
Benchmarking For Large-scale Placement and Beyond �

Saurabh N. Adya†, Mehmet C. Yildiz‡, Igor L. Markov†,
Paul G. Villarrubia], Phiroze N. Parakh[and Patrick H. Madden‡

† The University of Michigan, Department of EECS, Ann Arbor, MI 48109-2122
‡ SUNY Binghamton, Computer Science Department, P.O. Box 6000, Binghamton, NY 13902

] IBM Corp., 11400 Burnet Road, Austin, TX 78758
[Monterey Design Systems, 894 Ross Drive, Sunnyvale, CA 94089

ABSTRACT
Over the last five years the VLSI Placement community achieved
great strides in the understanding of placement problems, devel-
oped new high-performance algorithms, and achieved impressive
empirical results. These advances have been supported by non-
trivial benchmarking infrastructure, and future achievements are set
to draw on benchmarking as well. In this paper we review moti-
vations for benchmarking, especially for commercial EDA, analyze
available benchmarks, and point out major pitfalls in benchmarking.
We outline major outstanding problems and discuss the future of
placement benchmarking. Furthermore, we attempt to extrapolate
our experience to circuit layout tasks beyond placement.

Categories and Subject Descriptors
B.7.2 INTEGRATED CIRCUITS / Design Aids
C.5.4 VLSI Systems
J.6 Computer-aided design (CAD).

General Terms
Algorithms, Measurement, Documentation, Performance, Experi-
mentation, Human Factors, Standardization.

Keywords
Layout, Placement, Placer, Benchmark, Performance, Routing, Con-
gestion, Signal delay, Timing, Wirelength, Comparison, Evaluation.

1. INTRODUCTION
Progress in VLSI placement research over the last five years has

been tremendous. High-performance free placement tools such as
KraftWerk [24], Capo [10], Dragon [54] andFeng Shui [58]
are now widely available [13] and used. They have been success-
fully tested on ever-increasing circuits and are on par with commer-
cial tools as far as simple placement objectives are concerned. More
importantly, we now have much better understanding of such impor-
tant issues asa priori interconnect prediction [52], routing conges-
tion [47, 55] and timing [31, 56, 35]. Given that VLSI placement is
largely an empirical field, much of this progress would have been
impossible without the public availability of large circuit bench-
marks [13], such as the 18 ISPD-98 circuits released by IBM [4]
and their derivatives [54, 56]. The availability of open-source plac-
ers and public placement benchmarks leads to new synergies by al-
lowing researchers to modify the tools and the benchmarks, analyze

�Contact author: Prof. Igor Markovimarkov@umich.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’03,April 6–9, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-650-1/03/0004 ...$5.00.

tool performance in depth and combine tools to solve new design
problems [1]. Many open problems in placement remain, and bench-
marking issues, such as independent replication of reported results,
are integral to further progress.

The ability to accurately measure the impact of any technique is
crucial to scientific advancement. Recently, the physics community
had a surprising revelation: a number of papers from a well known
researcher were based on fraudulent data [5, 37]. Apparently driven
by the desire to publish, experimental results were fabricated, with
theory being passed off as fact. Had it not been for the failure of
other research groups to replicate experiments, the fraud might have
gone undetected. Incorrect published results are damaging to subse-
quent research; while there is no indication in the Physical Design
community ofintentionalmisrepresentation of results, reported re-
sults often cannot be reproduced [40]. Even the most basic metrics
are freely interpreted by different authors, and it is nearly impossible
to determine the best approach for a given problem.

As circuits become larger and more complex, the need to improve
design automation tools becomes more urgent. According to recent
literature, existing tools may produce layouts several times worse
than what is achievable. This has been independently shown (i) by
comparing manually designed circuits to those laid out by commer-
cial tools [21], and (ii) by placing specially designed circuits with
known good layouts [27, 15]. Thus, much room for improvement
remains in circuit layout, and even the slowdown of Moore’s law
would emphasize possible improvements due to EDA tools. Yet, if
we cannot reliably compare EDA tools and relevant research results,
significant progress is unlikely.

This paper reviews basic motivations for placement benchmark-
ing in Section 2. Major available tools and benchmarks are analyzed
in Section 3. Routability is discussed in Section 4 and timing in Sec-
tion 5. We attempt to extrapolate the lessons learned to layout tasks
beyond placement in Section 6.

2. LAYOUT SOPHISTICATION MOTIVATES
OPEN BENCHMARKING FOR EDA

As VLSI chips grow in size and complexity, large-scale place-
ment is becoming integral to achieving multiple design objectives.
Some of the most important goals are the minimization of wire-
length, routing congestion, cycle-time and power dissipation. These
objectives may correlate, e.g., wirelength and power, but in some
cases conflict with each other. For example, to avoid routing con-
gestion in certain areas of ASIC designs, one may need to spread out
collections of cells. This reduces wiring density, but increases wire-
length.1 Similarly, techniques that minimize timing in many cases
increase wirelength and congestion. While experiences with spe-
cific optimization techniques provide only circumstantial evidence
of conflicting objectives, for practical purposes this evidence is strong.

The multiplicity of conflicting objectives makes large-scale VLSI
placement extremely complex. Additional complexity is due to de-
sign constraints, e.g., signal integrity guidelines, chip die and floor-
plan constraints, pre-designed on-chip intellectual property, etc.

1In principle, there may be congestion minimization techniques that
do not increase wirelength. These should be considered too.

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Plato HPWL= 1.39e+06

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Plato+DOMINO HPWL= 1.74e+06

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Capo HPWL= 1.37e+06

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000 5000 6000

FengShui HPWL= 6.33e+06

KraftWerk(Plato) Nov02 KraftWerk+DOMINO Capo 8.6 Feng Shui 1.2

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Dragon HPWL= 1.44e+06

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Dragon HPWL= 2.84e+06

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Dragon HPWL= 1.71e+06

0

500

1000

1500

2000

2500

3000

3500

4000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

mPL1.2b HPWL= 1.17e+06

Dragon 2.20 default Dragon 2.20 congestion-driven Dragon 2.23 congestion-driven mPL 1.2b

Figure 1: Placements of the 12.5K-cell benchmark PEKO01 produced by placersKraftWerk , Capo, Dragon , FengShui , and
mPL. The KraftWerk placement has many cell overlaps and must be further legalized withDOMINO, which costs 20% wirelength.
The Feng Shui 1.2 placement is not legal either, primarily due to a misinterpretation of row constraints. Feng Shui 1.5 with
tuned parameters fixes this problem, and produces a legal placement with wirelength1:6e6. Capo and KraftWerk tend to distribute
whitespace uniformly across the fixed die to generically improve routability, but variable-die placers pack cells in rows to the left to
minimize wirelength. In congestion-driven mode,Dragon behaves like a fixed-die placer and allocates whitespace according to an
internal congestion map. Wirelengths in Table 2 may differ slightly for randomized placers such asCapo and Dragon .

Modern ASIC designs are laid out in thefixed-die context, where
the layout area, routing tracks and power lines are fixed before place-
ment starts [10]. Minimized are congestion and timing.2 Fixed-die
layout is relevant for processes with over-the-cell routing on three
or more metal layers and often applied to design blocks rather than
whole chips.

Placement densityis a new concern implied by the fixed-die con-
text. We define placement densityin a region as the ratio of (i)
total area of movable cells in that region to (ii) the area available
for placement of movable cells in the region. Another related term
is whitespace= 100% –density%. Similarly, theaverage density,
also known asrow utilization, is defined as the ratio of the total area
of all movable cells to the total amount of area available for place-
ment of movable cells. It cannot be changed by the placer. If all
movable cells are uniformly spread throughout the layout area, the
average density will be achieved at all locations. To improve yield,
placers may be required to limit density in any given region (uni-
form distribution of whitespace is one of many ways to satisfy such
a constraint). Observe that maximum density values (per region)
below the average density are not feasible, and if the maximum den-
sity per region equals the average density, then whitespace must be
distributed equally. However, placers are often allowed to allocate
significant “free space” rather than distribute cells uniformly. De-
pending on the type of design, this may be an important part of the
overall problem. Figure 1 shows how several academic placers han-
dle 15% whitespace in the PEKO01 benchmark [15].

