
On-Chip Test Generation Using Linear Subspaces
Ramashis Das, Igor L. Markov, John P. Hayes
{ramashis, imarkov, jhayes}@eecs.umich.edu

Advanced Computer Architecture Laboratory, University of Michigan,
Ann Arbor, MI 48109, USA

Abstract

A central problem in built-in self test (BIST) is how to ef-
ficiently generate a small set of test vectors that detect all
targeted faults. We propose a novel solution that uses lin-
ear algebraic concepts to partition the vector space of tests
into subspaces (clusters). A subspace is defined by a com-
pact set of basis vectors. We give an algorithm to compute
sets of basis vectors defining the clusters. We also describe
a low-cost logic circuit based on Gray codes that reproduces
the subspaces from these basis vectors. Experimental re-
sults are presented which show that this approach reduces
on-chip hardware overhead and test application time, while
also guaranteeing full fault coverage.

1 Introduction
A typical built-in self test (BIST) circuit consists of a con-
troller, a test pattern generator (TPG) that feeds test vectors
to the circuit under test (CUT), and a response analyzer that
verifies the test responses. The efficiency of the TPG in gen-
erating good test vectors largely determines the performance
of the BIST. Hardware overhead, testing time and the fault
coverage are the performance metrics of the TPG. The hard-
ware structure of a TPG can be broadly divided into a state
controller, a combinational mapping circuit and an optional
memory element or ROM (Fig. 1). The state controller SC
holds the current state of TPG in a register SR, and an addi-
tional circuit Cstate determines the next state. The mapping
logic ML decodes the state into test inputs for the CUT. The
ROM M is used to store some predetermined test data. As
we discuss, all TPG methods try to reduce or remove one
or more of these blocks. For example, storing a minimal set
of complete tests can get rid of all blocks except the ROM
M. It can also guarantee full fault coverage, but may require
very large hardware overhead in terms of ROM size.

Figure 1: General structure of a test pattern generator.

The most common example of a test pattern generator
is the linear feedback shift register (LFSR) which has no
explicit M or ML [15]. The next state is derived from an
XOR-network inside the LFSR which comprises the Cstate
part. LFSRs are popular due to their small size and ability
to generate large spaces of pseudo-random tests. A major
problem with LFSRs is that they need to generate many test
vectors to achieve high fault coverage. Many methods in
the literature propose to speed up the LFSR with additional
hardware. A recent paper by Chatterjee and Pradhan [2] in-
troduces the concept of Generalized LFSRs (GLFSRs) that
generate test vectors over the Galois field GF(2d). GLF-
SRs achieve nearly complete fault coverage by increasing
the dimension of the LFSR-state by one or more. A fur-
ther improvement on GLFSRs is discussed in [5]. Though
these low-hardware overhead modifications to LFSRs im-
prove fault coverage with a fairly small number of test pat-
terns, they do not guarantee complete fault coverage.

It has been observed that the presence of “pseudo-
random pattern resistant” faults in the CUT makes it difficult
to achieve full fault coverage. A primitive polynomial-based
LFSR running through all its 2n − 1 states can guarantee
complete fault coverage, but takes time that is exponential
to the test size n. (A small modification can add the missing
all-0 state, if required.) Reseeding of LFSRs [12] is one way
to achieve complete fault coverage that avoids visiting all
states. In this technique, the LFSR is run for a predetermined
number of cycles and then restarted with a different state (a
seed). This process is repeated several times. The seeds
can be stored in a small ROM M accessible to the sequen-
tial machine that controls the LFSR. A similar approach is
to use a multiple-polynomial LFSR [11] where one changes
the polynomial function of the LFSR after a predetermined
number of cycles. Both approaches use M to store some crit-
ical state information. Weighted random pattern generators
[7] provide yet another LFSR-based method that uses extra
hardware to achieve full fault coverage.

