
azure8 2578 -38.47 209 -391.03 -28.64 287 -265.68 24.87 3.03 5.65 32.06
azure9 2911 2.56 290 0.00 23.31 318 0.00 7.12 0.96 11.92 0.00
average 3.66 7.73 68.87

Table 7.1:Minimum slack(M) andtotal negative slack(T) improvement during simultaneous
retiming+placement on macros of a45nm microprocessor (see Eqns. VII.1-VII.2).
MaximalT improvement (100%) is reached when design closes on timing.These
cases are indicated in bold. %M is computed as described in Equation VII.14 with
P = 174ps.

#std. Initial Retiming+Placement Retiming+Cloning+Placement Overhead Improved
Design cells Regs ΘT , ps Regs ΘT , ps Regs ΘT , ps Time, s % cells % ΘT

azure1 536 41 -4521.87 47 -2989.53 47 -2989.53 6.28 0.00 0.00
azure2 1097 79 -15597.31 153 -4537.57 153 -4537.57 7201.14 0.00 0.00
azure3 1032 97 -15515.34 105 -14333.89 110 -12739.10 2252.07 0.48 11.13
azure4 1125 79 -24206.70 81 -22226.57 83 -21762.75 3727.78 0.18 2.09
azure5 1140 89 -35296.55 148 -18881.61 537 -11333.49 7202.15 34.12 39.98
azure6 1156 83 -32183.65 148 -27566.43 588 -11956.50 237.10 38.06 56.63
azure7 1198 80 -46265.55 122 -33419.14 620 -17643.49 3741.82 41.57 47.21
azure8 2578 209 -39253.82 296 -26272.53 657 -15117.06 7201.70 14.00 42.46
azure9 2911 290 -13134.72 317 -9539.07 522 -4096.63 3905.28 7.04 57.05
average 15.05 28.51

Table 7.2:Total thresholded slack(ΘT) improvement through simultaneous retiming, cloning
and placement (see Eqn. VII.3). Cloning also improvedM on azure6 by3.5%,
while on remaining testcases the most-critical paths were not affected.

and placement. Thus, even when opportunities for cloning onthe critical path are limited,

the remainder of the circuit can be improved for increased resilience.

Unlike previous localized transformations, SPIRE scales to design partitions with over

1000 cells as shown in the #std cells column in Table 7.1. SPIRE can process larger circuits

by partitioning the design into windows of appropriate size, which can have overlaps.

158

7.5 Extensions

SPIRE’s key advantage over existing physical synthesis transformations is the syner-

gistic use of several types of optimizations. Our MILPs are more costly than existing

transformations but also more powerful since they can be applied to larger windows than

many of the localized transformations used in the industry today [74,84]. This flexibility of

SPIRE allows one to change size and scope of optimization andoffers rich trade-off oppor-

tunities between runtime and solution quality. However, increasing optimization strength

will likely change the trade-off between runtime optimization-window size. Additional

optimizations can be integrated into SPIRE as outlined below.

• To relocate combinational gates, create a variable for thex- andy- location for each

gate and write the delay equations as in Section 7.3 in terms of those variables.

• To incorporate gate sizing in SPIRE, one must model nonlinear timing characteristics

of individual gates or standard cells. This can be accomplished by precomputing the

response to a set of discrete sizes (from the library) and selecting them using conditional

constraints. If a particular gate size is selected, a corresponding gate delay will be used

in the STA, as specified by a conditional constraint.

• Similarly, threshold voltage (Vth) assignment is modeled by selecting gate delays with

Boolean variables. As loweringVth improves speed at the cost of power, the number of

low-Vth assignments must be upper-bounded.

• Common placement constraints including region constraints and obstacles can be rep-

resented in SPIRE. Region constraints are modeled with linear bounds on thex- and

159

y-coordinates of each gate. To avoid obstacles, the placement region is divided into al-

lowable regions that hug the obstacles. A disjunctive (OR-type) constraint is then added

to require placement in one of the allowed regions. Routing congestion can also be

represented as an obstacle using this mechanism to prevent any movable objects from

being added in congested regions.

By integrating several optimizations and applying them to windows with thousands of

objects, SPIRE offers a unique physical synthesis optimization that lies between local op-

timization of individual objects (which is typical of current tools) and global optimization

of the entire design.

7.6 Conclusions

State-of-the-art physical synthesis methodologies tend to perform a series of local

transformations to achieve a target clock period [7]. However, the persistent difficulty

of timing closure in high-performance designs calls fornetlist transformations that can ef-

fect more powerful changes in the circuit. To address these issues, we presented SPIRE, an

MILP-based physical synthesis optimization in which dynamic netlist transformations in-

cluding retiming, cloning, and placement, can be performedand co-optimized with respect

to an embedded static timing analysis program. We demonstrated that isolated transforma-

tions, such as retiming, often run into obstacles that can only be resolved by other transfor-

mations, such as gate cloning. Empirical results show that SPIRE is able to significantly

improve the worst-case and total slack in functional units of a 45nm high-performance

microprocessor after an industrial physical synthesis flow, consisting of several individual

optimizations, is performed.

160

CHAPTER VIII

Broadening the Scope of Optimization using Partitioning

Techniques covered in previous chapters have been developed primarily to operate in

limited optimization windows, ranging from several gates (Chapters III, V and VI) to func-

tional units of a CPU (Chapter VII). We extend their scope to alarger context — flat ASIC

and SoC netlists — and facilitate greater parallelism during optimization. To accomplish

this, the designs are divided by netlist partitioning toolsinto windows of manageable size,

in which our earlier techniques can be applied. We evaluate window-partitioning in terms

of runtime and solution quality as a method to extend the scope of physical synthesis

optimization.

8.1 Introduction

Many important optimizations in physical synthesis are NP-hard, which motivates the

use of high-performance heuristics to achieve timing closure. As outlined in Chapter II,

efficient (near-linear-time) heuristics, such as methods for large-scale standard-cell place-

ment, are applied to entire netlists with millions of nets and standard cells. Alternatively,

by limiting optimization to a very local scope, more CPU-intensive algorithms can be

employed, including those that find optimal configurations of circuit elements. For tasks

161

Transformation
Max Reported Subcircuit SizeApproximate

(# standard cells) runtime

RUMBLE (Chapter III) 18 0.1s
Ratchet (Chapter V) 164 10s
Interconnect-driven cloning (Chapter VI) 13 1s
SPIRE (Chapter VII) 2911 10s-2hrs

Table 8.1:Previously reported transformations and the maximum reported size of subcir-
cuit to which they are applied.

such as gate sizing, placement optimization within a singlecircuit row, and netlist parti-

tioning, exponential-time exhaustive enumeration may be appropriate at scales of fewer

than a dozen gates, with strong branch-and-bound implementations extending in scope to

no more than 30-50 gates.Our techniques range from applying to a dozen gates, as in

interconnect-driven cloning, up to a few thousand gates in the case of SPIRE (see Table

8.1). Scaling these optimizations to larger circuits will require applying them selectively

within restricted windows of the design.

The controller/transformation approach to physical synthesis optimization introduced

in Chapter II does not lend itself naturally to optimizations with large scope such as the

ones proposed in previous chapters. This is because controllers choosesingle objectsto

optimize, and sequence such optimizations. However, our optimizations apply to larger

numbers of objects and so there remains a problem of how to enumerate such subsections

of the design on which to apply our techniques. In this chapter, we first describe how

this was done for optimizations in Chapters III, V and VI, then we propose a strategy

for selection of larger subcircuits for optimizations in Chapter VII using top-down netlist

partitioning.

162

OPTIMIZE-CLUSTER-WINDOWS

� Input: VLSI CircuitC , Target Window SizeS ,
ControllerD , TransformationT ,
ClusteringAlgorithm EXPAND

� Output: Optimized VLSI CircuitC ′

1 while (gate = D .next())
2 window = gate

3 while (window .size()< S)
4 EXPAND(window)
5 T .optimize(window)

Figure 8.1:A generic iterative improvement physical synthesis algorithm that applies a
transformation to a window based on bottom-up clustering. The performance
of this algorithm can be tuned through the choice of clustering strategy, the se-
lection of a controller and transformation pair, and through the runtime solution
quality trade-off controlled byS. Chapter III explores using ann-hop clustering
strategy and Chapter V was applied to windows selected in most-critical-first
order.

8.2 Background

The state of the art in physical synthesis relies on the controller/transformation model

to select circuit elements to optimize, as introduced in Chapter II. The most natural ex-

tension of the controller/transformation model to larger windows involves constructing a

window around a given seed object that is designated by existing controllers. This method

is appropriate in the case of a well-optimized design with relatively few problem areas.

In this section, we review several methods to select windowsby expanding a subcircuit

around a given seed.

Breadth-first-search. In several important cases (gate sizing, buffer insertion,place-

ment), the scope of simultaneous optimization among objects is determined by the con-

nectivity and distance between the objects. Therefore, we aim to expand the window with

objects that are directly connected to objects already in the window. If the goal is to op-

163

timize the seed, it is also more likely that something connected through a shorter path of

nets and gates will influence the timing of the seed. Therefore, we consider then-hop

neighborhood as a good baseline strategy for expansion. Then-hop neighborhood is tra-

versed efficiently in linear time by the breadth-first-search algorithm, as follows. Begin

with a window containing only the seeds. Add all neighbors ofs to a queueq. Dequeue

a gateg from q and if it is not visited, add it to the window and mark it visited. Then add

all of the neighbors ofg to q. Repeat this procedure until the window reaches the desired

size.

Most-critical-first. In cases where the goal is to fix a critical path, for example, using

the techniques in Chapter V, it may be advantageous to expandby adding the most-critical

neighbor to the current window. This strategy begins with a window containing the seeds.

Insert into a priority queueq the list of neighbors ofs, sorted by their slack. Dequeue the

most critical gateg from q and if it is not visited, add it to the window and mark it visited.

Then add all unvisited neighbors ofg to q. Repeat this procedure until the window is the

desired size. Note that while then-hop strategy radiates outward evenly around a gate,

this strategy is very likely to expand along a single path andmake a long, narrow window.

Slack-improvement order. It some cases an analytical model can be used to quickly

estimate the amount of slack improvement that is possible due to the addition of the next

gate. For example, a linear-delay model and coordinates canbe used to estimate how

much is the best-case improvement that can be provided by RUMBLE. Beginning from a

window containing only the seeds. Insert into a priority queueq the list of neighbors ofs

sorted by slack improvement. Dequeue the gateg from q with highest slack improvement

164

and if it is not visited, add it to the window and mark it visited. Then add all the unvisited

neighbors ofg to q (sorted by slack improvement). Repeat this procedure untilthe window

is the desired size. This strategy requires a good slack improvement estimation technique

and is therefore not always available. However, it providesan efficient trade-off between

window size and solution quality.

The window selection strategies discussed in this section were found to work well

in practice. Many other variants exist and, in general, the subcircuit selection strategy

will depend strongly on the transformation it is used with. When coupling a subcircuit

selection algorithm with a transformation, it is importantto understand the effects of the

transformation and what scope it needs to perform well.

8.3 Forming Subcircuits using Top-Down Netlist Partitioning

In the previous section, methods to select subsections of a design based on a seed ob-

ject were presented. Which method is appropriate for a particular transformation depends

on its scope. For transformations that operate on a small neighborhood to improve a target

gate or net, bottom-up clustering allows one to easily select the set of nearby gates that

are most likely to facilitate improvement to the target gate. Techniques of this type were

used in Chapters III, V and VI and successfully extended the scope of such physical syn-

thesis optimizations as timing-driven gate movement, buffering, gate sizing and cloning.

However, optimization windows remained relatively small in those cases, usually no more

than around a dozen gates, but up to 164 in the case of Chapter V. For transformations

that apply to larger subsets there are too many combinationsof gates for a comprehensive

clustering algorithm to explore practically. In such cases, it is more appropriate to limit

165

interactions with circuit elements outside of the subcircuit, and therefore partitioning is a

good choice.