Industrial placement instances, e.g., at IBM, can be classified into
ASICs, SOCs, and Microprocessor RLMs (random logic macro).
Each of these categories presents unique difficulties. ASIC chips
generally contain a large number of fixed I/O ports that may be

2Fixed-die placement is a departure from textbook physical design
where routing tracks and chip area are determined during placement
and routing. As such, it invalidates older benchmarks because area
is not minimized anymore.

perimeter-restricted or pervasive throughout the core area of the chip
(area-array I/O). ASIC chips frequently contain a handful (1-20) of
pre-placed large macros that are fixed, a moderate number (100s) of
movable large multi-row cells, and many small movable cells — up
to several million and increasing. ASIC chips come in a variety of
average densities typically ranging from 40% to 80%.

SOC designs are similar to ASIC designs, but with many more
large macros fixed in the placement area. In extreme cases the bulk
of the design is concentrated in standard pre-designed library cores,
RAMs, etc, with only a small fraction of movable logic providing
minor control functions. Such placement instances tend to have ex-
tremely low densities on the order of 20%, and in some cases less
than 5%. Placement algorithms developed for nearly-full designs
often do not handle such extremes well. Therefore one seeks al-
gorithms specifically developed for this context and tested on low-
density designs [2].

Microprocessor designs are generally laid out hierarchically, and
this approach often leads to many small partitions. Some of these
partitions are small standard-cell placement instances with very few
fixed cells, a large number of fixed I/O ports, and a small number of
movable cells (< 10000). Because densities tend to be high, aver-
aging 80% and reaching 98%, specialized techniques are needed to
produce good placements that are also legal [57, 12]. Also, due to
the small number of movable objects and the large number of fixed
ports [8], multi-level partitioning [3, 32] is no better during place-
ment than simpler “flat” FM partitioning [25]. Related results have
been reported in [7].

Given the complexity and the variety of VLSI placement prob-
lems, one should not expect a single closed-form algorithm or even
a commercial tool to work well in all circumstances. Comprehensive
evaluation of algorithms and tools is non-trivial, and so is testing the
applicability to each of the relevant domains. Often, algorithms that
perform well in the case of an RLM do not perform well for an ASIC
(e.g., recursive bisection with “flat” FM partitioning). Likewise, al-

gorithms such as recursive bisection with multi-level partitioning
that show significant promise on very large netlists may provide lit-
tle or no value for small structured components of a microprocessor
chip. Some algorithms may perform well on dense designs while
others perform well on sparse designs. Other differentiating factors
include the diversity of cell sizes and the presence of fixed and mov-
able macros, — these are increasingly important in modern designs.

The sophistication and variety of layout problems, as well as the
multitude of performance factors, make the case for public bench-
marking in Physical Design. Indeed, we observe a similar situation
in computer architecture, where different design decisions may favor
different applications, and the variety of microprocessors feeds the
need for comprehensive comparisons. To this end, industry-standard
evaluation of desktop and server hardware performance across a
variety of tasks is based on SPECmark benchmarks [51]. Orig-
inally, the Standard Performance Evaluation Corporation (SPEC)
published a suite of 10 benchmarks that test a computer’s integer
and floating point computation. The suite includes slightly hacked
versions of well-known FORTRAN and C codes. The performance
measure of one SPECmark is comparable to that of a VAX-11/780.
Additional SPECmark suites have been published in recent years.

Similarly, an appropriate set of placement benchmarks could be-
come a standard for measuring and categorizing the behavior of
placement algorithms. Understanding how algorithms behave across
the entire problem space is important for selecting and developing
the best techniques, and such an effort seems beyond any single in-
dustrial or academic placement group. The industry needs place-
ment benchmarking to improve internal tool development, to mea-
sure potential vendor tool offerings, and to communicate important
issue to academic researchers. Such benchmarks can greatly en-
hance the efficiency of communication between all parties involved.

Besides total wirelength and congestion, layout tools must op-
timize timing and ensure signal integrity. Such design objectives
and constraints must be reflected in public placement benchmarks
so that one can compare layout tools in a variety of placement con-
texts. In particular, one would like to see trustworthy empirical data
for academic placers that lend themselves to timing closure flows
and produce good timing results while maintaining routability and
signal integrity. Such community benchmarks are relevant for users
of commercial EDA tools, and an investment into producing them is
justified in the long term. An attempt at such benchmarks is being
made at CMU [49].

3. AVAILABLE OPEN BENCHMARKS
AND PLACEMENT TOOLS

As noted in [40], published results for wirelength-driven place-
ment of MCNC benchmarks differ wildly due to creative but poorly
explained interpretation of input files by authors. Similarly, we
show in Section 5 that more recent published results on timing-
driven placement exhibit alarming contradictions. Less drastic dif-
ferences may go unnoticed, or even be falsely advertised as algorith-
mic improvements, especially when reported implementations are
not available for independent evaluation. For example, some works
on placement and floorplanning claim good wirelength, but their
placements have many cell overlaps. Another source of discrep-
ancies in published results is poorly specified benchmarks that re-
quire pre-processing and additional information, e.g., timing-driven
placement benchmarks from [18] published only in Verilog. Limited
parsers also cause difficulties, e.g., as of February 2003, the sec-
ond suite of IBM-Dragon benchmarks in LEF/DEF has two variants
— one forDragon and one forCapo. To this end, we advocate
using common, recent benchmarks and standard parsers, e.g., Ca-
dence’s open-source LEF/DEF parsers downloadable for free from
http://www.openeda.org . Below is a survey of existing fam-
ilies of placement benchmarks as well as downloadable placer im-
plementations. We typically cite the publication where a given con-
tribution was first described, but download links for software and
circuits can be found in the GSRC Bookshelf [13], specifically in the
Wirelength-Driven Placement and Circuit Design Examples slots.
Based on empirical data for various pairings of benchmarks and
placers, we observe interesting trends.

3.1 Benchmarks
Artificially-generated netlists may be useful for regression-testing

and sanity-checking, but placement algorithms are typically vali-
dated and compared using netlists derived from real designs. Ma-
terial in Section 2 explains why.

MCNC benchmarks date back to late 1980s; they are small and
outdated [4]. The multitude of their interpretations makes any re-
ported numbers meaningless. Placement variants of MCNC bench-
marks converted to the GSRC Bookshelf format are still available in
[13] and are sometimes referred to as GSRC-MCNC benchmarks.

In 1998 IBM released 18 netlists with 10K-220K modules as
benchmarks for hypergraph partitioning [4]. Despite all design in-
formation being sanitized, two out of twenty original netlists were
not cleared for public release. However, the remaining 18 bench-
marks were soon adapted to placement.

IBM-Dragon [54, 55] benchmarks come with theDragon placer
discussed below and are referred to as IBM-Place by their authors.
Several suites of these benchmarks are available on-line. The first
suite released in 2000 sizes cells based on the node area in the IBM
circuits, and removes all large cells. Because of that, the resulting
netlists contain disconnected pads. The second suite maps cells to
an Artisan library and adds enough routing information to run Ca-
dence WarpRoute on a given placement. A suite of timing-driven
placement benchmarks recently posted by the authors ofDragon
is not related to their previous benchmarks, but rather derived from
the ISPD ‘01 suite [18] discussed below. No timing constraints are
given (February 03), and other important information is missing.

IBM-Floorplacement [1] benchmarks are also derived from the
IBM netlists, but include all original macros. They are available
in LEF/DEF and in the GSRC format. Improved wirelengths have
been reported recently [16]. Several known placers produce many
cell overlaps on these benchmarks and cannot fit all macros inside
the layout areas. Therefore we recommend visualizing placements
and checking for overlaps before reporting wirelength.

PEKO [15] benchmarks reflect the net-degree distribution of the
18 IBM netslists, but are otherwise generated artificially, with ran-
domization, offering astronomically large irregular netlists to test
the scalability of placers [27]. PEKO stands for Placement Ex-
amples with Known Optimal wirelength. In particular, in optimal
placements each net independently achieves the smallest possible
wirelength, making all wires local. The authors conclude that ex-
isting placers are 40-100% away from optimal solutions. However,
there is a lingering concern that PEKO benchmarks are not represen-
tative of industry circuits. PEKO benchmarks have 15% whitespace
and come in two suites.