While LFSRs form a class of linear logic circuits, linear
algebraic methods as such are rarely exploited explicitly in
test pattern generation. The earliest example appears to be
[1] which proposes using a k-bit counter feeding an XOR
array C to generate a given test set T , recognizing that C
performs a linear transformation (Fig. 2). Although not in-
volving linear algebra directly, [8] is similar in spirit, in that
the authors treat a test set as a matrix, and use column op-
erations like permutation and complementation to convert
it to a form that is readily generated by an ordinary binary
counter. Similarly, the literature on pseudo-exhaustive test-
ing distinguishes partitions of test vectors based on indepen-
dence among primary input variables of the CUT. Table 1
classifies the various proposed TPG methods.

Many testing techniques, espescially those based on ex-
ternal ATE, implement compression methods. Some of these

1



TPG method ROM contents M State controller SC Mapping logic ML Reference(s)
Pre-stored tests Complete test set - - -
Simple LFSR-based - LFSR - [15]
GLFSR-based - Generalized LFSR - [2], [5]
Weighted random Weights LFSR Custom [7]
Reseeding/multiple polynomial LFSR Seeds/polynomials LFSR Custom [10]
Bit flipping - LFSR Bit flipping logic [13]
Linear transformations - Binary counter XOR array [1]

Table 1: Classification of hardware-implemented TPG methods.

techniques ([6], [17], [18]) use clustering to minimize stor-
age requirements and the amount of external data required
for testing, hence reducing the testing time.

In this work we develop a TPG methodology based on
dividing the test vector space into clusters (subspaces) of
small rank. We propose an efficient pseudo-exhaustive enu-
meration of subspaces, based on Gray-code counters which
leads to a very efficient TPG design. We explore possible
uses of such hardware in BIST to generate a desired test set.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the algebraic operations used to define lin-
ear spaces of test vectors. Sections 3 and 4 describes our
TPG design to enumerate all vectors in a linear subspace de-
fined by sets of basis vectors. An algorithm for clustering
of test vectors into linear subspaces is proposed in Section
5. Experimental results demonstrating the performance of
the proposed TPG and comparison with existing TPGs are
presented in Section 6. Conclusions and future work are
discussed in Section 7.

2 Theoretical Framework
Consider an n-dimensional vector space V over the field
F2 = {0,1}, in which the field operations + and × are
bit-wise logic XOR and AND operations, respectively.
Test vectors with n bits can therefore be thought of as
elements of V . A basis for V is a smallest set of
linearly-independent n-bit vectors that can generate the en-
tire space by bit-wise XOR operations. For n = 3, V3 =
{000,001,010,011,100,101,110,111}, and an example ba-
sis is B3 = {001,010,100}. A subset of B3 spans a subset
V ′ of V that corresponds to a subspace or cluster of V . For
example, V ′

3 = {000,001,010,011} is a cluster of V3 gener-
ated by B′

3 = {001,010}. Thus, the cluster is captured by a
smaller set of basis vectors. We exploit this idea to design
TPGs that use small basis sets to generate clusters with full
fault coverage.

Figure 2: Test set embedding using an XOR array [1]

Let us now look at an example that further explains the
algebra underlying our approach. Consider the c499 single-
error-correcting circuit from the ISCAS-85 benchmark suite.
Applying the ATALANTA ATPG program [14] to the gate-
level version of this circuit produces a set S of 53 41-bit test
vectors that detect all non-redundant faults. These vectors,
when arranged in the order of number of faults covered, form
the following array:

1: 01100111100110000011000101011010010110000
2: 10110001001010111111110110110001111101110
3: 11010101111010000001010110111000111010101
4: 10101110000100001101010110001011101001101
5: 00100010010010110011111101011001011101011
6: 00100000011110100000000111110111001011111
7: 11111101100110110100000010100000011010000
8: 11111011100101111010010000111100001010001
9: 00001110110000111111100111010100111001100
10: 11010101100010110001010111111011000011100
11: 10011010111000011111110101100011111001110
...

...
52: 10010100100011010111010001110111001011100
53: 11111111000000000110100100100001101101101

Simulation experiments show that the linear space V ′
41

spanned by the highlighted vectors is enough to achieve full
fault coverage. These eight linearly independent vectors
form a basis B′

41; hence a TPG circuit that can generate the
entire space spanned by these basis vectors will ensure com-
plete fault coverage. This set of basis vectors is 6.6 times
smaller than the original test set S. Figure 3a shows a TPG
design that stores the complete test set S in the ROM M, and
Fig. 3b shows the proposed TPG where only B′

41 is stored in
the ROM M′, which is considerably smaller than M.