Netlist partitioning is an essential technique to moderatecomplexity in physical de-

sign systems. It enables algorithms and methodologies based on the divide-and-conquer

paradigm. The goal of a partitioning algorithm is to divide anetlist into two or more

groups of gates such that every gate is in exactly one group, and some cost function, such

as net-cut, is optimized. Given a hypergraph representation G, of a netlist, thek-way hy-

pergraph partitioning problem seeksk disjoint partitionsof G. In this work we map the

problem of finding subcircuits of a netlist to thek-way partitioning problem.

The Multilevel Fiduccia-Mattheyses (MLFM) framework is a well-studied approach to

hypergraph partitioning and is presently the dominant technique for large-scale netlist par-

titioning [36]. It begins with a coarsening phase during which vertices of the hypergraph

are merged to form aclusteredhypergraph which has fewer vertices, e.g., half as many.

The hypergraph is clustered repeatedly until atop-levelhypergraph with 50-200 vertices is

found. Then atop-level solutionis constructed by means of a specialized solver designed

for problems this size. For example, the Randomized Engineer’s Method places vertices

into partitions in largest-first order and tries to maintainbalance as it proceeds. Follow-

ing top-level solution construction, arefinementphase begins, wherein the hypergraph

is unclustered, and the partitioning of the clustered hypergraph is projected onto the un-

clustered hypergraph. From this projected solution, an iterative improvement algorithm is

applied, with the Fiduccia-Mattheyses (FM) algorithm being the most competitive today.

Unclustering and iterative improvement are repeated untila partitioning of thebottom-

166

levelhypergraph (i.e., the input hypergraph) is obtained. Additional passes consisting of

alternations of coarsening and refinement phases can be applied in so-called V-cycles to

further improve results. One popular software implementation of MLFM, hMETIS, can

be obtained from [43].

In order to produce subcircuits of a target sizeP of a netlist with hypergraphG =

(V,E), we employ balancedk-way partitioning withk = |V|
P

. We then optimize each of

thek windows individually. Each technique will have a runtime solution quality trade-off

determined by the value ofP . Table 8.1 shows a table of techniques reported in previous

chapters and the size of subcircuits they can be applied to.

8.4 Trade-offs in Window Selection

In addition to the scope of a given transformation as discussed above, several other

considerations affect the choice of window selection technique, such as the interactions

between the windows. Important factors include:

1. How subcircuit optimization is made relevant to the optimization of entire circuits

2. How overlaps between optimization windows affect solution quality and runtime

3. Whether all circuit elements are included in some window

4. The relative sizes of different windows

We discuss trade-offs in window selection techniques in detail below.

Interactions between transformations and window selection methods. When the

objective of a particular transformation is to minimize area, to fix local constraints or to

repair design rule violations, optimizing subcircuits directly improves the entire circuit.

167

However, when dealing withnon-local timing constraints, relevant optimization objec-

tives for a subcircuit must be carefully formulated. For example, when moving sequential

elements in RUMBLE, combinational timing paths that leave the subcircuit but renter at

a different point can strongly affect results. In Chapter III we refer to these types of con-

figurations aspseudomovable feedback paths, and they must be carefully included into a

subcircuit to account for their timing impact on the solution. More generally, windowing

optimizations consider timing values on the boundariesfixed, while this may not be true in

practice. Each transformation must carefully manage this assumption and include every-

thing into the subcircuit that can change due to the effects of the transformation. As such,

having a smaller boundary reduces the possibility of changes impacting the quality of op-

timization. This aspect of windowing is equally applicableto partitioning and clustering

techniques. Trade-offs between these two window selectiontechniques are summarized in

Table 8.2 and described next.

Window selection through clustering. Clustering techniquesper sedo not track

overlap between windows, but leave several possibilities.One possibility is to construct

optimization windows one by one, optimize the subcircuit ina given window, and then

go on to the next window. Without sufficient care, such a technique is likely to create

significantly overlapping windows, and some circuit elements may not be covered by any

window. Overlaps occur when nearby circuit elements are used as seeds and expanding

windows around them include similar sets of gates. This increases overall optimization

effort by repeating transformations on the same circuit elements multiple times, but may

sometimes improve solution quality by considering multiple contexts for each circuit ele-

168

(a) (b)

(c) (d)

Figure 8.2: Venn diagrams illustrating different window selection techniques. The outer
rectangle in each image represents the entire design while shaded regions in-
side represent clusters or partitions. (a) Clustering grows windows around a
seed object and typically creates overlapping windows thatdo not cover the
circuit. (b) Partitioning divides the entire circuit into windows of approxi-
mately equal size that do not overlap. (c) The windows formedby partitioning
can be expanded to deliberately create overlaps between adjacent partitions.
(d) Partitioning can be performed multiple times to find orthogonal partition-
ing solutions. In (d) two independent 4-way partitioning solutions are overlaid,
the solution from (b) is augmented by an additional one with dashed cutlines.

ment and iterating improvement algorithms on them.Overlapping optimization windows

cannot, in general, be processed in parallel — a serious drawback when a large number

of networked workstations are available.Circuit elements omitted from optimization win-

dows may represent lost opportunities for optimization, but sometimes one can rule out

such opportunities, e.g., for elements with high slack, lowarea or electrical parameters

that satisfy relevant constraints.

A second possibility, relevant when overlaps should be limited in order to conserve

runtime, is to mark each circuit element included in some window asvisited, so as to

169

PROPERTY CLUSTERING PARTITIONING

WINDOW ISOLATION
Mediocre (optimized indirectly

Substantial (captured by the

by greedy algorithms)
objective function and optimized
by high-performance algorithms)

WINDOW OVERLAPS
Substantial (nearby seeds can None(but can be created through
cause overlapping windows) window inflation or repartitioning)

CIRCUIT COVERAGE
Incomplete (requires additional

Complete(by construction)
steps to revisit skipped nodes)

BALANCED WINDOWS
Poor (can be widely varying Good (balanced partitioning

depending on adjacent net degree) seeks similarly sized partitions)
AMENABILITY TO Mediocre (overlapping clusters Strong (All partitions

PARALLISM cannot be solved simultaneously) can be solved simultaneously)

Table 8.2:A comparison between window selection techniques.

prevent its inclusion in another window; a variant technique does not markboundaryele-

ments of each window. Thus, it is possible to create (nearly)non-overlapping windows by

clustering. However, in some cases this may leave cells withno unvisited neighbors, and

such windows may represent lost opportunities for optimization. If it is important to en-

sure that optimization windows cover the entire circuit, one can perform iterations where

a new window is started for each circuit element not covered by earlier windows.

From a solution quality perspective, it is typically advantageous to construct windows

of the largest size that can be efficiently processed by a given optimization (e.g., see Ta-

ble 8.1). In such cases, therefore, it is advantageous for windows to be of similar size.

However, if efficiency concerns dictate that windows cannotoverlap, some windows may

have to be smaller. Also, some windows may represent well-formed clusters of logic (e.g.,

multipliers or decoders) that are only loosely connected tothe remaining circuit. Such

windows can also be smaller than maximal reasonable size.

Window selection through balanced partitioning. Balanced partitioning addresses

concerns about interacting windows effectively. Multilevel Fiduccia-Mattheyses (MLFM)

partitioning exhibits near-linear runtime complexity in the size of netlists and runs effi-

170

ciently on the largest VLSI netlists [36]. The most common objective function of MLFM

partitioning is to minimize the number of nets that cross between two partitions. There-

fore, MLFM partitioning minimizes the sizes of boundaries,and maximizes theisolation

of each window. Such isolation helps to ensure that optimizations found locally will be

preserved when taken in the context of the entire circuit. Partitioning also reduces the total

overlap between windows by construction and is guaranteed to cover all elements in the

circuit. Because of balance constraints in the partitioning formulation, all windows will

have similar sizes and minimizing net cut ensures the logic within each window will be

well-connected on average. These properties suggest that balanced partitioning is better-

suited to identifying minimally-overlapping windows for non-local optimizations.

In cases when some overlap between partitions is desired to improve solution quality,

clustering techniques seem to hold an advantage over partitioning techniques.1 In par-

ticular, clustering techniques are better equipped to combine pairs of connected circuit

elements (e.g., gates) together in at least one common window. Strategies employing par-

titioning techniques can address this limitation by performing several partitioning starts

to obtain multiple solutions (increasing the likelihood that two given connected circuit

elements will appear in at least one common optimization window).

8.5 Empirical Validation

For experiments reported in this section, we used the same computational facilities

and EDA infrastructure as in Section 7.4, but added a larger designazure10 with 4144

standard cells. For a given design, we partition the netlistintok partitions of approximately

1One hybrid technique begins by partitioning windows to smaller than the desired size then expands each
using clustering to both cover the circuit and create overlap.

171

(a)

-3e5

-2e5

-1e5

0

 0 5 10 15 20 25 30

T
N

S

#partitions

azure08 TNS
baseline

(b)

-1.4e6
-1.2e6

-1e6
-8e5
-6e5
-4e5
-2e5

0

 0 5 10 15 20 25 30

T
N

S

#partitions

azure09 TNS
baseline

(c)

-2e6
-1.6e6
-1.2e6

-8e5
-4e5

0

 0 5 10 15 20 25 30

T
N

S

#partitions

azure10 TNS
baseline

Figure 8.3: An illustration of SPIRE’s effect onT (TNS) versus the number of approxi-
mately equal-size partitions of three industrial microprocessor design blocks
generated by the hMETIS partitioner [43]. (a) azure08 (b) azure09 (c) azure10.
The horizontal axis indicates the number of partitionsk. The vertical bars ex-
tend to +/- one standard deviation from the mean value ofT . The wicks of
candlesticks extend from the min to the max value ofT . The baseline indi-
cates the value ofT without changes to the circuit.

equal size using the hMETIS partitioner [43], for values ofk = 1 . . . 30. For each value

of k, we solvedk separate SPIRE MILP instances, and combined the solutions into a

single solution for the testcase. We measured circuit-performance parameters after such

optimization for each value ofk and study the impact of the size of each partition on the

performance of the circuit.

The techniques in Table 8.1 all improve solution quality at the cost of runtime when

called on larger instances. This runtime solution-qualitytrade-off determines the best size

172

for subcircuits in practice. In this section we demonstratea trade-off between runtime and

solution quality by partitioning large netlists and applying SPIRE (see Chapter VII).

Figure 8.3 shows an experiment incorporating the hMETIS partitioning software into

SPIRE [43]. Each design was divided into1 ≤ k ≤ 30 partitions using 5 separate starts of

the hMETIS partitioner [43]. SPIRE was invoked on every partition, and statistics of the

resulting values ofT are plotted. From this experiment, we observe:

• The best solution quality is obtained when the largest circuits are optimized.

• Using smaller windows sacrifices some solution quality, butit quickly converges in

two of the three cases.

• Additional partitioning produces smaller, faster instances.

• In some cases smaller windows can provide greater improvement. This can be ex-

plained by our use of a time-out. Smaller windows are more completely explored

within the time-out [37].

• Netlist partitioning is fast enough to apply to the largest ASICs and SoCs.

• In some cases the bars indicating +/- one standard deviationcan extend beyond the

min or max value ofT . This occurs when the distribution of solutions is highly

skewed toward its minimum or maximum.

• Solution quality can be significantly improved by applying several rounds of parti-

tioning and selecting the best seen results. Such additional rounds can be performed

in parallel. Because the smallest (fastest) windows often provide greater improve-

ment than mid-size (slower) windows, one good strategy begins by solving small

173

0

1

2

3

4

5

6

7

8

9

10

0-
1

2-
3

4-
5

6-
7

8-
9
10

-1
1
12

-1
3
14

-1
5
16

-1
7
18

-1
9
20

-2
1
22

-2
3
24

-2
5
26

-2
7
28

-2
9
30

-3
1
32

-3
3
34

-3
5
36

-3
7
38

-3
9
40

-4
1
42

-4
3
44

-4
5

TNS Improvement (usec)

N
um

be
r

of
 P

ar
tit

io
ns

Figure 8.4: A histogram of TNS improvement in partitions of alarge ASIC.

windows first, then proceeding to larger windows. A time-outor the runtime solu-

tion quality trade-off can be used to determine stopping criteria.