Grids with four fixed vertices andn2 1x1 movables, such as the
one in Figure 2/Capo 8.6, are used in our work to test the behavior of
placers on datapath-like circuits, on which many commercial layout
tools perform poorly [21]. A simple induction argument shows that
there is only one optimal placement for each such “netlist,” where
each of 2n2

� 2n+ 4 nets has length 1 (cf. PEKO benchmarks).
More importantly, sub-optimalities can be visualized to drive de-
bugging efforts. The benchmarks are on-line at [13].

Vertical benchmarks [49] created at CMU attempt to remedy
the lack of design information in public circuit benchmarks. They
provide multiple representations of real circuits at different stages
of design process, including have non-trivial layout features, such
as fixed macros. However, most of those circuits have under 50K
cells. As of February 2003, details are missing to evaluate signal
delay and there are no definitions of timing constraints, clocks or
acceptable transition times. The netlists are mapped to a 0:35µm-
library, thereby making interconnect effect negligible.

Non-benchmarks. The ISPD 01 suite from [18] is available in
a hierarchical (not flattened) gate-level Verilog format. There are
no timing constraints or gate libraries available. There are multiple
top-level signals with prefix “CLK”, and it is not clear how clock
nets are represented. The authors suggest that a series of proprietary
tools be applied to their benchmarks before and after timing-driven
placement. However, because of differences in tools (versions, op-
tions, cell libraries etc) such pre-processing may lead to different
numbers even if the same timing-driven placer is used.

Plato HPWL= 256 Capo HPWL= 267 Capo HPWL= 184 Dragon HPWL= 270 FengShui HPWL= 346 mPL HPWL= 233

KraftWerk Capo 8.5 Capo 8.6 Dragon 2.20 Feng Shui 1.2 mPL 1.2

Figure 2: Placements of a 10x10 grid-graph produced by academic placers. All pictures are produced using a utility that ships withCapo and gnuplot.
mPL 1.2 places cells with many overlaps, andCapo 8.5 produces one overlap.mPL 1.2b (not shown) andCapo 8.6 both find the unique optimal
placement. We ranFeng Shui 1.2 with command-line option -capo15 to avoid uneven rows as in Figure 1. Unfortunately, that causesFeng Shui
to shift locations of all movable cells up by half a row.KraftWerk produces good placements, but the block of movable cells has a wrong orientation
relative to fixed pads. For larger grids, none of the placers produce optimal wirelength. The smallest wirelength is achieved byKraftWerk , then Capo
8.6 , closely followed bymPL 1.2b . All three are generally within 25% from optimal HPWL. Dragon 2.20 and Capo 8.5 double wirelength.

Feature Kraft Capo Dra Feng mPL
werk 8.6 gon Shui 1.2b

Fixed Terminals + + + + +
Macros � � - - -
Terminals of + + - + -
arbitrary size
Cells of + + + + -
arbitrary size
Subrows - + - - -
Orientation
constraints - + - - -
LEF/DEF - + � � -
Whitespace � � + � -
Management
Detail - � + � +
Placement
Timing-driven + � + - -
Placement

Table 1: Features supported by different academic placers.
KraftWerk and Capo support fixed macros, but often fail to
remove overlaps of movable macros [1]. Being a global placer
Capo comes with a very simple detail placer.CapoT, a timing-
driven version of Capo is not open-source at the moment.

3.2 Placers
We describe large-scale standard-cell placers available to multi-

ple research groups; the order reflects when the tools were devel-
oped and reported in publications. All placers we use except for
KraftWerk directly support the GSRC Bookshelf [13] placement
format that is considerably simpler than LEF/DEF.3 Some of them
also support subsets of Cadence LEF/DEF, but input problems are
common with industrial circuits.4

KraftWerk [24] is a force-directed placer. Yet, rather than mov-
ing one cell a time, it solves the Poisson equation (a PDE from math-
ematical physics). This analytical algorithm often leaves cell over-
laps and requires a separate follow-up legalization step. However,
overlaps are typically well distributed over the core area and can
be removed by a simple built-in legalization algorithm, perhaps at a
cost of increased wirelength. This simple legalization may fail and
the user is advised to call the variable-dieDOMINO[22] detail placer
shipped withKraftWerk . DOMINOis based on network-flow al-
gorithms. Both tools target fixed-die layout and tend to distribute
whitespace fairly uniformly.KraftWerk is deterministic.

Not having access to source codes ofKraftWerk or DOMINO,
we obtained Linux executables in November 20002 directly from
the authors, who mentioned that so farKraftWerk has not im-
proved wirelength minimization beyond the original 1998 version.
The binary forKraftWerk is calledPlato .

3In our experiments,Feng Shui 1.2 misinterpreted row infor-
mation in PEKO01 benchmarks. Newer versions fix that problem.
4Capo is now shipped with Cadence’s official LEF/DEF parser, and
the users can switch to it from the default native parser.

PE Opti- Kraft +DO Capo Dragon Feng mPL
KO mal Werk MINO 8.6 2.20 Shui 1.2 1.2b

WL WL WL WL WL WL WL
[15] �e6

�e6
�e6

�e6
�e6

�e6
�e6

01 0.81 1.39 1.74 1.29 1.46 3.18 1.17
02 1.26 1.98 2.61 2.03 2.43 5.26 1.78
03 1.50 3.02 3.78 2.66 2.93 6.82 2.33
04 1.75 3.25 4.25 3.12 3.87 8.09 2.35
05 1.91 3.92 4.79 3.16 3.79 9.08 2.77
06 2.06 4.07 5.38 3.57 4.35 10.14 2.98
07 2.88 5.73 7.56 5.07 6.24 12.55 4.29
08 3.14 5.87 8.17 5.57 6.79 13.78 4.95
09 3.64 8.52 10.74 6.47 7.72 16.24 5.42
10 3.73 8.9 12.03 8.0 8.49 20.12 7.01

Table 2: HPWL on 10 out of 18 PEKO benchmarks in suite 1.
KraftWerk placements are legalized by DOMINO. Feng Shui
1.2 is used with the option-capo15 that improves results.

Capo [10, 11]is a global fixed-die placer based on recursive min-
cut bisection. It uses a built-in multi-level Fiduccia-Mattheyses par-
titioner [7] written from scratch for this application. All source
codes are available in [13].Capo has a built-in LEF/DEF inter-
face and has been tuned on proprietary benchmarks from Cadence,
with successful routing in mind (using WarpRoute or any other tool).
Capo uniformizes whitespace to generically improve routability,
but may produce unroutable placements for challenging circuits.

Most of the results we report are forCapo 8.6 which some-
what outperformsCapo 8.0 from 2000 [10] but may run slower.5

A small number of overlaps is possible afterCapo 8.0 , therefore
the authors of [10] run a commercial placer in a fast ECO mode to
fix overlaps before routing. Later versions have a fast greedy built-in
overlap remover and a simple detail placer based on optimal place-
ment of small groups of cells [11].Capo does not use Simulated
Annealing at any point, but it is randomized — the best of five inde-
pendent runs is typically better than the average [6]. The executable
used for benchmarking was calledMetaPlacerTest0.exe .

Dragon [54, 55, 56]performs recursive min-cut partitioning us-
ing hMetis libraries [32] and periodically improves global wire-
length using Simulated Annealing. In our experimentsDragon
sometimes achieves better wirelength thanCapo, but may be an
order or magnitude slower. In default mode,Dragon packs cells
in rows left to right, which practically makes it a variable-die placer.
In 2002,Dragon was extended with a congestion-driven mode [55]
that distributes whitespace unevenly to mitigate congestion at the
price of larger wirelength.Dragon has been tested and tuned on
IBM-Place benchmarks in the same tool flow that was used to eval-
uateCapo 8.0 [10]. Figure 1 shows that congestion-driven mode
of Dragon increases wirelength compared to the normal mode.
Dragon supports a subset of LEF/DEF. Since the source code is not
available, we downloadedDragon 2.20 binaries in the Fall 2002.
The latest version 2.23 is primarily a bug-fix release. Most recently,
timing-drivenDragon has been released [56].