The cluster V ′
41 spanned by the 8 basis vectors B′

41 con-
tains 28 = 256 vectors, not all of which are important in
detecting faults. Often we can generate several clusters of
smaller size which result in smaller test sets. For c499, full
coverage can be achieved by combining four separate bases
of rank 5. Though this requires storing 12 extra vectors, the
test length is only 128 = 4×25. Note the similarity of pro-
ducing multiple clusters to the reseeding of an LFSR, where
a seed represents a consecutive subset of vectors (cluster)
generated by the LFSR.

A ROM that stores k n-bit basis vectors (Fig. 3b) v0,
v1, . . ., vk−1 implicitly represents the linear subspace V ′

n
spanned by these vectors. Properly selected, this subspace
contains many additional test patterns which are linear com-
binations of the k stored vectors. Consider a k-bit integer
m as the bit-string mk−1mk−2 . . .m1m0. A linear combina-
tion of the stored vectors is given by ∑k

j=0 m jv j , where the
binary coefficient m j implies the inclusion (if m j = 1) or ex-
clusion (if m j = 0) of vector v j in the linear combination.
By iterating over all 2k values of m, we can generate every
vector in V ′

n. A simple way to generate a cluster from a basis

2



Figure 3: (a) TPG design storing a pre-computed set of test
vectors. (b) Proposed TPG design (ROM M′ can be replaced
by combinational logic)

of rank k is to use a k-bit binary counter which acts as the
state controller and an explicit summation implemented by
k controlled bit-wise XOR operations (the mapping logic).

A similar concept of algebraic basis is used by Akers
and Jansz [1]. Instead of storing the basis vectors, they
construct an array of XOR gates in which each row rep-
resents a basis vector: the presence of XOR gate implies
1, and the absence implies 0. Each row acts as input to
the next row of XORs and the second input of the XOR
is the binary counter bit corresponding to the row. Note
that this cluster-generating hardware outputs the basis vec-
tors when the binary counter value has a “one-hot” format
(000 . . .01,000 . . .10, . . . ,100 . . .00). Thus, their TPG hard-
ware (Fig. 2) generates an explicit modulo-2 sum (same as
n-bit XOR) of the basis vectors,

Xb =
k
∑
j=0

b jv j, 0 6 b 6 2k−1 (1)

where b represents the integer value of the counter. In other
words, the current state of the TPG. b j is the jth bit of the
binary counter and v j is the jth basis vector. The modulo-2
sum Xb represents a test vector which is fed to the circuit
under test. We can clearly see that the binary counter acts as
the state register (Fig. 1) that runs the TPG through the 2k

states, and the XOR array is the mapping logic ML.

3 Proposed TPG Design
As discussed in Section 2, Eq. (1) gives a fairly straightfor-
ward implementation of a space-generating method based
on a binary counter (Fig. 3b). This requires several layers
of XOR gates, resulting in large chip area and delay. In our
proposed implementation, we avoid this overhead by using a
Gray-code counter instead of a binary counter, as explained
below.

We can re-write Eq. (1) as follows:

Xg =
k
∑
j=0

g jv j, 0 6 g 6 2k−1 (2)

where g represents the output of a Gray-code counter. By
definition, two consecutive Gray-code counts g and g + 1
differ by only one bit. Hence there is just one bit position
h such that gh 6= (g+1)h, and for all q 6= h,gq = (g+1)q.

This implies that Xg and Xg+1 differ only in the inclusion or
exclusion of some basis vector vh, that is,

Xg+1 = Xg ⊕ vh (3)

where h represents the bit position in which two consecutive
Gray-code counts differ, i.e. a “one-hot” Gray-code count.
This expresses the relation between test vectors in terms of
the current test vector and a basis vector that is selected using
the one-hot Gray code. Table 2 shows the application of Eq.
(3) to a basis B′

4 = {0001,0010,0100} of rank k = 3. Note
that the last column contains all the vectors in the subspace
defined by B′

4.