Partitioning and clustering allow one to apply each of the transformations in this dis-

sertation efficiently to the largest available designs. However, balanced, non-overlapping

partitions are more amenable to parallelism. To this end, wepartitioned a design with

102063 standard cells into 1000 partitions and ran SPIRE on each of them. SPIRE was

able to find improvement in 119 of the partitions totaling 1.31e6 ns of TNS improvement.

We plotted the amount of improvement in a histogram in Figure8.4. This experiment has

been performed on a pool of compute servers because all of thepartitions can be solved in

parallel. In addition, each partition is solved using ILOG CPLEX 12.1 configured to use

up to 8 processors in parallel.

174

8.6 Conclusions

In this chapter we have described a method to scale physical-synthesis optimizations to

the largest commercial ASICs and SoCs. Working with such designs, we have applied our

transformations after commonly used local transformations including buffer insertion, gate

sizing, and detailed placement as follows. We first divide the entire netlist into windows of

appropriate sizes for a particular large-scope optimization. We then apply that optimiza-

tion within each window, leveraging inherent parallelism of disjoint windows. We then

combine the solutions into a single optimized result. This method runs in near-linear time

in terms of the number of windows and thus scales to a large number of windows. As long

as each window is sized appropriately, algorithms with highruntime complexity can be

applied while retaining affordable runtime on large designs. In addition we have identified

three sources of parallelism compatible with our techniques — non-overlapping partitions,

using a multi-core MILP solver, and multiple independent partitioning configurations.

We have shown that while increasing the scope of optimization provides improved so-

lution quality, a divide-and-conquer framework allows EDAsoftware to broaden the scope

of heavy-weight physical synthesis optimizations and exploit parallelism. By controlling

window size, we provide a trade-off between runtime and solution quality that can be

tuned to make our large-scope transformations practical onthe largest available designs.

175

CHAPTER IX

Co-Optimization of Latches and Clock Networks

Optimizations developed in earlier chapters affect many aspects of physical synthesis,

but often target sequential elements, which particularly impact circuit performance. In

order to obtain synergies between these optimizations, we explore the infrastructure for

physical synthesis used by IBM for large commercial microprocessor designs. We focus

our attention on a very challenging high-performance design style calledlarge-block syn-

thesis(LBS). In such designs latch placement is critical to the performance of the clock

network, which in turn affects chip timing and power. Our research uncovers deficiencies

in the state-of-the-art physical synthesis flow vis-à-vislatch placement that result in timing

disruptions and hamper design closure. We introduce a next-generation EDA methodology

that improves timing closure through careful latch placement and clock-network routing to

(i) avoid timing degradation where possible, and(ii) immediately recover from unavoid-

able timing disruptions. When evaluated on large CPU designs recently developed at IBM,

our methodology leads to double-digit improvements in key circuit parameters, compared

to IBM’s prior state-of-the-art methodologies.

176

9.1 Introduction

Design-complexity growth has consistently outpaced improvements in design automa-

tion in the last 30 years. The shortfall is called thedesign productivity gapand tends to

increase the number of designers per project over chip generations [49]. However, the

economics of the semiconductor industry limits the size of design teams, and the shortfall

must be alleviated through increased design automation.

Modern CPU Design Styles.High-performance microprocessors demand very labor-

intensive IC design styles. In order to cope with the high frequencies of these designs (3-6

GHz), engineers have traditionally partitioned them into hierarchies, with bottom-level

blocks containing fewer than 10,000 standard cells. This methodology requires significant

manpower for several reasons(i) the partitioning task is performed manually and it re-

quires an experienced design architect,(ii) each designer can handle only around a dozen

blocks; the use of smaller blocks increases their numbers and necessitates more designers,

and(iii) integratingblocks into higher levels of the design hierarchy requires adedicated

designer for eachunit-levelassembly that combines multiple bottom-level macros.

Large-Block Synthesis.In order to improve the automation of synthesized blocks in

high-performance microprocessor designs, a new design style is being pursued. Functional

units are beingflattenedand all macros inside are merged into a single large, flat, high-

performance block. The resulting entities are calledlarge-block synthesis(LBS) blocks.

The typical LBS testcase will have more than 25,000 thousandcells and possibly as many

as 500,000 cells. The high-performance nature of such designs makes physical synthesis

quite challenging. In particular, existing tools target high-performance designs (4 GHz

177

or more) with small blocks under 10,000 cells, or low-power designs (400-800 MHz)

with blocks having millions of standard cells. To improve the performance of the LBS

methodology, current tools and techniques must be revised and extended.

Latch and Clock Network Co-Design Challenges.The large-block synthesis de-

sign style creates several conditions that stress existingphysical synthesis flows in new

ways. Like in high-performance small blocks, latches in large blocks must be placed in

clusters near alocal clock buffer(LCB) to limit clock skew and power [23]. However,

the placement region of a large block leaves significant roomfor latch to be displaced

by a greater distance.The first major challenge in physical synthesis of large blocks

is limiting the displacement of latches when moving them close to LCBs. In addition,

clock skew at every latch affects timing constraints for combinational logic. Therefore,

critical path optimization — the focus of preceding chapters — must account for clock

skew, but this information is not known until clock networksare designed. The latter step

is commonly referred to asclock insertion. If clocks are inserted before the latches are

properly placed, the timing picture will be overly pessimistic. Waiting to consider skew

until too late in the flow may result in suboptimal circuit characteristics.The second ma-

jor challenge is the fundamental issue of optimizing timing in the presence of clock skew,

which requires careful ordering of latch placement and clock network synthesis operations.

Traditional approaches to these problems suffer from significant timing degradations dur-

ing sudden changes, e.g., moving a latch far across the chip to the location of an LCB.

The third major challenge is avoiding severe timing degradations that harm convergence

while managing latch placement constraints and optimization considering clock skew.

178

Our contributions. In this chapter we develop specific techniques to address thechal-

lenges above. In particular we note the following contributions.

• A graceful design flow to achieve timing closure by avoiding disruptive changes

through careful reordering of steps. In some cases disruptions could not be avoided,

and in these cases we either revise the offending optimization or mitigate the amount

of disruption immediately after the disruption is detected.

• An algorithm to reduce the maximum latch displacement due toclock skew con-

straints by strategically inserting additional LCBs.

• A technique to reduce the displacement of combinational logic in response to mov-

ing latches to obey clock skew constraints. Compared to fixing the latches and re-

running global placement, our technique reduces combinational logic displacement

significantly.

• A novel optimization for control signals that drive LCBs following a timing degra-

dation caused by latch clustering.

The remainder of this chapter is organized as follows. Section 9.2 outlines a prior phys-

ical synthesis methodology for high-performance CPU design and the first major steps we

took to cope with the large-block synthesis design style. Remaining specific problems in

the flow that cause timing degradations are described in Section 9.3. Our new graceful

physical synthesis flow is detailed in Section 9.4. We demonstrate the empirical improve-

ments in our flow in Section 9.5. Conclusions are drawn in Section 9.6.

179

(a) (b)

Figure 9.1: The locations of cells during force-directed placement at the clockopt place-
ment stage. (a) After one iteration of quadratic programming followed by
cell spreading, a graceful spreading of cells can be observed. (b) The final
placement resulting from repeating these iterations to convergence, followed
by detailed placement and legalization.

9.2 Background

In order to cope with the concerns of LBS designs, we adapt thetypical microprocessor

flow with several extensions designed for large ASICs. This section describes existing

physical synthesis techniques for multi-million gate designs, and how they can be applied

successfully to high-performance CPU designs.

Force-directed Placement.The current physical-synthesis methodology used at IBM

relies on a quadrisection-based quadratic placement algorithm for high-performance mi-

croprocessor designs [119]. This algorithm works by first solving the quadratic program

that is typical in analytic placement algorithms, then divides the cells into 4 groups by

drawing cutlines to satisfy a density constraint. Next, it solves the quadratic program on

those regions individually and repeats the process in a nested fashion until the cells can

be placed by an end-case solver. The cut-based nature of thisalgorithm can cause small

changes in the netlist to translate into large changes between two successive physical syn-

180

thesis runs. This behavior exhibited by a placement algorithm is calledinstability. To

avoid such disruptions, our next-generation flow incorporates a more stableforce-directed

approach that generally also results in better wirelength.The force-directed approach pro-

ceeds by an even spreading of cells after each quadratic solve, and this is the source of the

improvement in stability. Figure 9.1 illustrates the progress of force-directed placement.

A more stable placement process is important to ensure a steady path toward convergence

despite disruptive changes during physical synthesis.

Force-directed placement algorithms are typically gearedtoward optimizing wirelength,

and do not take clock network synthesis into account. As a result, latches are likely to be

placed far from each other, spread throughout the placeablearea. In turn, clock power

and skew budgets can be exceeded when a high-performance clock network is synthesized

using such post-placement latch locations. Therefore, metrics beyond wirelength must

be employed during placement to satisfy chip performance requirements and minimize

adverse impact on the clock network [94]. The following post-placement optimization

problem is designed to mitigate timing degradations by minimizing latch displacement

while creating tight latch clusters that enable reduced clock network power and skew.

Latch and Clock Co-Design.Latch locations are critically important to chip timing

and dynamic power. We formalize the problem of optimizing latch locations for timing

and power as follows.

Definition IX.1 The Latch and Clock Co-Design Problem: Given a placed and opti-

mized circuit layoutG with l latches, a local clock buffer standard-cellLCB, a maximum

numberC of latches that can be driven by a local clock buffer, and a maximum distance

181

Coarse optimization

Unhide1

LCB cloning

Latch clustering

Net weighting

Global clockopt
placement

Unhide2

Opts after clockopt

Figure 9.2: The preexisting clock optimization flow exhibits several disruptive features.
During Unhide1, the last level of the clock network is exposed to timing anal-
ysis, but the latches are not yet optimized. LCB cloning creates additional
LCBs to limit the fanout of each LCB and latch clustering determines which
LCB will drive each latch. Global clockopt placement ignores existing loca-
tions when determining a new location for each gate. Timing is reasserted af-
ter placement in Unhide2. Finally, additional coarse optimization is performed
based on new timing conditions.

D > 0 between any latch and the local clock buffer that drives it, satisfy all of the fol-

lowing constraints and minimize the following objective. Insert⌈ l
C
⌉ copies ofLCB into

the design, so as to drive at mostC latches with eachLCB, and place them to mini-

mize latch displacement. Move any gates necessary so that latches are located within

the required distanceD > 0 from the local clock buffer that drives them. Minimize the

sum of displacements of gate locations in the new circuit layout H as compared toG,

∑

g∈G distance(location(G, g), location(H, g)).

Mercury is a state-of-the-art physical synthesis flow developed andused at IBM that

is optimized for ASIC designs with over a million standard cells. It achieves a fourfold

182

speed-up over previous approaches on designs that size. However, the Mercury flow was

not designed for high-performance blocks, and is still not used on small blocks. Instead,

the default flow for small blocks is referred to as thePerseusflow. Because LBS designs

are high-performance, we first tried adapting the Perseus flow, which was designed for

high-performance blocks. However, the runtime scaling implied that the largest LBS de-

signs would require over one day of runtime in physical synthesis alone, while the required

turn-around time for the entire flow is only 12 hours. In orderto achieve a speed-up on

LBS testcases, we applied the Mercury flow and enhanced it to deliver acceptable quality

of results. The Mercury flow is also inherently more gracefulthan the Perseus flow, be-

cause directly after global placement, it quickly fixes all electrical violations and returns

the timing environment to a meaningful state. Originally, the Perseus approach to electrical

correction alternated timing-driven buffer insertion andgate sizing. This flow experienced

convergence problems and was ineffective in fixing electrical violations. Placement causes

degradations by creating long wires with electrical violations, therefore we conclude that a

next-generation flow must include a post-placement clean-up step that specifically targets

electrical violations, to ensure graceful convergence.