5Capo can be ran in faster modes [10] via command-line parame-
ters. However, we only report results for the default configuration.

Dragon KraftWerk Capo 8.6 mPL 1.2b FengShui
Bnchmrks [55] [24] [10] [15] 1.2 [58]
IBM [55] Good Poor Med N/A N/A
PEKO [15] Med Poor Med Good Poor
Grids Poor Good Good Med Poor
Cadence
-Capo [10] Med Med Good N/A Poor

Table 3: Half-perimeter wirelengths achieved by major aca-
demic placers on four benchmark suites. N/A means that no
placements were produced due to input problems, crashes or
unsupported features. In particular, mPL 1.2b does not sup-
port uneven cell sizes andFeng Shui 1.2 could not read IBM
benchmarks (fixed inFeng Shui 1.5).

FengShui 1.2 [58]useshMetis libraries [32] for recursive min-
cut partitioning and attempts to further improve wirelength by using
a native multi-way partitioner.FengShui is a variable-die placer
and always packs cells in rows to the left. No data were published
for Feng Shui describing routability with respect to major com-
mercial routers.Feng Shui 1.2 reported at [58] is available in
source code, andFeng Shui 1.5 is available in executable form
(April 2003). We use version1.2 unless indicated otherwise.

mPL 1.2 [20] is a new multi-level placer that, at the top level, uses
a fairly expensive analytical optimization [14] that directly handles
non-overlapping constraints. At lower levelsmPLuses slot assign-
ment and enumerates permutations of small subsets of cells [26]. At
the end, cells are packed to the left by sorting their locations (this is
typical of a variable-die placer). A more recent versionmPL 1.2b
integrates detail placement. Unlike in this paper,mPLwirelength is
sometimes reported after the external detailed placerDOMINO[22]
is applied. We noticed that those versions ofmPLare deterministic
and always produce the same placement if input is unchanged.mPL
1.2 and, later,mPL 1.2b binaries for Sun/Solaris were provided
to us by the authors. We ran them on an 750MHz Sparc Ultra-III
processor, whereas all other placers were ran on a 2GHz Pentium4-
Xeon running Linux.

Table 1 is a check-list for common features found in placers.
Dragon andCapo have more features than other placers.

3.3 Empirical Analyses
Figure 1 plots the outputs of six placers on the PEKO01 bench-

mark [15] and suggests thatDragon in congestion-driven mode,
KraftWerk and Capo behave like fixed-die placers. The other
three simply pack cells in rows to the left, which is typical of variable-
die placers. Even when this produces good wirelength (e.g., inmPL),
such placements may be unroutable. On the other hand,Dragon ’s
congestion-driven mode doubles wirelength for PEKO01 and seems
wastefull as well. As we discovered,FengShui 1.2 interprets
this benchmark incorrectly. The problem is currently fixed inFeng
Shui 1.5 and all cells are placed into the die, the resulting wire-
length is much improved and is 2 times away from optimal. Ad-
ditional empirical data for PEKO benchmarks are given in Table 2
and can be compared to results on benchmarks from the proprietary
Cadence-Capo suite [10] shown in Table 4.Dragon and Feng
Shui apparently mishandle multiple sub-rows in a row split by a
vertical power stripe.

Grid placements in Figure 2 suggest that (i) it may be difficult for
an annealer (in Dragon) to place regular structures, (ii) despite good
performance, KraftWerk seems to ignore connections to fixed ter-
minals. A summary comparison of existing placers using data from
multiple benchmark suites is given in Table 3. We hypothesize that
the analytical placerKraftWerk did not do well on IBM netlists
because they have numerous multi-pin nets.

4. BENCHMARKING FOR ROUTABILITY
In the 1980s and early 1990s, works on circuit layout often con-

sidered both placement and routing [50, 53]. However, as those
tasks became more complex, they were often considered separately
in the late 1990s. Such a separation of concerns makes evaluation
easier and decreases benchmarking runtime, however, the results
may be inconclusive and misleading. Even when placement results

test Dragon 2.20 KraftWerk Capo 8.6
+ECO +ECO +ECO

[10] WL WL sec WL WL sec WL WL sec
�e8

�e8
�e8

�e8
�e8

�e8

1 2.91 4.03 383 2.85 2.95 25 2.64 2.64 73
2 I I I 4.01 6.38 185 3.08 3.22 268
3 a/oc a/oc a/oc 5.9 6.01 149 5.55 5.56 158
4 oc oc oc 10.5 11.4 95 10.5 10.7 163
5 a/5.58 a/5.74 a/2132 t-o t-o t-o 5.68 5.72 326
6 a a a t-o t-o t-o 155 155 251

Table 4: HPWL results and runtimes of academic placers on
Cadence-Capo benchmarks (2.0GHz Pentium4-Xeon). The re-
sults for Feng Shui are similar to Dragon ’s, except for test1
(2.48, 2.73, 110). To legalize placements, we apply Cadence
QPlace in the -ECO mode and report wirelength before and af-
ter. If a placement is legal, no cells are moved. QPlace -ECO
moves almost every cell afterKraftWerk , but the wirelength
increase is modest. “I” stands for failure to read the input, “a”
denotes failure to produce a placement, “oc” reflects numerous
cells outside the core region, “t-o” stands for 24-hour time-outs.
Dragon aborts in fixed-die mode on three testcases (complain-
ing about the lack of whitespace) and finishes only in variable-
die mode on two (test3 and test5). test5 has 33.9K cells and
29.4% whitespace, test6 has 35.5K cells and 0.1% of whitespace.

are evaluated by running a commercial router [10], this is far from
explicit routability improvement during placement [47, 55].

The narrow focus on placement, together with attempts at wire-
length prediction, lead to the popularity of wirelength-based met-
rics thatroughly model routability, are easy to calculate, and can
be integrated into an optimization engine. Errors in such metrics
can sometimes be tolerated. Indeed, in variable-die designs using
channel-based routing model (common when very few metal layers
were available), even a poor placement could be routed, although
at potentially high cost. Modern fixed-die designs with high uti-
lization, many metal layers and over-the-cell routing model lead to
the new phenomenon ofunroutable placements. The fact that low-
wirelength placements are not necessarily routable, motivated recent
studies of the routability of different placement methods.

In [10], theCapo placement tool was used in a set of experiments
on proprietary commercial circuits, for most of whichCapo place-
ments could be routed using a commercial tool without a great deal
of difficulty. While one might conclude thatCapo placements are
generally routable, a different conclusion could be drawn from re-
cently published empirical results. In [55], theCapo andDragon
placement tools were compared using ISPD-98 circuits from IBM
[4] that were originally published as hypergraph partitioning bench-
marks. The authors of [55] removed large macros, mapped the
circuits using an academic 0.18µm cell library from Artisan and
added artificial routing grids. The resulting benchmarks are pub-
licly available at [13], and when they are placed withCapo the
same commercial global router used in [10] frequently fails. We
were able to reproduce those experiments withCapo 8.0 (Capo
8.6 tends to produce better-routable placements, but not as good
asDragon). Additional data are given in Table 4, where six out of
seven Cadence-Capo benchmarks are placed byCapo, KraftWerk ,
FengShui and Dragon . These results suggest thatDragon is
tuned to IBM-Dragon benchmarks, whileCapo is tuned to Cadence-
Capo benchmarks. Also, it appears thatwhen optimizing wirelength,
one cannot predict if routing will succeed or fail, and prior suc-
cesses or failures on other circuits are not an indication of future
performance.This has serious repercussions for commercial design
teams: the routability of a placement approach may be unknown
until actual routing. As for improving placement algorithms, the
success or failure gives little insight into what was right or wrong
with a placement, or how it may be improved. We need metrics that
are good at predicting routability, especially at the early stages of
placement.