Gray- One-hot Flipp-
code Gray-code ing bit Xg vh Xg+1
count (g) count (h)
000 - - 0000 - 0000
001 001 0 0000 0001 0001
011 010 1 0001 0011 0010
010 001 0 0010 0001 0011
110 100 2 0011 0101 0110
111 001 0 0110 0001 0111
101 010 1 0111 0011 0100
100 001 0 0100 0001 0101

Table 2: Evaluation of Eq. (3) on basis B′
4 = {v0 =

0001,v1 = 0011,v2 = 0101}

Figure 4: Hardware to generate a cluster (subspace) from a
basis stored in the ROM.

Our proposed TPG design implements Eq. (3) rather
than the much more complex Eq. (1) using a one-hot Gray-
code counter to obtain h. The TPG includes a test-vector
register, initialized to 000 . . .0, whose bits can be simulta-
neously XORed with ROM output vh (ML in Fig. 4). The
ROM address h represents the position of the 1 in the k-bit
one-hot Gray count. Such sequences can be generated by

3



Figure 5: TPG hardware to generate multiple clusters.

a k-bit binary counter, whose output is converted to Gray
code using k− 1 two-input XOR gates and registered. The
bit-wise XOR of two consecutive Gray codewords gives the
required ROM address in the one-hot form. This part of the
circuit controls the state of the TPG (SC in Fig. 4). The one-
hot address generated by SC makes the traditional ROM-
address decoder unnecessary and allows the ROM to accom-
modate arbitrary k values, not just powers of two. Figure 4
shows more details of the TPG hardware. It is clear that we
need 3 layers of logic having k− 1, k and n of XOR gates
(X1, X2 and X3 respectively), and 2 layers of logic having k
and n D flip-flops (DD1 and DD2 respectively).

As mentioned, it is sometimes more efficient to break
the entire space into smaller subspaces, which requires gen-
eration of subspaces from different basis sets. This can be
implemented by connecting the outputs of each space gen-
erator to a bus (Fig. 5). Individual one-hot Gray-code coun-
ters can be enabled/disabled using a shared ring counter. A
more efficient design reuses the test-vector register and the
XOR hardware. In particular, all one-hot Gray-code coun-
ters can then be consolidated in a single counter. A TPG
for m subspaces requires just an additional logm bits in the
binary counter used to generate the Gray code.

4 Improved TPG Design
We now look into ways of improving the design of Fig. 4.
The layers X3 and DD2 XOR the current test vector with
the next basis vector. A 1 in the basis vector will flip the
test vector whereas a 0 will cause no change. Layers X3 and
DD2 can be reduced to a layer of n T (toggle) flip-flops with
the ROM output feeding the toggle input of the flip-flops.
This reduces the cost of the ML part of our TPG as T flip-
flops have area cost similar to D flip-flops.

Figure 6: Removing the ROM from the TPG for c17.

Consider the ISCAS-85 c17 benchmark circuit. A basis
for complete fault coverage is:

I =
v2
v1
v0





1 0 0 1 0
0 1 1 1 1
1 0 1 0 1



 (4)

To handle the 3 basis vectors, we need a small ROM and a
3-bit binary counter. For clarity, we name the TPG signals
as shown in Table 3. We can do elementary row operations
(as in diagonalization) to reduce the number of 1s in I to get
the matrix:

T =
v2
v1
v0





1 0 0 1 0
0 1 0 1 0
0 0 1 0 1



 (5)

The basis T is stored in the ROM; a vector is selected when
the corresponding bit in the one-hot Gray-count is 1. Thus,
basis vector v2 is selected only when h2 is 1. Bit X4 is flipped
only when v2 is selected since no other vector in T has a 1
in its MSB position (see Eq. (5)). Thus, we can directly
connect h2 to t4. Continuing with the same reasoning, h1
connects directly to t3, h0 to t2 and h0 to t0 (Fig. 6).

TPG component Output signal names
3-bit binary counter b2 b1 b0
3-bit Gray-code counter g2 g1 g0
3-bit one-hot Gray-code counter h2 h1 h0
5-bit T flip-flop register t4 t3 t2 t1 t0
5-bit test vector X4 X3 X2 X1 X0

Table 3: Notation for various TPG signals in the c17 exam-
ple.