9.3 Disruptive Changes in Physical Synthesis

Recall that physical synthesis begins with a gate-level netlist that is produced by logic

synthesis, then derives an optimized netlist and produces achip layout A number of sig-

nificant changes to the state of the design must occur while itis being processed. For

example, when physical synthesis begins, gate locations are unknown, and a global place-

ment algorithm must be invoked to find locations for all of thegates in the design. This is

183

a disruptive change that will create vital new information as well as invalidate previously

held assumptions. Whereas logic synthesis relies on crude timing models that abstract

way interconnect, accurate interconnect delay models usedafter placement are likely to

increase estimates of path delay. Whereas logic synthesis relies on crude timing models

that abstract way interconnect, accurate interconnect delay models used after placement

are likely to increase estimates of path delay. How a physical synthesis tool reacts to dis-

ruptive changes alters quality of results significantly. Inthis section, we discuss several

sources of disruptions during physical synthesis and specific disruptive changes.

Changes in the Accuracy of Interconnect-delay Models.RTL-to-GDSII design

methodologies begin with running logic synthesis on a roughRTL netlist. Then, a de-

signer inspects the output of the logic synthesis tool vis-`a-vis meeting timing constraints

under azero wire-load model. This sanity check ensures that physical synthesis is not

invoked on a design where gate delays alone violate timing constraints. Subsequently, the

netlist must be placed to facilitate interconnect delay estimation, e.g., usingElmore-delay

formulas. The availability of physical information and theemergence of interconnect de-

lays introduces a large disruption in timing estimates.

Uncertainties in Global Placement. In the example above, we pointed out that the

input to physical synthesis is unplaced, and thus a global placement algorithm must be

run before physical optimization can begin. From a physicalsynthesis perspective, the

primary shortfall in state-of-the-art global placement algorithms is that they do not fully

comprehend timing or electrical characteristics of gates and wires. Instead, they model

optimization of these circuit characteristics using wirelength, on the assumption that good

184

wirelength correlates with other objectives but is easier to optimize. As a result, timing and

electrical characteristics are often undermined by globalplacement, even on an optimized

netlist.1 Without improving multi-objective placement itself, avoiding this disruption in a

physical synthesis flow is very difficult.

Relocation of Latches Toward Local Clock Buffers. During synthesis, each clock

domain is given a singlelocal clock bufferto drive all the latches in that domain. However,

each LCB is limited by a maximum capacitance that it can drive, and so later in the flow

LCBs must be cloned in order to limit their fanout. This is notdone during synthesis,

since latch locations have not yet been determined. We wouldlike to minimize the total

length of clock interconnect between the LCB and the latchesit drives, and this requires

placement information. In order to limit the load driven by the LCB, and also reduce clock

skew, we place the latches very close to the LCBs. During LCB cloning, the latches are

grouped together intolatch clustersand moved adjacent to the LCB that drives them. Such

latch movement is disruptive in several ways, especially for the placement and timing of

critical paths. It is not uncommon to see the worst-slack path degrade from around -50ps

to below -1ns in response to this step. Minimizing latch movement is a key contribution

of this chapter.

Early Timing Estimates based on Ideal Clocks.Since there is no placement infor-

mation available directly after logic synthesis, a clock network cannot yet be routed. As

such, detailed analysis of clock skew is impossible, and we therefore calculate nominal

clock skews at latch pins withidealized clocks. Different methodologies synthesize clock

networks at different stages. However, in high-performance methodologies at IBM, we

1In state-of-the-art flows, placement can be invoked severaltimes following optimization.

185

consider the skew caused by the last level of the clock network after latches are placed and

LCBs are inserted. Nets with high load lead to high clock skew, which can cause a serious

disruption in timing, so the placement of latches and LCBs iscritical. However, realis-

tic clock networks are necessary to optimize the latch-to-latch paths while accounting for

clock skew. Therefore, our work seeks to minimize the unavoidable disruption in timing

due to realistic clock networks.

Simplified Slew Propagation.Static timing analysis is one of the largest consumers

of runtime during physical synthesis, taking about 40% of a typical physical synthesis run.

One of the techniques used to mitigate this expense is calledpin-slew propagation. In

pin-slew propagation, instead of slew rates being propagated along paths, the slew rate

used at a particular point is computed using adefault slew rateasserted on its fan-in gates,

and propagated through one level of logic. This allows changes to timing to propagate

only locally, which is considerably faster thanpath-slew propagation. However, this is

an approximation that results in a loss of accuracy. In orderto compensate, we switch

to path-slew propagation during a late high-accuracy optimization mode. At the switch

to path-slew, signal paths can experience major timing disruptions and become severely

critical. We therefore develop a technique to improve the accuracy of default slew rate to

mitigate this disruption.

9.4 A Graceful Physical-Synthesis Flow

In this section, we develop a next-generation physical-synthesis flow that reduces or

eliminates many of the disruptions and timing degradationsoutlined in the previous sec-

tion. Our research strategy is based on observing and analyzing specific timing degrada-

186

Coarse optimization

LCB cloning

Latch clustering

Expose LCB control timing

Incremental
clockopt placement

Unhide clocks LCB to latch

Add’l coarse optimization

Net weighting

LCB fanin optimization

Figure 9.3: Our next-generation clock optimization flow uses careful ordering of steps to
avoid the largest degradations. LCB cloning creates additional LCBs to limit
the fanout of each LCB and latch clustering determines whichLCB will drive
each latch, this is now done before clock timing is exposed. After many new
LCBs are inserted, the control signals that drive them are traveling over an
unoptimized high-fanout net. We optimize these control signals paths in LCB
fanin opt. Incremental clockopt placement moves gates as little as possible
when ensuring that latches are placed close to LCBs. Clocks timing is only
exposed after the LCB to latch load is reduced to acceptable levels. Finally,
coarse optimization based on mercury is performed.

tions. After understanding the emergence of such degradations, we first try to rearrange

relevant steps of the design flow and revise individual flow steps so as to avoid degrada-

tions. When avoidance is impossible, we attempt to resolve the degradations immediately

after observing them, using specialized design transformations. In the remainder of this

section, we describe the improvements that implement our general strategy.

Gradual Evolution of Clock Networks is paramount to our next-generation physical

synthesis flow and compliments techniques for latch placement proposed in previous chap-

ters. To this end, we observe that in order to improve clock skew in high-performance de-

187

clk

lcb_ctrl

(a)

clk

lcb_ctrl

(b)

clk

lcb_ctrl

(c)

clk

lcb_ctrl

(d)

Figure 9.4: An illustration of the flow in Figure 9.3. At the beginning of clock optimization
in (a) the clock is still idealized and latches are placed around the chip. In (b)
local clock buffers (LCBs) are cloned and used to drive several latches each.
To accommodate the timing impact of all the new LCBs, LCB control signals
are optimized in (c). Global placement then moves latches close to LCBs in
(d). Finally, leaf-level clock networks are inserted and clocks are unidealized.

sign blocks, it is important to place latches reasonably close to driving local clock buffers.

This step is performed during a stage of physical synthesis calledclock optimization, dur-

ing which realistic clock-network models are generated, LCBs are cloned, and latches are

placed close to LCBs. As described in the previous section, all of these changes are dis-

ruptive for timing closure, and significant care must be taken during this stage to ensure a

graceful flow.

The preexisting flow for this stage began by exposing the lastlevel of the clock net-

work, then performed LCB cloning and latch clustering, calculated net weights, and finally

performed a global placement step calledclockopt placement. This version of the flow is

188

more disruptive than necessary due to the ordering of optimizations. The main problems

are(i) the clocks are unhidden before the LCBs are cloned and latches are moved close

by, and thus the clock skews are very large2 and(ii) the net weights used for the global

placement are based on inaccurate timing estimates that result from unhiding the clocks

before optimization. This flow is illustrated in Figure 9.3(a).

We solve these problems through a careful reordering of optimizations that takes into

account which information is used by which step. In our new flow, which is shown in

Figure 9.3(b), the first step is to perform a new kind of LCB cloning and latch cluster-

ing, which is described below underLength-Constrained Latch Clustering. At this point,

we have changed the clock network significantly and this requires timing assertions to be

reread to get meaningful timing information. After that, inkeeping with the philosophy

that whenever we cause disruption we should repair it immediately, we introduce a new

step following LCB cloning and latch clustering called LCB fanin optimization. This new

step is designed to repair the damage caused by LCB cloning, and is described below un-

derLocal Clock Buffer Fanin Optimization.The timing should be completely recovered to

its previous state following LCB fanin optimization because the LCB control signals are

not high-performance signals. At this point net weighting is performed on a much more

appropriately optimized netlist, and a novel placement step called incremental clockopt

placement is performed as described below underIncremental Clockopt Placement.Fol-

lowing this placement step, LCBs are inserted and latches are placed near the LCBs, so as

to minimize the disruption caused by unhiding the clocks

2Before LCB cloning, all latches on the chip are driven by a single LCB with very high fanout, resulting
in very different latencies between different corners of the chip.

189

(a) (b) (c)

Figure 9.5: Adding LCBs (shown by vertical bars) reduces themaximum latch displace-
ment (thin lines). This behavior is controlled by two parameters(i) maximum
increase in the number of LCBs, as a percentage of the minimumnumber(ii)
maximum latch displacement, with(i) taking precedence over(ii). (a) The
minimum number of LCBs is 56 and the maximum latch displacement is high.
(b) By limiting parameter(i) to 12.5% we get a maximum of 63 LCBs, and
this noticeably reduces the maximum latch displacement. (c) We limit the
maximum latch displacement to a tight limit using parameter(ii) but relax
parameter(i) and end up with low latch displacement and 100 LCBs.

Idea 1: Length-Constrained Latch Clustering. At the beginning of the clockopt

stage, latches are placed without any clocking-related constraints using the techniques in

Chapter III. We consider these locations to be the ideal latch locations from a signal tim-

ing perspective, and try our best to preserve these locations through the clockopt stage.

However the LCBs must be cloned to limit the capacitance theydrive, and latches must

be placed close to the LCBs to reduce the clock skew. Therefore, we employ a geometric

clustering algorithm calledk-means which finds groups of closely-placed latches to be

driven by the same LCB [110]. Pseudocode for our algorithm isgiven in Figure 9.6. To

reduce the disruption caused by moving latches close to LCBs, we define a new parameter

190

CLUSTER-LATCHES

� Input: VLSI CircuitC , Maximum Number of Latches per LCBM
� Input: Number of LCBsK
� Output: Sets of Latch ClustersS , Maximum Latch DisplacementL

1 centers .ADD(center of gravity of all latches)
2 foreach(0 < i < K)
3 new center = LOCATION(latch that is the furthest from any point incenters)
4 centers .ADD(new center)
5 latch list = list of latches
6 sortlatch list by distance to any point incenters

7 while (!latch list .EMPTY())
8 closest center = CLOSEST-CENTER(centers, latch list .FRONT())
9 S [closest center].A DD(latch list .FRONT())

10 latch list .POP()
11 if (S [closest center].SIZE()≥M) � cluster is full
12 centers.REMOVE(closest center)
13 sortlatch list by distance to any point incenters

14 L = compute the maximum latch displacement for the clusters inS

CLUSTER-LATCHES-LENGTH-CONSTRAINT

� Input: VLSI CircuitC , Maximum Number of Latches per LCBM
� Input: Maximum Number of LCBsN , Latch-Displacement TargetD
� Output: Sets of Latch ClustersS

1 k = ceil(number of latches /M)
2 while (k < N and maximum latch displacement> D)
3 k = k + 1
4 (S , L) = CLUSTER-LATCHES(C , M , k)

Figure 9.6: An algorithm for length-constrained latch clustering.

maximum latch displacementand relax the constraint on the number of LCBs until no latch

is more than this distance from an its LCB. The result is a tunable trade-off between tim-

ing disruption caused by latch displacement, and additional clock buffers which consume

power and area. We have found empirically that, at the 32 nm node, latch displacement

can be reduced to<500 routing tracks at the cost of a 25% increase in LCB count.