Before suggesting routability metrics for placement, we note that
benchmarking of routing itself is problematic. No consensus exists
on global routing objectives, and there are no large, widely used
public benchmarks. Despite the availability of many well-known
placement benchmarks (MCNC, IBM-Dragon and PEKO) in [13]

ibm Feng Shui 1.5 Capo 8.5 Dragon 1.13
HPWL %h %v HPWL %h %v HPWL %h %v
01 6.04e6 52 48 6.23e6 55 45 5.62e6 49 51
02 1.73e7 63 37 1.74e7 63 37 1.49e7 50 50
03 1.58e7 55 45 1.59e7 54 46 1.42e7 51 49
04 1.95e7 58 42 2.09e7 58 42 1.81e7 46 54
05 4.51e7 61 39 4.72e7 61 39 3.92e7 52 48
06 2.30e7 56 44 2.55e7 56 44 2.23e7 46 54
07 4.18e7 68 32 4.08e7 63 37 3.49e7 51 49
08 4.17e7 66 34 4.22e7 64 36 3.73e7 50 50
09 3.63e7 59 41 3.47e7 57 43 3.25e7 55 45
10 6.99e7 70 30 6.78e7 63 37 6.16e7 58 42

Table 5: Half-perimeter wirelengths for placements byFeng
Shui, Capo , and Dragon . Results for remaining eight IBM
benchmarks are similar. The distribution into horizontal and
vertical components reveals large differences —Feng Shui
and Capo, based on bisection, produce significantly more hori-
zontal wiring. The use of routing resources on metal layers is a
key routing-related concern.

there is nothing comparable for routing. Most papers on global rout-
ing use proprietary benchmarks, or test cases that were generated
by the authors themselves. Comparisons are frequently made with
naı̈ve implementations, or with unnamed commercial tools.

We do not believe that one can easily re-target a layout tool from
wirelength-driven metrics to timing and/or power minimization af-
ter successful global and detail routing. Therefore we describe an
evolutionary transition through a series of simpler metrics that can
be incorporated into current work, and provide greater insight into
the routability of a placement.6

METRIC 1: Simple Congestion Metrics. We explain the reported
variations in routability via a detailed examination of results pro-
duced by two bisection-based placers,Capo[10] andFeng Shui[58],
and the annealing based placerDragon [54]. Table 5 shows half-
perimeter wirelengths for the three placers on the IBM-derived place-
ment benchmarks [13]. Besides total wirelength, we decompose the
wiring into horizontal and vertical components.While total wire-
lengths may only differ by 5% or 10% per benchmark, horizontal
and vertical demand may differ by a large margin.

ASIC routing is normally performed using “preferred direction”
wiring; clearly, Capo andFeng Shui target significantly higher
horizontal demand and significantly lower vertical demand (inciden-
tally, industrial benchmarks often have more horizontal routing re-
sources than vertical). If routing fails forCapo or Feng Shui ,
but not forDragon , the router likely cannot find a location where a
wire can travel horizontally. If routing fails forDragon , but not for
Capo or Feng Shui , it is likely that the router cannot find a lo-
cation where a wire can travel vertically.7 The difference in routing
demand also suggests how to deal with interconnect layers. If the
number of metal layers is odd or differences in routing pitches bias
routing supply in one direction, the placer should bias the routing
demand accordingly.

Evaluating vertical and horizontal wirelength is easy and helps
explain apparently contradictory results. Commercial tools report
the two numbers and their sum. Academic tools should do the same.

Extending the simple separation between horizontal and verti-
cal components is a metric similar to channel density. Sweeping
through the layout either vertically or horizontally, one can track
horizontal and vertical routing demand. “Best-case” and “worst-
case” congestion levels for the H and V routing layers can be found.
When horizontal and vertical placement densities are compared for
Feng Shui , Capo, andDragon , the overall results are similar to
those in Table 5.

Our final suggestion for “simple” congestion metrics are those
based on “probabilistic” routing models [47, 38, 33] as follows.
- The core area is decomposed into a regular grid of routing tiles.

6More sophisticated models for achievable routing were proposed
and validated [30], but the community has yet to produce consistent
and independently verifiable results even for simple metrics.
7If routing succeeds, it may take an unusually long time, indica-
ting layout problems. To avoid congestion, a route may need to
detour. Such detours increase path lengths, substantially slowing
down maze search in modern routers.

- Each signal net is decomposed into Steiner or spanning trees.
- The “probability” that a given tree edge uses a given tile is com-
puted based on fast combinatorial enumeration of shortest paths.

An open-source implementation of probabilistic congestion maps
from [38] is distributed with theCapo placer in [13] and can pro-
duce picture files as well as scripts for Matlab and gnuplot — see
Figure 3. This estimation method is reasonably fast, can obtain re-
sults that are close to those of global routing tools [47, 33]. These
estimates should be used with caution, however: good global routing
tools may introduce slight routing detours to eliminate congestion
problems. Probabilistic models might be considered pessimistic; if
the estimates are used to influence the placement process, we may
be addressing problems which do not actually exist, and suffer un-
necessary wirelength increases.
METRIC 2: Global (and Detail) Routing. Presently, relatively
few routers are available publicly. Global routersLabyrinth [34]
and theForce-Directed Router [41] are both downloadable
from [13] in source code (in C++ and Java respectively), but their
behavior on large circuits may not be representative of commercial
routers. Some research groups use commercial tools [10, 55], most
frequently CadenceWarpRoute . However, commercial tools are
impossible to tweak and difficult to integrate with. In particular,
commercial tools typically do not save global routing results (which
would be convenient for evaluating global placement) but rather of-
fer a monolithic global+detail routing optimization. Furthermore,
commercial routers may obscure results by performing sophisticated
optimizations. To summarize, we believe that an open infrastruc-
ture for global routing should be developed by academic researchers
and populated with open-source routers of reasonable quality, tested
against commercial tools (similarly to how major academic global
placers have been tested). A fast global router can be then embedded
into a placer [46] as an estimator.

5. TOWARD OPEN BENCHMARKING
FOR TIMING-DRIVEN PLACEMENT

The development of scalable, powerful and robust algorithms for
circuit delay minimization during placement is a key challenge in
Circuit Layout. It is mentioned regularly in the requests from in-
dustry and government funding agencies, but few replicable results
have been reported in the literature. While we discuss timing, par-
allels can be made with power minimization. Barriers to research in
timing-driven placement can be summarized as follows.

Lack of non-trivial placement benchmarks with enough infor-
mation to perform accurate timing analysis. The MCNC bench-
marks which have signal direction information use an extremely
simple and outdated timing model. Meanwhile, benchmarks derived
from academic work are viewed by industrial groups as small and
meaningless. “Synthetic” benchmarks are criticized for not accu-
rately modeling “real” circuits.

Accurate circuit-level timing analysis is non-trivial, and accu-
rate device-level timing analysis is computationally expensive.

Actual design parameters are closely guarded industrial se-
crets, and profoundly influence interconnect delay.

Differences in interpretation that have plagued wirelength-based
placers [40] are more problematic in the context of timing optimiza-
tion. The timing-driven annealing-based placer from [53] reports the
longest path delay 798ns for the MCNC benchmarkavqsmall . In
[24], the longest path was improved to only 80ns. A quadrisection
driven placer [29] reported a result of 71ns, and most recently, a
result of 59.6ns was reported [45]. The improvement in delay for
the same circuitby more than a factor of 10seems beyond belief,
especially considering that the approach of [53] was by no means
naı̈ve and their placer implementation has been validated indepen-
dently. Also note that theavqsmall circuit was released in 1989,
and clock frequencies of 16.6MHz were not realistic for standard-
cell ASICs at that time. At this time, while interconnect delay was
important, it by no means dominated system delay. Even if all in-
terconnect delay was eliminated, it is unlikely that the delay of the
longest path could be affected to this extent. Further investigation
revealed that some path delays reported in [45] are smaller than the
sum-of-gate-delays reported in [28] — for the testcasefract [45]

computes a path delay 11.91ns, while [28] produces a lower bound
of 18.5nsby entirely ignoring interconnect delays.

Aside from inaccurate reporting of design parameters used in timing-
driven placement (such as the spacing between cell rows), discrep-
ancies in results are due to the dearth of infrastructure necessary to
support timing-driven placement (TDP). While it is easy to verify
net cuts reported by partitioning engines and confirm half-perimeter
wirelength reported by global placers, it is practically impossible to
independently verify timing improvements reported by new TDP al-
gorithms, even if placements produced by them are available. Any
consistent public infrastructure for benchmarking in timing-driven
placement should address such concerns and, in particular, imple-
ment several different path-delay computations. If a newly devel-
oped placement tool does not find the expected critical path in a
reference placement, this is a clear sign that there is an error in the
approach. Being able to easily identify the existence of a problem
would be invaluable to the academic researcher. In fact, wirelength
reported by most academic placers is consistent with a public eval-
uator available in the GSRC Bookshelf [13].