The handling of t1 is somewhat complex. X1 is flipped
whenever one of v1 or v2 is selected (Eq. (5)), i.e., t1 = 1
whenever h1 ∨ h2 = 1. Hence we can make t1 = h1 ∨ h2.
Thus, we can eliminate the entire ROM by connecting the
one-hot encoded Gray counter to the T flip-flops via OR
gates. Now, we know that hi is 1 when gi flips, and also
that X j flips when t j is 1. Thus, for an hi that connects di-
rectly to t j , we can connect gi to X j , getting rid of the hard-
ware to generate the one-hot encoded Gray count and the T
flip-flops. For cases where tk is a function of several hls,
we can construct a combinational circuit to implement the
corresponding Xk. In this example, it is found that X1 = b1.
Figure 7 shows the final TPG hardware for c17.

Figure 7: The final TPG for c17.

Let us now discuss the TPG design for a general n-
input CUT. Suppose a basis B′

n of k vectors has been com-
puted such that the corresponding subspace achieves com-
plete fault coverage. We can use the design of Fig. 4 to
generate the cluster defined by B′

n. For the first design im-
provement, we replace the X3 and DD2 layers by T flip-
flops, and the ROM by a layer of OR logic. We then apply

4



ATALANTA Proposed Method
Benchmark No. of No. of test Max. clus- No. of basis Total no. Compression Test
circuits inputs patterns (n1) ter size vectors (n2) of clusters ratio (n1/n2) size
c432 36 52 9 9 1 5.78 256
c499 41 53 8 8 1 6.63 256
c880 60 58 9 13 2 4.46 527
c1355 41 86 10 10 1 8.60 1024
c1908 33 115 11 14 2 8.21 2055
c2670 233 101 11 40 4 2.53 6269
c3540 50 144 12 14 2 10.29 4099
c5315 178 116 11 11 1 10.55 2048
c6288 32 31 7 7 1 4.43 128
c7552 207 212 13 41 4 5.17 24577

Table 4: Experimental results showing the hardware requirements, compression ratio and test length for full fault coverage.

elementary row operations to the k×n basis matrix to reduce
the number of 1s. The input to each T flip-flop is formed by
the OR of a subset of one-hot Gray count bits. For exam-
ple, ti = h j ∨ hl ∨ . . . if the ith column in the matrix has 1s
in rows j, l . . . (similar to Fig. 6). Further hardware mod-
ification reduces the entire mapping logic ML to a layer of
XOR gates as in Fig. 7. Any of these cluster-generating im-
plementations can be scaled up to generate multiple clusters
from multiple sets of basis vectors as discussed in Sec. 3.

Table 4 lists the performance of our approach in terms of
the hardware requirements and test times for various ISCAS-
85 circuits. We define compression ratio (column 7) as the
ratio of the size of a complete set of test vectors generated by
ATALANTA (column 3) to the number of basis vectors re-
quired to generate subspace(s) that guarantee complete fault
coverage. In other words, it is a measure of the reduction
in storage requirement in the ROMs M and M′ shown in
Fig. 3. We can see a high compression ratio for most of
the benchmark circuits, the best result being that for c5315
with a compression ratio of over 10. Similar results are ob-
tained for the ISCAS-89 circuits but are not given here due
to lack of adequate comparision data in the prior literature.

5 Subspace Selection
To employ the TPG design proposed in Sec. 3, we need a
way to compute one or more (preferably small) basis sets
that define a collection of subspaces which guarantees com-
plete fault coverage. One way of getting a basis is by gen-
erating random basis vectors and using a fault simulator to
compute the fault coverage. We can then use improvement
in fault coverage as a criterion to select or reject a vector.
Circuit partitioning can be performed to get sub-circuits with
small n, and generate a basis for each of these separately.
Another way is to start with a complete set of test vectors
and obtain a basis from it.