Idea 2: Local Clock-Buffer Fanin Optimization. LCBs typically support anenable

signal or other control signals that are used for clock gating. After LCBs are cloned, all

of the new LCBs are connected to the same control signal that was driving the original

LCB. Immediately after LCB cloning, this net often experiences a severe timing violation

191

(a) (b)

Figure 9.7: Using incremental clockopt placement significantly reduces the disruption of
the clockopt placement step. In each plot, a vector indicates the movement of a
cell during the clockopt phase. Red vectors indicate displacements by over 500
tracks. Yellow, green and blue indicate 200, 100 and 50 tracks respectively.
(a) Displacement vectors for all cells resulting from traditional force-directed
placement. (b) Incremental placement reduces the number ofred vectors dras-
tically. Nearly all of the red vectors in this plot are due to latches which must
be moved far to get to the nearest LCB.

caused by the heavy load of the high fanout. In trying to ensure a graceful design flow,

we attempt to fix this unavoidable degradation immediately after it is created. To this end,

we have created a novel LCB fanin optimization step and applyit immediately after LCB

cloning. This step includes:(i) timing-driven gate placement for any logic in the control

of LCBs,(ii) timing-driven buffer insertion to optimize long nets that may be created and

(iii) timing-driven gate sizing to optimize the power levels of gates in the control logic.

We have found empirically that these three steps are sufficient to restore timing to the level

observed before LCBs were cloned.

Idea 3: Incremental Clockopt Placement. In the process of timing closure intro-

duced in Chapter II, physical synthesis is composed of iterations of(i) global placement,

(ii) timing optimization, and(iii) per-iteration net weighting guided by timing analysis.

192

However, running a complete global placement algorithm, albeit with new net weights

influenced by the previous optimization, is a powerful disruption to timing closure. In

the IBM Physical synthesis flow, the first iteration employs very coarse models and con-

straints, e.g., relaxing the legality constraint for placement into looser, grid-based bin-area

constraints. The second iteration uses more realistic models and requires a legal place-

ment. At the end of the second iteration, a new constraint is added, the tool must then

clone LCBs and move the latches near an LCB. In order to accomplish this with mini-

mal design disturbance, we temporarily add two-pin nets with high weights to connect

each latch to its driving LCB before global placement. Then,as global placement seeks

to minimize weighted net length, the fake nets cause it to move each latch closer to the

connected LCB, so as to shorten the fake nets. After placement, the fake nets are re-

moved. The latches must be moved next to an LCB even if this displacement is very large,

however, the bulk of remaining logic does not need to move far. Therefore, in order to

minimize timing disruptions, we develop a new placement technique calledincremental

clockopt placement, which begins with a set of locations and leverages a technique for

spreading and detailed placement callediterative local refinementon it [115–117]. This

technique begins with a placement solution and overlays a gridded tile structure through-

out the layout area. Gates located in a particular tile of this grid can be moved to one of

eight neighboring tiles so as to improve wirelength while maintaining gate density. Cru-

cially, we add amaximum movement thresholdbeyond which any displacement causes a

high penalty to be imposed in the wirelength cost function. This allows the placer to bring

the latches close to the LCBs, and allows the rest of the logicto adjust to the new locations

193

DESIGN
TECHNOLOGY INITIAL FINAL CYCLE DIMENSIONS

NODE(nm) #GATES #GATES TIME(ps) (µm)
LBS1 22 206369 251021 - 255495 1000 1000×900
LBS2 32 190777 234912 - 248370 328 1498×1930
LBS3 32 51159 64909 - 74525 230 378×499
LBS4 32 88835 103514 - 122659 390 1000×800
LBS5 32 22837 28238 - 29184 230 449×225
LBS6 32 17322 26613 - 28779 460 180×397

Table 9.1: Large-block synthesis benchmark characteristics. The FINAL #GATES column
shows the range of possible gate counts using data from experiments presented
in Tables 9.2 and 9.3.

of the latches, but prevents any large displacements in logic that will harm timing unnec-

essarily. The result is a significant reduction in total cellmovement, which ensures a more

graceful transition to tight latch clusters.

9.5 Empirical Validation

In order to validate our proposed methodology we ran the physical synthesis tool PDS

(commonly used at IBM) in various configurations to isolate individual flow improvements

presented in the previous section. We used LBS microprocessor designs being developed

at IBM for 32nm and 22nm technology nodes. Table 9.1 shows that our benchmarks range

in size from 17,322 to 206,369 standard cells before optimization. Physical synthesis

then inserts between 16.52% and 66.14% more cells during optimization, with a median

value of 27.33%. The increase is mostly due to buffers and inverters, but specific numbers

depend on local resynthesis and technology mapping. The performance requirements of

these blocks are also an important characteristic, with target clock frequencies ranging

from 1GHz to 4.35GHz.

194

Implementation Insight: Default Slew Percentile.The common practice in comput-

ing a default slew rate is to sample the slew rates of the top critical pins. For example,

one might calculate slew rates of the 800 most critical pathsand use the average as the

new default slew rate. Because we observe a degradation whenswitching to path-slew

mode, we note that this must be an optimistic slew rate for those paths that are harmed,

and we seek to make this estimate more pessimistic. Taking a larger set of pins to sample

from is likely to increase optimism because we are examiningthem in most-critical-first

order. Reducing the sample set will likely increase pessimism, but increase sensitivity and

uncertainty that will make the result unstable. Instead, wepropose to automatically set the

threshold for slew rate averaging as a certain percentile ofpin slew rates (this threshold

can be computed in linear time using thenth-elementalgorithm available in the C++ Stan-

dard Template Library). For example, if default slew rate percentile is set to 10%, and we

sample 500 pins, we will take the 50th worst slew rate from thesample set. After studying

this parameter, we have found that 35 percentile is the best value to eliminate degradations

when switching to path-slew mode. However, this pessimism must not be too great, for

this would cause unexpected timing improvement at the switch to path-slew mode. This

situation is problematic because earlier optimizations work hard to solve timing problems

that disappear upon more accurate analysis, which wastes runtime, area and power.

Empirical Results. In Table 9.2 we compare the Perseus baseline to the following

additions(i) only Mercury,(ii) only force-directed placement (FDP), and(iii) only grad-

ual evolution of clock networks. In these designs we comparecircuit performance metrics

including the worst slack path in the design, andΦ, the sum of slacks below a threshold,

195

DESIGN MODE TIME WORSTSLACK Φ WL AREA

LBS3

Baseline 40844 -76.641 -4203 1.43e7 0.5345
Mercury 26578 -25.680 -384 1.45e7 0.4965
FDP 37929 -55.015 -1519 1.32e7 0.5076
Clockopt 37785 -7.536 -1214 1.41e7 0.5693

LBS4

Baseline 54442 -158.345 -81110 2.57e7 0.9942
Mercury 41726 -189.391 -58881 2.47e7 0.9420
FDP 52939 -167.016 -67799 2.41e7 1.0091
Clockopt 56396 -148.050 -53442 2.04e7 0.8838

LBS5

Baseline 15274 -97.544 -6078 6.93e6 0.2382
Mercury 9449 -98.374 -6293 6.98e6 0.2423
FDP 16196 -82.391 -6288 6.87e6 0.2380
Clockopt 13498 -87.287 -6265 6.80e6 0.2373

LBS6

Baseline 18476 -103.142 -16335 5.40e6 0.2218
Mercury 13265 -89.288 -15300 5.74e6 0.2213
FDP 18325 -88.207 -11755 5.14e6 0.2143
Clockopt 19182 -103.682 -13958 5.05e6 0.2167

Average
Mercury 1.46X -14.87% -30.27% 1.18% -2.72%

Improvement
FDP 1.03X -13.19% -26.21% -4.93% -1.75%
Clockopt 1.04X -26.67% -29.18% -7.59% -1.82%

Table 9.2: The impact of individual components in the graceful flow. TIME is the runtime
of physical synthesis in seconds. WORSTSLACK is slack of the worst path in
the circuit in picoseconds.Φ is calculated as in Equation IX.1 and is expressed
in picoseconds. WL is the sum of half-perimeter wirelengthsand is expressed
in routing tracks.

which is computed as follows considering every timing endpoint i:

Φ =
∑

i

min(0, worst slack(i)− slack target) (IX.1)

Where slack-target is an input parameter to physical synthesis.

From the data in Table 9.2 we observe the following:

• Mercury accounts for nearly all of the speed-up of this flow. It does not achieve

the fourfold speed-up observed for million-gate designs, but a 1.42× speed-up is

significant for these designs which can take half a day.

• The use of force-directed placement adds stability to the flow and contributes a sig-

196

DESIGN MODE TIME WORSTSLACK Φ WL AREA

LBS1
Baseline 54105 -76.943 -1635 7.10e7 1.52
Gradual 45753 -72.229 -367 6.73e7 1.55

LBS2
Baseline 41106 -128.605 -2004 8.97e7 1.84
Gradual 42959 -56.667 -2276 9.65e7 1.96

LBS3
Baseline 25906 -28.102 -862 1.39e7 0.52
Gradual 12846 -3.362 -66 1.39e7 0.44

LBS4
Baseline 30691 -153.924 -51674 2.55e7 0.99
Gradual 22281 -70.667 -20025 2.05e7 0.73

Average
1.22X -51.04% -54.39% -12.34% -11.49%

Improvement

Table 9.3: The impact of our graceful flow on key design parameters. TIME is the runtime
of physical synthesis in seconds. WORSTSLACK is slack of the worst path in
the circuit in picoseconds.Φ is calculated as in Equation IX.1 and is expressed
in picoseconds. WL is the sum of half-perimeter wirelengthsand is expressed
in routing tracks.

nificant improvement in wirelength.

• Gradual clockopt results in a significant wirelength reduction as a result of calcu-

lating net weights based on a netlist optimized for timing after LCB cloning. This

good timing result is a direct consequence of avoiding degradation in our graceful

flow.

• Each component provides a significant overall improvement in terms of timing and

area metrics.

In our next experiment we compare the baseline Perseus flow with our entire method-

ology combining all of the features presented in this Chapter. The results are shown in

Table 9.3. We observe the following

• Every testcase demonstrates an improvement in worst slack.

• Both worst slack andΦ average improvements are large, validating that the graceful

197

methodology is an effective method to improve a timing closure flow.

• Area gains are inconsistent, but reductions of at least 10% in cell area typically lead

to reduced power, lower routing congestion and the potential for more aggressive

floorplanning in future designs.

• Significant wirelength reductions alleviate demand for routing resources, resulting

in improved routing congestion and improved downstream design closure.

• All metrics show strong improvement as a result of our methodology.

These experiments demonstrate the impact of each componentin our methodology,

and show that they ultimately translate into strong improvements in primary metrics of

circuit performance and cost.

9.6 Conclusions

In this chapter we have introduced a new strategy to mitigateand eliminate disruptive

changes in a physical synthesis flow. In implementing this strategy, we have identified

key timing degradations that occur when new design parameters are introduced during

physical synthesis. We then carefully revised relevant steps of the flow, made changes to

the ordering of steps, and developed new optimization algorithms that were subsequently

integrated into the overall flow. Our contributions are evaluated in the context of an indus-

trial physical synthesis flow at IBM and several recent, large commercial IC designs that

defied previous-generation physical synthesis tools. On the most challenging design type

available to us, large-block synthesis designs, our flow achieves double-digit (percentage)

improvements in all major circuit metrics considered.

198

CHAPTER X

Conclusions and Future Work

A physical synthesis flow reads a mapped netlist produced by logic synthesis, then

computes physical locations for gates and improves the performance of the circuit, un-

til timing constraints are met. We observe that state-of-the-art flows consist of a series

of optimizations that operate at two distinct scales, near-linear time algorithms that ap-

ply to the whole netlist, and more expensive transformations that typically operate on a

handful of gates or interconnections. Such a limited view ofthe solution space of circuit

optimization leaves many transformations vulnerable to becoming trapped in local min-

ima. We observe this phenomenon on large, high-performancedesigns and improve upon

the state of the art by integrating optimizations that are traditionally applied separately.

Our novel transformations achieve broad opportunities forincreased circuit performance

and can handle larger design subsections than existing physical-synthesis transformations,

thereby extending the scope of optimization. Given that theplacement of sequential el-

ements is a critical factor to the success of timing closure,we develop a next-generation

timing-closure flow that improves the placement of sequential elements and facilitates the

synthesis of high-performance clock networks.