One could suggest that the setup-slack (the difference between
path arrival time and path required time) reported by a static-timing-
analysis (STA) engine should be the final arbiter of the “goodness”
of a TDP. Indeed, among recent TDP papers [45, 28, 18, 31, 56, 35]
one half [18, 31, 56] do just that. However, some groups may find
it difficult to obtaining valid timing constraints, gate models (de-
lay library) and an appropriate technology-file to correctly compute
the setup-slack. To overcome the obstacles in using an industrial
STA engine, authors frequently report “path-delays” through some
gate-delay computation coupled with internally developed STA en-
gines. Such timing analyzers can be simplified by ignoring path-
exceptions, multiple-clock domains, delays on primary I/O, and gate-
delay modeling and net modeling details. The impact of slope (signal-
transition time) on gate-delay is typically ignored, likely making
path-delay results erroneous as shorter paths with long nets appear
more critical than paths with more stages of logic.

At the heart of TDP lies an inherent compromise between opti-
mization and simulation. Ideally each decision made by the place-
ment engine must be guided by exact setup-slack. However, even
one pass of an accurate STA may be prohibitively slow in some
cases. In an extreme case, embedding a timing update into passes
of a Fiduccia-Mattheyses (FM) partitioner, raises the complexity per
pass from linear to quadratic (in the number of movable objects) if
each move would have to perform a timing update on the entire fan-
in and fan-out cone of the relocated cell. Thus, TDP engines must
approximatetheir timing gain. Practical trade-offs are biased toward
optimization. Also note that maximizing setup-slack in a circuit is
equivalent to maximizing setup-slack on all possible paths, whose
number may be exponential in the number of movable objects. Thus
a TDP engine is forced into implicit traversals or further approxima-
tions, further complicated by false paths. Classical minimization of
half-perimeter wirelength does not capture this, and path-unaware
net-weighting schemes are inadequate. Path-counting schemes [35]
can do better.

Even a single-stage delay along a path cannot be quickly cal-
culated with adequate accuracy and fidelity. First, gate-delay and
output-transition time are functions of input-transition time (poor
transition time typically affects 2-3 stages downstream). Second,
the net topology and the presence of buffers may not be certain at
placement. Some researchers approximate net delay using the star
model, others use minimum spanning trees [31], easily-computable
single-trunk Steiner tree or derivatives [17]. Many papers use El-
more delay for the star net-model and intrinsic slope-independent
gate delay. These simplifications would be acceptable if the results
were correlated with (in a relative sense) or at least were represen-
tative of the actual setup-slack. However, that is often not the case.
The notion of ”path-potential” was introduced in [24] as a method of
demonstrating the timing driven properties of a placement engine in
the absence of relevant TDP benchmarking infrastructure. A lower
bound for path-delay can be found by running an STA with zero in-
terconnect delays (i.e., just gate delays). Two placements can then
be compared by subtracting this lower bound from maximal path
delays. However, this would ignore transition times!

Timing constraints add more variety to the TDP problem. Today
typical designs non-trivial boundary conditions, false-paths, multi-
cycle paths, etc. A placer ignoring these design features may fo-
cus on paths irrelevant to the actual clock period. Multiple clock
domains with different periods raise new issues. Is the -0.5nssetup-
slack on a path clocked at 250MHzmore criticalthan a similar slack
on a path clocked at 50MHz?

While various design considerations make it extremely difficult
to evaluate timing accurately, academic works typically address geo-
metric and graph-theoretic aspects that are also challenging for com-
mercial tools. Indeed, signal paths that detour a lot typically have
greater delay than “straight” paths. A simple but non-trivial objec-
tive function is given by the total geometric path length (gate delays
can be added easily to such formulations). To this end, algorithms
that directly attempt to “straighten” critical paths by optimizing ge-
ometric path lengths have been proposed [31] and extended to more
realistic delay objectives. During such optimization they must en-
sure that sub-critical paths do not overtake currently-critical paths.
These algorithms need only the infrastructure to evaluate the criti-
cality of paths and are accessible to academic groups.

Physical synthesis is a synergistic attempt at design closure via si-
multaneous placement and logical transforms [23, 42, 39]. While in-
teresting work on Physical Synthesis, with empirical results, already
appeared at conferences [36], no replicable timing results are given.
In Physical Synthesis, concerns about ignoring transition time are
alleviated by interleaving placement transforms with calls to netlist
buffering [23]. However, this raises two additional concerns: the
netlist or gate sizes may change from one iteration to the next, and
regions of the chip may become over utilized, thus requiring pow-
erful legalization methods. An alternative method is to perform the
placement optimization within a ”virtual buffering” mode [42]. This
allows the placement engine to operate on a constant netlist (buffers
are not inserted) with a timing analysis mode that minimizes exces-
sive slope effects and correctly accounts for buffer delays. In a gain-
based synthesis environment [39] this problem is converted into the
task of maintaining the gain on each cell. While the netlist does not
change, the sizes of the cells may change (to maintain gain), lead-
ing to the need for strong legalization techniques. In either case,
transition-time effects may lead to 5-10% larger gate area and fur-
ther challenges for the TDP engine.

It may be unrealistic to develop a Physical Synthesis environment
in academia in the near future because the narrower task of timing-
driven placement seem to be hitting serious roadblocks. However,
we do envision a set of benchmarks with valid timing constraints,
multiple clock-domains and of representative size. This requires
access to gate-delay libraries (.lib) and technology files (LEF).
Finally, there needs to be a way to independently verify the timing
results of the placements. Some necessary infrastructure may be
provided by recent efforts at Si2 that resulted in downloadable soft-
ware such as OLA [44] and OpenAccess [43], but path-based STA
is still missing. The descriptions below are adapted from [44, 43].

OLA is an Application Procedural Interface (API) that can be
used by EDA tools for the determination of cell and interconnect
characteristics of very deep submicron ICs. OLA is an extension
to the Standard for Delay and Power Calculation System, the IEEE
1481-1999 standard. Target applications include timing-driven place-
ment and routing, and OLA attempts to eliminate inconsistent tim-
ing data between different EDA tools by using the library vendor’s
”golden” delay calculator in all OLA compliant tools.

The OpenAccess API is a C++ program interface to IC design
data. The associated reference database is a technology donation
from Cadence Design Systems, who is also a member of the Ope-
nAccess Coalition. The API and the reference implementation pro-
vide a high performance, high capacity electronic design database
with architecture designed for integration and fast application de-
velopment. Access to the reference database source code is pro-
vided to allow companies and academic institutions to contribute
to future database enhancements and add proprietary extensions.
The database can, in principle, be used in production environments
where software maintenance is critical.

6. BEYOND PLACEMENT
To seriously address the huge sub-optimality of existing place-

ment tools [27, 21, 15], one needs to ascertain improvements on in-
dustrial circuits. However, published empirical data show that even
when two research groups use the same source data,there are often
differences of interpretation, resulting in incompatible numbers and
no useful conclusions made from the data.For example, timing-
driven placement benchmarks posted in Verilog [18] prevent reli-
able comparisons to published numbers, e.g., in [56]. To remedy
such incomplete benchmarks, the Vertical Benchmarking project at
CMU [49] offers multiple representations of the same design. How-
ever their benchmarks still do not have sufficient timing data. On
the positive side, recent placement benchmarks better agree in terms
of row spacing, pin positions, etc and researchers are more consci-
entious about such design aspects [40].

Lessons from placement benchmarking are summarized below:

1. Evaluation methods must be explicit to leave minimum room
for misinterpretation. Simple open-source evaluation tools
should be used to verify the accuracy and correctness of any
published result. For example, open-source plotters of place-
ment and congestion, as well as evaluators of wirelength and
congestion are distributed with theCapo placer in the GSRC
Bookshelf [13]. Linux and Solaris binaries are posted in the
Placement Utilitiesslot. Benchmarks should be explicit too,
and no preprocessing by user should be assumed. The same
input files should be used for all tools compared. When con-
version cannot be avoided, standard publicly available con-
verters should be used — we posted such converters in the
Placement Utilitiesslot of the GSRC Bookshelf.