We implement a heuristic algorithm that selects a vector
from a set of test vectors S such that its addition to the exist-
ing basis leads to maximum improvement in fault coverage.
Note that adding a vector to an existing basis of rank k adds
2k new vectors to the subspace. We start by running ATA-
LANTA with the list of faults not detected by the all-zero
vector 000 . . .0 (which belongs to every subspace) to get the
first set S1. At each subsequent step, we run ATALANTA
with a list of undetected faults to get a set Si. We choose
a vector v from Si that maximizes the coverage of the new
basis. This is continued until all non-redundant faults are de-
tected. We will see in Sec. 6 that this fast heuristic method

for basis generation produces good results.
Another important aspect of subspace selection is the

maximum cluster size. A cluster of k basis vectors requires
2k clock cycles to generate the corresponding subspace. To
limit cluster size, we experimented with various values of
k (7,8 . . .14) and observed that an increase in subspace size
decreases test time at the cost of ROM size. Thus an optimal
value of cluster size needs to be chosen for a particular target
circuit. A simple improvement to this algorithm is obtained
by decreasing the maximum cluster size as the number of
clusters increase. As the first cluster of test vectors covers
most of the faults, the size of subsequent clusters can be re-
duced. This, in turn, reduces the testing time by reducing the
number of patterns generated.

6 Comparison with Other Work
Table 5 compares our method to previous TPG approaches
that guarantee complete fault coverage. This includes work
by Reeb et al. on deterministic generation of weights for
a random pattern generator [7] (column 2 in Table 5), Ak-
ers and Jansz’s test embedding [1] (column 3), Huang et
al.’s Gauss-elimination-based LFSR pattern generator [11]
(column 4), and Kagaris et al.’s counter-based determinis-
tic test generator [8] (column 5). We also consider GLFSR
[2] (column 6) even though it does not always guarantee
complete fault coverage; it tends to require a smaller test
set than many methods. Though the counter-based method
(column 5) gives some of the best results, it seems ineffi-
cient for circuits whose tests are not clustered with respect
to the normal numerical sequence produced by an n-bit bi-
nary counter. Omitting this column, our TPG performs best
for almost all the benchmark circuits.

Next we compare the hardware overhead of the proposed
TPG with that of [1] and [16]. We generated Verilog code of
our most hardware-efficient implementation which consists
of a binary counter (SC) and a layer of XOR gates (ML). We
used the Design Analyzer software from Synopsys to ob-
tain a fairly accurate estimate of transistor count for various
ISCAS-85 benchmarks. Table 6 gives the transistor counts
for various TPG designs. For columns 3 and 4, we converted
the hardware cost of [16] to match our transistor count met-
ric. For example, for c6288 which has 32 inputs, we use two
d = 16 GLFSRs (or CAPS), each of which has XOR cost
278 (346 for CAPS). To this we add the hardware overhead
of 32 D flip-flops to obtain the total transistor count of 745
(824 for CAPS). For column 2 we add the XOR counts given
in [1] to the cost of the binary counter required by the bench-
mark circuits. Again, our TPG performs well in comparison

5



Test set size
Benchmark Weighted ran- Akers and Multiple seeds/ Use of GLFSR Our
circuit dom patterns [7] Jansz [1] polynomials [11] counters [8] [5] TPG
c432 636 1024 320 125 n/a 256
c499 1125 1024 679 22064 n/a 256
c880 765 8192 1596 29 640 527
c1355 3059 4096 1447 122344062 1760 1024
c1908 3539 8192 3659 1169 4700 2055
c2670 7689 65536 33000 n/a 6128 6269
c3540 3351 8192 6592 970 4828 4099
c5315 2279 8192 1843 62 n/a 2048
c6288 39 512 43 98003134 n/a 128
c7552 9276 n/a 32800 n/a n/a 24577

Table 5: Comparison of the test set size for various proposed BIST methods.

to GLFSR and CAPS for most of the benchmark circuits. It
is observed that for larger circuits like c7552 and c2670 our
method has higher hardware overhead. Since these circuits
have large input width n, the size of subspaces required for
complete fault coverage is large resulting in large numbers
of basis vectors, which in turn increases the XOR logic size
in our implementation.

Bench- Akers
mark and Our
circuit Jansz [1] GLFSR CAPS TPG
c432 630 827 922 468
c499 784 926 1044 555
c880 1208 1365 1531 1099
c1355 738 926 1044 683
c1908 725 761 847 715
c2670 3668 5309 5951 9631
c3540 1027 1086 1255 1127
c5315 2708 3984 4517 3216
c6288 429 745 824 387
c7552 n/a 4617 5245 9834

Table 6: Comparison of transistor counts of the proposed
TPG against other TPG methods.