199

10.1 Summary of Results

In this dissertation, we make several contributions that advance the strength and capabili-

ties of modern software tools for IC physical synthesis, with the ultimate goal to improve

the quality of leading-edge semiconductor products. Starting with narrowly-focused op-

timizations, we identified obstacles to further improvements in circuit performance and

addressed these obstacles with more powerful integrated transformations that outperform

chained individual optimizations. Scalability was achieved in this approach by mapping

circuit transformations to formal mathematical optimizations and through the use of effi-

cient analytical delay models. To further improve the scopeand efficiency of such hybrid

transformations we developed robust computational infrastructure and powerful circuit-

analysis tools. Despite these enhancements, hybrid transformations remain somewhat ex-

pensive, motivating the development of divide-and-conquer frameworks that can handle

large IC designs. When integrating our new transformationsinto the physical-synthesis

infrastructure at IBM, we realized that these optimizations with increased scope tend to in-

troduce disruptions into the design flow, and these disruptions adversely affect end results.

We therefore developed a next-generation physical-synthesis flow that ensures a graceful

improvement of key design parameters. Specific contributions are itemized below.

Simultaneous placement and buffering.

At advanced technology nodes, multiple cycles are requiredfor signals to cross the

chip, making latch placement critical to timing closure. The problem is intertwined with

buffer insertion because the placement of such latches depends on the location of buffers

200

on adjacent interconnect. In Chapter III we detail our linear-programming-based algo-

rithm to compute the optimal location of pipeline latches under a linear interconnect delay

model [83, 84]. We then extend our algorithm to move nearby combinational logic gates

to improve the effectiveness and applicability of this approach to simultaneous placement

and buffering. Experimental results validate our transformation — our techniques improve

slack by 41.3% of cycle time on average for a large commercialASIC design.

Bounded transactional timing analysis.

As local circuit optimizations become increasingly multi-objective in modern physical

synthesis flows, a tighter interaction between optimization algorithms and timing analysis

is necessary. Such optimizations must employ heuristics tosearch for good implementa-

tions of subcircuits, but timing analysis offers no supportfor retracting circuit modifica-

tions [85,86]. In Chapter IV we describe our extension to traditional static timing analysis

that records a history of incremental network delay computations in a stack-based data

structure, so that the timing can be returned to a previously-known state upon retraction

of a circuit modification. It also explicitlyboundsthe scope of propagation to a local win-

dow in anticipation of retraction. These extensions greatly improve the performance of

static timing analysis for local circuit modifications in the presence of retraction. For the

classical variant of STA, our experimental results demonstrate an improvement of up to

246×, while a factor of up to5.2× is achieved as compared to common lazy evaluation

techniques.

201

Simultaneous placement and gate sizing in a discrete domain.

Gate locations that optimize timing depend on boundary timing conditions in the lo-

cal subcircuit. Similarly, the optimal drive strength of a gate depends on the input slew

rate and output capacitance. But these two problems are related because the output ca-

pacitance of a gate depends upon the length of interconnect it drives. Given a set of

discrete candidate locations and power levels, we formulate thepath smoothing problem

in terms of adisjunctive timing graph, and develop a computation of optimal locations

by incorporating a generalization of static timing analysis into an efficient branch-and-

bound framework [74]. Empirically, our approach consistently improves solution quality

in a large-scale modern industrial benchmark. Experimental results in Chapter V indicate

that the techniques used in this chapter are accurate enoughto improve the critical path

optimization and slack-histogram compression stages of physical synthesis.

Timing-driven gate cloning for interconnect optimization.

In a complete physical synthesis flow, optimization transformations that can improve

the timing on critical paths that are already well-optimized by a series of powerful transfor-

mations (timing driven placement, buffering and gate sizing) are invaluable. We develop

an innovative gate cloning technique to improve interconnect delay on critical paths dur-

ing physical synthesis [66]. Using the buffer-aware interconnect timing model introduced

in Chapter III, new polynomial-time optimal algorithms arepresented for timing-driven

cloning, including finding both optimal sink partitions (identifying the fan-outs) for the

original and the duplicated gates, as well as physical locations for both gates. In par-

ticular, for a gateg with m fanouts, Chapter VI describes in detail two polynomial-time

202

algorithms. For the case wheng is fixed, we present anO(m)-time optimal algorithm

to maximize the worse slack ofg. for the case when theg is movable, and one for the

case wheng is movable. Ifg is fixed, ourO(m log m)-time algorithm maximizes the

worst-slack ofg. For one hundred testcases at the 45nm technology node, we demonstrate

significant timing improvement due to our cloning techniques as compared to other ex-

isting timing-optimization transformations. Extensionsto handle other optimizations and

constraints, such as wirelength, total negative slack and placement obstacles are further

discussed.

Simultaneous performance-driven retiming, placement, buffering and logic cloning.

One of the most common situations in which the latch placement techniques of Chapter

III are insufficient is a critical path wherein moving a gate immediately next to its most-

critical input is the optimal solution but does not meet timing constraints. For example,

when relocating the latch adjacent to its only input still violates a setup time constraint.

We develop SPIRE, a new physical synthesis transformation that simultaneously incorpo-

rates retiming, gate relocation, gate duplication, and buffer insertion to improve this situa-

tion [82]. The need for SPIRE is demonstrated by example, motivating the integration of

all considered techniques to meet timing constraints. SPIRE improves the performance of

partitions in a high-performance microprocessor design. Empirical results on 45nm mi-

croprocessor designs show8% improvement in worst-case slack and69% improvement in

total negative slackafteran industrial physical synthesis flow was already completed.

203

Broadening the scope of physical-synthesis optimization using partitioning.

The optimizations developed in this dissertation extend physical-synthesis transforma-

tions beyond a handful of gates. Unfortunately, the computational complexity of such

optimizations makes them too inefficient to apply to entire netlists of large ASIC and SoC

designs. Therefore, we develop a technique to identify appropriately-sized subsets of large

designs on which our transformations can be applied efficiently. Our method utilizes ex-

isting hypergraph partitioning algorithms to divide the circuit in a top-down fashion until

the subsets are the desired size. Empirical results demonstrate that this technique can work

in practice and illustrate a run-time solution quality trade-off for SPIRE, the transforma-

tion developed in this dissertation that can optimize subcircuits with thousands of standard

cells.

Co-Optimization of Latches and Clock Networks in Large-Block Physical Synthesis.

Optimizations developed in this dissertation affect nearly every stage of a typical indus-

trial state-of-the-art physical-synthesis flow. In order to obtain synergies between them,

we explore the infrastructure for physical synthesis used by IBM for large commercial

microprocessor designs. We focus our attention on a very challenging high-performance

design style called large block synthesis (LBS). In such designs latch placement is criti-

cal to the performance of the clock network, which in turn affects chip timing and power.

Our research uncovers deficiencies in state-of-the-art physical synthesis flows vis-à-vis

latch placement that result in timing disruptions and hamper design closure. We introduce

a next-generation EDA methodology that seeks a more graceful timing-closure process.

This is accomplished through careful latch placement and clock-network routing to(i)

204

Early Planning

Logic Synthesis

Global Placement

Floorplanning

Electrical Correction

Legalization

Timing Analysis

Detail Placement

Critical-path Optimization

Histogram CompressionGlobal Routing

Detail Routing

Design for Manufacturing

Timing-driven Net Weighting

Timing Constraints Met?Y

N

Clock-network Synthesis

3

3

4

5

5 6 7 9

9

9

9

9

Figure 10.1: The optimizations in this dissertation improve nearly every stage of a state-
of-the-art physical synthesis flow. For example, we illustrate that Chapter IV
deals with Timing Analysis by a adding a circled 4 to that stepin the flow.

avoid timing degradation where possible, and(ii) immediately recover from unavoidable

timing disruptions. Our methodology leads to double-digitimprovements in key circuit

parameters of large CPU designs developed at IBM.

10.2 Future Work

The transformations developed in our work, along with prerequisite circuit analysis

techniques, have significantly improved the quality of modern very large-scale integrated

circuits developed at IBM. Much of this improvement is due tocareful integration into a

graceful physical-synthesis flow described in Chapter IX. Further work can address the

following challenges.

Dealing with modern interconnect.

With the explosion in the number of design rules, metal layers, and different routing

205

pitches at advanced CMOS technology nodes, routing congestion is an increasing design

challenge and layer assignment significantly affects delayestimation. The use of RUM-

BLE (Chapter III) must take into account preexisting layer assignments. Areas with high

wiring congestion may necessitate detours of critical interconnects, impacting circuit per-

formance and jeopardizing timing closure. Therefore, routing demand and layer assign-

ment must be analyzed early in physical synthesis and tracked through the physical syn-

thesis flow in response to certain types of circuit transformations. We see an opportunity

to formalize the handling of routing congestion in timing closure and develop effective

benchmarks and algorithmic solutions [81]. As a first step, gate-placement techniques

from Chapters III and VII can be extended to avoid congested areas. More sophisticated

methods may be required in the methodology of Chapter IX especially when dealing with

clock trees and latch clusters.

Optimizing power.

Observe that in high-performance microprocessor designs,clock distribution is respon-

sible for a large fraction of power consumption. We believe that our techniques described

in Chapter IX improve not only circuit performance, but alsopower consumption. Con-

figuring an environment for rigorous evaluation of power characteristics is an important

direction for future work.

Global placement to improve sequential slack.

Our transformations described in Chapter VII make heavy useof physical retiming to

improve combinational slack of circuits in question. This optimization was combined with

206

placement, buffering and logic cloning. A further opportunity is to perform global place-

ment so as to increase thepotential for such improvements. This potential is expressed

by the metric known assequential slack[46]. Optimizing sequential slack during place-

ment can provide improved opportunities for clock skew scheduling and retiming, and

thus further broadens the scope of physical synthesis optimization. We expect that new

global placement algorithms that optimize sequential slack can increase the applicability

and effectiveness of retiming transformations developed in Chapter VII.

Handling of large macros and intellectual property (IP) blocks.

With billions of transistors integrated into a single chip,design complexity becomes a

major challenge, as it defies the efforts of the best engineers and the capabilities of most

recent software tools. One method to limit that complexity is to reuse design components

in the form of IP blocks, but placement of such blocks is stilllargely done manually today.

Such blocks typically incorporate latches immediately before and after primary outputs

and inputs. Therefore, one bottleneck in circuit performance is the slowest sequential path

between two such blocks. Incorporating this information into floorplanning and global

placement algorithms is a significant opportunity to improve the design automation and

performance of complex SoC designs [3,90,93].

Parallel processing.

Parallel processing is currently pursued by most developers of EDA software tools.

Techniques proposed in this dissertation lend themselves naturally to such extensions. In

particular, Chapter IV outlines parallel extensions for bounded transactional timing anal-

207

ysis. Chapter VII solves MILPs using the CPLEX tool in multi-core mode. Chapter VIII

develops divide-and-conquer techniques for physical synthesis that partition the netlist and

can spawn parallel computing tasks. Further incorporatingour new transforms into physi-

cal synthesis tools and exploiting their inherent parallelism will improve the speed of next

generation hardware as well as the physical synthesis toolsused to design them.

Dealing with process variability.

To account for the impact of variations in the manufacturingprocess, IBM has de-

veloped a robust statistical timing environment called EinStat [118]. However, statistical

timing analysis is currently only used for sign-off timing,whereas optimization relies on

the more conventional static timing analysis tool EinsTimer. Extending statistical timing

analysis with features from Chapter IV and incorporating itinto physical-synthesis trans-

formations (e.g., from Chapters V and VI) will likely reducepessimism in early design

stages, accelerate timing closure, increase chip yield andreduce manufacturing cost.

208

BIBLIOGRAPHY

209

BIBLIOGRAPHY

[1] R. P. Abato, A. D. Drumm, D. J. Hathaway, and L. P. P. P. van Ginneken, “US Patent
5,508,937: Incremental Timing Analysis,” 1996.

[2] A. Abou-Seido, B. Nowak and C. Chu, “Fitted Elmore Delay:A Simple and Accu-
rate Interconnect Delay Model,”IEEE Trans. on VLSI Systems, vol. 12, no. 7, pp.
691-696, 2004.