2. Raw experimental results are very useful and should be posted
on-line. This simplifies the verification of results, and may
lead to insights into what a tool did “right” or “wrong” on
various problems. In the same vein, the version of each tool
should be reported (it’s easy!) or at least the time when each
tool was downloaded and the source. This can resolve poten-
tial confusion about outdated versions of public EDA tools.

3. Visualizations, especially on small benchmarks, help identi-
fying and diagnosing problems. In the course of our work,
the performance ofCapo, Feng Shui and mPLwas im-
proved through step-by-step analysis of placement process on
grid benchmarks. A bug inDragon 2.20 fixed inDragon
2.23 is illustrated in Figure 1. We recommend placement
results be sanity-checked by plotting (are all cells in the core
area, do macros overlap?).

4. Regressions are common when bugs are fixed. Last-minute
placer bugfixes sent to us by developers occasionally pro-
duced worse results than prior versions. For example,mPL
1.2b placed the PEKO01 benchmark with wirelength 1:17e6
versus 1:09e6 achieved bymPL 1.2 . We suspect that this de-
terministic implementation uses a randomized algorithm with
a fixed seed, making the results somewhat chaotic. One could
expose randomization, as inCapo andDragon , to stabilize
evaluation via averaging [6].

5. Open-source tools are very valuable as they enable interesting
experiments via slight modifications. For example, terminal
propagation is not described adequately in placement litera-
ture, and the best way to learn successful approaches to it is to
look at open-source codes [13]. The same applies to many im-
plementation details of high-performance min-cut partition-
ing algorithms [9]. Open source also lowers barriers to en-
try and leads to more meaningful research work. Instead of
writing new parsers and basic algorithms, researchers should
focus on key aspects of EDA tools.

6. Despite the overall preference for real design benchmarks, ar-
tificial testcases with known optimal solutions [27, 15] are be-
coming popular. Instead of known optimal solutions, bounds
on optimal costs will do. Such benchmarks (BEKU) are pro-
posed in [19] for min-cut hypergraph partitioning.

As we focus on more difficult problems, the community must sup-
port open benchmarking and tool availability, otherwise we cannot
expect much progress.

Benchmarking For Routing Tools.
With variable-die channel-based standard-cell designs, compa-

ring global routing tools was relatively easy. Channel density can be
computed directly, and channel routing tools can often achieve the
lower-bound target. Feed-throughs are inserted in cell rows; given
the length of the longest row and the total channel density, we can
obtain a very accurate estimate of chip area after detail routing.

Fixed-die, multilayer over-the-cell global routing is more diffi-
cult to evaluate because detail routing is non-trivial and must be de-
coupled. Technology-specific constraints, e.g., antenna rules, make
it impossible to predict successful routing for dense designs [48].

Reasonable metrics for global routers were proposed in [47, 34]:
- Each edge of the global routing graph has a fixed maximum

capacity; this is a hard physical constraint, and any routing which
exceeds this is infeasible.

- When routing demand is below capacity, successful detail rout-
ing is more likely. In [47], 70-80% was proposed as a good objec-
tive. If a routing solution exceeds this level for a given edge, the
edge is “over capacity”. Reducing the total amount by which all
edges exceed the target capacity is a reasonable goal.

- If capacity constraints are met, reduce the total wirelength.
A number of global routing benchmarks were made available in

[13] by the authors of [34]. As the community moves toward wider
usage of benchmarks, these can be suggested as a reasonable next
step. For detail routing, very little is available for benchmarking.
Only a few research groups are actively working on detail routing
tools, and the problem is made extremely complex due to differing
design rules, numbers of routing layers, and performance objectives
such as crosstalk, delay, and even lithography related issues.

Delay, Power and Temperature.
Incompatible data published for the MCNC benchmarksfract

andavqsmall suggest wide-ranging interpretations and modeling
of signal delay, rise and fall times, etc. Given a placement and rout-
ing solution, two researchers may come up with “delay” or “power”
numbers that are off by an order of magnitude. If the community
is to actively pursue timing-, power- and temperature-driven lay-
out, common frameworks are required to evaluate these objectives.
We hope that [43, 44] may provide such frameworks. As for pub-
lic benchmarks with enough information to evaluate signal delay,
we are currently negotiating with our colleagues in the industry and
hope to post new benchmarks in the GSRC Bookshelf [13]. How-
ever, detailed comparisons including delay will require much more
effort and finesse than the comparisons presented in this paper.

Wider Benchmarking Context.
When we consider layout problems identified in “research needs”

documents from funding agencies, many areas appear in need of
benchmarks, even to reliably verify results of one’s research by ex-
periment. We feel that aside from identifying important problems
the community must developed evaluation methods and agree upon
them. To be specific, we mention several sample areas where bench-
marking could help.Mixed digital-analog design for SOCand3-
dim integrationraise new layout issues.The X-routing architecture
with 45-degree wiring may affect basic placement and routing algo-
rithms.Multiple-voltagesystems are now being developed to reduce
power consumption without sacrificing performance. Public bench-
marks are lacking for such non-traditional designs despite their rel-
evance to next-generation circuitry. Alsophysical verification, reli-
ability and yield issuesare becoming more important every year.

In summary, we propose that the physical design community adopt
standards for empirical evaluation and best practices similar to those
in the placement community. This could improve the quality of on-
going work on circuit layout as well as the interaction among re-
searchers, practitioners and funding agencies.

Acknowledgments
This work was supported by the Semiconductor Research Corpo-
ration, the Gigascale Silicon Research Center, an IBM University
Partnership award, an IBM Faculty Partnership award, and equip-
ment grants from Intel. We would also like to thank to Prof. Frank
Johannes (TU Munich), Prof. Jason Cong, Prof. Joseph Shinnerl,
Min Xie (UCLA), Prof. Andrew Kahng (UCSD) and Xiaojian Yang
(Synplicity) for technical discussions and help with placement tools.

0 1 2 3 4 5 6

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
5 KraftWerk/Plato

0

10

20

30

40

50

60

0 1 2 3 4 5 6

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x 10
5 Capo 8.6

Figure 3: Probabilistic congestion maps for Cadence-Capo test3
(20.5K cells). TheCapo placement (right) has higher peak con-
gestion, but lower average congestion thanKraftWork (left).
Cadence WarpRoute succeeded in both cases: 6 violations for
Capo and 123 for KraftWerk . The plotter program is in the
GSRC Bookshelf under Placement Utilities.

7. REFERENCES
[1] S. N. Adya and I. L. Markov, ”Consistent Placement of Macro-Blocks

using Floorplanning and Standard-Cell Placement”,ISPD2002, pp.
12-17.

[2] C. J. Alpert, G.-J. Nam and P. G. Villarrubia, “Free Space
Management for Cut-Based Placement”,ICCAD 2002, pp. 746-751.

[3] C. J. Alpert, J.-H. Huang and A. B. Kahng,“Multilevel Circuit
Partitioning”,DAC 1997, pp. 530-533.

[4] C. J. Alpert,“The ISPD98 Circuit Benchmark Suite,”ISPD1998, pp.
80-85.
http://vlsicad.cs.ucla.edu/˜cheese/ispd98.html

[5] M. R. Beasley, S. Datta, H. Kogelnik, H. Kroemer, and D. Monroe.
“Report of the Investigation Committee on the Possibility of
Scientific Misconduct in the Work of Hendrik Schon and Coauthors,”
2000.http://www.lucent.com/
news events/researchreview.html

[6] A. E. Caldwell, A. B. Kahng, A. A. Kennings, and I. L. Markov,
“Hypergraph Partitioning for VLSI CAD: Methodology for
Reporting, and New Results,”DAC1999, pp. 349-354.

[7] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Improved Algorithms
for Hypergraph Bi-partitioning,”ASPDAC 2000, pp. 661-666.

[8] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Hypergraph
Partitioning With Fixed Vertices,”IEEE Trans. on CAD, vol. 19, no.
2, 2000, pp. 267-272.