7 Conclusion
We have presented a new on-chip test vector generation tech-
nique that can achieve full fault coverage at relatively low
hardware cost. Our approach uses small sets of bases to gen-
erate linear vector spaces (clusters) that efficiently cover a
precomputed test set. A unique feature of the proposed TPG
design is its use of Gray codes to simplify the vector gener-
ation process. Experimental comparisons with a wide range
of prior methods (not all of which can provide the same fault
coverage) show that our approach generally provides greater
test-data compression using less hardware. In many cases,
the total size of the generated test set is significantly less
than those produced by prior methods.

In on-going work, we are attempting to improve the clus-
tering algorithm, which should further reduce the TPG hard-
ware overhead. We are also extending the proposed TPG
design to enable scan-based testing which will let us test se-
quential circuits as well.

References
[1] S. B. Akers and W. Jansz, “Test set embedding in a built-in

self-test environment,” Proc. ITC, pp. 257-263, 1989.
[2] M. Chatterjee and D. P. Pradhan, “A BIST pattern generator

design for near perfect fault coverage,” IEEE Trans. Comput-
ers, vol. 52, pp. 1543-1557, 2003.

[3] C. Dufaza and G. Cambon, “LFSR based deterministic and
pseudo-random test pattern generator structures,” Proc. Euro-
pean Test Conf., pp. 27-34, 1991.

[4] D. Kagaris, “Built-in TPG with designed phaseshifts,” Proc.
VLSI Test Symp., pp. 365-370, 2003.

[5] D. Pradhan et al., “A Hamming distance based test pattern
generator with improved fault coverage,” Proc. IOLTS, pp.
221-226, 2005.

[6] K-H Tsai et al., “Star Test: the theory and its applications,”
IEEE Trans. Computer Aided Design of Integrated Circuits
and Systems, vol. 19, issue 9, pp. 1052-1064, 2000.

[7] B. Reeb and H. J. Wulderlich, “Deterministic pattern gener-
ation for weighted random pattern testing,” Proc. DATE, pp.
30-36, 1996.

[8] D. Kagaris, S. Tragoudas and A. Majumdar, “On the use of
counters for reproducing deterministic test sets,” IEEE Trans.
Computers, vol. 45, pp. 1405-1419, 1996.

[9] L. Huang et al., “Gauss-elimination-based generation of mul-
tiple seed-polynomial pairs for LFSR,” IEEE Trans. CAD,
vol. 16, pp. 1015-1024, 1997.

[10] S. Hellebrand et al., “Pattern generation for a deterministic
BIST scheme,” Proc. ICCAD, pp. 88-94, 1995.

[11] L. Huang et al., “A Gauss-elimination-based PRPG for com-
binational circuits,” Proc. DATE, pp. 212-216, 1995.

[12] S. Hellebrand et al., “Built-in test for circuits with scan based
on reseeding multiple-polynomial linear feedback shift reg-
isters,” IEEE Trans. Computers, vol. 44, pp. 223-233, 1995.

[13] H. J. Wunderlich and G. Kiefer , “Bit-flipping BIST,” Proc.
ICCAD, pp. 337-343, 1996.

[14] H. K. Lee and D. S. Ha, “On the generation of test patterns
for combinational circuits,” Tech. Report No. 12-93, Dept. of
Electrical Eng., Virginia Polytechnic Inst. and State Univ.

[15] M.L. Bushnell and V.D. Agrawal, Essentials of Electronic
Testing, Kluwer, 2000.

[16] S. Chidambaram et al., “Comparative study of CA with phase
shifters and GLFSRs,” Proc. ITC, 2005.

[17] B. Koenemann, “Care bit density and test cube clusters:
multi-level compression opportunities,” Proc. ICCD, pp. 320-
325, 2003.

[18] S. Wang et al., “XWRC: externally-loadedweighted random
pattern testing for input test data compression,” Proc. ITC, pp.
571-580, 2005.

6