[3] S. N. Adya, S. Chaturvedi, J. A. Roy, D. A. Papa and I. L. Markov, “Unification of
Partitioning, Floorplanning and Placement,”ICCAD 2004, pp. 550-557.

[4] A. H. Ajami and M. Pedram. “Post-Layout Timing-Driven Cell Placement Using
an Accurate Net Length Model with Movable Steiner Points,”ASP-DAC2001, pp.
595-600.

[5] C. J. Alpert et al., “Fast and Flexible Buffer Trees that Navigate the Physical Layout
Environment,”DAC2004, pp. 24-29.

[6] C. J. Alpert et al., “Accurate Estimation of Global Buffer Delay Within a Floorplan,”
IEEE Trans. on TCAD, vol. 25, no. 6, pp. 1140-1146, 2006.

[7] C. J. Alpert et al., “Techniques for Fast Physical Synthesis,” in Proc. of IEEE, 2007,
vol. 95, no. 3, pp. 573-599, 2007.

[8] C. J. Alpert, C. Chu, and P. G. Villarrubia, “The Coming ofAge of Physical Synthe-
sis,” ICCAD 2007, pp. 246-249.

[9] C. J. Alpert, A. Devgan and C. V. Kashyap, “RC Delay Metrics for Performance
Optimization,”IEEE Trans. on CAD, vol. 20, no. 5, pp. 571-582, 2001.

[10] C. J. Alpert, A. Devgan and S. T. Quay, “Buffer Insertionwith Accurate Gate and
Interconnect Delay Computation,”DAC1999, pp. 479-484.

[11] C. J. Alpert, F. Liu, C. V. Kashyap and A. Devgan, “Closed-form delay and slew
metrics made easy,”IEEE Trans. on CAD, vol. 23, no. 12, pp. 1661-1669, 2004.

[12] R. Baldick, A. B. Kahng, A. A. Kennings and I. L. Markov, “Efficient Optimization
by Modifying the Objective Function,”IEEE Trans. on Circuits and Systems, vol. 48,
no. 8, pp. 947-957, 2001.

210

[13] D. Bañeres, J. Cortadella and M. Kishinevsky,“Layout-Aware Gate Duplication and
Buffer Insertion,” inDATE2007, pp. 1367-1372.

[14] K. D. Boese, A. B. Kahng, and S. Muddu, “New Adaptive Multistart Techniques for
Combinatorial Global Optimizations,”Operations Research Letters, vol. 16, no. 2,
pp. 101-113, 1994.

[15] U. Brenner, A. Pauli, and J. Vygen, “Almost Optimum Placement Legalization by
Minimum Cost Flow and Dynamic Programming,”ISPD2004, pp. 2-9.

[16] D. Bronnenberg, “Static Timing Analysis Increases ASIC Performance,”Integr. Sys.
Dessign, June 1999.

[17] M. Burstein and M. N. Youssef, “Timing Influenced LayoutDesign,” DAC 1985,
pp. 124-130.

[18] K.-H. Chang, I. L. Markov, and V. Bertacco, “Safe Delay Optimization for Physical
Synthesis,”ASP-DAC2007, pp. 628–633.

[19] T. H. Chao et al., “Zero Skew Clock Routing with Minimum Wirelength,” IEEE.
Trans. on CAS, vol. 39, no. 11, pp. 799–814, 1992.

[20] W. Chen, C.-T. Hsieh, and M. Pedram. “Simultaneous GateSizing and Placement,”
IEEE Trans. on CAD, vol. 19, no. 2, pp. 206-214, 2000.

[21] C. Chen and C. Tsui,“Timing Optimization of Logic Network Using Gate Duplica-
tion,” ASP-DAC1999, pp. 233-236.

[22] G. Chen and J. Cong,“Simultaneous Timing-Driven Placement and Duplication,”
ISFPGA2005, pp. 51-59.

[23] Y. Cheon, P.-H. Ho, A. B. Kahng, S. Reda and Q. Wang, “Power-Aware Placement,”
DAC2005, pp. 795-800.

[24] W. Choi and K. Bazargan, “Incremental Placement for Timing Optimization,” IC-
CAD 2003, pp. 463-466.

[25] Y.-C. Chou and Y.-L. Lin, “A Performance-Driven Standard-Cell Placer Based on a
Modified Force-Directed Algorithm,”ISPD2001, pp. 24-29.

[26] A. Chowdhary et al., “How Accurately Can We Model TimingIn A Placement En-
gine?,”DAC2005, pp. 801-806.

[27] C. C. N. Chu and Y.-C. Wong, “FLUTE: Fast Lookup Table Based Rectilinear Steiner
Minimal Tree Algorithm for VLSI Design,”IEEE Trans. on CAD, vol. 27, no. 1, pp.
70-83, 2008.

[28] P. Cocchini, “Concurrent Flip-Flop and Repeater Insertion for High Performance
Integrated Circuits,”ICCAD 2002, pp. 268-273.

211

[29] J. Cong, L. He, C.-K. Koh and P. H. Madden, “Performance Optimization of VLSI
Interconnect Layout,”Integration: the VLSI Journal, vol. 21, pp. 1-94, 1996.

[30] D. Daset al., “FA-STAC: A Framework for Fast and Accurate Static Timing Analysis
with Coupling,” ICCD 2006.

[31] A. D. Drumm, R. C. Itskin, and K. W. Todd, “US Patent 5,003,487: Method and
Apparatus for Performing Timing Correction Transformations on a Technology-
Independent Logic Model During Logic Synthesis,” 1991.

[32] W. E. Donath and D. J. Hathaway, “US Patent 6,202,192: Distributed Static Timing
Analysis,” 2001.

[33] W. E. Donath and D. J. Hathaway, “US Patent 6,557,151: Distributed Static Timing
Analysis,” 2003.

[34] W. E. Donath, P. Kudva, L. Stok, P. Villarrubia, L. N. Reddy, A. Sullivan, and
K. Chakraborty, “Transformational Placement and Synthesis,” DATE2000, pp. 194-
201.

[35] K. Eguro and S. Hauck, “Enhancing Timing-Driven FPGA Placement for Pipelined
Netlists,”DAC2008, pp. 34-37.

[36] C. M. Fiduccia and R. M. Mattheyses, “A Linear-Time Heuristic for Improving Net-
work Partitions,”DAC1982, pp. 175-181.

[37] P. Fišer and J. Schmidt, “It Is Better to Run Iterative Resynthesis on Parts of the
Circuit,” IWLS2010, pp. 17-24.

[38] Y. Gao and D. F. Wong, “A Graph Based Algorithm for Optimal Buffer Insertion
Under Accurate Delay Models,”DATE2001, pp. 535-539.

[39] R. Goering, “Timing Analysis Needs Overhaul, Speaker Says,”EE Times(February,
2005).

[40] B. Halpin, C. Y. R. Chen and N. Sehgal, “Timing Driven Placement Using Physical
Net Constraints,”DAC2001, pp. 780-783.

[41] D. Hill. “Method and System for High Speed Detailed Placement of Cells Within an
Integrated Circuit Design,”US patent 6370673, 2002.

[42] R. B. Hitchcock, G. L. Smith, and D. D. Cheng, “Timing Analysis of Computer
Hardware,” IBM Journal of Research and Development1983, vol. 26, no. 1, pp.
100-105.

[43] hMETIS: http://www-users.cs.umn.edu/ ˜ karypis/metis/hmetis/

[44] B. Hu, Y. Zeng and M. Marek-Sadowska, “mFAR: Fixed-Points- Addtion-Based
VLSI Placement Algorithm”,Proc. ISPD2005, pp. 239-241.

212

[45] Y. Hu et al., “Simultaneous Time Slack Budgeting and Retiming for Dual-Vdd FPGA
Power Reduction,”DAC2006, pp. 478-483.

[46] A. Hurst, P. Chong, A. Kuehlmann, “Physical Placement Driven by Sequential Tim-
ing Analysis,”ICCAD 2004, pp. 379-386.

[47] J. Hwang and A. El Gamal,“Optimal Replication for Min-Cut Partitioning,”ICCAD
1992, pp. 432-435.

[48] International Technology Roadmap for Semiconductors, 2001 edition. [Online].
Available: http://public.itrs.net.

[49] International Technology Roadmap for Semiconductors, 2009 edition. [Online].
Available: http://www.itrs.net/.

[50] M. A. B. Jackson and E. S. Kuh, “Performance-driven Placement of Cell Based IC’s,”
DAC1989, pp. 370-375.

[51] J. A. G. Jess et al.,“Statistical Timing for ParametricYield Prediction of Digital In-
tegrated Circuits,”IEEE Trans. on CAD, vol. 25, no. 11, pp. 2376-2392, 2006.

[52] A. B. Kahng, S. Mantik, and I. L. Markov, “Min-Max Placement for Large-Scale
Timing Optimization,”ISPD2002, pp. 143-148.

[53] A. B. Kahng and I. L. Markov, “Min-max Placement for Large-scale Timing Opti-
mization,” ISPD2002, pp. 143-148.

[54] L. N. Kannan, P. R. Suaris, and H.-G. Fang, “A Methodology and Algorithms for
Post-Placement Delay Optimization,”DAC1994, pp. 327-332.

[55] M. A. Kazdaet al., “US Patent Application 20080209376: System and Method for
Sign-Off Timing Closure of a VLSI Chip,” 2008.

[56] A. A. Kennings and I. L. Markov, “Smoothening Max-termsand Analytical Mini-
mization of Half-Perimeter Wirelength,”VLSI Design, vol. 14, no. 3, 2002, pp. 229-
237.

[57] H. Kim, J. Lillis and M. Hrkić,“Techniques for Improved Placement-Coupled Logic
Replication,”GLSVLSI, pp. 211-216, 2006.

[58] J. Kleinhans, G. Sigl, F. Johannes and K. Antreich, “GORDIAN: VLSI Placement
by Quadratic Programming and Slicing Optimization”,IEEE Trans. on CAD, vol.
10, no. 3, pp. 356-365, 1991.

[59] T. T. Kong, “A Novel Net Weighting Algorithm for Timing-driven Placement,”IC-
CAD 2002, pp. 172-176.

[60] R. Kužnar and F. Brglez, “PROP: A Recursive Paradigm for Area-Efficient and Per-
formance Oriented Partitioning of Large FPGA Netlists,” inICCAD 1995, pp. 644-
649.

213

[61] K. N. Lalgudi, M. Papaefthymou “Retiming Edge-triggered Circuits under General
Delay Models,”ICCAD 1997, pp. 1393-1408.

[62] J. fuw Lee and D. T. Tang, “An Algorithm for Incremental Timing Analysis,”DAC
1995, pp. 696-701.

[63] D. Lee, D. Blaauw, and D. Sylvester, “Static Leakage Reduction Through Simul-
taneous Vt/Tox and State Assignment,”IEEE Trans. on CAD, vol. 24, no. 7, pp.
1014-1029, 2005.

[64] W. N. Lee, “Strongly NP-Hard Discrete Gate Sizing Problems,” ICCD 1993, pp.
468-471.

[65] C. E. Leiserson, J. B. Saxe, “Retiming Synchronous Circuitry,” Algorithmica, no. 6,
pp. 5-35, 1991.

[66] Z. Li, D. A. Papa, C. J. Alpert, S. Hu, W. Shi, C. N. Sze and Y. Zhou, “Ultra-fast
Interconnect Driven Cell Cloning for Minimizing Critical Path Delay,”ISPD2010,
pp. 75-82.

[67] Z. Li, C. N. Sze, C. J. Alpert, J. Hu and W. Shi, “Making Fast Buffer Insertion Even
Faster via Approximation Techniques,”ASP-DAC2005, pp. 13-18.

[68] J. Lillis, C. K. Cheng and T. Y. Lin,“Algorithms for Optimal Introduction of Redun-
dant Logic for Timing and Area Optimization,” inISCAS1996, pp. 452-455.

[69] T. Luo, D. Newmark and D. Z. Pan, “A New LP Based Incremental Timing Driven
Placement for High Performance Designs,”DAC 2006, pp. 1115-1120.