[9] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Design and
Implementation of Move-based Heuristics for VLSI Hypergraph
Partitioning”,ACM Journal of Experimental Algorithms, vol. 5, 2000
http://www.jea.acm.org/volume5.html

[10] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Can Recursive
Bisection Alone Produce Routable Placements?”DAC ‘00, pp.477-82.

[11] A. E. Caldwell, A. B. Kahng, I. L. Markov, “Optimal Partitioners and
End-case Placers for Standard-cell Layout”,IEEE Trans. on CAD,
vol. 19, no. 11, 2000, pp. 1304-1314

[12] A. E. Caldwell, A. B. Kahng, I. L. Markov, “Hierarchical Whitespace
Allocation”, to appear inIEEE Trans. on CAD2003.

[13] A. E. Caldwell, A. B. Kahng, I. L. Markov, “VLSI CAD Bookshelf”
http://vlsicad.eecs.umich.edu/BK

[14] T. Chan, J. Cong, T. Kong, and J. Shinnerl, “Multilevel Optimization
for Large-scale Circuit Placement,”ICCAD 2000, pp. 171-176.

[15] C. C. Chang, J. Cong and M. Xie, “Optimality and Scalability Study
of Existing Placement Algorithms,”ASP DAC2003, pp. 621-627.

[16] C.-C. Chang, J. Cong, and X. Yuan, “Multi-level Placement for
Large-Scale Mixed-Size IC Designs,”ASPDAC2003, pp. 325-330.

[17] H. Chen, C. Qiao, F. Zhou and C.K. Cheng, “Refined Single Trunk
Tree: A Rectilinear Steiner Tree Generator For Interconnect
Prediction,”Intl. Workshop on System-Level Interconnect Prediction
(SLIP)2002, pp. 85-89.

[18] Y.-C. Chou and Y.-L. Lin, “A Performance-driven Standard Cell
Placer based on a Modified Force-directed Algorithm,”ISPD2001,
pp. 24-29.

[19] J. Cong, M. Romesis, and M. Xie, “Optimality, Scalability and
Stability Study of Partitioning and Placement Algorithms”,ISPD ‘03.

[20] J. Cong and J. R. Shinnerl, “Multi-level Optimization in VLSI CAD,”
Kluwer, Boston, 2002.

[21] W. J. Dally and A. Chang, “The Role of Custom Design in ASIC
Chips”,DAC00, p. 643-647.

[22] K. Doll, F. M. Johannes and K. J. Antreich, “Iterative Placement
Improvement By Network Flow Methods”.IEEE Trans. on

Computer-Aided Design of Integrated Circuits and Systems, vol.13,
(no.10), Oct. 1994. pp. 1189-1200.

[23] W. Donath et al., “Transformational Placement and Synthesis”,DATE
2000, pp. 194-201.

[24] H. Eisenmann and F. M. Johannes, “Generic Global Placement and
Floorplanning”,DAC1988, p. 269-274.

[25] C. M. Fiduccia, R. M. Mattheyses, “A Linear-Time Heuristic For
Improving Network Partitions”,DAC 1982, pp. 171-181.

[26] S. Goto, “An Efficient algorithm for the Two-Dimensional Placement
Problem in Electrical Circuit Layout,”IEEE Trans. on Circuits and
Systems, vol. 28 no. 1, 1981, pp. 12-18.

[27] L. Hagen, J. H. Huang, and A. B. Kahng, “Quantified Suboptimality
of VLSI Layout Heuristics”,DAC1995, pp. 216-221.

[28] W. Halpin, C. Y. Roger Chen, and N. Sehgal, “Timing driven
placement using physical net constraints,”DAC2001, pp. 780-783.

[29] D. J.-H. Huang and A. B. Kahng. “Partitioning based standard cell
global placement with an exact objective,”ISPD1997, pp. 18-25.

[30] A. B. Kahng, S. Mantik and I. L. Stroobandt, “Requirements for
Models of Achievable Routing,”ISPD 2000, pp. 4-11.

[31] A. B. Kahng, S. Mantik and I. L. Markov, “Min-max Placement For
Large-scale Timing Optimization”ISPD 2002, pp. 143-148.

[32] G. Karypis, R. Agarwal, V. Kumar, and S. Shekhar, “Multilevel
Hypergraph Partitioning: Applications in VLSI Design”,DAC1997,
pp. 526-529.

[33] P. Kannan, S. Balachandran, and D. Bhatia, “On Metrics for
Comparing Routability Estimation Methods for FPGAs,”DAC2002,
pp. 70-75.

[34] R. Kastner, E. Bozogzadeh, and M. Sarrafzadeh, “Predictable
Routing,” ICCAD 2000, pp. 110-113.

[35] T. Kong, “A Novel Net Weighting Algorithm for Timing-Driven
Placement”,ICCAD 2002, pp. 172-176.

[36] P. Kudva, A. Sullivan and W. E. Dougherty, ‘ ‘Metrics for Structural
Logic Synthesis”,ICCAD 2002, pp. 551-556.

[37] E. Lerner, “Fraud Shows Peer-review Flaws,”The Industrial
Physicist, 8(2), 2002.

[38] J. Lou, S. Krishnamoorthy, H. S. Sheng, “Estimating Routing
Congestion using Probabilistic Analysis,”ISPD 2001, pp 112-117.

[39] Magma Design Automation Inc., “White Papers,”
http://www.magma-da.com/whitepapers.html

[40] P. H. Madden, “Reporting of Standard Cell Placement Results,”IEEE
Trans. on CAD, 21(2), Feb. 2002, pp. 240-247.

[41] F. Mo, A. Tabbara, and R. K. Brayton, “A Force-directed Maze
Router,”ICCAD 2001, pp. 404-408.

[42] Monterey Design Systems, “Dolphin,”http://
www.mondes.com/products/dolphin.htm

[43] Open Access,http://www.si2.org/openaccess/
[44] Open Library Architecture (OLA),http://www.si2.org/OLA/
[45] S.-L. Ou and M. Pedram, “Timing-driven Placement based on

Partitioning with Dynamic Cut-net Control”,DAC 2000, pp. 472-476.
[46] P. N. Parakh, R. B. Brown, K. A. Sakallah, “Congestion Driven

Quadratic Placement”,DAC1998, pp. 275-278.
[47] A. Rohe and U. Brenner, “An Effective Congestion Driven Placement

Framework,”ISPD 02, pp. 6-11.
[48] L. Scheffer and E. Nequist, “Why interconnect prediction doesn’t

work,” Intl. Workshop on System-Level Interconnect Prediction
(SLIP)2000, pp. 139-144.

[49] H. Schmit, “Vertical Benchmarks,”http://www.ece.cmu
.edu/˜herman/html/benchmark slot.html

[50] G. Sigl, K. Doll and F. M. Johannes, “Analytical Placement: A Linear
or Quadratic Objective Function?”DAC1991, pp. 57-62.

[51] The Standard Performance Evaluation Corporation (SPEC),
“SPECmark benchmarks,”http://www.specbench.org/

[52] D. Stroobandt, “A Priori Wire Length Estimates for Digital Design,”
324 pages,Kluwer, ISBN 0-7923-7360-X, 2001.

[53] W. Swartz and C. Sechen, “Timing-Driven Placement For Large
Standard-Cell Circuits,”DAC1995, pp. 211-215.

[54] M. Wang, X. Yang and M. Sarrafzadeh, “Dragon2000: Standard-cell
Placement Tool for Large Industry Circuits,”ICCAD 2000, pp.
260-263.

[55] X. Yang, B.-K. Choi and M. Sarrafzadeh, “Routability Driven White
Space Allocation for Fixed-Die Standard-Cell Placement,”ISPD
2002, pp. 42-50.

[56] X. Yang, B.-K. Choi and M. Sarrafzadeh, “Timing-Driven Placement
using Design Hierarchy Guided Constraint Generation,”ICCAD
2002, pp. 177-184.

[57] X. Yang, B-K. Choi, and M. Sarrafzadeh, “A Standard-Cell Placement
Tool for Designs with High Row Utilization,”ICCD 2002, p. 45-47.

[58] M. C. Yildiz and P. H. Madden, “Improved Cut Sequences for
Partitioning Based Placement,”DAC, 2001, pp. 776-779.