[70] T. Luo and D. A. Papa and Z. Li and C. N. Sze and C. J. Alpert and D. Z. Pan, “Pyra-
mids: An Efficient Computational Geometry-based Approach for Timing-driven
Placement,” inICCAD 2008, pp. 204-211.

[71] R. E. Mainset al., “Timing Verification and Optimization for the PowerPC Processor
Family,” ICCD 1994, pp. 390-393.

[72] M. Marek-Sadowska and S. P. Lin, “Timing Driven Placement,” in ICCAD, 1989, pp.
94-97.

[73] A. Marquardt, V. Betz, and J. Rose. “Timing-Driven Placement for FPGAs,”Proc. of
FPGA2000, pp. 203-213.

[74] M. D. Moffitt et al., “Path Smoothing via Discrete Optimization,”DAC, 2008,
pp. 724–727.

[75] M. D. Moffitt, M. E. Pollack, “Optimal Rectangle Packing: A Meta-CSP Approach,”
ICAPS2006, pp 93-102.

[76] A. Mondal, P. P. Chakrabarti and C. R. Mandal, “A New Approach to Timing Anal-
ysis Using Event Propagation and Temporal Logic,”DATE2004, pp. 1198-1203.

214

[77] R. Nair, C. Berman, P. Hauge and E. Yoffa, “Generation ofPerformance Constraints
for Layout,” TCAD8(8), 1989, pp. 860-874.

[78] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter and M.C Yildiz, “The ISPD2005
Placement Contest and Benchmark Suite,”ISPD2005, pp. 216-220.

[79] R. Otten, “Global Wires Harmful?,”ISPD, 1998, pp. 104-109.

[80] S. L. Ou and M. Pedram, “Timing-Driven Placement Based on Partitioning with
Dynamic Cut-Net Control,”DAC, 2000, pp. 472-476.

[81] D. A. Papa, S. N. Adya and I. L. Markov, “Constructive Benchmarking for Place-
ment,”GLSVLSI2004, pp. 113-118.

[82] D. A. Papa, S. Krishnaswamy and I. L. Markov, “SPIRE: A Retiming-based Physical-
Synthesis Transformation System,”ICCAD 2010.

[83] D. A. Papa et al., “RUMBLE: An Incremental, Timing-Driven, Physical-Synthesis
Optimization Algorithm,”ISPD2008, pp. 2-9.

[84] D. A. Papa, T. Luo, M. D. Moffitt, C. N. Sze, Z. Li, G.-J. Nam, C. J. Alpert and I. L.
Markov, “RUMBLE: An Incremental, Timing-Driven, Physical-Synthesis Optimiza-
tion Algorithm,” IEEE Trans. on CAD2008, vol. 27, no. 12, pp. 2156-2168.

[85] D. A. Papa, M. D. Moffitt, C. J. Alpert and I. L. Markov, “Bounded Transactional
Timing Analysis,”Tau2010.

[86] D. A. Papa, M. D. Moffitt, C. J. Alpert and I. L. Markov, “Speeding Up Physical
Synthesis with Transactional Timing Analysis,”IEEE Design & Test2010.

[87] S. M. Plaza, I. L. Markov and V. M. Bertacco, “OptimizingNon-Monotonic Inter-
connect using Functional Simulation and Logic Restructuring,” IEEE Trans. on CAD
2008, vol.27, no.12, pp. 2107-2119.

[88] H. Ren et al., “Hippocrates: First-Do-No-Harm Detailed Placement,”ASP-DAC
2007, pp. 141-146.

[89] H. Ren, D. Z. Pan, and D. S. Kung, “Sensitivity Guided NetWeighting for Placement-
Driven Synthesis,”IEEE Trans. on CAD2005, vol. 24, no. 5, pp. 711-721.

[90] J. A. Roy, S. N. Adya, D. A. Papa and I. L. Markov, “Min-cutFloorplacement,”IEEE
Trans. on CAD2006, vol. 25, no. 7, pp. 1313-1326.

[91] J. A. Roy and I. L. Markov, “ECO-system: Embracing the Change in Placement”,
ASP-DAC2007, pp.147-152.

[92] J. A. Roy and I. L. Markov, “Seeing the Forest and the Trees: Steiner Wirelength
Optimization in Placement,”IEEE Trans. on CAD, vol. 26, no. 4, pp. 632-644, 2007.

215

[93] J. A. Roy, D. A. Papa, S. N. Adya, H. H. Chan, J. F. Lu, A. N. Ng, I. L. Markov,
“Capo: Robust and Scalable Open-Source Min-cut Floorplacer,” ISPD 2005, pp.
224-227.

[94] J. A. Roy, D. A. Papa, I. L. Markov, “Fine Control of LocalWhitespace in Place-
ment,”VLSI Design, vol. 2008, article 517919, 10 pp. DOI:10.1155/2008/517919.

[95] J. A. Roy, D. A. Papa, A. N. Ng, I. L Markov, “Satisfying Whitespace Requirements
in Top-down Placement,”ISPD2006, pp. 206-208.

[96] S. S. Sapatnekar, “Efficient Calculation of All-Pairs Input-to-Output Delays in Syn-
chronous Sequential Circuits,”ISCAS1996, pp. 724-727.

[97] S. S. Sapatnekar,Timing. Kluwer Academic Publishers, Boston, MA, USA, 2004.

[98] S. Sapatnekar, “Timing,” Springer-Verlag, New York, 2004.

[99] S. S. Sapatnekar, R. B. Deokar, “Utilizing the RetimingSkew Equivalence in a Prac-
tical Algorithm for Retiming Large Circuits,”TCADvol. 15, no. 10, pp. 1237-1248,
1996.

[100] P. Saxena and B. Halpin, “Modeling Repeaters Explicitly Within Analytical Place-
ment,”DAC2004, pp. 699-704.

[101] P. Saxena, N. Menezes, P. Cocchini, and D. A. Kirkpatrick, “Repeater Scaling and
its Impact on CAD,”IEEE Trans. CAD, vol. 23, no. 4, 2004, pp. 451-463.

[102] L. Scheffer, L. Lavagno, and G. Martin,EDA for IC Implementation, Circuit De-
sign, and Process Technology. CRC Press, Boca Raton, FL, USA, 2006.

[103] W. Shi, Z. Li, and C. J. Alpert, “Complexity Analysis and Speedup Techniques for
Optimal Buffer Insertion with Minimum Cost,”ASP-DAC, 2004, pp. 609-614.

[104] G. Sigl, K. Doll and F. M. Johannes, “Analytical Placement: A Linear or Quadratic
Objective Function?”,Proc. DAC1991, pp. 57-62.

[105] D. P. Singh, V. Manohararajah, and S. D. Brown, “Incremental Retiming for FPGA
Physical Synthesis,”DAC2005, pp. 433-438.

[106] P. Spindler, U. Schlichtmann and F. M. Johannes, “Kraftwerk2 — A Fast Force-
Directed Quadratic Placement Approach Using an Accurate Net Model,” IEEE
Trans. on CAD, vol. 27, no. 8, pp. 1398-1411, 2008.

[107] A. Srivastava et al., “On the Complexity of Gate Duplication,” IEEE Trans. CAD,
vol. 20, no. 9, pp. 1170–1176, 2001.

[108] A. Srivastava et al., “Timing Driven Gate Duplication,” IEEE Trans. VLSI, vol. 12,
no. 1, pp. 42-51, 2004.

216

[109] A. Srinivasan, K. Chaudhary, E. S. Kuh, “RITUAL: Performance Driven Placement
Algorithm for Small Cell ICs,”ICCAD 1991, pp. 48-51.

[110] S. Z. Selim, and M. A. Ismail, “K-Means-Type Algorithms: A Generalized Conver-
gence Theorem and Characterization of Local Optimality,”PAMI vol. 6, no. 1, pp.
81-87, 1984.

[111] W. Swartz and C. Sechen, “Timing Driven Placement for Large Standard Cell Cir-
cuits,” DAC1995, pp. 211-215.

[112] L. Trevillyan et al., “An Integrated Environment for Technology Closure of Deep-
submicron IC Designs,”IEEE Design and Test of Computers, vol. 21, no. 1, pp.
14-22, 2004.

[113] R. S. Tsay, E. S. Kuh and C. P. Hsu, ”PROUD: A Sea-Of-Gates Placement Algo-
rithm”, IEEE Design & Test, 1988, pp. 44-56.

[114] L.P.P.P. van Ginneken, “Buffer Placement in Distributed RC-Tree Networks
Forminimal Elmore Delay,”ISCAS1990, pp. 865-868.

[115] N. Viswanathan and C. Chu, “FastPlace: Efficient Analytical Placement using Cell
Shifting, Iterative Local Refinement and a Hybrid Net Model,” IEEE Trans. on CAD,
vol. 24, no. 5, pp. 722-733, 2005.

[116] N. Viswanathan, M. Pan and C. Chu, “FastPlace 2.0: An Efficient Analytical Placer
for Mixed-Mode Designs,”ASP-DAC2006, pp. 195-200.

[117] N. Viswanathan, M. Pan and C. Chu, “FastPlace 3.0: A Fast Multilevel Quadratic
Placement Algorithm with Placement Congestion Control,”ASP-DAC2007, pp. 135-
140.

[118] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, and S. Narayan, “First-
order Incremental Block-Based Statistical Timing Analysis,” DAC 2004, pp. 331-
336.

[119] J. Vygen, “Algorithms for Large-Scale Flat Placement,” DAC1997, pp. 746-751.

[120] J. Vygen, “Slack in Static Timing Analysis,”IEEE Trans. on CAD, vol. 25 no. 9,
pp. 1876–1885, 2006.

[121] A. R. R. Wang,Algorithms for Multilevel Logic Optimization. PhD thesis, Univer-
sity of California, 1989.

[122] Q. Wang, J. Lillis and S. Sanyal, “An LP-Based Methodology for Improved Timing-
Driven Placement,”ASP-DAC2005, pp. 1139-1143.

[123] H. Zhou, “Deriving a New Efficient Algorithm for Min-period Retiming,”ASP-DAC
2009, pp. 990-993.

217

ABSTRACT

Broadening the Scope of Multi-Objective Optimizations

in Physical Synthesis of Integrated Circuits

by

David Anthony Papa

Chair: Igor L. Markov

In modern VLSI design, physical synthesis tools are primarily responsible for satisfy-

ing chip-performance constraints by invoking a broad rangeof circuit optimizations, such

as buffer insertion, logic restructuring, gate sizing and relocation. This process is known

as timing closure. Our research seeks more powerful and efficient optimizations to im-

prove the state of the art in modern chip design. In particular, we integrate timing-driven

relocation, retiming, logic cloning, buffer insertion andgate sizing in novel ways to create

powerful circuit transformations that help satisfy setup-time constraints.

State-of-the-art physical synthesis optimizations are typically applied at two scales: i)

global algorithms that affect the entire netlist and ii) local transformations that focus on

a handful of gates or interconnections. The scale of modern chip designs dictates that

only near-linear-time optimization algorithms can be applied at the global scope — typi-

cally limited to wirelength-driven placement and legalization. Localized transformations

can rely on more time-consuming optimizations with accurate delay models. Few tech-

niques bridge the gap between fully-global and localized optimizations. This dissertation

broadens the scope of physical synthesis optimization to include accurate transformations

operating between the global and local scales. In particular, we integrate groups of re-

lated transformations to break circular dependencies and increase the number of circuit

elements that can be jointly optimized to escape local minima.

Integrated transformations in this dissertation are developed by identifying and re-

moving obstacles to successful optimizations. Integration is achieved through mapping

multiple operations to rigorous mathematical optimization problems that can be solved

simultaneously. We achieve computational scalability in our techniques by leveraging an-

alytical delay models and focusing optimization efforts oncarefully selected regions of

the chip. In this regard, we make extensive use of a linear interconnect-delay model that

accounts for the impact of subsequent repeated insertion. Our integrated transformations

are evaluated on high-performance circuits with over 100,000 gates.

Integrated optimization techniques described in this dissertation ensure graceful timing-

closure process and impact nearly every aspect of a typical physical synthesis flow. They

have been validated in EDA tools used at IBM for physical synthesis of high-performance

CPU and ASIC designs, where they significantly improved chipperformance.

